SVAM - Réseaux de Petri

Pierre-Cyrille Héam

pheam [at] femto-st.fr

Master 2 Informatique

1/32

Modélisation des systèmes concurrents et communicants

- De nombreux systèmes sont composés de plusieurs sous-systèmes qui interagissent,
- On souhaite modéliser la concurrence/communication à partir des modèles des sous-systèmes sans *exploser* le modèles total.

Il existe plusieurs approches :

- Réseaux de Petri,
- Automates communicants,
- Algèbres de processus,
- ...

2/32

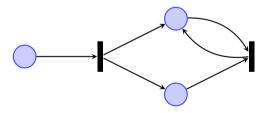
Plan

- Introduction
- 2 Réseaux de Petri et concurrence
- 3 Propriétés et définitions formelles
- 4 Couverture
- Conclusion

Graphe de Réseau de Petri

Définition informelle

Un graphe de réseau de Petri est un graphe orienté dans lequel l'ensemble des sommets est partagé en deux sous-ensembles distincts, les places et les transitions , de telle sorte que les arcs ne vont ni d'une place à l'autre, ni d'une transition à l'autre.

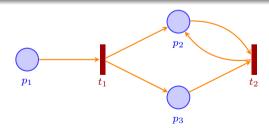


Graphe de Réseau de Petri

Définition formelle

Un graphe de réseau de Petri un un triplet (P, T, F) où

- P est un ensemble fini de places, $P = \{p_1, p_2, p_3\}$
- T est un ensemble fini de transitions, $T = \{t_1, t_2, \}$
- $F \subseteq P \times T \cup T \times P$ est l'ensemble des *arcs*, $F = \{(p_1, t_1), (t_1, p_2), (t_1, p_3), (p_2, t_2), (p_3, t_2), (t_3, p2)\}$
- $P \cap T = \emptyset$.



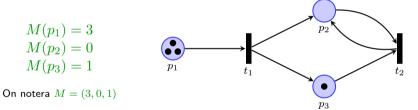
5/32

Marquages – Réseaux de Petri

Définition

Un marquage M d'un graphe de réseau de Petri (P,T,F) est une application de T dans $\mathbb N$: à chaque place on associe un entier.

Informellement, M(p) désigne le nombre de jetons dans la place p.



Définition

Un réseau de Petri est une tuple (P, T, F, M_0) où (P, T, F) est une graphe de réseau de Petri et M_0 un marquage de ce graphe. Le marquage M_0 est appelé marquage initial.

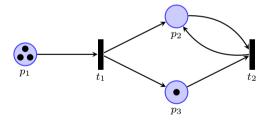
Informellement

Faire évoluer un réseau de Petri, c'est activer (fire) des transitions pour faire évoluer le marquage. Pour une transition t:

- On enlève un jeton dans chaque place précédant t.
- On ajoute un jeton dans chaque place suivant t.

$$M(p_1) = 3$$

 $M(p_2) = 0$
 $M(p_1) = 1$



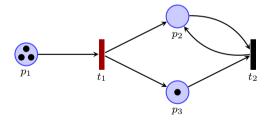
Informellement

Faire évoluer un réseau de Petri, c'est activer (fire) des transitions pour faire évoluer le marquage. Pour une transition t:

- ullet On enlève un jeton dans chaque place précédant t.
- ullet On ajoute un jeton dans chaque place suivant t.

$$M(p_1) = 3$$

 $M(p_2) = 0$
 $M(p_1) = 1$



pheam [at] femto-st.fr

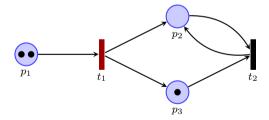
Informellement

Faire évoluer un réseau de Petri, c'est activer (fire) des transitions pour faire évoluer le marquage. Pour une transition t:

- ullet On enlève un jeton dans chaque place précédant t.
- ullet On ajoute un jeton dans chaque place suivant t.

$$M(p_1) = 3$$

 $M(p_2) = 0$
 $M(p_1) = 1$

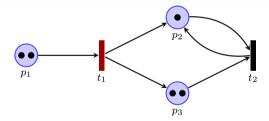


Informellement

Faire évoluer un réseau de Petri, c'est activer (fire) des transitions pour faire évoluer le marquage. Pour une transition t:

- On enlève un jeton dans chaque place précédant t.
- ullet On ajoute un jeton dans chaque place suivant t.

$$M(p_1) = 3$$
 $M'(p_1) = 2$
 $M(p_2) = 0$ $M'(p_2) = 1$
 $M(p_1) = 1$ $M'(p_1) = 2$

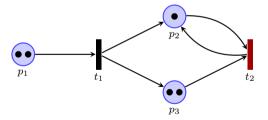


Informellement

Faire évoluer un réseau de Petri, c'est activer (fire) des transitions pour faire évoluer le marquage. Pour une transition t:

- ullet On enlève un jeton dans chaque place précédant t.
- ullet On ajoute un jeton dans chaque place suivant t.

$$M(p_1) = 3$$
 $M'(p_1) = 2$
 $M(p_2) = 0$ $M'(p_2) = 1$
 $M(p_1) = 1$ $M'(p_1) = 2$



