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1. Introdution

Chaoti proesses an be observed in various domains suh as eonomy, biology, thermodynamis,

mehanis and optis. One of the �rst optial systems for haos generation was reported by Ikeda,

1

who desribed a set{up onsisting of a ring avity with a nonlinear feedbak. Other optial systems

have been investigated, where haos has been observed in the behavior of laser spatial patterns

beams, laser polarization states,

2

laser wavelength,

3,4

and laser intensity whih is the ase mostly

studied.

5{7

In this paper, we report a haos generator based on an unusual dynamial variable, the

optial path di�erene (OPD) in a oherene modulation system. The system is realized from a

Mah{Zehnder (MZ) oherene modulator powered by a short oherene soure and driven with a

nonlinear feedbak loop ontaining a seond MZ interferometer and a delay line. The dynamis of

this system are shown to be ruled by a �rst order nonlinear delay di�erential equation exhibiting

interesting bifuration diagrams. In addition to the well known asade of period doubling bifura-

tions leading to haos, we �nd losed branhes of periodi solutions. Suh a bifuration sequene was

reported on dynamial systems of di�erent types,

8

but was never observed in previous experiments

based on nonlinear delayed dynamis like the one reported in the present artile.

The paper is organized as follows. In Setion 2 we briey reall the basi priniples of oherene

modulation and derive the nonlinearity that is used to generate a haoti oherene modulated light

beam. The experimental setup and its operating priniple are desribed in Setion 3. In Setion 4,

numerial simulations are ompared with experiments. Finally, we explain in Setion 5 why losed

branhes of periodi solutions are possible for our devie.

2. Coherene modulation

When looking for optial devies apable of produing haoti outputs, it is natural to onsider non-

linearities indued by the optial power. Suh nonlinearities often feature instabilities that require

2



an aurate ontrol of the laser pulses used. The nonlinearity (NL) used in the setup desribed

in this paper is however generated via the modulation transfer funtion (MTF) of a oherene

modulation system. Coherene modulation of light has been widely investigated theoretially and

experimentally during the last years for appliations to sensors,

9

teleommuniation systems

10

and

seure ommuniations.

11

We refer the reader to Ref.

12

for a detailed analysis of oherene modu-

lation from onsiderations on the temporal oherene degree of light. A basi system for oherene

modulation onsists of a broadband optial soure (power spetrum P (�)) and a pair of interfer-

ometers, with optial path-di�erenes (OPD) D

1

and D

20

, respetively, that are greater than the

oherene length L

C

= 1=�� of the soure (�� is the linewidth at e

�1

of the soure expressed in

wavenumber � = 1=�; D

1

is assumed to be an OPD that an be varied eletro-optially while D

20

is onstant). The light intensity I at the seond interferometer output is given by

10
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where � is related to the optial losses in the system, P

0

is the optial power of the soure

and �

0

is the enter wavenumber. The funtion �(:) desribes the temporal oherene degree of the

soure, and is given by the osine Fourier Transform of the power spetrum P (�) of the soure i.e.,

�(D) =

Z

+1

�1

P (�) os(2��D) d�: (2)

If the soure exhibits a Gaussian power spetrum of the form
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and Eq. (1) beomes
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Eq. (1) or (3) onsiderably simplify if we now assume that the OPD D

20

of the seond interfer-

ometer oinides with D

1

to within a fration of the oherene length. Then, the term �(D

1

�D

20

)

in Eq. (1) or the exponential in Eq. (3) beomes unity. This means that the two asaded in-

terferometers admit a modulation transfer funtion that is a osine funtion vs D

1

, with a 50 %

modulation depth:

MTF =

1

4

�

1 +

1
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osf2��
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20
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�

(4)

Suh a nonlinear dependene of the MTF vs D

1

forms the ore of our experiments. For the

system to operate as a haoti osillator it is known that the nonlinearity should exhibit at least

one minimum or one maximum. This ondition an be easily met with a suitable hoie of the OPD

D

1

as explained in the following setion.

