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Abstract

Square-wave oscillations exhibiting different plateau lengths have been
observed experimentally by investigating an electro-optic oscillator. In
[20], we analyzed the model delay-differential equations and determined
an asymptotic approximation of the two plateaus. In this paper, we con-
centrate on the fast transition layers between plateaus and show how
they contribute to the total period. We also investigate the bifurcation
diagram of all possible stable solutions. We show that the square-waves
emerge from the first Hopf bifurcation of the basic steady state and that
they may coexist with stable low-frequency periodic oscillations for the
same value of the control parameter.

1 Introduction

Relaxation oscillations with alternate fast and slow phases appear in several
areas of science from electronics to neural modelling. They are described math-
ematically as the solution of two or more nonlinear ordinary differential equa-
tions that exhibit different time scales. Over the years, reliable asymptotic
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techniques such as the method of matched asymptotic expansions [2, 3] have
been developed and successfully used to determine analytical expressions of
physical interest (amplitude and period). The van der Pol equation in the large
damping case is the reference problem for the analysis of relaxation oscillations
[1, 2, 3] but other problems have emerged in the field of chemical and biological
oscillations [4]-[6].

Analytical studies of relaxation oscillations that are solution of delay dif-
ferential equations (DDEs) are however much rare. A notable exception is the
analysis of a model for hematological stem cell regulation by Fowler and Mackey
[7, 8]. The method of matched asymptotic expansions is difficult to implement
for DDEs because we often need to anticipate the response of both the state and
delayed variables. Much of the mathematical work that has been done [9]-[12]
is concerned with scalar nonlinear DDEs of the form

εx′ = −x+ f(x(t− 1), λ). (1)

where x′ denotes the derivative of x with respect to the dimensionless time s
(s ≡ t/tD where t is the real time and tD is the delay of the feedback). f(x, λ)
is a nonlinear function of x and λ is a control parameter. ε ≡ t0/tD > 0
where t0 is the linear decay time of x in the absence of feedback. Eq. (1) arises
in a variety of applications, for example, physiological control systems [13], the
transmission of light through a ring cavity [14]-[16], and population biology [17].
Under particular conditions on f(x, λ) Eq. (1) may exhibit nearly 2-periodic
square-wave oscillations provided ε is sufficiently small (see Figure 1). More
precisely, these oscillations consist of sharp transition layers of size proportional
to ε connecting plateaus that are close to the Period 2 fixed points of the map

xn = f(xn−1, λ) (2)

where xn ≡ x(t) and xn−1 ≡ x(t − 1). The Period 2 fixed points of the map
provide excellent approximations of the extrema of the oscillations. The de-
scription of the fast transition layers and the determination of the correction
to the period is however much more delicate. Significant contributions to the
asymptotic relations between the solutions of the map (2) and the solutions of
the DDE (1) have been made by Chow and Mallet-Paret [9], Mallet-Paret and
Nussbaum [10], Chow et al. [11] and Hale and Huang [12]. In particular, the
Hopf bifurcation to the 2-periodic square-wave solutions has been carefully an-
alyzed. As the bifurcation parameter deviates from its Hopf bifurcation value,
the oscillations quickly change their shape from sinusoidal to square-waves [18].

Does Eq. (1) exhibit other type of square-wave oscillations? An analysis of
the possible Hopf bifurcation points of Eq. (1) indicates that nearly 1-periodic
square-wave solution are possible but are unstable because they emerge from
an unstable steady state [18]. Moreover, transient asymmetric square waves
exhibiting different plateau lengths can be initiated by choosing particular initial
conditions but they disappear at finite time [19].

In [20], we addressed the question whether stable periodic square-wave os-
cillations exhibiting different plateau lengths (called duty cycles) are possible
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Figure 1: Nearly 2-periodic square-wave solution of Eq. (1) with f(x, λ) =
−λx + x3. The values of the parameters are ε = 0.02 and λ = 1.2. The two
plateaus are close to the period 2 fixed points of the map (2) given by x± =
±
√
λ− 1 = 0.45. The period P = 2 +O(ε) is slightly larger than 2 because of

the time needed for the fast transition layers.

