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Optimal nonlinear information 
processing capacity in delay-based 
reservoir computers
Lyudmila Grigoryeva1, Julie Henriques1,2, Laurent Larger3 & Juan-Pablo Ortega4

Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable 
of excellent performances in the processing of empirical data. We focus in a particular kind of 
time-delay based reservoir computers that have been physically implemented using optical and 
electronic systems and have shown unprecedented data processing rates. Reservoir computing is 
well-known for the ease of the associated training scheme but also for the problematic sensitivity 
of its performance to architecture parameters. This article addresses the reservoir design problem, 
which remains the biggest challenge in the applicability of this information processing scheme. More 
specifically, we use the information available regarding the optimal reservoir working regimes to 
construct a functional link between the reservoir parameters and its performance. This function is 
used to explore various properties of the device and to choose the optimal reservoir architecture, 
thus replacing the tedious and time consuming parameter scannings used so far in the literature.

The increase in need for information processing capacity, as well as the physical limitations of the Turing 
or von Neumann machine methods implemented in most computational systems, have motivated the 
search for new brain-inspired solutions some of which present an outstanding potential. An important 
direction in this undertaking is based on the use of the intrinsic information processing abilities of 
dynamical systems1 which opens the door to high performance physical realizations whose behavior is 
ruled by these structures2,3.

The contributions in this paper take place in a specific implementation of this idea that is obtained 
as a melange of a recently introduced machine learning paradigm known under the name of reservoir 
computing (RC)4–10 with a realization based on the sampling of the solution of a time-delay differential 
equation11,12. We refer to this combination as time-delay reservoirs (TDRs). Physical implementations of 
this scheme carried out with dedicated hardware are already available and have shown excellent perfor-
mances in the processing of empirical data: spoken digit recognition13–17, the NARMA model identifica-
tion task11,18, continuation of chaotic time series, and volatility forecasting19. A recent example that shows 
the potential of this combination is the results in17 where an optoelectronic implementation of a TDR is 
capable of achieving the lowest documented error in the speech recognition task at unprecedented speed 
in an experiment design in which digit and speaker recognition are carried out in parallel.

A major advantage of RC is the linearity of its training scheme. This choice makes its implementation 
easy when compared to more traditional machine learning approaches like recursive neural networks, 
which usually require the solution of convoluted and sometimes ill-defined optimization problems. In 
exchange, as it can be seen in most of the references quoted above, the system performance is not robust 
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with respect to the choice of the parameter values θ of the nonlinear kernel used to construct the RC 
(see below). More specifically, small deviations from the optimal parameter values can seriously degrade 
the performance and moreover, the optimal parameters are highly dependent on the task at hand. This 
observation makes the kernel parameter optimization a very important step in the RC design and has 
motivated the introduction of alternative parallel-based architectures19,20 to tackle this difficulty.

The main contribution of this paper is the introduction of an approximated model that, to our knowl-
edge, provides the first rigorous analytical description of the delay-based RC performance. This powerful 
theoretical tool can be used to systematically study the delay-based RC properties and to replace the trial 
and error approach in the choice of architecture parameters by well structured optimization problems. 
This method simplifies enormously the implementation effort and sheds new light on the mechanisms 
that govern this information processing technique.

TDRs are based on the interaction of the time-dependent input signal ( ) ∈ z t  that we are interested 
in with the solution space of a time-delay differential equation of the form

θτ( ) = − ( ) + ( ( − ), ( ), ), ( )x t x t f x t I t 1

where f is a nonlinear smooth function (we call it nonlinear kernel) that depends on the K parameters 
in the vector θ ∈ K , τ >  0 is the delay, ( ) ∈ x t , and ( ) ∈ I t  is obtained using a temporal multi-
plexing over the delay period of the input signal z(t) that we explain later on. We note that, even though 
the differential equation takes values in the real line, its solution space is infinite dimensional since an 
entire function τ∈ ( − , , )x C [ 0]1  needs to be specified in order to initialize it. The choice of nonlinear 
kernel is determined by the intended physical implementation of the computing system; we focus on two 
parametric sets of kernels that have already been explored in the literature, namely, the Mackey-Glass21 
and the Ikeda22 families. These kernels were used for reservoir computing purposes in the RC electronic 
and optic realizations in14 and15, respectively.

