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1. Introduction

Chaotic processes can be observed in various domains such as economy, biology, thermodynamics,
mechanics and optics. One of the first optical systems for chaos generation was reported by Ikeda,’
who described a set—up consisting of a ring cavity with a nonlinear feedback. Other optical systems
have been investigated, where chaos has been observed in the behavior of laser spatial patterns
beams, laser polarization states,? laser wavelength,®* and laser intensity which is the case mostly
studied.”” In this paper, we report a chaos generator based on an unusual dynamical variable, the
optical path difference (OPD) in a coherence modulation system. The system is realized from a
Mach-Zehnder (MZ) coherence modulator powered by a short coherence source and driven with a
nonlinear feedback loop containing a second MZ interferometer and a delay line. The dynamics of
this system are shown to be ruled by a first order nonlinear delay differential equation exhibiting
interesting bifurcation diagrams. In addition to the well known cascade of period doubling bifurca-
tions leading to chaos, we find closed branches of periodic solutions. Such a bifurcation sequence was
reported on dynamical systems of different types,® but was never observed in previous experiments
based on nonlinear delayed dynamics like the one reported in the present article.

The paper is organized as follows. In Section 2 we briefly recall the basic principles of coherence
modulation and derive the nonlinearity that is used to generate a chaotic coherence modulated light
beam. The experimental setup and its operating principle are described in Section 3. In Section 4,
numerical simulations are compared with experiments. Finally, we explain in Section 5 why closed

branches of periodic solutions are possible for our device.

2. Coherence modulation

When looking for optical devices capable of producing chaotic outputs, it is natural to consider non-

linearities induced by the optical power. Such nonlinearities often feature instabilities that require



an accurate control of the laser pulses used. The nonlinearity (NL) used in the setup described
in this paper is however generated via the modulation transfer function (MTF) of a coherence
modulation system. Coherence modulation of light has been widely investigated theoretically and

10 and

experimentally during the last years for applications to sensors,” telecommunication systems
secure communications.'! We refer the reader to Ref.'? for a detailed analysis of coherence modu-
lation from considerations on the temporal coherence degree of light. A basic system for coherence
modulation consists of a broadband optical source (power spectrum P(c)) and a pair of interfer-
ometers, with optical path-differences (OPD) Dy and Dy, respectively, that are greater than the
coherence length Lo = 1/Ac of the source (Ao is the linewidth at e~! of the source expressed in
wavenumber o = 1/\; Dy is assumed to be an OPD that can be varied electro-optically while Dy
is constant). The light intensity I at the second interferometer output is given by!'°
ol 1

I'=—= 1+ 3T(D1 = D) cos [2moo(Dy — Dao)] (1)

where « is related to the optical losses in the system, P, is the optical power of the source

and oy is the center wavenumber. The function I'(.) describes the temporal coherence degree of the

source, and is given by the cosine Fourier Transform of the power spectrum P(o) of the source i.e.,
+o0o

(D) = P(o)cos(2moD) do. (2)
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If the source exhibits a Gaussian power spectrum of the form

2 4
P(O’) = PUW exp{—m 0'2},

and Eq. (1) becomes
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Eq. (1) or (3) considerably simplify if we now assume that the OPD Dy of the second interfer-
ometer coincides with D; to within a fraction of the coherence length. Then, the term I'(Dq — Dy)
in Eq. (1) or the exponential in Eq. (3) becomes unity. This means that the two cascaded in-
terferometers admit a modulation transfer function that is a cosine function vs Dy, with a 50 %

modulation depth:

1 1
MTF = Z 1+ 5 cos{27rag(D1 - D20)} (4)

Such a nonlinear dependence of the MTF vs D; forms the core of our experiments. For the
system to operate as a chaotic oscillator it is known that the nonlinearity should exhibit at least
one minimum or one maximum. This condition can be easily met with a suitable choice of the OPD

D as explained in the following section.

