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ABSTRACT

This thesis is dedicated to develop a kernel of a symbolic asymptotic modeling software
package MEMSALab which will be used for automatic generation of asymptotic models for arrays
of micro and nanosystems. Unlike traditional software packages aimed at numerical simulations
by using pre-built models, the purpose of MEMSALab is to derive asymptotic models for input
equations by taking into account their own features i.e. the scalar valued/vector valued solution,
different estimates on the solutions and sources, thin structures, periodic structures, multiple
nested scales etc.

We have proposed an approach called "by extension-combination" for the asymptotic model-
ing which allows an incremental model construction so that the wanted features can be included
step by step. In this approach, the derivation starts from a so-called reference proof which is
a periodic homogenization model derivation for a second order elliptic equation with periodic
coefficient defined in a one-dimensional domain, then a complex model is constructed by extend-
ing and combining elementary models, each of which covers a specific feature, until all wanted
features are taken into account. On the other hand, a theoretical framework for the computer-
aided asymptotic model derivation is proposed. It relies on a combination of the asymptotic
method used in the field of partial differential equations with term rewriting techniques coming
from computer science. In this framework, the first order rewriting rules (FO-rules) are used
to express mathematical rules and their application are controled by first order strategies. The
design of FO-rules benefits from the grammar which is proposed for a systematic formulation
of all needed mathematical objects, ie geometry domains, functions, operators etc, used in the
model derivation. Then second order rewriting rules (SO-rules) and strategies are introduced
to built elementary models by extending existing proofs and to combine them to built com-
plex models. To avoid conflicts in the combination of extensions, each SO-rule is formulated
as a combination of unit outward growths. Each unit outward growth is a composition of an
R-semantic conservation SO-rule and an Admissible parameterized SO-rule corresponding to
semantic conservation transformation and parametrization of the FO-rules. Thanks to the sim-
ple formulation of the unit outward growth, the behavior of their combination becomes possible
to be studied. Then the rules for fluent combinations are proposed.

The interest of this approach is that if features of the input model are covered by the existing
elementary models, the derivation can be generated by applying combination of the existing
rules on the reference proof. This facilitates the programming for new models.

Next, an homogenization model of the electrothermoelastic equation defined in a multi-
layered thin domain has been derived following the reference proof by using extended mathe-
matical rules and some extended steps. It contributes in two aspects. First, the model can be
used for simulation embedded in an optimization loop. Second, it prepares the design of related
extensions for its inclusion in MEMSALab.

At last, an optimization tool has been developed by combining a house-made optimization
software package SIMBAD and COMSOL-MATLAB simulation and it has been applied for
optimization of a SThM probe. General optimization principles have been summarized and an
optimal design has been obtained.

Keywords: Multi-scale, Arrays, Nanosystem, Asymptotic model, Rewriting technique, extension-
combination, Elementary model, Thin-domain, Feature, Optimization



Résumé

Cette thése est consacrée au développement d’un noyau du logiciel MEMSALab de modélisation
par calcul symbolique qui sera utilisé pour la génération automatique de modéles asymptotiques
pour des matrices de micro et nanosystémes. Contrairement a des logiciels traditionnels réal-
isant des simulations numériques utilisant des modéles prédéfinis, le principe de fonctionnement
de MEMSALab est de construire des modéles asymptotiques qui transforment des équations
aux dérivées partielles en tenant compte de leurs caractéristiques, a savoir : la nature scalaire
ou vectorielle de la solution, les ordres des estimations des solutions et des sources, la périodicité
de coefficients ou de géométries, la minceur de certaines parties, ou bien la présence d’échelles
multiples imbriquées.