In order to visualize the TDR construction using a neural networks approach it is convenient, as 
in12,14, to consider the Euler time-discretization of (1) with integration step τ= /d N: , namely,

θτ
( ) − ( − )

= − ( ) + ( ( − ), ( ), ). ( )
x t x t d

d
x t f x t I t 2

The design starts with the choice of a number ∈ N  of virtual neurons and of an adapted input 
mask ∈ c N. Next, the input signal z(t) at a given time t is multiplexed over the delay period by setting 
( ) = ( ) ∈ t z tI c: N (see Module A in Fig.  1). We then organize it, as well as the solutions of (2), in 

neuron layers x(t) parametrized by a discretized time ∈ t  by setting

τ τ( ) = ( − ( − ) ), ( ) = ( − ( − ) ), ∈ , …, , ∈ , ( )x t x t N i d I t I t N i d i N t: : {1 } 3i i

where xi(t) and Ii(t) stand for the ith-components of the vectors x(t) and I(t), respectively, with ∈ t . 
We say that xi(t) is the ith neuron value of the tth layer of the reservoir and d is referred to as the 
separation between neurons. With this convention, the solutions of (2) are described by the following 
recursive relation:

θ

ξ

( ) = ( ) + ( − ) ( ( − ), ( ), ),

( ) = ( − ),

= ( + ), ( )

ξ ξ−
−

−x t e x t e f x t I t
x t x t

d

: 1 1 with
: 1 and
: log 1 4

i i i i

N

1

0

that shows how, as depicted in Module B in Fig. 1, any neuron value is a convex linear combination of 
the previous neuron value in the same layer and a nonlinear function of both the same neuron value in 
the previous layer and the input. The weights of this combination are determined by the separation 
between neurons; when the distance d is small, the neuron value xi(t) is mainly influenced by the previ-
ous neuron value xi−1(t), while large distances between neurons give predominance to the previous layer 
and foster the input gain. The recursions (4) uniquely determine a smooth map × × →   F : N N K N 
that specifies the neuron values as a recursion on the neuron layers via an expression of the form

θ( ) = ( ( − ), ( ), ), ( )t F t tx x I1 5

where F is constructed out of the nonlinear kernel map f that depends on the K parameters in the vector 
θ; F is referred to as the reservoir map.

The construction of the TDR computer is finalized by connecting, as in Module C of Fig. 1, the res-
ervoir output to a linear readout ∈ W N

out  that is calibrated using a training sample by minimizing the 
associated task mean square error via a linear regression. We will refer to the Module B in Fig. 1 as the 
reservoir or the time-delay reservoir (TDR) and to the collection of the three modules as the reservoir 
computer (RC) or the TDR computer. A TDR based on the direct sampling of the solutions of (1) will 
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be called a continuous time TDR and those based on the recursion (5) will be referred to as discrete 
time TDRs.

As we already mentioned, the performance of the RC for a given task is much dependent on the 
value of the kernel parameters θ and, in some cases, on the entries of the input mask c used for signal 
multiplexing. When comparing RC to standard neural networks and thinking of it as a machine learning 
paradigm, the RC training phase can be assimilated to the determination of both the linear readout Wout 
(straightforward in this case using a linear regression) and the optimal parameters θ. Unlike the situation 
encountered in the neural networks context for which efficient training algorithms have been developed 
over the years (see23 for a particularly good performing example), the optimal parameters θ are usually 
determined in the RC context by trial and error or using computationally costly systematic scannings 
that are by far the biggest burden at the time of adapting the RC to a new task.

In this paper we construct an approximate model that we use to establish a functional link between 
the RC performance and the parameters θ and the input mask values c. Given a specific task, this explicit 
expression can be used to find appropriate parameter and mask values by solving a well structured and 
algorithmically convenient optimization problem that readily provides them.

The construction of this approximated formula is based on the observation that the optimal RC 
performance is always obtained when the TDR is working in a stable unimodal regime, that is, the 
reservoir is initialized at a stable equilibrium of the autonomous system (I(t) =  0) associated to (1) and 
the mean and variance of the input signal I(t) are designed using the input mask c so that the reservoir 
output remains around it and does not visit other stable equilibria or dynamical elements. In the next 
section we provide empirical and theoretical arguments for this claim. The performance measures that 
we consider in our study are the nonlinear memory capacities introduced in24 as a generalization of the 
linear concept proposed in25–28.

