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1. Introdu
tion

Chaoti
 pro
esses 
an be observed in various domains su
h as e
onomy, biology, thermodynami
s,

me
hani
s and opti
s. One of the �rst opti
al systems for 
haos generation was reported by Ikeda,

1

who des
ribed a set{up 
onsisting of a ring 
avity with a nonlinear feedba
k. Other opti
al systems

have been investigated, where 
haos has been observed in the behavior of laser spatial patterns

beams, laser polarization states,

2

laser wavelength,

3,4

and laser intensity whi
h is the 
ase mostly

studied.

5{7

In this paper, we report a 
haos generator based on an unusual dynami
al variable, the

opti
al path di�eren
e (OPD) in a 
oheren
e modulation system. The system is realized from a

Ma
h{Zehnder (MZ) 
oheren
e modulator powered by a short 
oheren
e sour
e and driven with a

nonlinear feedba
k loop 
ontaining a se
ond MZ interferometer and a delay line. The dynami
s of

this system are shown to be ruled by a �rst order nonlinear delay di�erential equation exhibiting

interesting bifur
ation diagrams. In addition to the well known 
as
ade of period doubling bifur
a-

tions leading to 
haos, we �nd 
losed bran
hes of periodi
 solutions. Su
h a bifur
ation sequen
e was

reported on dynami
al systems of di�erent types,

8

but was never observed in previous experiments

based on nonlinear delayed dynami
s like the one reported in the present arti
le.

The paper is organized as follows. In Se
tion 2 we brie
y re
all the basi
 prin
iples of 
oheren
e

modulation and derive the nonlinearity that is used to generate a 
haoti
 
oheren
e modulated light

beam. The experimental setup and its operating prin
iple are des
ribed in Se
tion 3. In Se
tion 4,

numeri
al simulations are 
ompared with experiments. Finally, we explain in Se
tion 5 why 
losed

bran
hes of periodi
 solutions are possible for our devi
e.

2. Coheren
e modulation

When looking for opti
al devi
es 
apable of produ
ing 
haoti
 outputs, it is natural to 
onsider non-

linearities indu
ed by the opti
al power. Su
h nonlinearities often feature instabilities that require

2



an a

urate 
ontrol of the laser pulses used. The nonlinearity (NL) used in the setup des
ribed

in this paper is however generated via the modulation transfer fun
tion (MTF) of a 
oheren
e

modulation system. Coheren
e modulation of light has been widely investigated theoreti
ally and

experimentally during the last years for appli
ations to sensors,

9

tele
ommuni
ation systems

10

and

se
ure 
ommuni
ations.

11

We refer the reader to Ref.

12

for a detailed analysis of 
oheren
e modu-

lation from 
onsiderations on the temporal 
oheren
e degree of light. A basi
 system for 
oheren
e

modulation 
onsists of a broadband opti
al sour
e (power spe
trum P (�)) and a pair of interfer-

ometers, with opti
al path-di�eren
es (OPD) D

1

and D

20

, respe
tively, that are greater than the


oheren
e length L

C

= 1=�� of the sour
e (�� is the linewidth at e

�1

of the sour
e expressed in

wavenumber � = 1=�; D

1

is assumed to be an OPD that 
an be varied ele
tro-opti
ally while D

20

is 
onstant). The light intensity I at the se
ond interferometer output is given by

10

I =

�P

0

4

�

1 +

1

2

�(D

1

�D

20

) 
os [2��

0

(D

1

�D

20

)℄

�

(1)

where � is related to the opti
al losses in the system, P

0

is the opti
al power of the sour
e

and �

0

is the 
enter wavenumber. The fun
tion �(:) des
ribes the temporal 
oheren
e degree of the

sour
e, and is given by the 
osine Fourier Transform of the power spe
trum P (�) of the sour
e i.e.,

�(D) =

Z

+1

�1

P (�) 
os(2��D) d�: (2)

If the sour
e exhibits a Gaussian power spe
trum of the form

P (�) = P

0

2

��

p

�

exp

�

�

4

��

2

�

2

�

,

the temporal 
oheren
e degree is

�(D) = P

0

exp

 