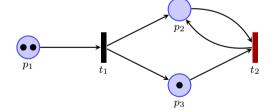
pheam [at] femto-st.fr

Informellement

Faire évoluer un réseau de Petri, c'est activer (fire) des transitions pour faire évoluer le marquage. Pour une transition t:

- ullet On enlève un jeton dans chaque place précédant t.
- ullet On ajoute un jeton dans chaque place suivant t.

$$\begin{array}{lll} M(p_1) = 3 & M'(p_1) = 2 & M''(p_1) = 2 \\ M(p_2) = 0 & M'(p_2) = 1 & M''(p_2) = 1 \\ M(p_1) = 1 & M'(p_1) = 2 & M''(p_1) = 1 \end{array}$$



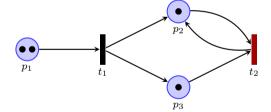
7/32

Informellement

Faire évoluer un réseau de Petri, c'est activer (fire) des transitions pour faire évoluer le marquage. Pour une transition t:

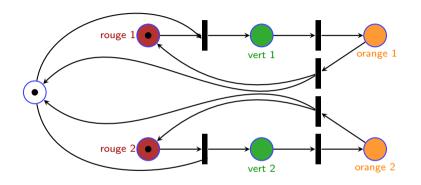
- ullet On enlève un jeton dans chaque place précédant t.
- ullet On ajoute un jeton dans chaque place suivant t.

$$M(p_1) = 3$$
 $M'(p_1) = 2$ $M''(p_1) = 2$
 $M(p_2) = 0$ $M'(p_2) = 1$ $M''(p_2) = 1$
 $M(p_1) = 1$ $M''(p_1) = 2$ $M''(p_1) = 1$



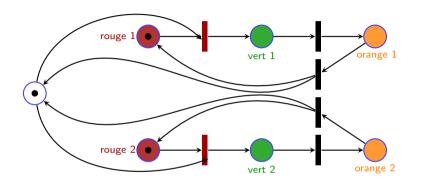
 $M \longrightarrow M' \longrightarrow M'' \dots$

7/32



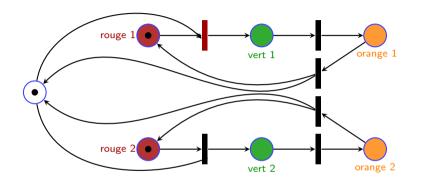
(-, rouge 1, vert 1, orange 1, rouge 2, vert 2, orange 2)(1, 1, 0, 0, 1, 0, 0)

8/32



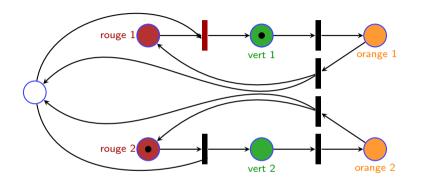
(-, rouge 1, vert 1, orange 1, rouge 2, vert 2, orange 2)(1, 1, 0, 0, 1, 0, 0)

8/32



(-, rouge 1, vert 1, orange 1, rouge 2, vert 2, orange 2)(1, 1, 0, 0, 1, 0, 0)

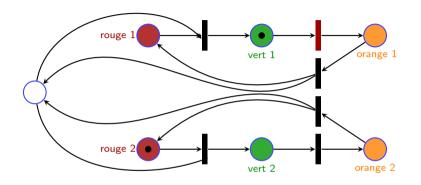
8/32



(-, rouge 1, vert 1, orange 1, rouge 2, vert 2, orange 2)

(0, 0, 1, 0, 1, 0, 0)

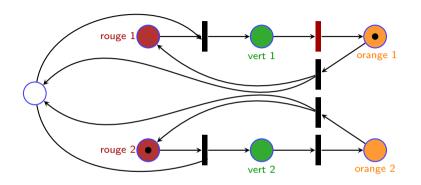
8/32



(-, rouge 1, vert 1, orange 1, rouge 2, vert 2, orange 2)

(0, 0, 1, 0, 1, 0, 0)

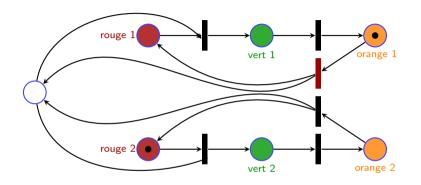
8/32



(-, rouge 1, vert 1, orange 1, rouge 2, vert 2, orange 2)

(0, 0, 0, 1, 1, 0, 0)

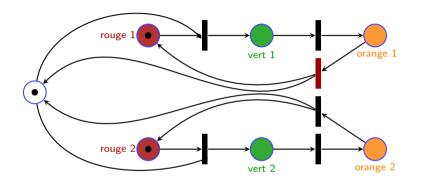
8/32



(-, rouge 1, vert 1, orange 1, rouge 2, vert 2, orange 2)

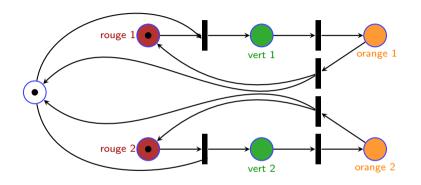
(0, 0, 0, 1, 1, 0, 0)