Results
Optimal performance: stability and unimodality.  Stability and the reservoir defining properties.  
The estimations of the RC performance using the nonlinear memory capacity that we present later on, 
consist of approximating the reservoir by its partial linearization at the level of the delayed self feedback 
term and of respecting the nonlinearity in the input injection. This approach is only acceptable when the 
optimal dynamical regime that we are interested in, remains close to a given point. A natural candidate 
for such qualitative behavior could be obtained by initializing the reservoir at an asymptotically stable 
equilibrium of the autonomous system associated to (1) and by controlling the mean and the variance 

Figure 1.  Neural diagram representing the architecture of the time-delay reservoir (TDR) and the three 
modules of the reservoir computer (RC): (A) is the input layer, (B) is the time-delay reservoir, and (C) is 
the readout layer.
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of the input signal I(t) so that the reservoir output remains close to it. This equilibrium point can be 
interpreted as an input bias that, for general RCs, is one of the most commonly optimized parameters.

There is both theoretical and empirical evidence that suggests that optimal performance is obtained 
for the RCs that we are interested in when working in a statistically stationary regime around a stable 
equilibrium. Indeed, one of the defining features of RC, namely the echo state property, is materialized 
for general RCs by enforcing that the spectral radius of the internal connectivity matrix of the reservoir 
is smaller than one5,6,10, which is the critical stability value for a quiescent state of the network when 
operating autonomously (without external injected information). It is well-known that the translation of 
this condition for TDRs implies parameter settings that ensure the existence of a stable state of (1) when 
I(t) is set to zero. This feature typically relates to gains of the feedback smaller than the Hopf threshold 
of the delay dynamics or, equivalently, to a sufficiently low feedback rate so that self-sustained oscillations 
are avoided.

Asymptotic stability is closely related with the so-called fading memory property6,29: the impact of 
any past injected input necessarily vanishes after a transient whose duration is typically of the order of 
the absolute value of the inverse of the smallest negative real part in the Lyapunov exponents. When the 
feedback gain is set too close to zero, the RC does not exhibit a long enough transient and thus presents 
an intrinsic memory that is too short to secure the self mixing of the temporal information necessary 
for its processing. On the other hand, if the feedback gain is set too close to the instability threshold, 
the input information flow requires too much time to vanish and hence the fading memory property is 
poorly satisfied. We recall the well known fact (see Section 8.2 in29) that the fading memory property 
can be realized by input-output systems generated by time-delay differential equations only when these 
exhibit a unique stable equilibrium.

In the context of recent successful physical realizations of RC, experimental parameters are system-
atically chosen so that the conditions described above are satisfied. Indeed, in14,15 these conditions are 
ensured via a proper tuning of the gain of the delayed feedback function. This approach differs from the 
one in17, where the conditions are met by choosing a laser injection current strictly smaller but close 
to the lasing threshold, as well as by using a moderate feedback, which prevents eventual self sustained 
external cavity mode oscillations. An additional important observation suggested by all these experimen-
tal setups is the need for a nonlinearity at the level of the input injection. In14,15 this feature is obtained 
using a strong enough input signal amplitude and via the transformation associated to the nonlinear 
delayed feedback. In17 the delayed feedback is linear but an external Mach-Zehnder modulator is used 
that implicitly provides a nonlinear transformation of the input signal as it is optically seeded through 
the nonlinear electro-optic modulation transfer function of the Mach-Zehnder.

We conclude by emphasizing that, even though optimal performance is attained when working in 
a statistically stationary regime around a stable equilibrium for the specific time-delay RCs that we are 
using, this is not a general feature that applies to all RCs or other network based computational para-
digms. Indeed, recent works30 prove the existence of RCs (random Boolean networks in the case of30) 
that exhibit optimal performance when operating in a chaotic regime; more generally, this fact has also 
been observed in certain recurrent neural networks31.

Stability analysis of the time-delay reservoir.  Due to the central role played by stability in our discussion, 
we now carefully analyze various sufficient conditions that ensure that the RC is functioning in a stable 
regime. All the statements that follow are carefully proved in the Supplementary Material section. 
Consider first an equilibrium ∈ x0  of the continuous time model (1) working in autonomous regime, 
that is, we set I(t) =  0. It can be shown using a Lyapunov-Krasovskiy-type analysis32,33 that the asymptotic 
stability of x0 is guaranteed whenever there exists an ε >  0 and a constant <εk 1 such that either

1.	 θ( + , , ) ≤ +εf x x k x x00 0 for all ε ε∈ (− , )x , or

2.	 ≤
θ

ε
( + , , ) − kf x x x

x
00 0  for all ε ε∈ (− , )x .

