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Abstract—The rise of the Internet of Things raises many
challenges among which is the ability to efficiently simulate
a real 3D environment with intelligent objects able to sense
and act. Furthermore, the apparition of micro-objects able to
communicate forces such as a simulator to scale up in the number
of simulated nodes. In this paper, we report the progresses made
in the design of a new kind of simulator named VisibleSim.
VisibleSim mixes a discrete-event core simulator with discrete-
time functionnalities in the most efficient way so that simulations
can scale up in numbers. Experiments show that VisibleSim can
accurately and smoothly simulate 2 millions of nodes at a rate
of 650k events/sec on a simple laptop.

I. INTRODUCTION

The history of Internet begun in the 70s and it is now a
mature network widely used for various uses. Internet offers a
reliable connectivity, high-bandwidth and a low latency to its
users so that there is no debate on another way of connecting
people and computers all around the world. However, a new
way to communicate is growing outside as well as inside of
Internet. The Internet of Things (IoT) federates the things
that need to communicate and their requirements are different
form normal computers or humans. Some things will still need
high-bandwidth and low latency but most of them need low
power as well as low bandwidth and latency is not an issue.
New service providers are therefore appearing and deploying
separate networks. One of the most promising IoT providers is
SIGFox [1] who has designed a radically new network, based
on its own networking cards and on its own base transmitting
stations. This network allows therefore objects to be remotely
monitored at a very low price.
On the application side, a new development environment is
also needed to take into account the specificities of IoT:
roughly, things can sense and/or act on real-world, they can be
mobile and they are numerous. To the best of our knowledge
no current simulator can scale up to several millions nodes,
while offering integration in a real 3D environment which
means sensing, control and mobility. We address this problem
by proposing a new simulator called VisibleSim that is able
to simulate intelligent communicating objects placed in a real
3D world.
The two main ideas of VisibleSim are the following. The first
one is to mix a discrete-event core simulator with discrete-time
functionnalities in the most efficient way so that simulations
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can scale up in numbers. The second one is to be as generic as
possible so that any kind of distributed program could be easily
plugged in VisibleSim. This article presents its architecture
and reports preliminary experiments with distributed intelligent
MEMS [2] examples.

II. CONTRIBUTION

A. Architecture

The design choices of the proposed simulator come from
the requirements detailed here:

• Deterministic and versatile. As the execution path of large
scale distributed applications is often very tedious to under-
stand and debug, the simulator should be able to reproduce
exactly any given scenario, and thus being deterministic.
Moreover, we do not want our simulator to be limited to
one particular target platform, but instead we would like
it to be expandable to meet various needs. Following a
very common practice in the network simulation field, our
simulator is event-driven. This allows a full reproducibility
of the experiments. Because it has been carefully designed
this way from the start, it also intrinsically proposes an
expandable model. Many basic events and object types are
provided, from which programmers can easily derive their
own.
• Scalable. It should be able to handle large numbers of

elements, because new domains of application like IoT
or distributed intelligent MEMS show their interest when
thousands or even millions of units act together. Scalability
is handled through the possibility to use more or less detailed
event modeling of objects and components. This tradeoff
is necessary, albeit it has to be handled carefully. This is
particularly true for the networking model where a complete
implementation of the protocol stack is possible but would
prevent the simulator from going over a few thousands
simulated components. In fact, many phenomenon can be
simulated in an efficient and still correct enough way, as
long as one is aware of the impact on other layers.
• Simulate the environment. As the envisioned applications

interact with their physical environment, the relevant ele-
ments in the environment should also be simulated. The
sensing and actuating simulated code should be tricked to
think it is actually sensing and actuating real things, and the
reactions to the simulated actuation should be realistic. This
means we need a physical simulation that can be handled at
a reasonable cost and with a sufficient precision. We decided