8/32



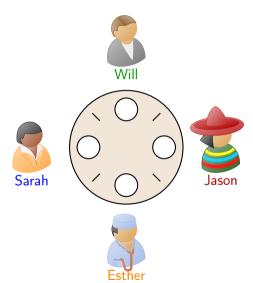
(-, rouge 1, vert 1, orange 1, rouge 2, vert 2, orange 2)(1, 1, 0, 0, 1, 0, 0)

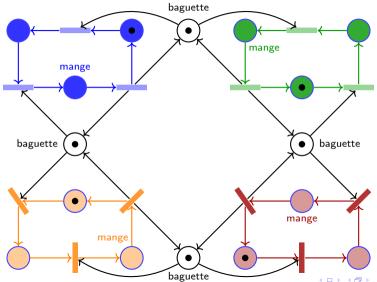
8/32

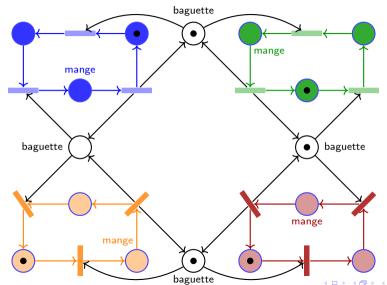


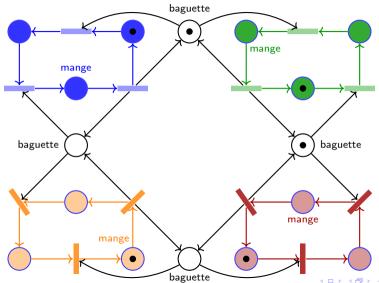
(-, rouge 1, vert 1, orange 1, rouge 2, vert 2, orange 2)(1, 1, 0, 0, 1, 0, 0)

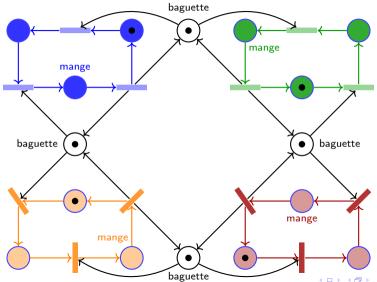
8/32



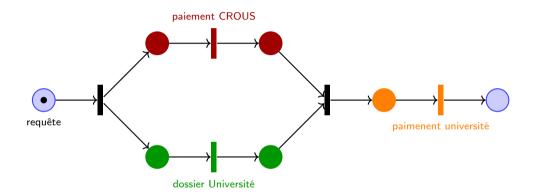








Exemple, inscription université



Plan

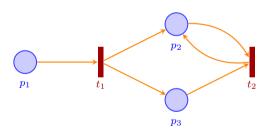
- Introduction
- Réseaux de Petri et concurrence
- 3 Propriétés et définitions formelles
- Couverture
- Conclusion

pheam [at] femto-st.fr

Notations

Soit (P, T, F, M) un réseau de Petri.

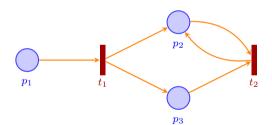
- pour toute place p, • $p = \{t \in T \mid (t, p) \in F\}$ • $p_1 = \emptyset$ • $p_2 = \{t_1, t_2\}$.
- $\bullet \text{ pour toute place } p\text{, } p^{\bullet} = \{t \in T \mid (p,t) \in F\} \qquad p_1^{\bullet} = \{t_1\} \quad p_2^{\bullet} = \{t_2\}.$
- pour toute transition t, ${}^{\bullet}t = \{p \in P \mid (p, t) \in F\}$ ${}^{\bullet}t_1 = \{p_1\}$ ${}^{\bullet}t_2 = \{p_2, p_3\}.$
- pour toute transition t, $t^{\bullet} = \{p \in P \mid (t,p) \in F\}$ $t_1^{\bullet} = \{p_2, p_3\}$ $t_2^{\bullet} = \{p_2\}.$



Notations

Soit (P, T, F, M) un réseau de Petri.

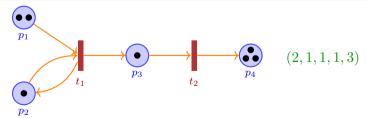
- pour toute place p, • $p = \{t \in T \mid (t,p) \in F\}$ • $p_1 = \emptyset$ • $p_2 = \{t_1,t_2\}$.
- pour toute place p, $p^{\bullet}=\{t\in T\mid (p,t)\in F\}$ $p_1^{\bullet}=\{t_1\}$ $p_2^{\bullet}=\{t_2\}.$
- pour toute transition t, $\mathbf{t} = \{p \in P \mid (p, t) \in F\}$ $\mathbf{t}_1 = \{p_1\}$ $\mathbf{t}_2 = \{p_2, p_3\}$.
- pour toute transition t, $t^{\bullet} = \{p \in P \mid (t,p) \in F\}$ $t_1^{\bullet} = \{p_2, p_3\}$ $t_2^{\bullet} = \{p_2\}.$



 $\text{Cela s'\'etend aux ensembles}: (^\bullet p_3)^\bullet = \{t_1\}^\bullet = \{p_2, p_3\} \qquad \text{et} \qquad ^\bullet (t_1{}^\bullet) = ^\bullet \{p_2, p_3\} = \{t_1, t_2\}$

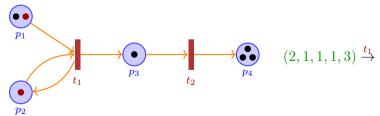
Définition

- Pour tout $p \in {}^{\bullet}t$, $M_1(p) > 0$, et
- Si $p \in {}^{\bullet}t$ et $p \notin t^{\bullet}$, alors $M_2(p) = M_1(p) 1$,
- Si $p \in t^{\bullet}$ et $p \notin {}^{\bullet}t$, alors $M_2(p) = M_1(p) + 1$,
- $M_2(p) = M_1(p)$ sinon.