Nous avons proposé une méthode appelée "par extension-combinaison' pour la modélisation
asymptotique, qui permet la construction de modéle de fagon incrémentale de sorte que les
caractéristiques désirées soient incluses étape par étape. Par cette approche, la construction
d’un modéle utilise la démonstration d’'un modéle qui sert de référence. Ce dernier est un
modéle d’homogénéisation périodique d’une équation elliptique du second ordre avec coefficient
périodique définie dans un domaine mono-dimensionnel. Un modéle complexe est ensuite réalisé
par la combinaison d’extensions élémentaires de ce modéle, chaque extension tenant compte
d’une caractéristique spécifique, jusqu’a ce que toutes les caractéristiques nécessaires soient
prises en compte. Un cadre théorique a été proposé pour la formulation de cette méthode
de facon a ce qu’elle puisse étre mise en oeuvre de fagon informatique. Il repose sur une
combinaison de méthodes asymptotiques issues de la théorie des équations aux dérivés partielles
et de techniques de réécriture issues de 'informatique. Dans ce cadre, les régles de réécriture du
premier ordre sont utilisées pour exprimer des régles mathématiques et leur applications sont
controlées par des stratégies du premier ordre. Ces régles et stratégies sont exprimées dans
une grammaire qui permet de prendre en compte tous les objets mathématiques nécessaires, a
savoir les domaines géométriques, les fonctions, les opérateurs etc... . Des régles de réécriture
et des stratégies du second ordre servent a construire des extensions de la preuve de référence et
a les combiner. Pour éviter les conflits dans la combinaison d’extensions, ces régles du second
ordre sont formulées par des opérations simples ou par leurs combinaisons, introduites pour
I'occasion, appelées "greffes". Grace a ce concept, la combinaison devient une opération facile
a réaliser. L’intérét de cette approche est que si les caractéristiques du modéle d’entrée sont
bien couvertes par les extensions élémentaires existantes, la construction du nouveau modeéle
asymptotique est générée par simple combinaison des extensions de la preuve de référence. Cela
permet la construction et la programmation de nouveaux modéles.

Ensuite, un modeéle d’homogénéisation de I’équation d’électro-thermo-mécanique posée dans
un domaine mince multicouche est établi en suivant les étapes de la construction du modéle de
référence, mais utilisant des propriétés plus générales. Cette contribution conduit d’'une part
a un nouveau modeéle qui peut étre utilisé comme modéle simplifié qui peut étre intégré dans
un calcul d’optimisation pour accélérer les calculs. D’autre part, elle prépare 'implantation de
la construction de ce modéle dans MEMSALab exprimée sous forme d’extensions élémentaires
et de leurs combinaisons. Pour finir, un outil d’optimisation a été développé en combinant
SIMBAD, une boite a outils logicielle pour 'optimisation et développée en interne, et COMSOL-
MATLAB. Il a été appliqué pour étudier la conception optimale d’une classe de sondes de
microscopie atomique thermique et a permis d’établir des régles générale pour leurs conception.

Mots-clés: Multi-échelle, réseau, nanosystémes, modéle asymptotique, technique de réécriture,
extension-combinaison, modéle primaire, mince-domaine, caractéristique, Optimisation
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1. Micro-system arrays, asymptotic methods

1 Context of the thesis: micro-system arrays, asymptotic
methods and their implementation

During the past two decades, in the field of micro and nanotechnologies, a number of devices
involving arrays on a chip, or MEMS' Arrays have been fabricated. Typical ones are micro-
conveyors, arrays of micro-cantilevers (used for atomic force microscopy, nano-lithography or
data storage), arrays of micro-mirrors and micro-lenses (used in optical applications e.g. in
video projectors and lithography masks, and in many applications such as filters for fiber
optic and laser arrays), arrays of microneedles, micro-bolometers, etc, see Figure 1. These

Figure 1: Examples of micro-system arrays

systems have common features: they are distributed, often spatially periodic, and they have
multi-physics and various multi-scale characteristics. Because of the complex geometry of their
cells, having possibly a multiscale structure, and their large number the direct simulation of
the micro-system arrays by a numerical method as the Finite Element Method (FEM) turns
out to be impractical. Extensive development of such systems requires design and simulation
tools which motivates this work and more generally a research activity at the FEMTO-ST
institute. It is worthwhile mentioning that the presented application is about scanning thermal
microscopy and involves a relatively complex microsystem, but not an array. However, as the
reader will see, the developed model fits well with the illustration needed by our approach.