The first condition can be used to prove the stability of equilibria exhibited by TDRs created using 
concave (but not necessarily differentiable) nonlinear kernels. As to the second one, it shows that if f is 
differentiable at x0 then this point is stable as long as θ∂ ( , , ) <f x 0 1x 0 , with θ∂ ( , , )f x 0x 0  the first 
derivative of the nonlinear kernel f in (1) with respect to the first argument at the point (x0, 0, θ).

The stability study can also be carried out by working with the discrete-time approximation (5) of the 
TDR which is determined by the reservoir map × × →   F : N N K N. More specifically, it can be 
shown that ∈ x0  is an equilibrium of (1) if and only if = ( , …, ) ∈Τ x xx : N

0 0 0  is a fixed point of 
(5). The asymptotic stability of this fixed point is ensured whenever the linearization DxF(x0, 0N, θ), 
which is a N ×  N matrix that will be referred to as the connectivity matrix, has a spectral radius smaller 
than one. Since it is not possible to compute the eigenvalues of DxF(x0, 0N, θ) for an arbitrary number 
of neurons N, we are hence obliged to proceed by finding estimations for the Cauchy bound34 of its 
characteristic polynomial or by bounding the spectral radius ρ(DxF(x0, 0N, θ)) using either a matrix norm 
or the Gershgorin discs35. An in-depth study of all these options showed that it is the use of the maxi-
mum row sum matrix norm ⋅

∞
 that yields the best stability bounds via the following statement:
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θ θ θρ( ( , , )) ≤ ( , , ) < ∂ ( , , ) < . ( )∞D F D F f xx 0 x 0 1 if and only if 0 1 6N N xx x0 0 0

Notice that this remarkable result puts together the stability conditions for the continuous and dis-
crete time systems.

As an example of application of these results, consider the Mackey-Glass nonlinear kernel21

θ
η γ

γ
( , , ) =

( + )

+ ( + )
,

( )
f x I

x I
x I1 7p

where the parameter θ γ η= ( , , )p:  is a three tuple of real values; γ is usually referred to as the input 
gain and η the feedback gain. When this prescription is used in (1) in the autonomous regime, that is, 
I(t) =  0, the associated dynamical system exhibits two families of equilibria x0 parametrized by η, namely, 
x0 =  0 and the roots of η= −x 1p

0 . For example, in the case p =  2, two distinct cases arise: when η <  1 
there is a unique equilibrium at the origin which is stable as long as η ∈ (− , )1 1 . When η >  1 two other 
equilibria appear at x0 =  ± (η −  1)1/2 which are stable whenever η <  3. These statements are proved in 
Corollary D.6 of the Supplementary Material. Analogous statements for the Ikeda kernel22 f(x, I, θ)  
=  η sin2(x +  γI +  φ), θ η γ φ= ( , , ):  can be found in Corollary D.7 of the Supplementary Material. A 
particularly convenient sufficient condition is η ≤ 1 that simultaneously ensures stability and unimo-
dality (existence of a single stable equilibrium).

Empirical evidence.  In order to confirm these theoretical and experimental arguments, we have carried 
out several numerical simulations in which we studied the RC performance in terms of the dynamical 
regime of the reservoir at the time of carrying out various nonlinear memory tasks. More specifically, we 
construct a reservoir using the Ikeda nonlinear kernel with N =  20, d =  0.2581, η =  1.2443, γ =  1.4762, 
and φ =  0.1161. The equilibria of the associated autonomous system are given by the points x0 where 
the curves y =  x and y =  η sin2(x +  φ) intersect. With this parameter values, intersections take place at 
x0 =  0.0244, x0 =  0.9075, and x0 =  1.063, which makes multi modality possible. As it can be shown with 
the results in the Supplementary Material section (see Corollary D.7), the first and the third equilibria 
are stable. In order to verify that the optimal performance is obtained when the RC operates in the 
neighborhood of a stable equilibrium, we study the normalized mean square error (NMSE) exhibited 
by a TDR initialized at x0 =  0.0244 when we present to it a quadratic memory task. More specifically, 
we inject in a TDR an independent and identically normally distributed signal z(t) with mean zero and 
variance 10−4 and we then train a linear readout Wout (obtained with a ridge penalization of λ  =  10−15) 
in order to recover the quadratic function z(t −  1)2 +  z(t −  2)2 +  z(t −  3)2 out of the reservoir output. The 
top left panel in Fig. 2 shows how the NMSE behaves as a function of the mean and the variance of the 
input mask c. It is clear that by modifying any of these two parameters we control how far the reservoir 
dynamics separates from the stable equilibrium, which we quantitatively evaluate in the two bottom pan-
els by representing the RC performance in terms of the mean and the variance of the resulting reservoir 
output. Both panels depict how the injection of a signal slightly shifted in mean or with a sufficiently 
high variance results in reservoir outputs that separate from the stable equilibrium and in a severely 
degraded performance. An important factor in this deterioration seems to be the multi modality, that is, 
if the shifting in mean or the input signal variance are large enough then the reservoir output visits the 
stability basin of the other stable point placed at x0 =  1.063; in the top right and bottom panels we have 
marked with red color the values for which bimodality has occurred so that the negative effect of this 
phenomenon is noticeable. In the Supplementary Material section we illustrate how the behavior that we 
just described is robust with respect to the choice of nonlinear kernel and is similar when the experiment 
is carried out using the Mackey-Glass function.