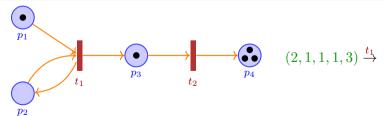
Définition

- Pour tout $p \in {}^{\bullet}t$, $M_1(p) > 0$, et
- Si $p \in {}^{\bullet}\!t$ et $p \notin t^{\bullet}$, alors $M_2(p) = M_1(p) 1$,
- Si $p \in t^{\bullet}$ et $p \notin {}^{\bullet}t$, alors $M_2(p) = M_1(p) + 1$,
- $M_2(p) = M_1(p)$ sinon.



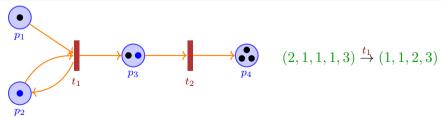
Définition

- Pour tout $p \in {}^{\bullet}t$, $M_1(p) > 0$, et
- Si $p \in {}^{\bullet}t$ et $p \notin t^{\bullet}$, alors $M_2(p) = M_1(p) 1$,
- Si $p \in t^{\bullet}$ et $p \notin {}^{\bullet}t$, alors $M_2(p) = M_1(p) + 1$,
- $M_2(p) = M_1(p)$ sinon.



Définition

- Pour tout $p \in {}^{\bullet}t$, $M_1(p) > 0$, et
- Si $p \in {}^{\bullet}t$ et $p \notin t^{\bullet}$, alors $M_2(p) = M_1(p) 1$,
- Si $p \in t^{\bullet}$ et $p \notin {}^{\bullet}t$, alors $M_2(p) = M_1(p) + 1$,
- $M_2(p) = M_1(p)$ sinon.

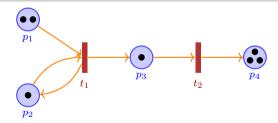


Marquages accessibles

Définition

Etant donné un réseau de Petri (P, T, F, M_0) , on note dit qu'un marquage M est accessible, si $M=M_0$ ou s'il existe des transitions $t_1, t_2, \ldots t_n$ et des marquages $M_1, M_2, \ldots M_n$ tels que

- $\bullet \ M_0 \stackrel{t_1}{\to} M_1 \stackrel{t_2}{\to} \dots \stackrel{t_n}{\to} M_n$
- $\bullet \ M_n = M$

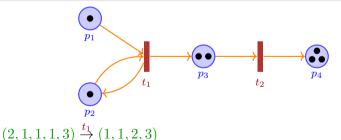


(2,1,1,1,3)

Définition

Etant donné un réseau de Petri (P, T, F, M_0) , on note dit qu'un marquage M est accessible, si $M=M_0$ ou s'il existe des transitions $t_1, t_2, \ldots t_n$ et des marquages $M_1, M_2, \ldots M_n$ tels que

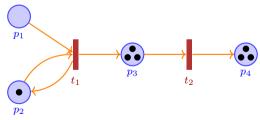
- $\bullet \ M_0 \stackrel{t_1}{\to} M_1 \stackrel{t_2}{\to} \dots \stackrel{t_n}{\to} M_n$
- $\bullet \ M_n = M$



Définition

Etant donné un réseau de Petri (P, T, F, M_0) , on note dit qu'un marquage M est accessible, si $M = M_0$ ou s'il existe des transitions $t_1, t_2, \ldots t_n$ et des marquages $M_1, M_2, \ldots M_n$ tels que

- $\bullet \ M_0 \stackrel{t_1}{\to} M_1 \stackrel{t_2}{\to} \dots \stackrel{t_n}{\to} M_n$
- \bullet $M_n = M$

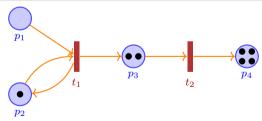


 $(2,1,1,1,3) \xrightarrow{t_1} (1,1,2,3) \xrightarrow{t_1} (0,1,3,3)$

Définition

Etant donné un réseau de Petri (P, T, F, M_0) , on note dit qu'un marquage M est accessible, si $M = M_0$ ou s'il existe des transitions $t_1, t_2, \ldots t_n$ et des marquages $M_1, M_2, \ldots M_n$ tels que

- $\bullet \ M_0 \stackrel{t_1}{\to} M_1 \stackrel{t_2}{\to} \dots \stackrel{t_n}{\to} M_n$
- $\bullet \ M_n = M$

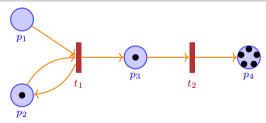


 $(2,1,1,1,3) \xrightarrow{t_1} (1,1,2,3) \xrightarrow{t_2} (0,1,3,3) \xrightarrow{t_2} (0,1,2,4)$