3. Experimental set{up

The experimental set{up is shown in Fig. 1. Spei�ally, the haoti osillator onsists of:

- a pigtailed superluminesent diode SLD with an output power P

0

= 650 �W and a entral

wavenumber �

0

= 0:78 �m (�

0

= 1:28 �m). The power-spetrum P (�) of the soure is approxi-

mately Gaussian, with a linewidth �� = 21�10

�3

�m

�1

(�� = 35 nm) at e

�1

, yielding a oherene

length L

C

' 47 �m

- two LiNbO

3

: T i integrated MZ modulators (MZ

1

and MZ

2

), whih generate the nonlinear

MTF desribed in Eq. (4). The total optial power losses are �12 dB. Those MZ modulators were

fabriated spei�ally to feature unbalaned branhes with large OPDs D

10

= D

20

= 260 �m, when

no voltage is applied to the eletrodes. The fabriation proess used was desribed in

9

for other
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purposes. When applying a voltage V on MZ

1

, the OPD beomes D

1

= D

10

+ÆD (with ÆD << L

C

),

where ÆD = V=2�

0

V

�

is the eletrially-indued optial path-di�erene, and V

�

= 4:3 V the half-

wave voltage.

From Eq. (3) with the exponential equal to one, the optial intensity I(V ) at the output of

MZ

2

an then be rewritten as:

I(V ) =

�P

0

2

�

1 +

1

2

os

�

�+ �

V

V

�

��

(5)

where � = 2��

0

(D

10

�D

20

). The other elements of our experimental set{up are

- a �ber polarizer plaed between the modulators

- a delay line formed by a 22 km-long �ber, yielding a time delay T = 110 �s.

- a photodetetor PD, whih onverts the optial intensity I(V ) at the output of MZ

2

into a

feedbak voltage with a onversion fator K = 1:5 V=�W , and a ut-o� frequeny f



= 25 kHz,

yielding a loop response time � = 1=2�f



' 6:4 �s. The dynamis of the feedbak voltage V (t) are

then ruled by a �rst order delay di�erential equation given by:

V + �

dV

dt

= K I[V (t� T )℄ (6)

Finally, the utuations ÆD of the OPD D

1

around its entral value D

10

satisfy the following

delay di�erential equation (DDE):

ÆD(t) + �

d[ÆD℄

dt

(t) = �

ÆD

�

1 +

1

2

osf�+ 2��

0

ÆD(t� T )g

�

(7)

where �

ÆD

= �KP

0

=2�

0

V

�

is the bifuration parameter. Note that the parameter � = 2��

0

(D

10

�

D

20

) = �V

0

=V

�

an be varied eletrially by means of a bias voltage V

0

applied to MZ

1

. The bifur-

ation parameter �

ÆD

an be varied via the photodetetor gain K.
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In the next setion, we report numerial simulations for two di�erent values 0 and � of the

parameter �. These values an be easily adjusted experimentally, and are used to ompare the

theoretial and experimental results.

4. Bifurations and routes to haos

A. Numerial simulations of the dynamis

Equation (7) an be further simpli�ed if we introdue the normalized variables x and � de�ned by

x = 2��

0

(ÆD) and � = t=T . In terms of these new variables, Eq. (7) beomes,

x(�) + �

dx

d�

(�) = �

�

1 +

1

2

osfx(� � 1) + �g

�

= f [x(� � 1)℄ (8)

where the new parameters � and � are given by � = �=T , and � = ��K P

0

=V

�

. The simula-

tions were arried out using the 4

th

order Runge-Kutta numerial integration with values of the

normalized bifuration parameter � ranging from 0 to 10.

We used 400 samples per time delay T , yielding an integration step of d� = 2:5 � 10

�3

. The

normalized time response was � ' 5� 10

�2

. Note that the ratio T=� = 1=� is about 20, whih is a

value high enough to observe Ikeda's instabilities and haoti behaviors.

1

Figures 3a and 3b show

the bifuration diagrams for � = 0 and �, respetively. The values of the variable x obtained from

the numerial integration of Eq. (8) are stored to ompute the probability density funtion (PDF)

of the dynamis for eah value of �. The PDF is displayed along the vertial axis with di�erent

gray levels using a 600 sampled values of x in the range [0:5; 10℄. Along the horizontal axis, we also

sampled 600 values of � between 0 and 10. Suh a proess yields bifuration diagrams lose to that

observed experimentally when using an osillosope.

The bifuration diagrams shown in Fig. 3 illustrate two di�erent routes to haos as we inrease

�. For � = 0 (Fig. 3a) a period doubling asade starts at � = �



' 2:083. Note that the next

6



bifuration (at �



' 5:041) hanges the period-2 yle bak to a stable steady-state, instead of the

period-4 usually reported for similar time-delayed dynamial systems.