The approximating model and the nonlinear memory capacity of the reservoir computer.  The 
findings just presented have major consequences in the theoretical tools available for the evaluation of 
the RC performance. Indeed, since we now know that optimal operation is attained when the TDR 
functions in a unimodal fashion around an asymptotically stable steady state, we can approximate it by 
its partial linearization with respect to the delayed self feedback term at that point and keeping the non-
linearity for the input injection. For statistically independent input signals of the type used to compute 
nonlinear memory capacities of the type introduced in24, this approximation allows us to visualize the 
TDR as a N-dimensional (N is the number of neurons) vector autoregressive stochastic process of order 
one36 (we denote it as VAR(1)) for which the value of the associated nonlinear memory capacities can be 
explicitly computed. As we elaborate later on in the discussion, the quality of this approximation at the 
time of evaluating the memory capacities of the original system is excellent and the resulting function 
can be hence used for RC optimization purposes regarding the nonlinear kernel parameter values θ and 
the input mask c.

Consider a stable equilibrium ∈ x0  of the autonomous system associated to (1) or, equivalently, a 
stable fixed point of (5) of the form = ( , …, ) ∈ x xx : N

0 0 0 . If we approximate (5) by its partial line-
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arization at x0 with respect to the delayed self feedback and by the R-order Taylor series expansion of the 
functional that describes the signal injection, we obtain an expression of the form:

θ θ ε( ) = ( , , ) + ( , )( ( − ) − ) + ( ), ( )t F A t tx x 0 x x x1 8N0 0 0

where θ θ( , ) = ( , , )A D Fx x 0: Nx0 0  is the linear connectivity matrix and ε(t) is given by:

( )ε ( ) = ( − ) ( ( ), ), ( ( ), , ), …, ( ( ), , …, ) , ( )
ξ−t e q z t c q z t c c q z t c c1 9R R R N1 1 2 1

with

∑ ∑θ( ( ), , …, ) =
( )

!
(∂ )( , , ) ,

( )
ξ

=

( )

=

−( − )q z t c c
z t

i
f x e c: 0

10R r
i

R i

I
i

j

r
r j

j
i

1
1

0
1

and θ(∂ )( , , )
( ) f x 0I
i

0  is the ith order partial derivative of the nonlinear kernel f with respect to the second 
argument I(t), evaluated at the point (x0, 0, θ).

If we now use as input signal z(t) independent and identically distributed random variables with mean 
0 and variance σz

2 (we denote it by σ( ) ∼ ( , )∈z t{ } IID 0t z
2 ) then the recursion (8) makes the reservoir 

layer dynamics ( )
∈tx{ }t

 into a discrete time random process that, as we show in what follows, is the 
solution of a N-dimensional vector autoregressive model of order 1 (VAR(1)). Indeed, it is easy to see 
that the assumption σ( ) ∼ ( , )∈z t{ } IID 0t z

2  implies that ( ) ∼ ( , Σ )∈tI 0{ } IIDt N I , with σΣ = c c:I z
2 , 

and that ε ( ) ∈t{ }t  is a family of N-dimensional independent and identically distributed random variables 
with mean με and covariance matrix Σε given by the following expressions:

( )μ ε μ μ μ= ( ) = ( − ) ( , ), ( , , ), …, ( , , …, ) , ( )ε
ξ−t e q c q c c q c cE[ ] 1 11R z R z R z N1 1 2 1