Définition

Etant donné un réseau de Petri (P, T, F, M_0) , on note dit qu'un marquage M est accessible, si $M = M_0$ ou s'il existe des transitions $t_1, t_2, \ldots t_n$ et des marquages $M_1, M_2, \ldots M_n$ tels que

- $\bullet \ M_0 \stackrel{t_1}{\to} M_1 \stackrel{t_2}{\to} \dots \stackrel{t_n}{\to} M_n$
- \bullet $M_n = M$



 $(2, 1, 1, 1, 3) \xrightarrow{t_1} (1, 1, 2, 3) \xrightarrow{t_1} (0, 1, 3, 3) \xrightarrow{t_2} (0, 1, 2, 4) \xrightarrow{t_2} (0, 1, 1, 5)$

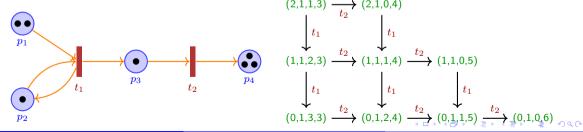
Graphe d'accessibilité

Définition

Etant donné un réseau de Petri (P, T, F, M_0) , on appelle **Graphe d'accessibilité** du réseau, le graphe orienté étiqueté (Q, Δ) , où

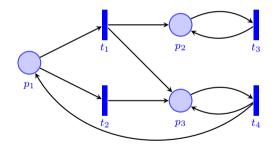
- ullet Q est l'ensemble des marquage accessibles,
- $\Delta \subseteq Q \times T \times Q$, est défini par

$$\Delta = \{ (M_1, t, M_2) \mid M_1 \xrightarrow{t} M_2 \}$$



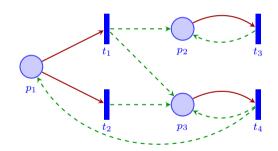
Pierre-Cyrille Héam SVAM - M2 pheam [at] femto-st.fr 16/32

Les matrices d'incidence W, W^+ et W^- dépendent uniquement du graphe du réseau de Petri.

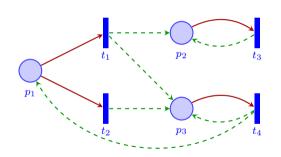


pheam [at] femto-st.fr

Les matrices d'incidence W, W^+ et W^- dépendent uniquement du graphe du réseau de Petri.



Les matrices d'incidence W, W^+ et W^- dépendent uniquement du graphe du réseau de Petri.

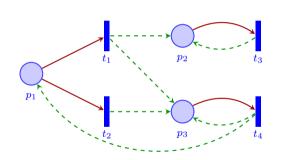


$$W^{-} = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Pierre-Cyrille Héam

SVAM - M2

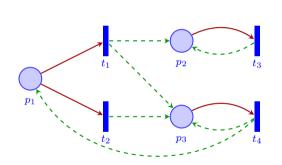
Les matrices d'incidence W, W^+ et W^- dépendent uniquement du graphe du réseau de Petri.



$$W^{-} = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

$$W^{+} = \left(\begin{array}{cccc} 0 & 0 & 0 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1 \end{array}\right)$$

Les matrices d'incidence W, W^+ et W^- dépendent uniquement du graphe du réseau de Petri.

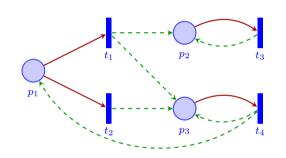


$$W^{-} = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

$$W^{+} = \left(\begin{array}{cccc} 0 & 0 & 0 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1 \end{array}\right)$$

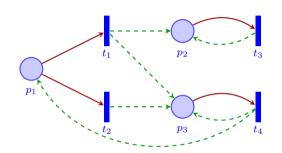
$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Pierre-Cyrille Héam SVAM - M2 pheam [at] femto-st.fr 17/32



$$M \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_3} M'$$

$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

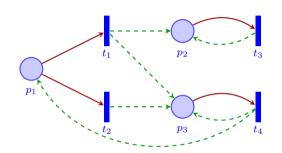


$$M \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_3} M'$$

$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} (2, 2, 1, 0)$$

Pierre-Cyrille Héam SVAM - M2 pheam [at] femto-st.fr 18/32

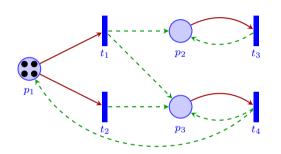


$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$M \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_3} M'$$

$$\begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} (2, 2, 1, 0) = \begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$$

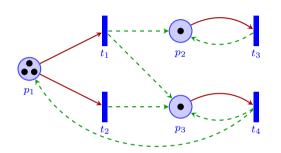
Pierre-Cyrille Héam SVAM - M2 pheam [at] femto-st.fr 18/32



$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$M \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_3} M'$$

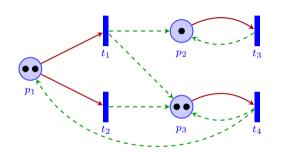
$$\begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} (2, 2, 1, 0) = \begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$$



$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$M \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_3} M'$$

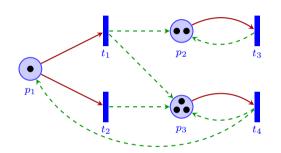
$$\begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} (2, 2, 1, 0) = \begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$$