for techniques coming partly from the video game industry.
Here again, a necessary tradeoff has to be made between
the precision and the scalability. Our event-driven simulator
core still enables various degrees of precision depending on
the need of a particular application.
• Ways to understand and analyze. Because of the com-
plex nature of large scale distributed applications, ways to
display and better grasp their general behavior are required.
Two complementary approaches are provided: a powerful
3D visualization interface and a tracing and filtering tool
allowing to get to the very detail of any particular point
of interest (be it interaction with the environment, code
execution, networking, etc.).
• Transparency and choice of programming model. It
should allow the use of simulated code as similar as
possible to the one which would be deployed on a real
implementation, ideally fully identical. Also, because differ-
ent programming paradigms can be chosen by application
implementers, it should ofter at least support for polling
and event based models. Because of its internals, the event
model is the natural behavior of the simulator as it sends
relevant events to the application code which then chooses
to react to it or not. An event driven application thus requires
almost no additional code to run on the simulator. However
a ”translation” framework is also provided for applications
preferring to using polling. Using polling may be a little less
straightforward, as the application implementer has to be
careful of a few details. Continuously polling a sensor for a
state change may be acceptable on an independent hardware
implementation but is obviously not in a simulator running
thousands of elements !
• Able to cooperate. Because upper layer softwares and
applications already exist, it should be able to drive and
interact with separate codes, and to make use of external
dedicated codes should the need arise. Two aspects are
covered here. The first one is the ability to delegate details
to external software. This can be a link with a dedicated
network simulator, should the need for a fully implemented
network stack arise. In that case the simulator only manages
the network interfaces, but the actual encapsulation, collision
detection and other computations are done in a community
recognized simulator such as NS2 or NS3. The second point
is the ability to interact with real hardware, be it real sensors
/ actuators exposed to the simulated code (verifying that the
code is able to handle the real thing), or real code exposed
to a simulated environment (because the sensors / actuators
are not available yet).

B. Simulated environments and languages

VisibleSim can already simulate four different environ-
ments working with three different languages. The design of
VisibleSim presented in this section, allows plugging different
languages either compiled or interpreted and the change to the
physical environment has been kept as simple as possible.

1) Smart Blocks: Smart Blocks [3] is an effort to build
a self-reconfigurable modular conveyor based on a contact-
free technology. This conveyor is composed of centimeter-
size blocks (2 cm) which are linked together to form the
conveying surface (see Figure 1). Each block includes a
MEMS actuator array in the upper face in order to move

Fig. 1. Smart Blocks modular conveyor

Fig. 2. Blinky blocks detailed

the objects. These dense actuator arrays can move either sub-
centimeter size objects or even bigger ones. Sensors able to
detect the object positions are also integrated in the upper face
thanks to innovating MEMS/CMOS integration. Each block
has its own processing unit as a micro-controller, and some
communication ports will link it with its neighbors in order
to plan global transport policies or to decide to reconfigure
the shape of the conveyor in case of faulty blocks or of series
change. The model of a block includes sensors, actuator array
(upper side), reconfiguration actuators for mobility and 4-way
communications to its neighbors. Within VisibleSim, objects
are simulated and can be detected by sensors and carried
out by the actuators. Each block can slide on its neighbor
and the reality checker can detect wrong configurations like
equilibrium of the ensemble. Each block is programmed in C
using a special API.

2) Blinky blocks: A Blinky Blocks system [4] is a modular
distributed execution environment composed of centimeter-
size blocks (4cm each) that are attached to each other us-
ing magnets. A Blinky Block is built around an ATMEL
ATxmega256A3-AU microcontroller which has 6 UARTS.
Each block can therefore be serial-linked to up to 6 other
blocks. The connection between the blocks also provides
power supply (see figure 2). Each block has a sensor (inertial
measurement unit, IMU) and it can play sounds and change
its color. Two languages can be used to program Blinky
Blocks, either C or Meld which follows the logic programming
paradigm [5]. A Meld program is transformed into bytecode
which is interpreted by a virtual machine written in C++.



Base
    ⊳Simulator
    ⊳Scheduler
    ⊳BuildingBlock
    ⊳BlockCode
    ...

Application1
    ⊳Application1BlockCode
    ...

SmartBlocks
    ⊳SmartBlocksSimulator
    ⊳SmartBlocksScheduler
    ⊳SmartBlocksBuildingBlock
    ⊳SmartBlocksBlockCode
    ...

Application2
    ⊳Application2BlockCode
    ...

...
BlinkyBlocks
    ⊳BlinkyBlocksSimulator
    ⊳BlinkyBlocksScheduler
    ⊳BlinkyBlocksBuildingBlock
    ⊳BlinkyBlocksBlockCode
    ...