Figure 2.  Behavior of the reservoir performance in a quadratic memory task as a function of the mean 
and the variance of the input mask. The modification of any of these two parameters influences how the 
reservoir dynamics separates from the stable equilibrium. The top panels show how the performance degrades 
very quickly as soon as the mean and the variance of the input mask (and hence of the input signal) separate 
from zero. The bottom panels depict the reservoir performance as a function of the various output means and 
variances obtained when changing the input means and variances. In the top right and bottom panels we have 
indicated with red markers the cases in which the reservoir visits the stability basin of a contiguous stable 
equilibrium hence showing how unimodality is associated to optimal performance.
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where the polynomial qR is the same as in (10) and where we use the convention that the powers 
μ = ( )z t: E[ ]z

i i , for any ∈ , …,i R{1 } and with E[·] denoting the mathematical expectation. Additionally, 
ε μ ε μΣ = ( ( ) − )( ( ) − )ε ε εt t: E[ ] has entries determined by the relation:

(( )
)

μ

μ μ

(Σ ) = ( − ) (⋅, , …, ) ⋅ (⋅, , …, ) ( )

− ( , , …, ) ( , , …, ) , ( )

ε
ξ−e q c c q c c

q c c q c c

1

12

ij R i R j z

R z i R z j

2
1 1

1 1

where the first summand stands for the multiplication of the polynomials (⋅, , …, )q c cR i1  and 
(⋅, , …, )q c cR j1  and the subsequent evaluation of the resulting polynomial at μz, and the second one is 

made out of the multiplication of the evaluation of the two polynomials.
Using these observations, we can consider (8) as the prescription of a VAR(1) model driven by the 

independent noise ε ( ) ∈t{ }t . If the nonlinear kernel f satisfies the generic condition that the polynomial 
in u given by θ( − ( , ) ) A uxdet N 0 , does not have roots in and on the complex unit circle, then (8) has 
a second order stationary solution36 ( ) ∈tx{ }t  with time-independent mean given by

μ θ θ θ μ= ( ) = ( − ( , )) ( ( , , ) − ( , ) + ) ( )ε
−t A F Ax x x 0 x xE[ ] 13x N N0

1
0 0 0

and an also time independent autocovariance function μ μΓ( ) = ( ( ) − )( ( − ) − )k t t kx x: E[ ]x x , 
∈ k , recursively determined the Yule-Walker equations (see36 for a detailed presentation). Indeed, Γ (0) 

is given by the vectorized equality:

θ θ(Γ( )) = ( − ( , ) ⊗ ( , )) (Σ ), ( )ε
− A Ax xvec 0 vec 14N 0 0

1
2

which determines the higher order autocovariances via the relation Γ (k) =  A(x0, θ)Γ (k −  1) and the 
identity Γ (− k) =  Γ (k). As we explain in the following paragraphs, the moments (11), (13), and (14) are 
all that is needed in order to characterize the memory capacities of the RC.

A h-lag memory task is determined by a (in general nonlinear) function →+ H : h 1  that is used 
to generate a one-dimensional signal ( ) = ( ( ), ( − ), …, ( − ))y t H z t z t z t h: 1  out of the reservoir 
input. Given a TDR computer, the optimal linear readout Wout adapted to the memory task H is given 
by the solution of a ridge linear regression problem with regularization parameter λ ∈  (usually tuned 
during the training phase via cross-validation) in which the covariates are the neuron values correspond-
ing to the reservoir output and the explained variables are the values {y(t)} of the memory task function. 
The H-memory capacity CH(θ, c, λ ) of the TDR computer under consideration characterized by a non-
linear kernel f with parameters θ, an input mask c, and a regularizing ridge parameter λ  is defined as 
one minus the normalized mean square error committed at the time of accomplishing the memory task 
H. When the reservoir is approximated by a VAR(1) process, then the corresponding H-memory capac-
ity is given by



θ( , , λ)

=
( ( ), ( )) (Γ( ) + λ ) (Γ( ) + λ )(Γ( ) + λ ) ( ( ), ( ))

( ( )) ( )

− −  
C

y t t y t t
y t

c

x xCov 0 0 2 0 Cov
var 15

H

N N N
1 1

The developments leading to this expression are contained in the Supplementary Material section. It 
is easy to show that:

θ≤ ( , , λ) ≤ . ( )C c0 1 16H

Notice that in order to evaluate (15) for a specific memory task, only Cov(y(t), x(t)) and var (y(t)) 
need to be computed since the autocovariance Γ (0) is fully determined by (14) once the reservoir and the 
equilibrium x0 around which we operate have been chosen. As an example, we provide the expressions 
corresponding to the two most basic information processing routines, namely the linear and the quad-
ratic memory tasks. Details on how to obtain the following equalities are contained in the Supplementary 
Material section.