Figure 2: Experimental square-wave oscillations. By gradually changing the
feedback phase Φ, the plateau lengths can be tuned but the total period P ≃
tD = 20 µs remains fixed.
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for problems modeled by second order DDEs. The question has been raised by
experiments performed on electro-optic oscillators (EOOs) which are modeled
mathematically in terms of second order DDEs [21, 22]. An EOOs typically
incorporate a nonlinear (intensity) modulator, an optical-fiber delay line, and
an optical detector in a closed-loop resonating configuration. This hybrid mi-
crowave source is capable of generating, within the same optoelectronic cavity,
either an ultra-low-jitter (low phase-noise) single tone microwave oscillation,
as used in radar applications [23, 24], or a broadband chaotic carrier typically
intended for physical data encryption in high bit rate optical communications
[25]. For a specific range of values of the parameters, periodic square-wave os-
cillations (see Figure 2) were found exhibiting a period P close to one delay tD
as well as different plateau lengths. It motivated an asymptotic analysis of the
EOO equations in the limit of large delays. We obtained a good approximation
of the plateaus and we were able to explain how their respective lengths depend
on the control parameters [20].

In this paper, we concentrate on three different issues that were omitted in
[20]. We first analyze the fast transition layers and show how they contribute to
the total period. Second, we numerically investigate the bifurcation diagram of
the square-wave oscillations and show how they emerge from a particular Hopf
bifurcation. Third, we numerically found another stable time-periodic solution
exhibiting a low frequency that may coexist with the square-wave solution. The
plan of the paper is as follows. In Section 2, we introduce the EOO equations
and propose a complete asymptotic description of the square-wave oscillations.
In Subsection 2.1, the approximation of the slowly-varying plateaus is described
in more detail than in [20]. The two fast transition layers are examined in
Subsection 2.2. We show that they are described by the same equation which we
analyze. In Section 3, we numerically investigate the bifurcation diagram of the
stable solutions using two different methods. The main results are summarized
in Section 4.

2 Asymptotic analysis

In dimensional form, the evolution equation for a EOO are (Eqs. (35) and (36)
in [21] or Eqs. (3) and (4) in [20])

y′ = x, (3)

εx′ = −x− δy + β
�
cos2 (x(s− 1) + Φ)− cos2(Φ)

�
, (4)

where prime means differentiation with respect to s and s is time measured in
units of the delay. The parameters ε, δ, and Φ are fixed and given by [20]

ε = 10−3, δ = 8.43× 10−3, and Φ = −
π

4
+ 0.1 ≃ −0.69. (5)

The feedback amplitude β is our bifurcation parameter.
Eqs. (3) and (4) admit nearly 1-periodic square-wave oscillations exhibiting

different plateau lengths (see Figure 3). The slow/fast time behavior of the so-
lution is due to the small value of ε. As we shall later demonstrate, the relatively
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Figure 3: Colors on line. (a) Numerical square-wave solution of Eqs. (3) and
(4) during one period. The values of the parameters are given by β = 1.2 and
(5) except ε = 5× 10−3 (this higher value of ε provides a better illustration of
the fast transition layers). The two plateaus of the square-wave solution are of
length s0 and 1− s0, respectively. The fast transition layers contributes to the
total period by two corrections of size εr. (b) The periodic solution is shown
in red in the phase plane (x, δy). The S-shaped line is the function (11). The
dot is the unique steady state (x, y) = (0, 0). The values of y0 = −0.0192,
x01 = −0.61, x03 = −0.1, and x02 = 0.41 are determined in Subsection 2.1.
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small change of y compared to x (see Figure 3b) is the result of the small value
of δ. Furthermore, the asymmetry of the square-wave oscillations (s0 < 1/2 in
Figure 3a) is related to the deviation Φ+ π/4. Experimentally, we may explore
different ranges of values of these parameters. In this paper, we shall keep δ
and Φ fixed as given in (5) and consider different small values of ε whenever it
becomes appropriate for our numerical illustrations or analysis.