��

2

D

2

4L

2

C

!

and Eq. (1) be
omes
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I =

�P

0

4

"

1 +

1

2

exp

(

��

2
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20

)

2
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osf2��

0

(D

1

�D

20

)g

#

(3)

Eq. (1) or (3) 
onsiderably simplify if we now assume that the OPD D

20

of the se
ond interfer-

ometer 
oin
ides with D

1

to within a fra
tion of the 
oheren
e length. Then, the term �(D

1

�D

20

)

in Eq. (1) or the exponential in Eq. (3) be
omes unity. This means that the two 
as
aded in-

terferometers admit a modulation transfer fun
tion that is a 
osine fun
tion vs D

1

, with a 50 %

modulation depth:

MTF =

1

4

�

1 +

1

2


osf2��

0

(D

1

�D

20

)g

�

(4)

Su
h a nonlinear dependen
e of the MTF vs D

1

forms the 
ore of our experiments. For the

system to operate as a 
haoti
 os
illator it is known that the nonlinearity should exhibit at least

one minimum or one maximum. This 
ondition 
an be easily met with a suitable 
hoi
e of the OPD

D

1

as explained in the following se
tion.

3. Experimental set{up

The experimental set{up is shown in Fig. 1. Spe
i�
ally, the 
haoti
 os
illator 
onsists of:

- a pigtailed superlumines
ent diode SLD with an output power P

0

= 650 �W and a 
entral

wavenumber �

0

= 0:78 �m (�

0

= 1:28 �m). The power-spe
trum P (�) of the sour
e is approxi-

mately Gaussian, with a linewidth �� = 21�10

�3

�m

�1

(�� = 35 nm) at e

�1

, yielding a 
oheren
e

length L

C

' 47 �m

- two LiNbO

3

: T i integrated MZ modulators (MZ

1

and MZ

2

), whi
h generate the nonlinear

MTF des
ribed in Eq. (4). The total opti
al power losses are �12 dB. Those MZ modulators were

fabri
ated spe
i�
ally to feature unbalan
ed bran
hes with large OPDs D

10

= D

20

= 260 �m, when

no voltage is applied to the ele
trodes. The fabri
ation pro
ess used was des
ribed in

9

for other
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purposes. When applying a voltage V on MZ

1

, the OPD be
omes D

1

= D

10

+ÆD (with ÆD << L

C

),

where ÆD = V=2�

0

V

�

is the ele
tri
ally-indu
ed opti
al path-di�eren
e, and V

�

= 4:3 V the half-

wave voltage.

From Eq. (3) with the exponential equal to one, the opti
al intensity I(V ) at the output of

MZ

2


an then be rewritten as:

I(V ) =

�P

0

2

�

1 +

1

2


os

�

�+ �

V

V

�

��

(5)

where � = 2��

0

(D

10

�D

20

). The other elements of our experimental set{up are

- a �ber polarizer pla
ed between the modulators

- a delay line formed by a 22 km-long �ber, yielding a time delay T = 110 �s.

- a photodete
tor PD, whi
h 
onverts the opti
al intensity I(V ) at the output of MZ

2

into a

feedba
k voltage with a 
onversion fa
tor K = 1:5 V=�W , and a 
ut-o� frequen
y f




= 25 kHz,

yielding a loop response time � = 1=2�f




' 6:4 �s. The dynami
s of the feedba
k voltage V (t) are

then ruled by a �rst order delay di�erential equation given by:

V + �

dV

dt

= K I[V (t� T )℄ (6)

Finally, the 
u
tuations ÆD of the OPD D

1

around its 
entral value D

10

satisfy the following

delay di�erential equation (DDE):

ÆD(t) + �

d[ÆD℄

dt

(t) = �

ÆD

�

1 +

1

2


osf�+ 2��

0

ÆD(t� T )g

�

(7)

where �

ÆD

= �KP

0

=2�

0

V

�

is the bifur
ation parameter. Note that the parameter � = 2��

0

(D

10

�

D

20

) = �V

0

=V

�


an be varied ele
tri
ally by means of a bias voltage V

0

applied to MZ

1

. The bifur-


ation parameter �

ÆD


an be varied via the photodete
tor gain K.
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In the next se
tion, we report numeri
al simulations for two di�erent values 0 and � of the

parameter �. These values 
an be easily adjusted experimentally, and are used to 
ompare the

theoreti
al and experimental results.