The h-lag linear memory task.  Linear memory tasks are those associated to linear task functions 
→+ H : h 1 , that is, if we denote ( ) = ( ( ), ( − ), …, ( − ))t z t z t z t hz : 1h  and ∈ +L h 1, we set 

( ( )) = ( )H t tz L z:h h . Various computations included in the Supplementary Material section using the 
so called MA(∞) representation of the VAR(1) process show that σ( ( )) =y t Lvar z

2 2, and 
θ μ( ( ), ( )) = ( − )∑ ∑ ( ( , ) ) ( , , …, )ξ−

=
+

=
−y t x t e L A p c cxCov 1i j

h
s
N

j
j

is R z s1
1

1 0
1

1 , ∈ , …,i N{1 }, 
where the polynomial pR on the variable x is defined by ( , , …, ) = ⋅ ( , , …, )p x c c x q x c c:R s R s1 1  and 
its evaluation in the previous formula follows the same convention as in (11).
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The h-lag quadratic memory task.  In this case we use a quadratic task function of the form

 ∑ ∑( ( )) = ( ) ( ) = ( − + ) ( − + ),
( )=

+

=

+

H t t Q t Q z t i z t jz z z: 1 1
17

h h h

i

h

j

h

ij
1

1

1

1

for some symmetric h +  1-dimensional matrix Q. If we define ( ) = ( ( ))y t H tz: h , we have that 
( )μ σ σ( ( )) = − ∑ + ∑ ∑=

+
=
+

>
+y t Q Qvar 4z z i

h
ii z i

h
j i
h

ij
4 4

1
1 2 4

1
1 1 2, and

( )∑ ∑ μ σ μ( ( ), ( )) = ( − ) ( ) ( , , …, ) − ( , , …, ) ,
( )

ξ−

=

+

=

−y t x t e Q A s c c q c cCov 1
18

i
j

h

r

N

jj
j

ir R z r z R z r
1

1

1

1
1

2
1

where the polynomial sR on the variable x is defined as ( , , …, ) = ⋅ ( , , …, )s x c c x q x c c:R r R r1
2

1 .

Discussion
The possibility to approximate the TDR using a model of the type (8) opens the door to the theoret-
ical treatment of many RC design related questions that so far were addressed using a trial and error 
approach. In particular, the availability of a closed form formula of the type (15) for the memory capacity 
of the RC is extremely convenient to determine the optimal reservoir architecture to carry out a given 
task. Nevertheless, it is obviously very important to assess the quality of the VAR(1) approximation 
underlying it and of the consequences that result from it. Indeed, we recall that the expression (15) was 
obtained via the partial linearization of the reservoir at a stable equilibrium in which it is initialized and 
kept in stationary operation. Despite the good theoretical and experimental reasons to proceed in this 
fashion provided above, we have confirmed their pertinence by explicitly comparing the reservoir mem-
ory capacity surfaces obtained empirically with those coming from the analytical expression (15). We 
have carried this comparison out for various tasks and have constructed the memory capacity surfaces 
as a function of different design parameters.