We next propose to construct the square-wave solution in the limit ε → 0.
Specifically, we seek a P -periodic solution satisfying the condition

x(s− P ) = x(s) (6)

where the period P is given by

P = 1 + 2εr (r = O(1)). (7)

As shown in Figure 3a, the solution consists of two slowly varying plateaus
connected by fast transition layers. We anticipate the analysis of the transition
layers (see Subsection 2.2) by assuming that the contribution from these layers
to the period P is the same (εr). We analyze the slow and fast parts of the
solution, separately.

2.1 Slowly-varying plateaus

The leading approximation is obtained by setting ε = 0 in Eqs. (3)-(4). The
reduced equations with (6) and (7) are

y′ = x, (8)

0 = −x− δy + β
�
cos2 (x+Φ)− cos2(Φ)

�
(9)

x(s− 1) = x(s) (10)

From Eq. (9), we determine y = y(x) as

y =
1

δ

�
−x+ β

�
cos2 (x+Φ)− cos2(Φ)

��
. (11)

The function (11) is represented in Figure 3b and exhibits three branches pro-
vided β > 1. The evolution of x and y along the left and right branches corre-
sponds to the evolution along the plateaus of the square-wave periodic solution.
They can be determined by inserting (11) into the left hand side of Eq. (8)
and by solving the resulting first order equation for x. However, this solution is
complicated and we may find simple analytical expressions by taking advantage
of the small value of δ. Specifically, we seek a perturbation solution of Eqs. (8)
and (9) of the form

y = δ−1y0(s) + y1j(s) + ... (12)

x = x0j(s) + δx1j(s) + ... (13)

where j = 1 or 2 refer to the time domains 0 < s < s0 and s0 < s <
1, respectively. (see Figure 4).
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Figure 4: Colors on line. Numerical square-wave solution of Eqs. (3) and (4)
during one period. The values of the parameters are the same as for Figure 3a
except that ε = 2×10−4 is much smaller. (a) x(s) exhibits sharp jumps at times
s = 0, s = s0, and s = 1 while y remains continuous at those points. We also
determine x1j ≃ (x− x0j)/δ (red) and note that x11 and x12 are continuous at
times 0, s0, 1. (b) The square-wave periodic solution is shown in the phase-plane
(x, δy) (red). Comparing with Figure 3b, we note that δy = y0 is now located
slightly below the closed orbit.
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Inserting (12) and (13) into Eqs. (8)-(9) and equating to zero the coefficients
of each power of δ leads to a sequence of problems for the unknowns functions
y0, y1j , x0j ,and x1j .The leading order problem is O(1) and is given by

y′0 = 0, (14)

−x0j − y0 + β
�
cos2 (x0j +Φ)− cos2(Φ)

�
= 0. (15)

Eq (14) implies that y0 is a constant. We already know that for a finite range of
values of y0, Eq. (15) admits more than one root (see Figure 3b). The solutions
corresponding to the left and right branches are denoted by x01 < 0 and x02 > 0,
respectively. We don’t know the values of y0 and analyze the O(δ) problem for
y1j(s) and x1j(s). It is given by

0 ≤ s < s0

y′11 = x01, (16)

−x11 − y11 − 2β sin(2x01 + 2Φ)x11 = 0, (17)

s0 ≤ s < 1

y′12 = x02, (18)

−x12 − y12 − 2β sin(2x02 + 2Φ)x12 = 0. (19)

Figure 4 suggests the following initial conditions for y11 and y12

y11(0) = y1M and y12(s0) = y1m (20)

where y1M and y1m corresponds to the maximum of y11 and the minimum of
y12, respectively. The solution of Eqs. (16)-(20) then is

y11 = y1M + x01s, (21)

y12 = y1m + x02(s− s0), (22)

x11 = −
y11

1 + 2β sin(2x01 + 2Φ)
, (23)

x12 = −
y12

1 + 2β sin(2x02 + 2Φ)
. (24)

continuity of y11 and y12 at times s = s0 and 1 leads to the conditions

y1M + x01s0 = y1m, (25)

y1m + x02(1− s0) = y1M (26)

which are two equations for y1M − y1m. A solution of Eqs. (25) and (26) is
possible only if

x01s0 + x02(1− s0) = 0. (27)