4. Bifur
ations and routes to 
haos

A. Numeri
al simulations of the dynami
s

Equation (7) 
an be further simpli�ed if we introdu
e the normalized variables x and � de�ned by

x = 2��

0

(ÆD) and � = t=T . In terms of these new variables, Eq. (7) be
omes,

x(�) + �

dx

d�

(�) = �

�

1 +

1

2


osfx(� � 1) + �g

�

= f [x(� � 1)℄ (8)

where the new parameters � and � are given by � = �=T , and � = ��K P

0

=V

�

. The simula-

tions were 
arried out using the 4

th

order Runge-Kutta numeri
al integration with values of the

normalized bifur
ation parameter � ranging from 0 to 10.

We used 400 samples per time delay T , yielding an integration step of d� = 2:5 � 10

�3

. The

normalized time response was � ' 5� 10

�2

. Note that the ratio T=� = 1=� is about 20, whi
h is a

value high enough to observe Ikeda's instabilities and 
haoti
 behaviors.

1

Figures 3a and 3b show

the bifur
ation diagrams for � = 0 and �, respe
tively. The values of the variable x obtained from

the numeri
al integration of Eq. (8) are stored to 
ompute the probability density fun
tion (PDF)

of the dynami
s for ea
h value of �. The PDF is displayed along the verti
al axis with di�erent

gray levels using a 600 sampled values of x in the range [0:5; 10℄. Along the horizontal axis, we also

sampled 600 values of � between 0 and 10. Su
h a pro
ess yields bifur
ation diagrams 
lose to that

observed experimentally when using an os
illos
ope.

The bifur
ation diagrams shown in Fig. 3 illustrate two di�erent routes to 
haos as we in
rease

�. For � = 0 (Fig. 3a) a period doubling 
as
ade starts at � = �




' 2:083. Note that the next

6



bifur
ation (at �




' 5:041) 
hanges the period-2 
y
le ba
k to a stable steady-state, instead of the

period-4 usually reported for similar time-delayed dynami
al systems.

1,4,13

We 
all this spe
i�


diagram an \eye bifur
ation 
as
ade". A third bifur
ation is then observed for � ' 6:591, with a

strong jump from a steady-state to 
haoti
 os
illations, yielding a 
risis.

For � = � (Fig. 3b), in
reasing � from zero, a period doubling 
as
ade starts, for � ' 2:889

with a transition from a steady-state to a period-2 
y
le. The 
as
ade then 
ontinues at � ' 3:548

with the bifur
ation of period-2 to period-4. However, if � is further in
reased (� > 3:548), the


as
ade stops and a reverse bifur
ation s
enario o

urs, whi
h 
hanges the period-4 into a period-2 at

� ' 4:459. The period-2 
y
le jumps suddenly if � ' 4:851, yielding another period-2 regime lo
ated

on another attra
tor (with di�erent amplitudes). From that period-2 regime, the usual period-

doubling 
as
ade is observed numeri
ally, and leads to an a

umulation point. Chaoti
 regimes

start at that point, and �nally yield to a fully-developed 
haos for � � 5:195, through a reverse


as
ade s
enario.

B. Experimental results

The behavior of MZ

1

as a 
oheren
e-modulator was �rst 
he
ked experimentally with no feedba
k

loop. The light from MZ

1

-output was analyzed using a Mi
helson interferometer with a variable

OPD � (the Mi
helson interferometer used to test the devi
e is not represented in Fig. 1). The

interferen
e pattern thus obtained at the output of the Mi
helson interferometer is shown in Fig.