$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1\\ 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$M \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_3} M'$$

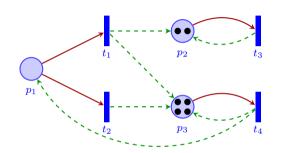
$$\begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} (2, 2, 1, 0) = \begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$$



$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$M \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_3} M'$$

$$\begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} (2, 2, 1, 0) = \begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$$



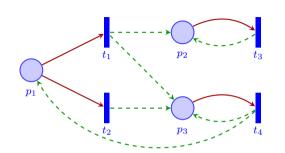
$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1\\ 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$M \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_1} \rightarrow_{t_2} \rightarrow_{t_3} M'$$

$$\begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} (2, 2, 1, 0) = \begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$$

18 / 32

Pierre-Cyrille Héam SVAM - M2 pheam [at] femto-st.fr



$$W = W^{+} - W^{-} = \begin{pmatrix} -1 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Les marquages accessibles sont tous de la forme

$$M_0 + W(\alpha_1, \alpha_2, \alpha_3, \alpha_4), \ \alpha_i \in \mathbb{N},$$

mais la réciproque n'est en général par vraie.

Graphe d'accessibilité

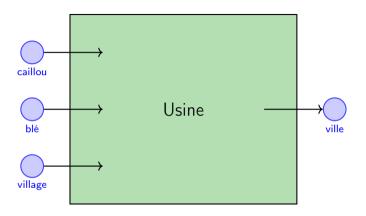
Reprendre le dîner des philosophes pour propriéte de chemin

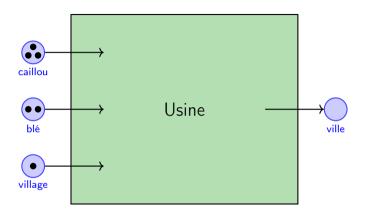
19/32

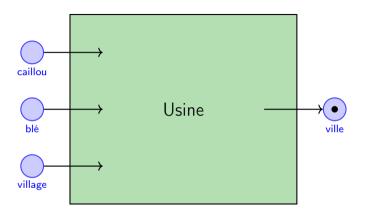
Pierre-Cyrille Héam SVAM – M2 phea

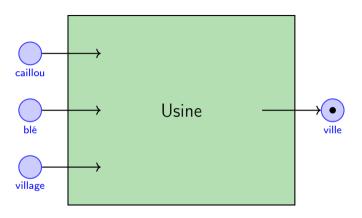
Plan

- Introduction
- 2 Réseaux de Petri et concurrence
- 3 Propriétés et définitions formelles
- 4 Couverture
- Conclusion

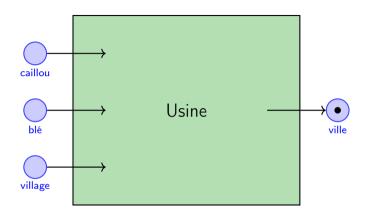








 $\bullet \ \, \mathsf{Accessibilit\'e}: (3,2,1,0,\ldots,0) \to^* (0,0,0,0,\ldots,0,1)$



- Accessibilité : $(3, 2, 1, 0, \dots, 0) \rightarrow^* (0, 0, 0, 0, \dots, 0, 1)$
- Couverture : $(3, 2, 1, 0, \dots, 0) \rightarrow^* (x, x, x, x, \dots, x, 1)$

21/32

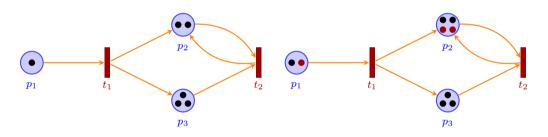
Pierre-Cyrille Héam SVAM - M2 pheam [at] femto-st.fr

Définition

Définition

Dans une réseau de Petri, un marquage M couvre un marquage M', noté $M' \leq M$, si pour toute place p,

$$M'(p) \leq M(p)$$
.



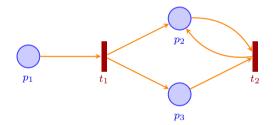
$$M' = (1, 2, 3)$$

$$M = (1 + 1, 2 + 2, 3) = (2, 4, 3)$$

Pierre-Cyrille Héam SVAM - M2 pheam [at] femto-st.fr 22/32

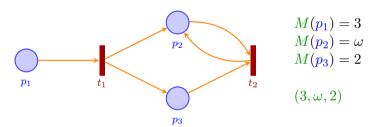
Définition

Un $\omega-$ marquage d'un graphe de réseau de Petri (P,T,F) est une application de P dans $\mathbb{N}\cup\{\omega\}$.



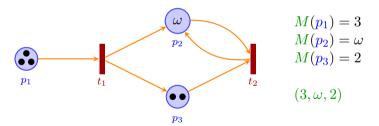
Définition

Un $\omega-$ marquage d'un graphe de réseau de Petri (P,T,F) est une application de P dans $\mathbb{N}\cup\{\omega\}$.



Définition

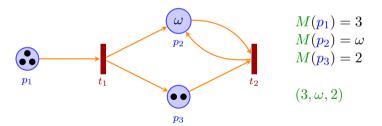
Un ω -marquage d'un graphe de réseau de Petri (P,T,F) est une application de P dans $\mathbb{N} \cup \{\omega\}$.