3. Experimental set—up

The experimental set—up is shown in Fig. 1. Specifically, the chaotic oscillator consists of:

- a pigtailed superluminescent diode SLD with an output power Py = 650 uWW and a central
wavenumber oo = 0.78 pum (Ao = 1.28 pm). The power-spectrum P(c) of the source is approxi-
mately Gaussian, with a linewidth Ao = 21 x1073 um ™! (AX = 35 nm) at e !, yielding a coherence
length Lo ~ 47 pm

- two LiNbOs3 : T integrated MZ modulators (MZ; and MZs), which generate the nonlinear
MTF described in Eq. (4). The total optical power losses are —12 dB. Those MZ modulators were
fabricated specifically to feature unbalanced branches with large OPDs D1y = D2y = 260 pm, when

no voltage is applied to the electrodes. The fabrication process used was described in? for other



purposes. When applying a voltage V on MZq, the OPD becomes Dy = D1g+dD (with D << L¢),
where §D = V/20(3V; is the electrically-induced optical path-difference, and V; = 4.3 V' the half-
wave voltage.

From Eq. (3) with the exponential equal to one, the optical intensity I(V') at the output of

MZs can then be rewritten as:

QPO

I(V):T{l-l-%cos <<I>+7TVK7T>} (5)

where ® = 270 (D19 — D2g). The other elements of our experimental set—up are

- a fiber polarizer placed between the modulators

- a delay line formed by a 22 km-long fiber, yielding a time delay 7' = 110 us.

- a photodetector PD, which converts the optical intensity I(V') at the output of MZs into a
feedback voltage with a conversion factor K = 1.5 V/uW, and a cut-off frequency f. = 25 kHz,
yielding a loop response time 7 = 1/27f. ~ 6.4 ps. The dynamics of the feedback voltage V' (t) are
then ruled by a first order delay differential equation given by:

av.

V4o = KIV(t-1T)] (6)

Finally, the fluctuations 0D of the OPD Dy around its central value Dy, satisfy the following

delay differential equation (DDE):

d[oD)]
dt

dD(t) + (t)=0Bsp |1+ %cos{q) +2m000D(t —T)} (7)

where B5p = aK Py/20(V; is the bifurcation parameter. Note that the parameter ® = 27y (D1o—
Dyy) = nVy/Vy can be varied electrically by means of a bias voltage V; applied to MZ;. The bifur-

cation parameter Ssp can be varied via the photodetector gain K.



In the next section, we report numerical simulations for two different values 0 and 7 of the
parameter ®. These values can be easily adjusted experimentally, and are used to compare the

theoretical and experimental results.

4. Bifurcations and routes to chaos

A. Numerical simulations of the dynamics

Equation (7) can be further simplified if we introduce the normalized variables z and 6 defined by

x = 2moo(6D) and @ = t/T. In terms of these new variables, Eq. (7) becomes,

dzr

z(0) +7I@

(6) =5 |1+ 5 cosfa(® 1) + 8] = fla(0 1) )

where the new parameters n and § are given by n = 7/T, and 8 = maK Py/V;. The simula-

4" order Runge-Kutta numerical integration with values of the

tions were carried out using the
normalized bifurcation parameter  ranging from 0 to 10.

We used 400 samples per time delay T, yielding an integration step of df = 2.5 x 1073, The
normalized time response was 7 ~ 5 x 1072. Note that the ratio T/7 = 1/n is about 20, which is a
value high enough to observe Ikeda’s instabilities and chaotic behaviors.! Figures 3a and 3b show
the bifurcation diagrams for ® = 0 and , respectively. The values of the variable = obtained from
the numerical integration of Eq. (8) are stored to compute the probability density function (PDF)
of the dynamics for each value of S. The PDF is displayed along the vertical axis with different
gray levels using a 600 sampled values of z in the range [0.5; 10]. Along the horizontal axis, we also
sampled 600 values of 8 between 0 and 10. Such a process yields bifurcation diagrams close to that
observed experimentally when using an oscilloscope.

The bifurcation diagrams shown in Fig. 3 illustrate two different routes to chaos as we increase

B. For ® = 0 (Fig. 3a) a period doubling cascade starts at § = . ~ 2.083. Note that the next



bifurcation (at 8. ~ 5.041) changes the period-2 cycle back to a stable steady-state, instead of the
period-4 usually reported for similar time-delayed dynamical systems.%13 We call this specific
diagram an “eye bifurcation cascade”. A third bifurcation is then observed for g ~ 6.591, with a
strong jump from a steady-state to chaotic oscillations, yielding a crisis.