Asymptotic methods. One possible solution is to use asymptotic methods and especially
periodic homogenization methods. Asymptotic methods applied to partial differential equations
(PDE, for short) are model reduction techniques, their purpose is to approximate the initial
model, given as a PDE, by a second model of which the simulation by the FEM can be done in
a reasonable time. They are very useful for complex system simulation and are of great interest
in the software design community. They have experienced strong growth since 1980, with an
increasing range of applications in all fields of physics and engineering: thermal, solid and fluid
mechanical, electromagnetism, etc. They have rigorous mathematical foundation and can lead
to error estimates based on the small parameters involved in the approach. This is a valuable
aspect from the model reliability point of view. They have been applied when a physical
problem depends on one or more small parameters which can be some coefficients or can be
related to the geometry. Their principle is to identify the asymptotic model obtained when the
parameters tend to zero. For instance, this method applies in periodic homogenization, i.e. to
systems consisting of a large number of periodic cells, the small parameter being the ratio of the
cell size over the size of the complete system, see for instance |7, 30, 44]. Another well-developed
case is when parts of a system are thin, e.g. thin elastic plates as in [26], that is to say that
some of their dimensions are small compared to others. A third kind of use is that of strongly
heterogeneous systems e.g. [15], i.e. when equation coefficients are much smaller in some parts

!Micro-Electro-Mechanical Systems
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of a system than in others. These three cases can be combined in many ways leading to a broad
variety of configurations and models. In addition, it is possible to take into account several
nested scales and the asymptotic characteristics can be different at each scale: thin structures
to a scale, periodic structures to another, e.g. [11], [12], [13], [46], etc. It is also possible
to cover cases where the asymptotic phenomena happen only in certain regions or even are
localized to the boundary. Moreover, different physical phenomena can be taken into account:
heat transfer, solid deformations, fluid flow, fluid-structure interaction or electromagnetics. In
each model, the coefficients can be random or deterministic. Finally, different operating regimes
can be considered as the static or the dynamic regimes, or the associated spectral problems.
Today, there exists a vast literature covering an impressive variety of configurations.

Asymptotic methods, enjoy a number of advantages. The resulting models are generally
much faster (often by several order of magnitude — depending on the kind of model simplification
—) to simulate than the original one and are fully parameterized, which is not the case with
other model order reduction approaches. In addition, they do not require any long numerical
calculation for building them, so they can be inserted into identification and optimization loops
of a design process. Finally, they are of general use and they can be rigorously applied whenever
a model depends on one or several small parameters and the error between their solution and
nominal model solution can be estimated.

There is a vast literature on asymptotic methods for PDEs both in applied mathematics
and in many modeling areas. Many reference books have been published, and there are several
journal devoted to them. (SIAM: Multi-scale Modeling and Simulation, Asymptotic Analysis,
Networks and Heterogeneous Media, International Journal for Multi-scale Computational En-
gineering, Journal of Multi-scale Modeling, International Journal of Theoretical and Applied
Multi-scale Mechanics etc...).

