

10 GHz bandwidth nonlinear delay electro-optic phase dynamics for ultra-fast nonlinear transient computing

A. Baylón-Fuentes, R. Martinenghi, <u>M. Jacquot</u>, Y. Chembo and L. Larger FEMTO-ST/ Optics department, UMR CNRS 6174, Université de Franche–Comté, Besançon, France

CLEO / Europe IQEC 2013, CD-10: Optical Devices for Data Processing

12 – 16 May 2013, Munich, Germany

CLEO / Europe IQEC 2013, 12 - 16 May 2013

Introduction

- Background, Motivations
- Reservoir Computing using delay dynamics
- High Complexity Delay Dynamics Reservoir with EO

- EO phase Dynamics as a reservoir
- Operating Conditions of the reservoir
- Spoken digit recognition test
- Conclusion, Perspectives

Introduction

- Background, Motivations
- Reservoir Computing using delay dynamics
- High Complexity Delay Dynamics Reservoir with EO

- EO phase Dynamics as a reservoir
- Operating Conditions of the reservoir
- Spoken digit recognition test
- Conclusion, Perspectives

UFC SCIENCES A

- Digital electronics, standard computers are still limited :
 - Complex tasks : classification, prediction
 - ✓ Information processing at ultra high speeds.
- Experimental implementation of Reservoir Computing (RC) or Nonlinear Transient Computing (NTC)
- To generate transient states for processing the information

Background, motivations

Neural Network Computing

 Artificial intelligence, network of coupled oscillators, learning, actual demonstration via "conventional computer" simulations

Cognitive brain research, bio-inspired computing principles

 ✓ biologic neural network, time trajectories corresponding to pulse train solutions

Echo State Network (ESN), Liquid State Machines (LSM), Reservoir Computing (RC)

 Novel architecture exhibiting universal computational potential

H. Jaeger and H. Haas, "Harnessing Nonlinearity : Predicting Chaotic Systems and Saving Energy in Wireless Communication" Science 304, 78 (2004)

Introduction

- Background, Motivations
- Reservoir Computing using delay dynamics
- High Complexity Delay Dynamics Reservoir with EO

- EO phase Dynamics as a reservoir
- Operating Conditions of the reservoir
- Spoken digit recognition test
- Conclusion, Perspectives

From Neural Networks to RC

Basic architecture

> Towards a parallel photonic reservoir :

K.T Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman, "Parallel reservoir computing using optical amplifiers", IEEE Transactions on Neural Networks, 22(9), 1469-1481 (2011)

Our approach : harnessing delay dynamics

Spatio-Temporal viewpoint of a DDE

Towards a reservoir computing experimental setup using delay dynamics :

L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, "Information processing using a single dynamical node as complex system," Nature Commun. 2, 468 (2011).

Introduction

- Background, Motivations
- Reservoir Computing using delay dynamics
- High Complexity Delay Dynamics Reservoir with EO
- RC with Ultra-fast Photonic Nonlinear Delay Dynamics
 - EO phase Dynamics as a reservoir
 - Operating Conditions of the reservoir
 - Spoken digit recognition test
- Conclusion, Perspectives

Delay Dynamics with optoelectronic systems

UFC

9

Ikeda dynamics: linearly filtered nonlinear delayed feedback

- infinite dimensional dynamics
- very high practical attractor dimension
- highly nonlinear realization
- optoelectronic solution with telecom devices
- high reliability and controllability

Two Main applications & various regimes vs feedback gain:

- Optical Chaos Communications
- High spectral purity micro-wave oscillator

Existing optoelectronic systems

> Various existing experimental setups

Introduction

- Background, Motivations
- Reservoir Computing using delay dynamics
- High Complexity Delay Dynamics Reservoir with EO

- EO phase Dynamics as a reservoir
- Operating Conditions of the reservoir
- Spoken digit recognition test
- Conclusion, Perspectives

10 GHz bandwidth EO Phase dynamics system

- Picking ideas from efficient coherent communications principles
 - Imbalanced Mach-Zehnder (typ. DPSK demodulator) for PM to IM conversion:
 - ca. 3cm unbalancing
 - 10Gb/s E/O O/E devices

The unmodulated laser

After chaotic phase modulation

CLEO / Europe IQEC 2013, 12 - 16 May 2013

EO Phase Dynamics

\circledast The phase dynamics exhibits an additional temporal coupling term δT

Sonlinear delay integro-differential equation

$$\frac{1}{\theta} \int_{t_0}^t \varphi(\xi) \mathrm{d}\xi + \varphi(t) + \tau \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \beta \cdot \left[f_{(t-T)}(\varphi^*) - f(0) \right]$$