 ω : infini, autant qu'on veut, open bar

Définition

Un ω -marquage d'un graphe de réseau de Petri (P,T,F) est une application de P dans $\mathbb{N} \cup \{\omega\}$.

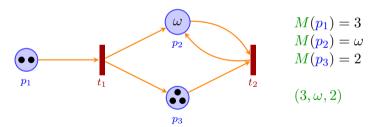


 ω : infini, autant qu'on veut, open bar $(3,\omega,2) \rightarrow_{t_1}$

pheam [at] femto-st.fr

Définition

Un ω -marquage d'un graphe de réseau de Petri (P,T,F) est une application de P dans $\mathbb{N} \cup \{\omega\}$.

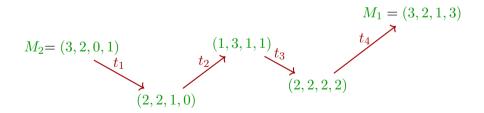


 ω : infini, autant qu'on veut, open bar $(3,\omega,2) \rightarrow_{t_1} (2,\omega,3)$

Définition

Un ω -marquage M_1 d'un graphe de réseau de Petri (P,T,F) domine un ω -marquage M_2 (différent de M_1), noté $M_1 \gg M_2$ si

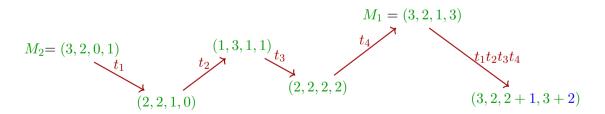
- M_1 est accessible à partir de M_2
- M_1 couvre M_2 (avec la convention $\omega \geq n$, pour tout $n \in \mathbb{N} \cup \{\omega\}$).



Définition

Un ω -marquage M_1 d'un graphe de réseau de Petri (P,T,F) domine un ω -marquage M_2 (différent de M_1), noté $M_1 \ggg M_2$ si

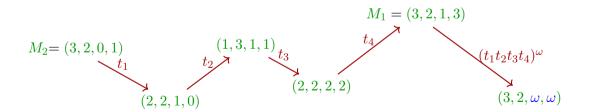
- ullet M_1 est accessible à partir de M_2
- M_1 couvre M_2 (avec la convention $\omega \geq n$, pour tout $n \in \mathbb{N} \cup \{\omega\}$).



Définition

Un ω -marquage M_1 d'un graphe de réseau de Petri (P,T,F) domine un ω -marquage M_2 (différent de M_1), noté $M_1 \gg M_2$ si

- ullet M_1 est accessible à partir de M_2
- M_1 couvre M_2 (avec la convention $\omega \geq n$, pour tout $n \in \mathbb{N} \cup \{\omega\}$).



24 / 32

Pierre-Cyrille Héam SVAM — M2 pheam [at] femto-st.fr

Soient M_1 et M_2 deux ω -marquages tels que $M_1 \ggg M_2$.

On note $M_1^{[M_2]}$ le marquage défini par

Algorithme de Karp-Miller : marquages dominants

Soient M_1 et M_2 deux ω -marquages tels que $M_1 \gg M_2$.

On note $M_1^{[M_2]}$ le marquage défini par

• Si
$$M_1(p) = M_2(p)$$
, alors $M_1^{[M_2]}(p) = M_1(p)$

$$(1,3,5,2,2)^{[(1,2,4,2,1)]} = (1, , ,2,)$$

Algorithme de Karp-Miller : marquages dominants

Soient M_1 et M_2 deux ω -marquages tels que $M_1 \gg M_2$.

On note $M_1^{[M_2]}$ le marquage défini par

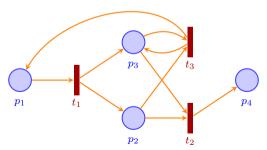
- Si $M_1(p) = M_2(p)$, alors $M_1^{[M_2]}(p) = M_1(p)$
- Si $M_1(p) > M_2(p)$, alors $M_1^{[M_2]}(p) = \omega$.

$$(1,3,5,2,2)^{[(1,2,4,2,1)]} = (1,\omega,\omega,2,\omega)$$

Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

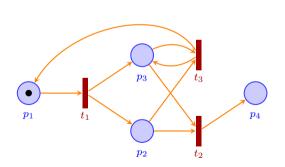
- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.



Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.

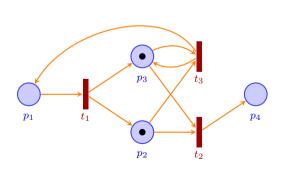


(1,0,0,0)

Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.



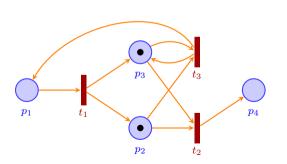
$$(1,0,0,0) \xrightarrow{t_1} (0,1,1,0)$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.

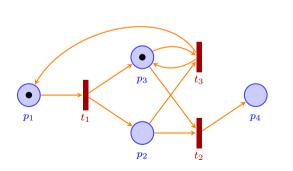


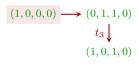
 $(1,0,0,0) \longrightarrow (0,1,1,0)$

Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.