2a as � is varied from �350 �m to +350 �m. The lo
ation of the two side fringe patterns (shown

in Fig. 2b) at � = �260 �m gives the value of the OPD D

10

of MZ

1

(Note that the fringe envelope,

whi
h is related to the temporal 
oheren
e degree �, is Gaussian).

We then measured the experimental MTF of the system. This was performed by adjusting the

OPD � of the Mi
helson interferometer at � = D

10

= 260 �m and applying a sine voltage V with

a peak-to-peak amplitude of 21 V . The intensity modulation thus obtained at the Mi
helson output

7



is shown in Fig. 2
 and represents the MTF des
ribed by Eq. (4).

Finally, the system was operated with the feedba
k loop, as shown in Fig. 1. In the experiments,

the amplitude of the voltage V fed ba
k to the ele
trodes of MZ

1

was adjusted to be greater than V

�

,

in order to operate the system with at least one extremum in the NL-fun
tion. This was a
hieved

by amplifying the voltage V with a gain K varying between 0 and 20 dB. For K = 20 dB, the

amplitude of voltage V was 21 V . The system then operated with the NL-fun
tion featuring 4

extrema, as already shown in Fig. 2
. Under these 
onditions, � 
an be varied between 0 to 10.

Additionally, a bias voltage V

0

was added to the feedba
k voltage V (t) of MZ

1

, in order to �x the

parameter � to 0 (V

0

= 0 V ) or � (V

0

= 4:3 V ).

Figure 4 shows the experimental bifur
ation diagrams obtained for � = 0 and � = �. For

� = 0 (Fig. 4a), the bifur
ation sequen
e (�xed point! period-2! �xed point! 
haos) o

urs

at �




= 2:07; 5:3; 6:69, respe
tively. For � = � (Fig. 4b), the bifur
ation sequen
e (�xed point!

period-2! period-4! period-2 ) o

urs at �




= 2:71; 3:55; 4:54; 5:13, respe
tively. Those values are

in good agreement with those predi
ted from the numeri
al bifur
ation diagrams shown in Fig. 3a

and 3b.

5. Analysis of the \eye bifur
ation 
as
ade"

In this se
tion, we explain why the spe
i�
 "eye bifur
ation 
as
ade" as shown in Fig. 3a or Fig.

4a was not observed in earlier experiments based on similar dynami
s. Nevertheless works

8

on

ele
troni
 and all opti
al driven nonlinear os
illators have previously reported reported su
h so{


alled antimonotoni
 bifur
ation diagrams. Spe
i�
ally, we analyze the stability of the steady state

for a general 
lass of �rst order DDE, determine the Hopf bifur
ation 
onditions, and then apply

our results for a sine-type nonlinearity whi
h is often the 
ase in opti
s.

8



A. Linear stability analysis for nonlinear DDEs

An explanation of the bifur
ation sequen
e shown in Figs 3a and 4a is obtained by analyzing the

linear stability of the steady states of Eq. (8). Equation (8) is of the form

�

dx

d�

(�) = �x(�) + f(�; x(� � 1)) (9)

where � is the bifur
ation parameter. The steady state solutions, x = x

s

are then the root of

the following equation

0 = �x

s

+ f(�; x

s

): (10)

Introdu
ing the small deviation u = x� x

s

; the linearized problem is given by

�

du

d�

(�) = �u(�) + f

x

(�; x

s

)u(� � 1) (11)

and admits the solution u = 
 exp(��) where the growth rate � satis�es the trans
endental

equation

�� = �1 + f

x

(�; x

s

) exp(��): (12)

We next assume that a Hopf bifur
ation is possible, 
hara
terized by a 
hange of stability

expressed by � purely imaginary, x

s

= x




and � = �




. Substituting � = i! into Eq. (12) gives

parti
ular relations between !; �




and x




at the Hopf point. We wish to determine the stability

properties of the steady state in the vi
inity of the Hopf bifur
ation point. That problem is solved

if we know the sign of <(�) given by Eq. (12), whi
h is to be evaluated along the steady state 
urve

in the vi
inity of the Hopf point. To this end, we �rst determine how x

s

� x





hanges as � � �




is


hanged. Introdu
ing the small deviation B = � � �




, we �nd from expanding Eq. (10) that

9



x

s

� x




=

f

�

(�




; x




)