Figure 3.  Error surfaces exhibited by a Mackey-Glass kernel based reservoir computer in a 6-lag quadratic 
memory task, as a function of the distance between neurons and the parameter η. The points in the surfaces 
of the middle and right panels are the result of Monte Carlo evaluations of the NMSE exhibited by the discrete 
and continuous time TDRs, respectively. The left panel was constructed using the formula (15) that is obtained 
as a result of modeling the reservoir with an approximating VAR(1) model. The computational convenience 
of the formula (15) can be visualized by noticing that each point in the middle and right panels took 37 and 
41 seconds, respectively, to be estimated using a computer code written down in a high level programming 
language running on a single 2.53 GHz Intel i5 core; the same computation using (15) in the left panel took 
only 1.1 seconds.
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We first consider a RC constructed using the Mackey-Glass nonlinear kernel (7) with p =  2, γ =  0.796, 
and twenty neurons. We present to it the 6-lag quadratic memory task H corresponding to choosing in 
(17) a seven dimensional diagonal matrix Q with the diagonal entries given by the vector (0, 1, 1, 1, 1, 1, 1).  
The first element, corresponding to the 0-lag memory (quadratic nowcasting), is set to zero in order to 
keep the difficulty of the task high enough. We then vary the value d of the distance between neurons 
between 0 and 1 and the feedback gain parameter η between 1 and 3. As we already discussed, the TDR 
in autonomous regime exhibits for these parameter values two stable equilibria placed at ± (η −  1)1/2; for 
this experiment we will always work with the positive equilibria by initializing the TDRs at those points. 
Fig. 3 represents the normalized mean square error (NMSE) surfaces (which amounts to one minus the 
capacity) obtained using three different approaches. The left panel was obtained using the formula (15) 
constructed with an eight-order Taylor expansion of the nonlinear kernel on the signal input (R =  8 in 
(9)). The points in the surfaces of the middle and right panels are the result of Monte Carlo evaluations 
(using 50,000 occurrences each) of the NMSE exhibited by the discrete and continuous time TDRs, 
respectively. The time-evolution of the time-delay differential equation (continuous time model) was 
simulated using a Runge-Kutta fourth-order method with a discretization step equal to d/5. A quick 
inspection of Fig. 3 reveals the ability of (15) to accurately capture most of the details of the error surface 
and, most importantly, the location in parameter space where optimal performance is attained; it is very 
easy to visualize in this particular example how sensitive the magnitude of the error and the correspond-
ing memory capacity are to the choice of parameters and how small in size the region in parameter space 
associated with acceptable operation performance may be.

In order to show that these statements are robust with respect to the choice of task and varying 
parameters, we have carried out a similar experiment with a RC in which we fix the feedback gain 
η0 =  1.0781 and we vary the input gain γ and the distance between neurons d. The quadratic memory 
task is reduced this time to 3-lags. We emphasize that in this setup the stable operation point is always 
the same and equal to (η0 −  1)1/2. Fig.  4 shows how the performance of the memory capacity estimate 
(15) at the time of capturing the optimal parameter region is in this situation comparable to the results 
obtained for the 6-lag quadratic memory task represented in Fig. 3. We also point out that in this case 
there is a lower variability of the performance which, in our opinion, has to do with the fact that modi-
fying the parameter γ adjusts the input gain but leaves unchanged the operation point. Additionally, the 
moderate difficulty of the task makes possible attaining lower optimal error rates with the same number 
of neurons. In order to ensure the robustness of these results with respect to the choice of nonlinear 

Figure 4.  Error surfaces exhibited by a Mackey-Glass kernel based reservoir computer in a 3-lag quadratic 
memory task, as a function of the distance between neurons and the parameter γ. The points in the surfaces 
of the middle and right panels are the result of Monte Carlo evaluations of the NMSE exhibited by the discrete 
and continuous time TDRs, respectively. The left panel was constructed using the formula (15) that is obtained 
as a result of modeling the reservoir with an approximating VAR(1) model.
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kernel, we have included in the Supplementary Material section the results of a similar experiment car-
ried out using the Ikeda prescription.

Once the adequacy of the memory capacity evaluation formula (15) has been established, we can use 
this result to investigate the influence of other architecture parameters in the reservoir performance. In 
Fig. 5 we depict the results of an experiment where we study the influence of the choice of input mask 
c in the performance of a Mackey-Glass kernel based reservoir in a 3-lag quadratic memory task. The 
figure shows, for each number of neurons, the performance obtained by a RC in which the reservoir 
parameters θ and the input mask c have been chosen so that the memory capacity CH(θ, c, λ ) in (15) 
is maximized; we have subsequently kept the optimal parameters θ and we have randomly constructed 
one thousand input masks c with entries belonging to the interval [− 3, 3]. The box plots in Fig. 5 give 
an idea of the distribution of the degraded performances with respect to the optimal mask for different 
numbers of virtual neurons.

In conclusion, the construction of approximating models for the reservoir as well as the availability 
of performance evaluation formulas like (15) based on it, constitute extremely valuable analytical tools 
whose existence should prove very beneficial in the fast and efficient extension and customization of RC 
type techniques to tasks far more sophisticated than the ones we considered in this paper. This specific 
point is the subject of ongoing research on which we will report in a forthcoming publication.
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