S Imbalanced interferometer: Temporally nonlocal non linearity

* Standard DPSK demodulator:

$$f_t(\varphi) = \{1 + \cos[\varphi(t) - \varphi(t - \delta T) + \phi_0]\}$$

* Generalized multiple wave interferometer:

$$f_t(\varphi) = F_0 \left| 1 + \sum_k \alpha_k \, e^{i[\varphi(t) - \varphi(t - \delta T_k)]} \, e^{i\phi_k} \right|^2$$

EO Phase dynamic system, undriven system

14

'U FC

CNIS

✓ Photonic setup with a phase dynamic with a bandpass feedback

✓ Input Driven Nonlinear Delay Dynamics (DDE):

$$\phi(t) + \tau \dot{\phi}(t) + \frac{1}{\theta} \int_{t_0}^t \phi(s) ds = \beta \sin^2 \left[\phi(t - \tau_D) - \phi(t - \delta T - \tau_D) + \rho u_i(t - \tau_D) - \rho u_i(t - \delta T - \tau_D) + \phi_0 \right]$$

✓ Physical variable : response time τ ↔ to keep the system far from steady state, δτ=0,2τ

feedback strength $\beta \leftrightarrow$ overall feedback loop gain; input data weight ρ ; NL operating point $\leftrightarrow \Phi_0$

Introduction

- Background, Motivations
- Reservoir Computing using delay dynamics
- High Complexity Delay Dynamics Reservoir with EO

- EO phase Dynamics as a reservoir
- Operating Conditions of the reservoir
- Spoken digit recognition test
- Conclusion, Perspectives

Practical values : phase dynamics

Amplitude parameters :

- ✓ Feedback strength $\beta \simeq 0.5$
- ✓ Offset phase Φ_0 : NL operation "close to an extremum"
- \checkmark Large input data weight, ρu_i close to π

At the edge of chaos. . . stable steady state

- $\checkmark~$ Not too small feedback strength β (allowing NL mixing)
- \checkmark Not too close to the instability threshold (too slow response)

Nonlinear Transient Computer (NTC)

Practical values : phase dynamics

Number of nodes N typically 100 < N < 1000</p>

 to keep the system far from steady state during its dynamical response, we choose δτ=0,2τ and it gives the number of nodes :

✓ But EO phase system τ = 284 ps , we obtain N> 1000, or τ = 20 ps and gives N > 15000

To operate with tractable number of Nodes, the input data is spread over 1/3 of the delay (increases the memory): N = τ_D / $3\delta\tau$ = 428 (τ = 284 ps)

Practical values : phase dynamics

Temporal parameters

- Fixed delay : $\tau_{D} \simeq 63,2$ ns
- > Two different possible low pass filters

1) Intermediate feedback bandwidth 560 MHz / τ = 284 ps

- \checkmark Large delay condition, $\tau_D^{}/\tau\simeq 220,$ we fix : $\tau_D^{}/3N$ = 0.2 τ
- ✓ N = 428 nodes separated by ca. 0.2 τ : required input and read-out resolution \simeq **20 GSamples/s)**

Intermediate feedback bandwidth 7,73 GHz / τ = 20 ps

- $\checkmark\,$ Large delay condition, $\tau_D/\tau\simeq$ 3200, too large !
- ✓ N = 428 nodes separated by ca. 0.2 τ (required input and read-out resolution \simeq 250 GSamples/s !!!
- ✓ NOT POSSIBLE WITH OUR AWG and DSO limited to 24 GS/s (AWG) and 45 GHz (DSO),

but possible in unsynchronized regime (Y. Paquot et al, scientific reports, 2012)

Introduction

- Background, Motivations
- Reservoir Computing using delay dynamics
- High Complexity Delay Dynamics Reservoir with EO

- EO phase Dynamics as a reservoir
- Operating Conditions of the reservoir
- Spoken digit recognition test
- Conclusion, Perspectives

Dynamical Processing of Spoken Digits

Lyon Ear Model transformation (Time & Frequency 2D formatting, 32 to 130 Samples x 86 Freq.channel)

Sparse "connection" of the 86 Freq. channel to the N nodes : random connection matrix

Reservoir state : experimental results

Phase dynamics :

Time series recorded for Read-Out post-processing

Read-Out, Training, and Testing

Results : Word Error Rate (WER) < 0.02% at 20GS/s

We process 1 200 000 spoken digit per second !

Introduction

- Background, Motivations
- Reservoir Computing using delay dynamics
- High Complexity Delay Dynamics Reservoir with EO

- EO phase Dynamics as a reservoir
- Operating Conditions of the reservoir
- Spoken digit recognition test
- Conclusion, Perspectives

Conclusion, perpectives

Simple electro-optic architecture with a bandwidth higher than 10 GHz

Pre- and post-processing performed externally

Excellent first results at ultra-fast data rate on a classification benchmark test

Spoken Digit Recognition with Word Error Rate (WER) < 0.02% at 20GS/s, 1.2MDigit/s (set size limited, 500 spoken digits data base)

Other benchmark test in process (chaotic time series prediction,...)

> Many remaining degrees of freedom for optimization