Two-scale convergence. For periodic homogenization, several methods have been emerg-
ing over the years. In this thesis, we focus on the two-scale convergence. In 1989 in [52], the
notion of two-scale convergence was introduced for periodic homogenization problems and this
method was further developed in [1]. Independently, in 1990, the reference [3] introduced a
dilation operation to study homogenization for a periodic medium with double porosity. This
technique was used again in [16], [2] and [50]. M. Lenczner with his co-workers in [45]-[49] used
the same idea to develop a complete framework yielding similar results for periodic homoge-
nization as the two-scale convergence method. They introduced this new technique to address
homogenization of spatially periodic analog electronic circuits in view of their application in
arrays of MEMS. Then, J. Casado Diaz et al. [23|, [24]-[25] combined it with the two-scale
convergence to study perforated domains and thin structures. Then, the same concept was
called periodic unfolding method by D. Cioranescu, A. Damlamian and G. Griso who have de-
veloped a number of their properties, including error estimates, in [25], [28], [37] [38] and [39].
This technique has been extensively developed by many other authors in a variety of applica-
tions. In particular, it has been applied to find models of complex structures combining other
asymptotic features, as thin structure or strong heterogeneity of coefficients, with the periodic
homogenization, see among others [11], [12], [13], or [46]. We notice that in [47], an attention
has been paid to formulate the proofs of model derivation as a sequence of algebraic calculation
without relying on abstract arguments.

Existing FEM simulation software and homogenization software. FEM simulation
software packages have been developed and applied in a lot of fields in the recent decades. The
comercial finite element analysis software packages ABAQUS, ANSYS, COMSOL and CONVENTOR
are the most famous and widely used among the software simulation packages. They are



2. Contributions of the thesis

used in the simulation of multi-physics, and in particular, CONVENTOR is specialized in the
simulation of the micro-system arrays. On the other hand, free finite element analysis software
packages, such as Code Aster, FreeFem++, have also been developed. Such software implement
very limited number of multi-scale models. However, a number of homogenization software
packages also exist. For example, Helius from Firehole, MAC/GMC from NASA, CZone from
Engenuity, and DIGIMAT from eXstream Engineering. Helius and DIGIMAT are specialized in
the analysis of the properties of composite materials by using different homogenization methods.
The Multicontinuum Technology is used in Helius, and the Mean-Field homogenization method
is used in DIGIMAT. In these homogenization software packages, the homogenized models are
pre-computed case-by-case. They can cover a limited number of possible models, which remains
a tiny fraction of possible cases, with regards to the wide variety of possible physical features
and geometrical configurations.

Drawbacks of the asymptotic methods, motivation of the thesis. Commercial soft-
ware already available on the market, such as MDS, DIGIMAT, Firehole, Czone mentioned above,
are well connected with classical finite element software and their efficiency is clearly estab-
lished. Of course, the homogenized models being implemented are specific to a physical field,
and new models might be derived if another physics has to be taken into account. Other
asymptotic features, as for instance those considered in this paper, are not used in the above-
mentionned software. To take them into account would considerably multiply the number of
possible models and render ineffective a model-by-model approach.

In addition to the problem of the number of possible models generated by combining various
asymptotic methods, another limitation to their dissemination in engineering software is that
each new configuration requires new long hand-made calculations that may be based on several
techniques. In the literature, each published paper focuses on a special case regarding geometry
or physics, and no academic work is oriented in an effort to deal with a more general picture.
Moreover, even if a large number of models combining various features have already been
derived, the set of already addressed problems represents only a tiny fraction of these could be
derived from all possible asymptotic feature combinations based on existing techniques.

Summing up, we can say that on the one hand, periodic homogenization models are well
disseminated in some engineering communities, and that on the other hand transfering, in
software for engineers, models built from combination of several asymptotic methods is not yet
done, and seems to be not achievable in a model-by-model approach. We consider that this
challenge can be formulated as a scientific problem that deserves to be posed and we propose
first components of solution. Namely, we establish a mathematical framework for combining
asymptotic methods of different natures and thus for producing, aided by a computer, a wide
variety of complex models. The proposed solution combines principles of asymptotic model
derivations, also called proofs, and rewriting methods issued from computer science.