1� f

x

(�




; x




)

B (13)

to �rst order. We then seek a solution for � of the form

� = i! +B(a+ ib) + ::: (14)

After inserting (14) into Eq. (12), we obtain from the real and imaginary parts two equations

for a and b whi
h we solve. The real part a is given by

a = f

x

�

f

xx

f

�

1� f

x

+ f

x�

�

1 + � + (�!)

2

(1 + � + (�!)

2

)

2

+ !

2

�

4

(15)

where all partial derivatives are evaluated at x = x




and � = �




. A stable (unstable) steady state

means Ba < 0 (Ba > 0). Furthermore, a left-right 
hange of stability (B > 0) is possible if a > 0

(forward Hopf bifur
ation) and a right-left 
hange of stability (B < 0) is possible if a < 0 (reverse

Hopf bifur
ation).

B. Sine-type nonlinearity

We spe
ialize our analysis by 
onsidering the 
ase of a sine f -fun
tion whi
h models many opti-


al systems produ
ing 
haos. For example, it may appear as the result of two-wave interferen
e

pro
esses

4,6,13

and has the general form

f(�; x) = � [1 +C 
os(x+�)℄ (16)

where x is the dynami
al variable (e.g., the opti
al power, an ele
tro-opti
 or a
ousto-opti
 voltage,

the wavelength, et
). C is a fringe 
ontrast, � is a phase parameter and � is the bifur
ation

parameter. In most 
ases, experimentalists operate the opti
al devi
e with a fringe 
ontrast C = 1:

10



This is however not the 
ase for the 
oheren
e modulation-based system studied in this paper where

C = 1=2.

Assuming C � 1 and using (16), we evaluate the partial derivatives in (15). For large delay (�

small), f

x

' �1 and the 
ondition a � 0 simpli�es as f

xx

f

�

=2 + f

x�

� 0; or equivalently,

�

4




C

2

(1� C

2

)� �

2




(1 + 2C

2

)� 1 � 0: (17)

Eq. (17) then implies that

a > 0 if 0 < �




< �

r

(forward Hopf bifur
ation) (18)

a < 0 if �




> �

r

(reverse Hopf bifur
ation) (19)

where

�

r

�

s

(1 + 2C

2

) +

p

1 + 8C

2

2C

2

(1� C

2

)

: (20)

Note from (20) that �

r

! 1 as C ! 1 whi
h means that 
ondition (19) for a reverse Hopf

bifur
ation 
annot be veri�ed in this 
ase. This explain why the \eye bifur
ation 
as
ade" 
onne
t-

ing a forward and a reverse Hopf bifur
ation point was not observed for previous opti
al devi
es

operating with C 
lose to 1.

6. Con
lusion

We reported a hybrid opto-ele
troni
 
haoti
 os
illator ruled by delay di�erential equations. The

opti
al quantity involved in the experiment is the opti
al path di�eren
e of a 
oheren
e modulator.

Di�erent types of routes to 
haos have been observed, from stable steady-states to 
haos through

periodi
 regimes. Two parti
ular experimental bifur
ation diagrams were presented and dis
ussed.

11



Original bifur
ation s
enarios were reported, su
h as forward and reverse Hopf bifur
ations. The

numeri
al simulations are in good agreement with the experimental results. An analyti
al des
rip-

tion of a spe
i�
 bifur
ation s
enario involving forward and reverse Hopf bifur
ations was proposed.

The experimental setup 
an be used in 
haos-based en
ryption systems with the advantage of us-

ing integrated opti
s te
hnology. Another spe
i�
ity of the system 
ompared with other similar

en
ryption devi
es is that the system operates with 
haoti
 
oheren
e-modulated light, and 
onse-

quently features no dete
table intensity modulation. This might o�er a se
ond level of se
urity for

information prote
tion.
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