As for y11 and y12, we next assume that the corrections x11 and x12 are equal
at s = s0 and s = 1 (see Figure 4a). From (23) and (24), we then obtain the
condition

sin(2x01 + 2Φ) = sin(2x02 + 2Φ), (28)
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or equivalently,
cos(x01 + x02 + 2Φ) sin(x01 − x02) = 0. (29)

Eq. (29) admits multiple solutions. We specifically look for a solution of
Eq. (29) which satisfies the perfect square-wave condition x01 = −x02 if Φ =
−π/4. This solution is given by

x01 + x02 + 2Φ = −π/2. (30)

Using (15), (30) allows to determine y0, x01 and x02. Substracting Eq. (15)
with x01 and Eq. (15) with x02 gives

−(x01 − x02)− β sin(x01 + x02 + 2Φ) sin(x01 − x02) = 0 (31)

Using (30) then allows to eliminate x02 in Eq. (31). We find

−(2x01 + 2Φ + π/2) + β sin(2x01 + 2Φ + π/2) = 0. (32)

Eq. (32) provides the solution for x01 = x01(β) in the implicit form

β =
2x01 + 2Φ + π/2

sin(2x01 + 2Φ+ π/2)
. (33)

We obtain x02 and s0 by using (30) and (27)

x02 = −π/2− 2Φ− x01, (34)

s0 =
x02

x02 − x01
. (35)

In Figure 5, we compare our approximations with the numerical solution ob-
tained for β = 1.2? The expression for y0 as well as for x03, defined as the third
root of Eq. (15), are documented in the appendix. In Section 3, we numerically
analyze the bifurcation diagram of the possible stable solutions and show that
the square-wave oscillations emerge from a Hopf bifurcation.

2.2 The fast transition layers

The plateaus of the square-wave are connected by fast transition layers on time
intervals proportional to ε. See Figure 3a.

2.2.1 Jump down at s = 0

We first consider the fast transition layer at s = 0 and introduce the inner
variable ζ1 ≡ sε−1. The leading order transition layer equations for y = Y1(ζ1)
and x = X1(ζ1) are then given by

dY1
dζ1

= 0, (36)

dX1
dζ1

= −X1 − δY1 +
β

2
[cos(2X1(ζ1 + 2r) + 2Φ)− cos(2Φ)] (37)
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Figure 5: Colors on line. Analytical bifurcation diagram of the square-waves.
(a) The numerically computed square-wave is shown for β = 1.2 and the values
of the parameters listed in (5). (b) Its extrema are in good agreement with the
analytical predictions obtained from the parametric solution (33) - (35) (with
x01 as the parameter). (c) The plateau lengths are s0 and 1− s0, respectively,
and the figure shows s0.

where we have used the periodicity condition

x(s− 1) = x(s− P + 2εr) = x(s+ 2εr) = X1(ζ1 + 2r). (38)

Eq. (36) implies that Y1 is a constant. It needs to match the constant deter-
mined in our analysis of the slowly varying plateaus i.e., Y1 = y0δ

−1 Using the
expression of y0 given by (66), Eq. (37) can be rewritten as

dX1
dζ1

= −X1 −Φ−
π

4
+
β

2
sin(2X1(ζ1 + 2r) + 2Φ +

π

2
). (39)

This equation can be reformulated in a simpler form by introducing the deviation
z1 ≡ X1 − x03 = X1 +Φ+ π

4
. From Eq. (39), we obtain

dz1
dζ1

= −z1 +
β

2
sin(2z1(ζ1 + 2r)). (40)

The boundary conditions for the jump down transition are X1(−∞) = x02 and
X1(∞) = x01. In terms of z1, they take the simpler form

z1(−∞) = a and z1(∞) = −a (41)

where
a ≡ x02 − x03 > 0. (42)

2.2.2 Jump up at s = s0 + εr

We next consider the transition layer near s = s0 + εr and introduce the inner
variable ζ2 ≡ (s− s0 − εr)ε−1. The leading order transition layer equations for
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y = Y2(ζ2) and x = X2(ζ2) are given by

dY2
dζ2

= 0, (43)

dX2
dζ2

(ζ2 +
s0 + εr

ε
) = −X2(ζ2 +

s0 + εr

ε
)− δY2(ζ2 +

s0 + εr

ε
)