2 Contributions of the thesis

Contrary to the approach followed in the homogenization software packages, our approach is
more general: we rely on a systematic application of asymptotic methods, and we aim to
implement them in a software package, called MEMSALab?, that constructs approximated
models. The architecture of MEMSALab is shown in Figure 2. It is designed to complement

2For MEMS Arrays
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a FEM software package that has an internal formal representation of PDEs as COMSOL or
FreeFEM++. It envisionned functioning consists in three steps completed with an optimization
tool. The first step, by the FEM software/ MEMSALab interface, is a transfer, from a FEM
software package, of a PDE (or a system of PDEs) and its translation in the grammar of the
symbolic computation language used in the kernel of MEMSALab. In the second step, the
multi-scale model (MSM) is symbolically derived and the result is saved. In the third step,
by the MEMSALab / FEM Software interface, the MSM is translated back to the format
of the FEM software package and its simulation is launched. The parameter updating and
optimization tool is interfaced with the FEM software package.

This thesis, contributes only to some of these aspects, namely, the kernel of MEMSALab i.e.
the MSM constructor depicted in the right-bottom of Figure 2 as described in Section 2.1, and
the optimization tools for the application of MSM, introduced in Section 2.2. The latter has
been done for an application to a class of systems governed by thermoelectroelasticity equations
ie for scanning probes used in thermal microscopy. Moreover, an asymptotic model has been
built that has indeed a wider range of applications as explained in Section 2.2. Its derivation
follows the rules for being implemented in MEMSA Lab.

Input Interface: FEM software / MEMSLab

FEM Software
Packages
Nominal model Data
J— # Structure -
Constructor

* Geometry

MEMSALab
Nominal model

* Abstract geometry
* Equations
* Functional space

' FEM Software package ‘

o Inverse MS ____..\\ Nominal geometry
' Transform 4 I.____,/ SR
o * MS model result

* Equations

FEM Software
package

Multiscale
Data Structure
Constructor

* FEM Results

visualization

. X

* Optimization rule .
* Optimal design Multiscale (MS)
data structure

FEM Optimization
Simulation Softwara

MS model package

T

FEM Software
package
M5 model

Asymptotic ‘
MS model

* Abstract geometry MS Model
— * Equations Constructor
* Functional space

Interface: MEMSLab / FEM software Kernel of MEMSLab

Geometry
& Equation
Generator

* Geometry
* Equations

Figure 2: MEMSLab software architecture.

2.1 MEMSALab software design
Underlying principles of MEMSA Lab. Our design methodology consists of three aspects.

1. The first one is to establish a general mathematical theoretical framework for the multi-
scale model derivations. In this unified framework, the derivations — in a setting of
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different physical features and geometries — could be different in details, but the skeleton
of the derivations remains "the same". The mathematical proofs underling the model
derivations are written in an algebraic way, few abstract reasoning is used. The algebraic
nature of the proofs is crucial, since it allows implementation of the proofs as symbolic
transformations.

2. The second aspect is the design and the implementation of a symbolic transformation
tool to implement the multi-scale model derivations. The designer formulates the math-
ematical properties as well the elementary derivations (i.e. the skeleton proofs) with this
tool.

3. Since only the elementary derivations of the general framework are implemented in MEM-
SALab, the third aspect of our design methodology consists in developing an eztension
mechanism allowing the combination of the already implemented derivations. This is
a systematic way to build complex models by reusing and combining already existing
proofs.

Main steps of model derivation. The mathematical framework is this developed in [47]
based on the two-scale transform also called the periodic unfolding operator. We think that it
has the potential to be adapted to a large number of configurations without major change in
the flow of the proofs, but we are aware that a lot of specific steps have to be changed/added.
Basically, the model derivation by this approach has the three following steps commonly shared
by most of the asymptotic methods:

1. Asymptotic expansions of the solutions, in a two-scale sense in our work, are assumed
with regards to norm estimates, which are admitted in the current state. Then, weak
limits of two-scale transforms of first-order derivatives are derived.