Elements common 
to all targets

Elements derived 
for each target

Each application derives 
its own BlockCode 

and make use of the 
appropriate simulator

Fig. 3. Simulator architecture : multiple targets and code re-use through
inheritance

3) Claytronics: The principal objective of the Claytronics
project [6] is to realize the concept of programmable matter
by aggregating Claytronics atoms (Catoms). This matter is
envisioned to be composed of millions of Catoms, silicon
millimeter-scale balls, which can turn around each other so that
they can change the global shape of the ensemble. Like Blinky
Blocks, Catoms can be programmed using Meld. But, despite
recent advances in the manufacturing of Catoms [7], [8], they
will not be mass-produced in the near future. Therefore, Meld
programs cannot be executed on Catoms yet but simulations
can be used. DPRSim, developed by Intel Research, has
successfully supported the execution of Meld programs on
millions of simulated Catoms [9] but the need for a higher
precision pushed to the use of VisibleSim.

4) Multicores: The newest version of the Meld language
can also be used to program multi-cores architectures. Al-
though, this version does not need sensing and actuation,
visualization of the performances have proven to be useful.

C. Simulation core

1) Multiple targets: To more easily cope with the design
choices, the simulator is written in C++ and make an extensive
use of the object programming paradigm. To ease the imple-
mentation of new target platforms, as summerized on figure 3,
the simulator core is divided into two layers. The first layer
provides a number of base objects representing components
independently from any particular target. This include among
others the ”BuildingBlock” as the base robotic unit, network
interfaces, sensors, actuators, the messages and an abstraction
of the code running on a block. The second layer provides spe-
cialization for a particular target through classes derived from
those of the first layer. If you consider the ”BlinkyBlocks”
platform for example, you then get dedicated Block (cubic
shape), sensors (BlinkyBlocks can be tapped on), actuators
(they have colored lights) and network interfaces (they connect
through port on each of their face). Someone wanting to
develop and test a new application for BlinkyBlocks thus
only has to derive its own code from the provided abstraction
of code running on this platform (BlinkyBlocksCode class),
having to specify only a few required methods.

2) Event model: Our simulator is event driven, this means
that everything is modeled as en event and is scheduled
for processing. The simulator maintains an ordered list of
all the events waiting to be processed. It always consumes

the one at the head of this list. Consuming an event means
calling its associated callback function. Depending on the event
type, this function can be internal or user defined, although
the application programmer is only required to override two
functions : one that is automatically called when a BlockCode
is initialized, and the other called when any event concerning
this BlockCode occur afterwards. The user get a reference to
the event occuring and then decide what to do (it could be a
data packet received, data coming from a sensor, a timer, etc.)

Motion of the blocks themselves is managed through
events. Basically ”startMoving” event marks the beginning of
the motion, ended by a ”stopMoving” event. Whenever the
exact position of a block is required, the simulator simply
interpolates it. This approach is both very fast and precise.

During the processing of an event, it is common to schedule
one or more new events, which will be processed later. It is
outside of the topic of this paper to describe completely the
event model. Still, the simulator core is able to ensure the
correct chronology of all the events, provided the user follows
the guidelines and never calls the callback functions himself.

3) Networking model: Because of the necessity to be fast
enough to scale into large number of blocks, tradeoffs have
been made regarding the level of detail. The networking makes
use of the event model and proposes outgoing and incoming
queues where the user can put and get its messages. The
simulator automatically tracks the state of the provided net-
work interfaces and discards or delays messages according to
disconnections or bandwidth limitations. Messages themselves
are implemented as class derived from a provided base class.
An application programmer can thus easily implement any
message type he may need.

4) Physical engine: Each block, through its sensors and
actuators, produces interactions with the outside world. For
example, a smart block may activate an electromagnetic system
in order to move in relation to another block, or may open a
valve enabling an air jet of the conveying system. These actions
towards the physical world must be followed by a physical
effect: the block has to slide along its neighbor, or a conveyed
object has to move.
To standardize these actions of blocks towards the real world,
we consider that the actuators will produce forces on external
objects. Then, a special part of the simulator, called physical
engine, deals with the effects of these forces on all the other
objects. For the simulator, all objects can be considered as
physical objects, according to their capabilities of mobility,
they will be considered as mobiles or obstacles.

The physics engine must simulate all the motions of objects
in the environment that are subjected to forces by applying
rules of Newtonian physics. We consider that forces are applied
at the center of gravity of objects, the physics engine then
infers accelerations, velocities and inertia, simulating real
movements of objects.
Depending on the simulated blocks, the physical engine is used
to determine the dynamic effects of the application of forces
on moving objects (see dynamics paragraph) or to determine
the stability of the mechanical system maintained by contact
forces. Moreover, in the case of smart blocks, blocks are
provided with pneumatic conveyors for moving objects on their
surface. In this configuration, conveyed objects are managed



Fig. 4. Forces produced by air jet on a mobile object.

by the physical engine.