For ® = 7 (Fig. 3b), increasing /8 from zero, a period doubling cascade starts, for 8 ~ 2.889
with a transition from a steady-state to a period-2 cycle. The cascade then continues at § ~ 3.548
with the bifurcation of period-2 to period-4. However, if § is further increased (8 > 3.548), the
cascade stops and a reverse bifurcation scenario occurs, which changes the period-4 into a period-2 at
B ~ 4.459. The period-2 cycle jumps suddenly if 8 ~ 4.851, yielding another period-2 regime located
on another attractor (with different amplitudes). From that period-2 regime, the usual period-
doubling cascade is observed numerically, and leads to an accumulation point. Chaotic regimes
start at that point, and finally yield to a fully-developed chaos for f > 5.195, through a reverse

cascade scenario.

B. Experimental results

The behavior of MZ; as a coherence-modulator was first checked experimentally with no feedback
loop. The light from MZj-output was analyzed using a Michelson interferometer with a variable
OPD A (the Michelson interferometer used to test the device is not represented in Fig. 1). The
interference pattern thus obtained at the output of the Michelson interferometer is shown in Fig.
2a as A is varied from —350 pm to +350 pum. The location of the two side fringe patterns (shown
in Fig. 2b) at A = £260 um gives the value of the OPD Dyy of MZ; (Note that the fringe envelope,
which is related to the temporal coherence degree T, is Gaussian).

We then measured the experimental MTF of the system. This was performed by adjusting the
OPD A of the Michelson interferometer at A = Dy = 260 pm and applying a sine voltage V' with

a peak-to-peak amplitude of 21 V. The intensity modulation thus obtained at the Michelson output



is shown in Fig. 2c and represents the MTF described by Eq. (4).

Finally, the system was operated with the feedback loop, as shown in Fig. 1. In the experiments,
the amplitude of the voltage V' fed back to the electrodes of MZ; was adjusted to be greater than V.,
in order to operate the system with at least one extremum in the NL-function. This was achieved
by amplifying the voltage V with a gain K varying between 0 and 20 dB. For K = 20 dB, the
amplitude of voltage V' was 21 V. The system then operated with the NL-function featuring 4
extrema, as already shown in Fig. 2c. Under these conditions, 5 can be varied between 0 to 10.
Additionally, a bias voltage V;, was added to the feedback voltage V' (¢) of MZy, in order to fix the
parameter ® to 0 (Vo =0V)or 7 (Vp =4.3V).

Figure 4 shows the experimental bifurcation diagrams obtained for ® = 0 and ® = 7. For
® = (0 (Fig. 4a), the bifurcation sequence (fized point— period-2— fized point— chaos) occurs
at B. = 2.07;5.3;6.69, respectively. For ® = 7 (Fig. 4b), the bifurcation sequence (fized point—
period-2— period-4— period-2) occurs at 8. = 2.71;3.55;4.54; 5.13, respectively. Those values are
in good agreement with those predicted from the numerical bifurcation diagrams shown in Fig. 3a

and 3b.

5. Analysis of the “eye bifurcation cascade”

In this section, we explain why the specific “eye bifurcation cascade” as shown in Fig. 3a or Fig.
4a was not observed in earlier experiments based on similar dynamics. Nevertheless works® on
electronic and all optical driven nonlinear oscillators have previously reported reported such so—
called antimonotonic bifurcation diagrams. Specifically, we analyze the stability of the steady state
for a general class of first order DDE, determine the Hopf bifurcation conditions, and then apply

our results for a sine-type nonlinearity which is often the case in optics.



A. Linear stability analysis for nonlinear DDEs

An explanation of the bifurcation sequence shown in Figs 3a and 4a is obtained by analyzing the

linear stability of the steady states of Eq. (8). Equation (8) is of the form

N (0) = ~a(0) + 1(8,2(0 — 1)) )

where 3 is the bifurcation parameter. The steady state solutions, = z4 are then the root of

the following equation

0= -5+ f(B,2s). (10)

Introducing the small deviation u = © — x4, the linearized problem is given by

N 0) = —u(0) + fa(B, s )u(6 1) (1)

and admits the solution u = cexp(cf) where the growth rate o satisfies the transcendental

equation

no = —1+ f(B8,xs) exp(—o). (12)