2. The model derivation starts from weak formulations where test functions are chosen
according to the asymptotic analysis to be carried out. An asymptotic two-scale is derived
by using Step 1.

3. Elimination of micro-scale fields of the two scale model yields the reduced asymptotic
model.

Principle of model derivation by extension-combination. In order to carry on a
systematic approach for the derivation of multi-scale models that allows to cover a variety
of physical features and geometries, we develop a method called "by extension-combination”.
Figure 3 illustrates the idea behind this method through an example. This method relies on
three key principles.

1. Firstly, we introduce a reference model, also called skeleton model, together with its deriva-
tion. This derivation is called the reference proof. The reference model is the periodic ho-
mogenization model of a scalar second-order elliptic equation posed in a one-dimensional
domain, with Dirichlet boundary conditions. Its derivation is based on the technique of
the two-scale transform introduced in [3|, and reused in [17]. Here, we follow the model
derivation approach of [47| which relies on algebraic reasoning only. Although the ref-
erence model covers a very simple case, its proof is expressed in a sufficiently general
way. A number of basic algebraic properties are formulated as transformation rules, they
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Figure 3: An extension of the reference proof (top) to the 3-dimensional setting (left) and to the
thinness setting (right). The combination of these two extensions is depicted on the bottom.

are considered as the building blocks of the proofs. The full derivation of the model is
formulated as a sequence of applications of these rules. The proof of some properties is
also performed by a sequence of applications of mathematical rules when the others are
admitted e.g. the Green rule.

2. Then, an elementary extension (also called elementary generalization) is obtained by an
application of an elementary transformation to the reference proof. Such elementary
transformation covers a particular feature. More generally, many elementary transfor-
mations can be applied simultaneously to the reference proof, where each transformation
covers a distinct feature. We notice that, in practice, when a single feature is taken into
account, only a small change occurs in a relatively long proof. In other words, while con-
sidering an elementary extension, most of the existing rules could be reused by operating
a small change on them, and, on the other hand, only a small number of new rules has to
be manually introduced. From this empirical observation, it follows that the extension of
the existing proofs to cover a new feature can be generated almost automatically.

3. Finally, we make possible the combination of two initial extensions to produce a new
extension that takes into account the features covered by each initial extension. By
iterating this process, many elementary extensions can be combined together. The use
of the mechanism of the combination of several existing elementary extensions instead
of the development of new extension transformations has the advantage of reducing the
development effort by avoiding doing complex changes manually. Thus, the "by extension-
combination” method is a reasonable one since it facilitates the implementation of the
two-scale methods.

Rewriting-based principles used in the extension-combination method. We rely on
a theoretical tool from computer science, called term rewriting. The reason is that equational
reasoning can naturally be described by rewriting rules, see |4] for a classical reference. Roughly
speaking, an equation ¢ = u can be turned into two rewriting rules ¢t — v and v — ¢, where



2. Contributions of the thesis

t and u are rewriting terms consisting of function symbols and rewriting variables. The rule
t — u states that every occurrence of ¢ has to be transformed into u. Rules can have conditions
and can be combined by specifying strategies that determine how to apply the rules, see e.g.
[56, 32, 31, 14, 33|.

The mathematical objects, such as geometric domains, variables defined on these domains,
functions of many variables, operators (e.g. derivatives, integrals, two-scale transform, etc.),
are common in the field of partial differential equations. The precise description of these objects
is given by a grammar. In other words, mathematical expressions need a precise description
since they carry all the information required in the formulation of the multi-scale models and
their derivations.

Some of the rewriting rules require the computation of the set of mathematical variables
on which an expression depends. For instance, in order to establish the linearity rule L(Aa) —
AL(«), where L is a linear operator and \ is a scalar, one needs to compute the variables on
which A depends in order to decide whether it is a scalar. For this purpose, we develop a variable
dependency analyzer. Within this framework, a proof is a sequence of rewriting rules. In order
to carry on the extension of the proofs and their combination (i.e."extension-combination"
mechanism), we rely on the second-order rewriting rules which are applied to the (first-order)
rewriting rules in order to extend them.