In the case of 3D blocks, all blocks are considered as
mobile by the physical engine. A work in progress aims at
developing algorithms able to verify the stability of a set of
blocks using two verifications. One on the stability of links
between blocks and another one on the balance of the overall
structure. In this problem, the physical engine calculates the
forces between each pair of blocks. In the case of Blinky
Blocks, the physical engine is not currently used, as real
Blinky Blocks are arranged manually and have no mechanical
actuators.

a) Simulation of the dynamics: The simulation of the
physical dynamic consists in simulating as precisely as possi-
ble the actual movement of simple objects (called mobile ob-
ject) subjected to forces produced by the pneumatic conveying
system. In the Smart Blocks project, mobiles are conveyed
on the upper surface of the blocks by a pneumatic system.
This system offers the dual capabilities of carrying and moving
the mobile objects by applying vertical and tangential forces
using two kinds of air jets. Vertical forces are used to prevent
friction on moving conveyed objects, like on an air-hockey
table. Tangential forces are produced by high speed air-jets,
that create a local suction effect to slide mobile objects. The
generated force is oriented in the direction of the air-jet.
Delettre et al presents the model of this pneumatic actuator
in [10].

In the Smart Blocks project, each block is able to activate
an air-jet, which will apply a force to each mobile object
nearby. As shown in figure 4, attraction forces ~Fair produced
by air-jets are directed towards the mobile object (green
arrows) and its norm depends on the distance between the
mobile and the air-jet source. The motion of the mobile object
is obtained in combining many air-jet of nearby blocks.

The physical simulator engine performs calculations to
determine mobile objects movements applying the second
Newton law:

∑ ~Fi = m× a
Attractions forces produced by air jets are calculated using

the formula proposed by [10], moreover additivity properties
have been verified by the authors.

~Fair =

∫∫
−b ~UP ds (1)

In the case of a thin parallelepipedic shape, the previous
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Fig. 5. Comparison of the simulated and the experimental position of a
parallelepiped object moving on the Smart surface.

Fig. 6. Tasks of the reality checker: a. linkage forces; b. global stability.

equation may by simplified in:{
~Fair,x =

∑N
i=1−

Λi×b
2π [f1 cos (θ + φ) + f2 sin (θ − φ)]

~Fair,y =
∑N
i=1−

Λi×b
2π [f1 sin (θ + φ)− f2 cos (θ − φ)]

(2)
where Λ×b is considered as a physical constant and f1 and f2

are two functions that depend on the dimensions of the mobile
object and its relative position with the jet.

Then, we use the Euler integration method to solve this
system of differential equations:

mẍ = ~Fair,x − blxlyẋ
mÿ = ~Fair,y − blxly ẏ
Iα̈ = Γair −

b(l3xly+lxl
3
y)

12 α̇

(3)

In order to validate our physical engine, we have compared
simulated and real behaviors. The reference motion of a thin
parallelepiped object was captured in the air table of the
Smart Surface project. We obtain very similar results with the
simulation as shown in the figure 5.

b) Reality checker: The reality checker applies a static
physical simulation in order to verify the mechanical stability
of a set of 3D blocks. Considering a configuration of 3D
blocks, this checking is in two parts :

• A block may have to support others as it can be seen in
figure 6a. Linkage forces between the blocks must be com-
pared to the weight forces to ensure that the configuration
is physically possible. In the case shown in figure 6a, is the
yellow block in the center able to hold the three blocks on
the left?
• Before moving a block, we have to verify the stability of

the system. It is even more important when planning the



motion for the set of blocks to reach a new configuration.
The reality checker has to calculate the torque for many
pivot axes and eventually deduces a rotation of the set of
blocks as shown in figure 6b. In our case, pivot axes are in
contact areas between blocks and the floor.

The implementation of the reality checker is currently under
development.

D. User interface

The simulator interface allows both the observation of
the simulated scene under many points of view and the
interrogation of the status of blocks and system informations
in order to debug the BlockCode during development.