+
β

2

�
cos(2X2(ζ2 +

s0+εr
ε

+ 2r) + 2Φ)
− cos(2Φ)

�
. (44)

where we have used the periodicity condition

x(s− 1) = x(s− P + 2εr) = x(s+ 2εr) = X2(ζ2 +
s0 + εr

ε
+ 2r). (45)

The constant solution for Y2 is again matching the value obtained from the
analysis of slowly varying plateaus i.e., Y2 = y0δ

−1 Using the expression of y0
given by (66), Eq. (44) simplifies as

dX2
dζ2

(ζ2 +
s0 + εr

ε
) = −X2(ζ2 +

s0 + εr

ε
)− Φ−

π

4

+
β

2
sin(2X2(ζ2 +

s0 + εr

ε
+ 2r) + 2Φ+

π

2
). (46)

Introducing the deviation z2 ≡ X2 − x03 = X2 +Φ+ π
4
, Eq. (46) becomes

dz2
dζ2

(ζ2 +
s0 + εr

ε
) = −z2(ζ2 +

s0 + εr

ε
) +

β

2
sin(2z2(ζ2 +

s0 + εr

ε
+ 2r). (47)

We next note the following relations between the two inner variables

ζ2 = ζ1 −
s0 + εr

ε
. (48)

Inserting (48) into Eq. (47), we formulate an equation for z2(ζ1) of the form

dz2
dζ1

(ζ1) = −z2(ζ1) +
β

2
sin(2z2(ζ1 + 2r)). (49)

The boundary conditions for the second transition layer now are

z2(−∞) = −a and z2(∞) = a (50)

where a is defined by (42). We realize that Eqs. (49) and (50) are the same as
Eqs. (40) and (41) except that the boundary conditions have been interchanged.
This implies that the solution of Eqs. (49) and (50) is related to the solution of
Eqs. (40) and (41) by

z2(ζ1) = −z1(ζ1). (51)

In conclusion, we found the same delay differential equation for the two fast
transition layers. It is given by

dz

dζ
= −z +

β

2
sin(2z(ζ + 2r)), (52)

z(−∞) = a and z(∞) = −a (53)
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where we have omitted the subscript 1 for z1 and ζ1 We next proceed as in [9].
We note that by rescaling time ζ as ξ ≡ −ζ/2r, Eq. (52) can be rewritten as a
DDE with delay 1 and parameter r

dz

dξ
= 2r

�
z −

β

2
sin(2z(ξ − 1))

�
(54)

z(−∞) = a and z(∞) = −a. (55)

z = ±a are both critical points of Eq. (54). This means that we are looking for
a heteroclinic orbit for some value of r, that is, a trajectory joining these critical
points as ξ → ±∞. The delay parameter r is unknown a priory, and must be
determined as part of the solution. We cannot solve the problem analytically
for arbitrary β (it is a nonlinear DDE).

2.2.3 Correction to the period

In this subsection, we solve Eq. (54) and (55) for β close to 1. Our objective is
to demonstrate that there is indeed a unique value of r such that Eq. (54) and
(55) admits a solution. To this end, we introduce a small parameter µ defined
by .

µ ≡
�
(β − 1)/b (56)

where b = ±1 if β ≷ 1. We then expand the solution z and parameter r in power
series of µ

z = µZ1(ν) + µ
2Z2(ν) + ... (57)

r = r0 + µr1 + ... (58)

where ν ≡ µξ. The motivation for introducing (56) comes from the fact that

a ≡ x02−x03 =
�

3

2
(β − 1), in first approximation as β → 1, which implies that

the amplitude of the solution scales like
√
β − 1. After introducing (56)-(58) into

(52), we equate to zero the coefficients of each power of µ. The leading order
problem is O(µ) and is given by

(1− 2r0)
dZ1
dν

= 0 (59)

In order to have a non constant solution for z1 we requires that r0 = 1/2. The
next problem is O(µ2) and is given by