Implementation of model derivations and of the composition of extensions. We
use the symbolic transformation language symbtrans, proposed in [6], to implement the proofs
and their extensions as rewriting strategies. This language supports the rewriting modulo
associativity and commutativity of the operations +, x,U and M. It is implemented with the
scientific computing language Maple. Since, the rewriting strategies in symbtrans are Maple
expressions, it is possible to apply the symbtrans strategies to themselves. This allowed us to
implement the extension of the proofs (each proof is given as a symbtrans strategy) by means of
symbtrans strategies. A proof is decomposed into blocks, each block is a series of applications
of rewriting rules and strategies. Each rewriting rule corresponds to a mathematical property
e.g. Green rule, linearity of certain operators, properties of the two-scale operators. The blocks
can be grounded into a strategy that is applied to an initial expression that corresponds to the
input PDE. Under some assumption®, the combination of two extensions, each of which is a
symbtrans strategy, is nothing but their sequential composition. This result can be found in
[59] and it is detailed in Chapter 1 of this thesis.

Although, the combination of extensions as a sequential composition was useful for some
situations, one could see its limitation. This motivates our next point.

A framework for the combination of extensions. It turns out that it is not easy
to study the combination of extensions if these extensions are formulated as strategies, as
presented in Chapter 1. To solve this problem, we refine the notion of extension. Firstly, a
rewriting rule is transformed into a more general rule such that they remain mathematically
equivalent. Secondly, the second rule is generalized by means of a parametrization that consists
in the replacement of some terms by rewriting variables. For example, consider the rule s:

s 1= 0p(uv) = vO,u + ud,v

3Namely, when there is not conflict between the extensions, i.e. when they operate on different parts of the
initial proof.
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that represents the derivative of a product of two functions in the 1-dimensional setting. We
want to build the rule s”:

§" = 0y, () = VO, u + Uy, v

which is the counterpart of the rule s in the n-dimensional setting. We proceed in two steps.
In a first step, we transform s to s':

§" = Oy (u) = VO, u + U0y, V.

We notice that s and ' are mathematically equivalent and, in some sense, s’ is more general
than s. In a second step, we replace the constant 1 by the variable ¢ and we get s”.

In Chapter 2 we establish a framework allowing the definition of the notion of generalization
and parametrization and their combination.

2.2 Multiscale model and optimization of a thermoelectromechanical
system

Since this work has been partially supported by the NANOHEAT project*, a modelling and
optimization activity has been developped for scaning thermal microscopy. We notice that

Motivations of the Scanning Thermal Microscopy. Modern technology of micro/nanoelectronic
components, sensors and MEMS/NEMS (Micro/Nano-Electro-Mechanical-Systems) requires
increasingly the control of materials at the sub-micrometer down to the nanometer scale. Ad-
ditionally, the heat transfer phenomena, including e.g. phonon heat conduction mechanism in
micro- and nanostructures, may differ significantly from that on the macroscale. Therefore,
micro- and nanometer resolution is required for most of the experiments.

Scanning Thermal Microscopy (SThM) is a versatile scanning probe technique allowing
for high resolution mapping of the thermal properties and temperature of various substrates.
SThM, as every AFM (Atomic Force Microscopy) related technique enables study at micro-
and nanoscale which allows designers to a better understanding of heat transport in micro- and
nanoelectronic devices.