For the SmartBlocks, the simulator provides the opportu-
nity to know the internal memory state of each micro-robot in
real time during the simulation, along with an history of all
messages exchanged between blocks and all outputs written
in the BlockCodes. The interface allows the selection of one
block by clicking on it, then displays a filtered list of events for
this block. The user interface comprises two parts, as shown
in figure 7:

• The main area contains the 3D representation of the set of
blocks, this area is as big as possible in order to show the
biggest possible part of the scene.
• The text window presents traces of the simulation. It
contains information about the selected block. This window
can be hidden by clicking on an icon.

The scene can be shown under free point a view, turning the
camera, and zooming with the mouse. If a block is selected,
the focus of the camera may be automatically placed on this
block, it’s also possible to freely change the camera target
position with a mouse action.

c) Interactive actions on blocks: The implementation of
a large number of blocks causes a significant clutter of the 3D
interface. To easily check the behavior of the program on all
blocks, we must be able to distinguish information related to
a particular block. VisibleSim interface offers different tools
to do that. First, when you hover the mouse cursor over a
block, its number appears in a popup window. Then when a
block is selected, it flashes and you can read in the sliding
window on the right all the user specified information from
the GetInfo() function overrided in the BlockCode, along
with all the messages that have been sent and received by this
block.

In the BlockCode, creating a debugging trace is performed
by calling a trace function. To ease debugging, the format
and content written in the sliding window are simply defined
by overloading a class method in the BlockCode. Another
way to debug BlockCode consists in changing the color of
the blocks. BlockCode functions color(R,G,B) or color(id)
allow to change the color of the associated block by specifying
the RGB components or the id of the color in a pre-defined
color list.

d) XML configuration file: We have previously seen
how VisibleSim defines the behavior of the code running
within each block. In order to describe the ’world context’
of the experiment, we create a XML configuration file that

Fig. 7. Screenshot of the interface.

enumerates its constituent elements: blocks, mobiles, obstacles,
camera, spotlight etc. For each of these elements we precise
their position and settings. The following example shows a
XML configuration file specifying the position of the camera,
the spot light and the list of all blocks with their initial color
and position (it corresponds to the configuration shown in
figure 7).

1 <? xml v e r s i o n =” 1 . 0 ” s t a n d a l o n e =” no ” ?>
2 <world g r i d s i z e =” 20 ,20 ”>
3 <camera t a r g e t =” 125 ,200 ,0 ” d i r e c t i o n S p h e r i c a l =”

0 ,70 ,500 ” a n g l e =” 45 ” />
4 <s p o t l i g h t t a r g e t =” 250 ,250 ,0 ” d i r e c t i o n S p h e r i c a l =”

45 ,60 ,500 ” a n g l e =” 40 ” />
5
6 <b l o c k L i s t c o l o r =” 0 ,255 ,0 ” b l o c k s i z e =”

2 5 . 0 , 2 5 . 0 , 1 1 . 0 ” o b j =” hdmodel . o b j ”>
7 <b l o c k p o s i t i o n =” 5 ,5 ” c o l o r =” 0 ,128 ,128 ” />
8 <b l o c k p o s i t i o n =” 5 ,6 ” /> <b l o c k p o s i t i o n =” 6 ,5 ” />
9 <b l o c k p o s i t i o n =” 5 ,7 ” /> <b l o c k p o s i t i o n =” 7 ,5 ” />

10 <b l o c k p o s i t i o n =” 5 ,8 ” /> <b l o c k p o s i t i o n =” 6 ,8 ” />
11 <b l o c k p o s i t i o n =” 7 ,8 ” /> <b l o c k p o s i t i o n =” 8 ,5 ” />
12 <b l o c k p o s i t i o n =” 8 ,6 ” />
13 < / b l o c k L i s t>
14 < / wor ld>

e) 3D representation: In order to help us to validate
the behaviors of the blocks according to their relative position,
color and inter-connections, the simulator has to geometrically
represent all of them.
Each kind of blocks is associated to a geometrical description.
Such a geometry can easily be modeled using a classical 3D
modeler (3DS Max or Blender) and exported as an ’OBJ’
description file. Depending on the application to simulate, we
can use different 3D versions of blocks, as shown in figure
8. This allows for example to use blocks with a more precise
geometry when they are few. On the other hand, we use much
simpler textured blocks when the representation of a large
number of blocks may slow the display speed. In this second
case, to simplify and optimize the rendering, the 3D model is
reduced to some triangles that have to be textured by a single
image that describes the details of the models. For each 3D
model of block, we have to define which polygons may change
their color. We have defined a material called ’lighted’, that is
applied to these particular faces.