1,4,13

We all this spei�

diagram an \eye bifuration asade". A third bifuration is then observed for � ' 6:591, with a

strong jump from a steady-state to haoti osillations, yielding a risis.

For � = � (Fig. 3b), inreasing � from zero, a period doubling asade starts, for � ' 2:889

with a transition from a steady-state to a period-2 yle. The asade then ontinues at � ' 3:548

with the bifuration of period-2 to period-4. However, if � is further inreased (� > 3:548), the

asade stops and a reverse bifuration senario ours, whih hanges the period-4 into a period-2 at

� ' 4:459. The period-2 yle jumps suddenly if � ' 4:851, yielding another period-2 regime loated

on another attrator (with di�erent amplitudes). From that period-2 regime, the usual period-

doubling asade is observed numerially, and leads to an aumulation point. Chaoti regimes

start at that point, and �nally yield to a fully-developed haos for � � 5:195, through a reverse

asade senario.

B. Experimental results

The behavior of MZ

1

as a oherene-modulator was �rst heked experimentally with no feedbak

loop. The light from MZ

1

-output was analyzed using a Mihelson interferometer with a variable

OPD � (the Mihelson interferometer used to test the devie is not represented in Fig. 1). The

interferene pattern thus obtained at the output of the Mihelson interferometer is shown in Fig.

2a as � is varied from �350 �m to +350 �m. The loation of the two side fringe patterns (shown

in Fig. 2b) at � = �260 �m gives the value of the OPD D

10

of MZ

1

(Note that the fringe envelope,

whih is related to the temporal oherene degree �, is Gaussian).

We then measured the experimental MTF of the system. This was performed by adjusting the

OPD � of the Mihelson interferometer at � = D

10

= 260 �m and applying a sine voltage V with

a peak-to-peak amplitude of 21 V . The intensity modulation thus obtained at the Mihelson output

7



is shown in Fig. 2 and represents the MTF desribed by Eq. (4).

Finally, the system was operated with the feedbak loop, as shown in Fig. 1. In the experiments,

the amplitude of the voltage V fed bak to the eletrodes of MZ

1

was adjusted to be greater than V

�

,

in order to operate the system with at least one extremum in the NL-funtion. This was ahieved

by amplifying the voltage V with a gain K varying between 0 and 20 dB. For K = 20 dB, the

amplitude of voltage V was 21 V . The system then operated with the NL-funtion featuring 4

extrema, as already shown in Fig. 2. Under these onditions, � an be varied between 0 to 10.

Additionally, a bias voltage V

0

was added to the feedbak voltage V (t) of MZ

1

, in order to �x the

parameter � to 0 (V

0

= 0 V ) or � (V

0

= 4:3 V ).

Figure 4 shows the experimental bifuration diagrams obtained for � = 0 and � = �. For

� = 0 (Fig. 4a), the bifuration sequene (�xed point! period-2! �xed point! haos) ours

at �



= 2:07; 5:3; 6:69, respetively. For � = � (Fig. 4b), the bifuration sequene (�xed point!

period-2! period-4! period-2 ) ours at �



= 2:71; 3:55; 4:54; 5:13, respetively. Those values are

in good agreement with those predited from the numerial bifuration diagrams shown in Fig. 3a

and 3b.

5. Analysis of the \eye bifuration asade"

In this setion, we explain why the spei� "eye bifuration asade" as shown in Fig. 3a or Fig.

4a was not observed in earlier experiments based on similar dynamis. Nevertheless works

8

on

eletroni and all optial driven nonlinear osillators have previously reported reported suh so{

alled antimonotoni bifuration diagrams. Spei�ally, we analyze the stability of the steady state

for a general lass of �rst order DDE, determine the Hopf bifuration onditions, and then apply

our results for a sine-type nonlinearity whih is often the ase in optis.