We next assume that a Hopf bifurcation is possible, characterized by a change of stability
expressed by o purely imaginary, z; = 2. and 3 = [.. Substituting ¢ = iw into Eq. (12) gives
particular relations between w, B, and z. at the Hopf point. We wish to determine the stability
properties of the steady state in the vicinity of the Hopf bifurcation point. That problem is solved
if we know the sign of R(o) given by Eq. (12), which is to be evaluated along the steady state curve
in the vicinity of the Hopf point. To this end, we first determine how z; — z. changes as 8 — . is

changed. Introducing the small deviation B = 8 — f3., we find from expanding Eq. (10) that



f,@ (/807 xc)

Tsg— Xp = —F—F——— 13
° ¢ 1_fz(507$c) ( )

to first order. We then seek a solution for o of the form
o =1iw+ B(a+1ib) + ... (14)

After inserting (14) into Eq. (12), we obtain from the real and imaginary parts two equations

for @ and b which we solve. The real part a is given by

1+n+ ()’
(L+n+ (nw)?)? + w?n?

a=fg fxxli—ﬁf + fxﬁ

(15)

where all partial derivatives are evaluated at z = z. and 5 = (.. A stable (unstable) steady state
means Ba < 0 (Ba > 0). Furthermore, a left-right change of stability (B > 0) is possible if a > 0
(forward Hopf bifurcation) and a right-left change of stability (B < 0) is possible if a < 0 (reverse

Hopf bifurcation).

B. Sine-type nonlinearity

We specialize our analysis by considering the case of a sine f-function which models many opti-
cal systems producing chaos. For example, it may appear as the result of two-wave interference

4,6,13

processes and has the general form

f(B,z) = B[l + Ccos(z+ D) (16)

where z is the dynamical variable (e.g., the optical power, an electro-optic or acousto-optic voltage,
the wavelength, etc). C is a fringe contrast, ® is a phase parameter and § is the bifurcation

parameter. In most cases, experimentalists operate the optical device with a fringe contrast C' = 1.

10



This is however not the case for the coherence modulation-based system studied in this paper where

C=1/2.

Assuming C' < 1 and using (16), we evaluate the partial derivatives in (15). For large delay (n

small), f; ~ —1 and the condition a < 0 simplifies as fz, f3/2 + fzp > 0, or equivalently,

Bio?(1—C?) - BE(1+2C%) —1 > 0.

Eq. (17) then implies that

a > 0if 0 < . < B, (forward Hopf bifurcation)

a < 0if . > B, (reverse Hopf bifurcation)

where

B \/(1 +202) + /1 +8C?
br = 221=07)

(20)

Note from (20) that 3, — oo as C' — 1 which means that condition (19) for a reverse Hopf

bifurcation cannot be verified in this case. This explain why the “eye bifurcation cascade” connect-

ing a forward and a reverse Hopf bifurcation point was not observed for previous optical devices

operating with C' close to 1.

6. Conclusion

We reported a hybrid opto-electronic chaotic oscillator ruled by delay differential equations. The

optical quantity involved in the experiment is the optical path difference of a coherence modulator.

Different types of routes to chaos have been observed, from stable steady-states to chaos through

periodic regimes. Two particular experimental bifurcation diagrams were presented and discussed.

11



Original bifurcation scenarios were reported, such as forward and reverse Hopf bifurcations. The
numerical simulations are in good agreement with the experimental results. An analytical descrip-
tion of a specific bifurcation scenario involving forward and reverse Hopf bifurcations was proposed.
The experimental setup can be used in chaos-based encryption systems with the advantage of us-
ing integrated optics technology. Another specificity of the system compared with other similar
encryption devices is that the system operates with chaotic coherence-modulated light, and conse-
quently features no detectable intensity modulation. This might offer a second level of security for

information protection.
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List of Figures

Fig. 1. Scheme of the chaotic oscillator.

Fig. 2. Experimental characterization of the system. a, Fringe pattern related to the temporal
coherence degree of the light beam at MZ;-output. b, Zoomed window. ¢, Experimental

nonlinear MTF used in the device.

Fig. 3. Bifurcation diagrams obtained from numerical simulations. a, ® = 0. b, ® = 7.
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Fig. 4. Experimental bifurcation diagrams. a, ® =0. b, ® = 7.
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