Fig. 8. The smart-block 3D model in two different levels of details.

Particular care has been taken to render the blocks with the
illumination model processing the shadows of the blocks on the
rest of the decor. The shadows not only provide a visual effect
of realism, they are helpful to visualize the relative position
of blocks in 3D. Shadows are calculated in real-time using a
shadow mapping algorithm [11] implemented in a per pixel
lighting shaders programs. In the shadow mapping algorithm
introduced in [12], shadows are created by testing whether a
pixel is visible from the light source or not, by comparing it
to a depth image of the light source’s view, stored in the form
of a texture. The per pixel lighting method generates more
regular lighting effects than the classical OpenGL per vertex
lighting. It produces more precise lighting areas due to a pixel
dependent lighting calculation [13].

f) Immersion in augmented reality: A work in progress
aims to reconstruct the relative position of a set of real
blocks using a commercial 3D sensor (Microsoft Kinect or
Asus Xtion). The recording or measurement of the actual
configuration is made by presenting the real Blinky Blocks
to the sensor and progressively turning them so that they
are seen from all angles by the 3D camera. This processing
aims to automatically generate the XML configuration file
for VisibleSim, listing all the blocks with their coordinates
in space relatively to the first detected block.

In a second step, the real object is again presented to the
sensor, so it can be quickly detected. This real-time video is
supplemented by an overlay of synthesized images providing
additional information on the blocks, it is called augmented
reality. In the case of Blinky Blocks, this technology will allow
us to provide debugging information (eg the state of a variable)
in real time and directly on the image of the real Blinky Blocks
captured by the camera.

g) Multimedia output: The simulator proposes many
kinds of outputs. A single snap-shot capture of the scene with-
out the interface or the video of the running of a simulation.
An other output solution is given by a Collada file export that
allows to generate a high quality synthesis image or video
using a classical rendering software like 3DS Max or Blender.

III. RELATED WORKS

VisibleSim is related to three types of simulators. The
first one comprises the network simulators which are either
commercial like OPNET [14] and QualNet [15] or freely
available and used by the research community like NS2 [16],
NS3 [17], OMNeT++ [18], SSFNet [19] or J-Sim [20]. All
of these simulators have pros and cons but they can’t be used
directly for simulating a real environment and they don’t scale
in numbers of simulated nodes. Furthermore, integrating real

Fig. 9. Benchmarking the simulation core : thousands of blocks moving and
communicating

programs is not easy and limits even more the scalability.
Modular robots or simply robots simulators belong to the
second category. While certain simulators are dedicated to
a specific hardware like Molecubes[21] or CrossCube [22]
and therefore not usable in another context, others are more
generic. For almost all the latter like Player/Stage [23],
gazebo [24], USSR [25] or MORSE [26], network access is
not properly modeled and they offer limited scalability. One
exception to scalability is DPRSim [27], [9] which scales up
to millions of simulated nodes but sacrify precision.
The third category belongs to networked control systems with
simulators like RTSIM [28], Syndex [29] or TrueTime [30]
which are good candidates for modeling real-time distributed
systems. TrueTime is by far the most advanced project in
this area. The network modeling is not as detailed as in the
network simulators but it offers a better integration of latency-
related aspect through the use of co-simulation between the
network and the computation nodes. However, as TrueTime is
based on MatLab, its expressivity is limited and integrating
real programs is difficult.

IV. EXPERIMENTS

A. Validation and Performance benchmark

To validate our simulator and verify that we meet the design
requirements, we first build a basic but scalable scenario. This
scenario sees an increasing number of blocks (from a few
hundreds to a few millions) engaging in communications and
movements. The movement pattern does not seek to mimic a
real world application, but rather to stress the event processing
capabilities of the simulator. We thus decide for a Brownian
motion: Each block tries to randomly move one step in a
randomly chosen direction. After reaching its destination, it
waits for a random duration and then moves again. A 1-
step movement is configured to last one second, and the
waiting time is in average 0.5 second. At the same time, a
block hand-picked as an initiator will broadcast information
to its neighbors. This message is then retransmitted hop by
hop, triggering a network flooding. Of course this simple
algorithm is implemented as a BlockCode and is executed
independently for each of the many blocks simulated. These
combined movements and communications translate in a very
large number of events as we increase the number of blocks.
Figure 9 shows the visual output of this scenario, where the
user can freely move around and know the state of the network
links through graphic indicators.