−
1

2

d2Z1
dν2

+
2

3
Z31 − bZ1 + 2r1

dZ1
dν

= 0 (60)

with the boundary conditions

Z1(−∞) =
�
3b/2 and Z1(∞) = −

�
3b/2. (61)
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We choose b = 1 and note that the damped Hamiltonian equation (60) has a
unique solution z1 = −

�
3/2 tanh(ν) if r1 = 0. We conclude that we have found

an analytical expression for the transition layer solution provided

β > 1 and r =
1

2
+O((β − 1)). (62)

We have determined numerically the period of the square-wave oscillations with
a high precision. The values of δ and Φ are documented in (5), ε = 5 × 10−2,
and β = 1.2. We find P ≃ 1.047. From (7), we then compute 2εr = 4.710−2

which implies r = 0.47. The numerical value of r is close to the analytical value
r = 0.5 given in (62).

3 Numerical bifurcation diagrams

We consider β as our bifurcation parameter. All other parameters are docu-
mented in (5). A linear stability analysis of the steady state (x, y) = (0, 0)
allows us to determine the primary Hopf bifurcation points and Hopf frequen-
cies. They satisfy the following equations

tan(σ) = −
�
εσ2 − δ
σ

�
, (63)

β = −
1

sin(2Φ) cos(σ)
. (64)

The first Hopf bifurcation is located at β = β1 ≃ 1.020 and exhibits a frequency
close to 2π (σ1 = 6.28). Using a continuation method, we find a 1-periodic
branch of periodic solutions that connects the asymmetric square-waves (see
Figure 6a). More precisely, the Hopf bifurcation branch is first subcritical and
unstable and then folds back to a branch of stable square-wave oscillations.
There are many more Hopf bifurcation points as we further increase β from β1.
Using different initial conditions, we have integrated numerically Eqs. (3) and
(4) , and found another branch of stable periodic solutions. By contrast to the
square-wave oscillations, the new oscillations exhibit a low frequency. We have
found that it emerges from the primary Hopf bifurcation point β = β2 ≃ 1.025
as an unstable branch (as expected since this bifurcation is from an unstable
steady state) and then stabilizes as β ≥ 1.029. The frequency at the Hopf
bifurcation point is σ2 = 0.09 meaning a period P = 69.81 (numerically, we
found P = 69.12 see Figure 7b)

The bifurcation diagrams shown in Figure 6 illustrate the results of our
simulations. The first Hopf bifurcation leads to the asymmetric square-wave os-
cillations that we investigated analytically in Section 2. Specifically, the extrema
of x as a function of β are given by (33) and (35) where x01 ≥ −π/4−Φ (full red
line in Figure 6a and full black line in Figure 6b) .In Figure 6b, the square dots
are the solutions obtained numerically from simulating the full equations (3)
and (4). For each point, the initial conditions were x = −1 (−1 ≤ s < −1/3),
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Figure 6: Colors on line. (a) Bifurcation diagram of the 1-periodic square-waves
obtained by a continuation method. The values of the parameters are listed in
(5) except Φ = −0.68 and ε = 5.5 × 10−3). Full and broken lines correspond
to stable and unstable solutions, respectively. The red parabolic line emerging
at (β, x) = (1,−0.1) is the analytical approximation given by (33) and (34).
(b) Bifurcation diagram of the 1-periodic square-waves obtained by numerical
integration. The values of the parameters are listed in (5). The full black line
represents the analytical approximation given by (33) and (34). The square dots
and the red triangles denote stable periodic solutions obtained by integrating
Eqs. (3) and (4). The squares and the triangles correspond to square-wave and
low frequency periodic solutions, respectively. The change of stability of the
zero solution occurs at β = β1 ≃ 1.020 and corresponds to a Hopf bifurcation to
the 1-periodic square-wave oscillations. The red parabolic lines are curve fitting
lines given by x = ±1.3742