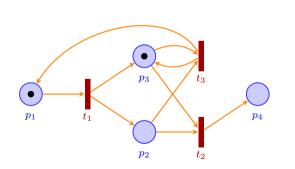




Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

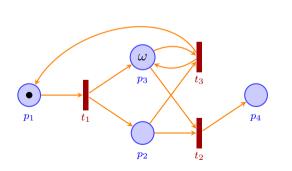
- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.

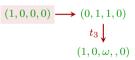


Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.

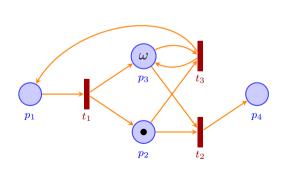




Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.



$$(1,0,0,0) \longrightarrow (0,1,1,0)$$

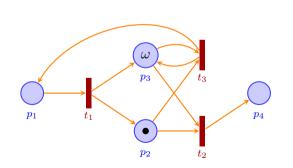
$$t_3 \downarrow$$

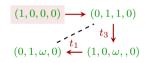
$$(0,1,\omega,0) \xleftarrow{t_1} (1,0,\omega,0)$$

Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.

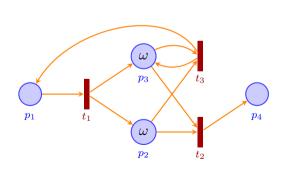




Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

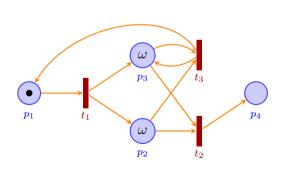
- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.

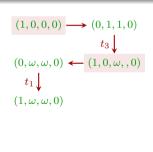


Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.

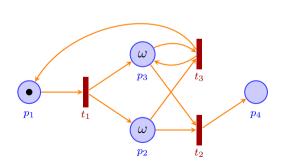


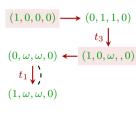


Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.

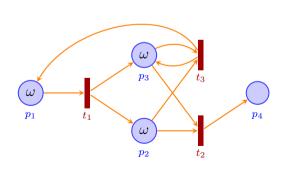


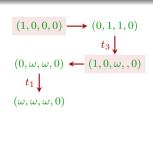


Modification de Graphe d'Accessibilité

Losque l'on veut ajouter M_1 ,

- s'il existe M_2 dans le graphe déjà construit tel que $M_1 \gg M_2$, alors on ajoute $M_1^{[M_2]}$ à la place.
- ullet si le sommet à ajouter M est dominé par un sommet M' présent, on ne l'ajoute pas.





Algorithme de Miller et Karp

Terminaison et décider la couverture

27 / 32

Pierre-Cyrille Héam SVAM – M2

Algorithme de Miller et Karp : exemple 1

Pierre-Cyrille Héam SVAM - M2 pheam [at] femto-st.fr 28/32

Algorithme de Miller et Karp : exemple 2

Ca ne donne pas le meme graphe.

29 / 32

Pierre-Cyrille Héam SVAM — M2 pheam [at] femto-st.fr

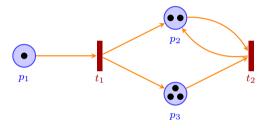
Plan

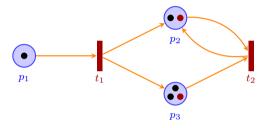
- Introduction
- 2 Réseaux de Petri et concurrence
- 3 Propriétés et définitions formelles
- 4 Couverture
- Conclusion

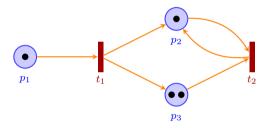
pheam [at] femto-st.fr

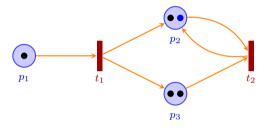
Conclusion

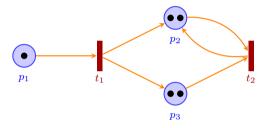
- Les réseaux de Petri sont très utilisés pour la modélisation et la simulation (voir TP) des systèmes concurrent,
- Il existe de très nombreuses variantes ou extensions :
 - probabilisés,
 - temporisés,
 - pondérés (voir prochains slides),
 - colorés,
 - avec priorités,
 - · ...

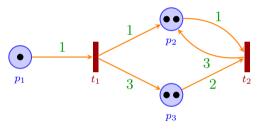






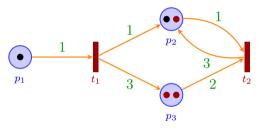


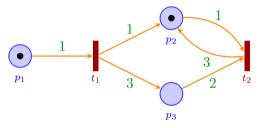


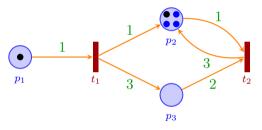


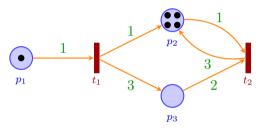
Pour les réseaux pondérés on ajoute des poids (entiers strictement positifs) sur chaque arc.

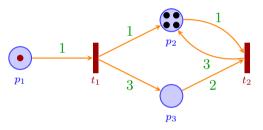
pheam [at] femto-st.fr











Pour les réseaux pondérés on ajoute des poids (entiers strictement positifs) sur chaque arc.

pheam [at] femto-st.fr