We run this basic scenario multiple times, with a block
number ranging from 7,000 to 2,000,000. Each time, we
simulate 10 minutes of execution on a pretty standard computer
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(2.56 GHz xeon processor, with 12 GB of ram). Figure 10
shows on its upper part how the simulation time increases
almost linearly with the number of events to process (in this
scenario, the number of events is directly proportional to the
number of blocks). When the number of events in the waiting
queue increases, we observe an initial drop of the performances
(from around 1 million to a little above 600,000 events per
second), which then stabilizes. Please note that the 100,000
blocks scenario triggered a little over 400 millions events
and was processed in 10 real minutes on our computer, still
making it an almost real-time simulation. The lower part of
figure 10 shows the memory usage, which almost linearly
scales with the number of blocks and the number of events in
the queue at a given time. We conducted simulation with up
to 2 millions of blocks, using a little over 6.5 GB of memory.
Please note that for the largest scale simulations, our entry
level 3D video card was not able to keep up with the number
of blocks to display and we had to desactivate the display.
The 3D interactive visualization is anyway much more useful
with smaller number of blocks where individual behaviors need
to be better understood. For very large scale simulations, the
software is still able to produce a frame by frame animation
showing the global behavior of the system.

B. Physical simulation

The main algorithmic problem associated with smart blocks
is the conveying of parts. We consider a simple program
embedded in the Smart Blocks which aim is to move a
parallelepiped along a pre-determined path. For the studied
mobile we define a simple path (green line in figure 11) built
as a broken line passing through the following points :

t (s) x (mm) y (mm)
0 75 425

10 350 425
13 400 375
24 400 75

For each of these points we specify the time (in seconds) at
which they must be reached.

The proposed BlockCode algorithm is divided into two
steps. It first sends a message to each block containing
the path to follow and the start time of the simulation
(animationT ime). Then each block waits for a message or
event. If its sensors detect that the mobile is over, it compares
the position of the mobile with the position it should occupy
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Fig. 11. Upper: Goal path and simulated trajectory. Lower: distance between
the mobile object and the desired position during the simulation.

in the path at this time. According to this distance, it sends
a message to some of its neighbors in order to activate their
air jets and move the mobile in the direction of the required
position. The following code shows this second part of the
algorithm.

1 // t = animation time
2 t = currentTime-animationTime;
3 if (t>0) {
4 if (detectMobile(1,x,y)) {
5 // calculate the current target position in (gx;gy)
6 trajectory->getInterpolatedPos(t,gx,gy);
7 // calculate the direction from the mobile to the

target position (vx;vy)
8 vx = gx-x; vy = gy-y;
9 d = sqrt(vx*vx+vy*vy);

10 vx/=d; vy/=d;
11 if (vx>0 && block->neighborEast != NULL) {
12 // send a Message to East neighbor
13 Scheduler::schedule(new SendEventMessage(

currentTime, new MessageJet(vx*1000),
block->networkInterfaceEst));

14 }
15 if (vx<0 && bloc->neighborWest != NULL) {
16 // send a Message to West neighbor
17 Scheduler::schedule(new SendEventMessage(

currentTime, new MessageJet(-vx*1000),
block->networkInterfaceWest));

18 }
19 if (vy>0 && bloc->neighborNorth != NULL) {
20 // send a Message to North neighbor
21 Scheduler::schedule(new SendEventMessage(

currentTime, new MessageJet(vy*1000),
block->networkInterfaceNorth));

22 }
23 if (vy<0 && bloc->neighborSouth != NULL) {
24 // send a Message to South neighbor
25 Scheduler::schedule(new SendEventMessage(

currentTime, new MessageJet(-vy*1000),
block->networkInterfaceSouth));

26 }
27 }
28 }

The graph presented in figure 11 represents the distance
between the block and the desired position during the first 35
seconds of the simulation. The oscillations are mainly due to
the inertia of the parallelepiped. But these oscillations remain
at a low amplitude, and may be reduced by introducing the
management of the current speed of the parallelepiped in the
algorithm.