�
β − β2 where β2 = 1.025 is the primary Hopf

bifurcation point leading to the low frequency oscillations and obtained from
the linearized theory. In Figure 7, we show the two stable solutions coexisting
for β = 1.03 (this value of β is indicated by an arrow).
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Figure 7: Coexistence of two different stable periodic solutions. The values of
the parameters are documented in (5) and β = 1.03. (a) The 1 -periodic square-
wave is obtained using x = −1 (−1 < s ≤ −2/3), x = 1 (−2/3 < s ≤ 0), .and
y(0) = 0. (b) The low- frequency oscillations are found using x = cos(0.33s)
(−1 < s ≤ 0) and y(0) = 0.

x = 1 (−1/3 ≤ s < 0), and y(0) = 0. The long time solution was then analyzed
when s > 10000. For β < 1.009, the system jumps to the zero solution. The
stability of the zero solution was also tested by using the initial conditions x = 0
(−1 ≤ s < −1/3), x = 10−3 (−1/3 ≤ s < 0), and y(0) = 0. The long time so-
lution was again analyzed when s > 10000. For β = 1.020, x = 0 is stable. For
β = 1.021, x = 0 is unstable and the the system jumps to the 1-periodic asym-
metric square-wave. In addition to the 1-periodic square-wave solution, a stable
low frequency periodic solution was determined as soon as β ≥ 1.029. The initial
conditions were x = 0.1 cos(0.33s) (−1 ≤ s < 0) and y(0) = 0. At β = 1.029, the
frequency of the oscillations is σ = 0.095 which is close to the Hopf frequency
σ2. The parabolic lines given by x = ±1.3742

�
β − β2 are curve fitting curves

that strongly suggest that the unstable branch of periodic solutions emerging at
β = β2 = 1.025 stabilizes as soon as β ≥ 1.029. Similar responses (square-wave
or low-frequency oscillations) have been found previously [21] but not for the
same values of the bifurcation parameter. Here, the two distinct regimes may
coexist (see Figure 7).
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4 Discussion

In this paper, we investigated several issues that were missing in [20]. First, we
concentrate on the fast transition layers between the plateaus of the square-
waves and showed how they contribute to the correction of the total period.
Second, we show numerically that the square-wave oscillations are the result of
a first Hopf bifurcation from the basic steady state. The bifurcation is subcriti-
cal and allows the coexistence of stable square-waves with a stable steady state.
Experiments done on a EOO oscillator using quite different values of the para-
meters [22] suggest that the same mechanism could be responsible for the onset
of asymmetric square-waves. There are many other primary Hopf bifurcation
points but we found only one leading to stable oscillations. The new periodic
solution exhibits a large period and smooth oscillations. An asymptotic descrip-
tion of this solution is also possible [21]. Both the square-wave and the large
period oscillations are the result of the large delay. They are dominant attrac-
tors in our EOO problem and motivate the investigation of other second-order
nonlinear DDEs experiencing a large delay.
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5 Appendix

The plateaus of the square-wave are x = x01 < 0 and x = x02 > 0, in first
approximation. They are defined as two roots of Eq. (15) for a fixed y0. Figure
3b suggests that there is a third root. In this appendix, we determine this third
root and formulate an expression for y0.

Equations for x01 and x02 are given by Eqs. (30) and (32). From Eq. (32)
we determine β cos(2x01 + 2Φ) as

β cos(2x01 + 2Φ) = 2x01 + 2Φ+
π

2
. (65)

From (15) with j = 1, we formulate an expression for y0 given by

y0 = −x01 +
β

2
cos(2x01 + 2Φ)−

β

2
cos(2Φ)

Using (65)

y0 = −x01 +
1

2
(2x01 + 2Φ +

π

2
)−

β

2
cos(2Φ)

= Φ +
π

4
−
β

2
cos(2Φ). (66)
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In order to find the third root of Eq. (15), we introduce (66) into Eq. (15) and
obtain

Φ+
π

4
= −x0j +

β

2
cos(2x0j + 2Φ). (67)

This equation admits the solution

x03 = −(Φ +
π

4
). (68)

Using Eq. (30), we then obtain the relation

x01 + x02 = 2x03 (69)

or equivalently,
x02 − x03 = x03 − x01. (70)

The two extreme roots are at equal distance from the central root x03. This
symmetry property has important consequences. In particular, the two fast
transitions layers admit the same equation and they contribute in the same way
to the correction of the period.
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