8



A. Linear stability analysis for nonlinear DDEs

An explanation of the bifuration sequene shown in Figs 3a and 4a is obtained by analyzing the

linear stability of the steady states of Eq. (8). Equation (8) is of the form

�

dx

d�

(�) = �x(�) + f(�; x(� � 1)) (9)

where � is the bifuration parameter. The steady state solutions, x = x

s

are then the root of

the following equation

0 = �x

s

+ f(�; x

s

): (10)

Introduing the small deviation u = x� x

s

; the linearized problem is given by

�

du

d�

(�) = �u(�) + f

x

(�; x

s

)u(� � 1) (11)

and admits the solution u =  exp(��) where the growth rate � satis�es the transendental

equation

�� = �1 + f

x

(�; x

s

) exp(��): (12)

We next assume that a Hopf bifuration is possible, haraterized by a hange of stability

expressed by � purely imaginary, x

s

= x



and � = �



. Substituting � = i! into Eq. (12) gives

partiular relations between !; �



and x



at the Hopf point. We wish to determine the stability

properties of the steady state in the viinity of the Hopf bifuration point. That problem is solved

if we know the sign of <(�) given by Eq. (12), whih is to be evaluated along the steady state urve

in the viinity of the Hopf point. To this end, we �rst determine how x

s

� x



hanges as � � �



is

hanged. Introduing the small deviation B = � � �



, we �nd from expanding Eq. (10) that

9



x

s

� x



=

f

�

(�



; x



)

1� f

x

(�



; x



)

B (13)

to �rst order. We then seek a solution for � of the form

� = i! +B(a+ ib) + ::: (14)

After inserting (14) into Eq. (12), we obtain from the real and imaginary parts two equations

for a and b whih we solve. The real part a is given by

a = f

x

�

f

xx

f

�

1� f

x

+ f

x�

�

1 + � + (�!)

2

(1 + � + (�!)

2

)

2

+ !

2

�

4

(15)

where all partial derivatives are evaluated at x = x



and � = �



. A stable (unstable) steady state

means Ba < 0 (Ba > 0). Furthermore, a left-right hange of stability (B > 0) is possible if a > 0

(forward Hopf bifuration) and a right-left hange of stability (B < 0) is possible if a < 0 (reverse

Hopf bifuration).

B. Sine-type nonlinearity

We speialize our analysis by onsidering the ase of a sine f -funtion whih models many opti-

al systems produing haos. For example, it may appear as the result of two-wave interferene

proesses

4,6,13

and has the general form

f(�; x) = � [1 +C os(x+�)℄ (16)

where x is the dynamial variable (e.g., the optial power, an eletro-opti or aousto-opti voltage,

the wavelength, et). C is a fringe ontrast, � is a phase parameter and � is the bifuration

parameter. In most ases, experimentalists operate the optial devie with a fringe ontrast C = 1:

10



This is however not the ase for the oherene modulation-based system studied in this paper where

C = 1=2.

Assuming C � 1 and using (16), we evaluate the partial derivatives in (15). For large delay (�

small), f

x

' �1 and the ondition a � 0 simpli�es as f

xx

f

�

=2 + f

x�

� 0; or equivalently,

�

4



C

2

(1� C

2

)� �

2



(1 + 2C

2

)� 1 � 0: (17)

Eq. (17) then implies that

a > 0 if 0 < �



< �

r

(forward Hopf bifuration) (18)

a < 0 if �



> �

r

(reverse Hopf bifuration) (19)

where

�

r

�

s

(1 + 2C

2

) +

p

1 + 8C

2

2C

2

(1� C

2

)

: (20)

Note from (20) that �

r

! 1 as C ! 1 whih means that ondition (19) for a reverse Hopf

bifuration annot be veri�ed in this ase. This explain why the \eye bifuration asade" onnet-

ing a forward and a reverse Hopf bifuration point was not observed for previous optial devies

operating with C lose to 1.

6. Conlusion

We reported a hybrid opto-eletroni haoti osillator ruled by delay di�erential equations. The

optial quantity involved in the experiment is the optial path di�erene of a oherene modulator.

Di�erent types of routes to haos have been observed, from stable steady-states to haos through

periodi regimes. Two partiular experimental bifuration diagrams were presented and disussed.

11



Original bifuration senarios were reported, suh as forward and reverse Hopf bifurations. The

numerial simulations are in good agreement with the experimental results. An analytial desrip-

tion of a spei� bifuration senario involving forward and reverse Hopf bifurations was proposed.

The experimental setup an be used in haos-based enryption systems with the advantage of us-

ing integrated optis tehnology. Another spei�ity of the system ompared with other similar

enryption devies is that the system operates with haoti oherene-modulated light, and onse-

quently features no detetable intensity modulation. This might o�er a seond level of seurity for

information protetion.
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nonlinear MTF used in the devie.

Fig. 3. Bifuration diagrams obtained from numerial simulations. a, � = 0. b, � = �.
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