V. CONCLUSION

We presented a simulator called VisibleSim which targets
intelligent objects and/or robots. From its core, VisibleSim
is built to handle various target platforms, such as Smart
Blocks, Blinky Blocks and many others. The aim is to share
a maximum of codes between platforms in order to reduce
the cost of new developements. VisbleSim is a discrete-events
simulator which offers a great precision and the possibility
to get high speed of simulation. This is illustrated with
benchmarks showing that millions of independent moving and
communicating blocks have been handled in almost real time
by a normal computer. The paper also demonstrated the ease
of extension through realistic air jets and physical constraints
along with dedicated control applications. Last but not least,
we emphasized the benefit of the interactive 3D interface
easing the development of new applications. We now intend
to extend the communications models proposed, especially
adding a generic wireless communication core.

REFERENCES

[1] “Sigfox: one network, a billion dreams,” http://www.sigfox.com/, 2013.
[2] J. Bourgeois and S. Goldstein, “Distributed intelligent mems: Progresses

and perspectives,” in ICT Innovations 2011, ser. Advances in Intelligent
and Soft Computing, L. Kocarev, Ed. Springer Berlin / Heidelberg,
2012, vol. 150, pp. 15–25.

[3] S. Mobes, G. J. Laurent, C. Clevy, N. L. Fort-Piat, B. Piranda, and
J. Bourgeois, “Toward a 2d modular and self-reconfigurable robot for
conveying microparts,” in Proceedings of the 2012 Second Workshop on
Design, Control and Software Implementation for Distributed MEMS,
ser. DMEMS ’12. IEEE Computer Society, 2012, pp. 7–13.

[4] B. T. Kirby, M. Ashley-Rollman, and S. C. Goldstein, “Blinky blocks: a
physical ensemble programming platform,” in Proceedings of the 2011
annual conference extended abstracts on Human factors in computing
systems, ser. CHI EA ’11. ACM, 2011, pp. 1111–1116.

[5] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai, and J. D.
Campbell, “A language for large ensembles of independently execut-
ing nodes,” in Proceedings of the International Conference on Logic
Programming (ICLP ’09), July 2009.

[6] S. C. Goldstein, T. C. Mowry, J. D. Campbell, M. P. Ashley-Rollman,
M. De Rosa, S. Funiak, J. F. Hoburg, M. E. Karagozler, B. Kirby, P. Lee,
P. Pillai, J. R. Reid, D. D. Stancil, and M. P. Weller, “Beyond audio
and video: Using claytronics to enable pario,” AI Magazine, vol. 30,
no. 2, July 2009.

[7] M. E. Karagozler, A. Thaker, S. C. Goldstein, and D. S. Ricketts, “Elec-
trostatic actuation and control of micro robots using a post-processed
high-voltage soi cmos chip,” in IEEE International Symposium on
Circuits and Systems (ISCAS), 2011.

[8] M. E. Karagozler, “Design, fabrication and characterization of an
autonomous, sub-millimeter scale modular robot,” Ph.D. dissertation,
Carnegie Mellon University, 2012.

[9] M. P. Ashley-Rollman, P. Pillai, and M. L. Goodstein, “Simulating
multi-million-robot ensembles,” in ICRA, 2011, pp. 1006–1013.

[10] A. Delettre, G. J. Laurent, N. L. Fort-Piat, and C. Varnier, “3-dof
potential air flow manipulation by inverse modeling control,” in CASE,
2012, pp. 930–935.

[11] R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg, “Adaptive
shadow maps,” in Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ser. SIGGRAPH ’01.
ACM, 2001, pp. 387–390.

[12] L. Williams, “Casting curved shadows on curved surfaces,” in Proceed-
ings of the 5th annual conference on Computer graphics and interactive
techniques, ser. SIGGRAPH ’78. ACM, 1978, pp. 270–274.

[13] D. Shreiner et al., OpenGL programming guide: the official guide to
learning OpenGL, versions 3.0 and 3.1. Addison-Wesley Professional,
2009.

[14] “http://www.opnet.com/products/modeler/.”

[15] “Qualnet simulator,” http://web.scalable-networks.com/content/qualnet.
[16] “The network simulator - NS2,” http://www.isi.edu/nsnam/ns/.
[17] T. Henderson, S. Roy, S. Floyd, and G. Riley, “ns-3 project goals,” in

Proceeding from the 2006 workshop on ns-2: the IP network simulator.
ACM, 2006, p. 13.

[18] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and
systems & workshops, ser. Simutools ’08. ICST, 2008, pp. 60:1–60:10.

[19] D. M. Nicol, B. Premore, and A. Ogielski, “Using simulation to under-
stand dynamic connectivity at the core of the internet,” in Proceedings
of UKSim 2003, Cambridge University, England, April 2003.
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