The invention of the scanning tunneling microscope (STM) [10] and the atomic force mi-
croscope (AFM) [9] have allowed sub-micrometer and, at times, atomic scale spatially resolved
imaging of surfaces. The spatial resolution of these near-field techniques is only limited by the
active area of the sensor (which in the case of STM may only be a few atoms at the end of a
metal wire). As described by Dinwiddie and Pylkki in 1994, first scanning thermal microscopy
(SThM) probes employed resistance thermometry to measure thermal properties [34]. These
probes were fashioned and made from Wollaston process wire consisting of a thin platinum
core (ca. 5 pum in diameter) surrounded by a thick silver sheath (ca. 75 um). Because of its
high endurance, Wollaston probe is attractive for microsystem diagnostics , however the active
area in the range of a few micrometers does not allow quantitative thermal investigations at the
nano-scale. Then, a new thermal probe has been designed in the framework of the NANOHEAT
project to achieve quantitative measurement in the range of few tenths nanometers.

The probe design This novel type of nanosensor is equipped with sharp, conductive tip,
an integrated deflection sensor, and an actuation system. It is integrated with deflection detec-
tion, which will significantly improve the system versatility and will enable new applications.
As it is free of the bulk and complicated optical deflection sensors, it can be used in small
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Figure 4: NANOHEAT SThM probe

chambers. The described SThM nanoprobes are designed to operate in two modes: a) as a
passive thermosensing element or b) as an active heat flux meter. In the latter case, a larger
current is passed through the resistive tip probe. The power that is required to maintain a con-
stant temperature gradient between the tip and the sample corresponds to the local thermal
conductivity of the sample. During active measurements temperature of the tip is increased
by 20 — 30 K above room temperature. In order to perform quantitative measurements of heat
transport between the tip and the surface several crucial criteria have to be met:

-low thermal mass of the microtip allowing for AC thermal measurements (e.g. in the range
of 10 kHz)

-high mechanical stiffness of the microtip. This ensures high endurance of the thermal
sensor, which is brought into contact while surface scanning.

-low stiffness of the SThM cantilever, which is brought in contact with the investigated sur-
face. The low stiffness of the SThM cantilever will enable surface measurements with relatively
low load forces. As a consequence the tip wear is reduced and the sample is not modified.

-high thermal resistance of the SThM cantilever and tip’s support. The high thermal re-
sistance of the cantilever will reduce the heat transfer from the thermal tip to the cantilever
supporting body. The effective thermal mass of the SThM sensor will be reduced, and its
influence on the thermal behavior of the investigated structure will be minimized.

Moreover, the heat transferred from the tip to the cantilever base causes parasitic deflection
of the sensor. First results of modeling and simulations exhibit significant parasitic, 200 nm
deflection of the cantilever due to tip’s heating by 11 degrees above the room temperature.

According to the applications, developed SThM nanoprobe will enable surface measurements
in contact scanning probe microscopy mode at load force ranging from 10 nN up to 1 microN.
The load force will be detected with the resolution of 10 pN in the bandwidth of 100 Hz. The
low load forces as well as sub-nanometer vertical spatial resolution in the range will be needed
in investigations of graphene and molecular samples, whereas the high force will be applied in
investigations of high-k insulators.

Modelling of a NANOHEAT probe. A thin plate model model of the thermoelec-
tromechanical SThM probe [43] has been derived. The device is composed of a thin cantilever
equipped with a sharp conductive tip, an integrated deflection sensor, and an actuation system,
see Figure 4(b). It might be useful to reduce the simulation time and so to facilitate the probe
optimization. The derivation of the model is done following the steps of the reference proof.

“http://www.nanoheat-project.eu/
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To this end, the probe is considered to have a periodic and thin structure, and to the end of
the derivation, the model can be simplified taking into account the fact that the coefficients
are constant instead of periodic which allows for elimination of the microscale variables in the
in-plane direction. Evidently, the proof is much more complex than the one for the thin elastic
plate model, and help has been found in existing papers, with different techniques, namely
[18] for thin periodic elastic plates and [20], [21], [22] for thin periodic piezoelectric plates with
periodic distributed electric circuits. A byproduct of this approach is a model of periodic ho-
mogenization of multi-layered thermoelectromechanical systems that can be used, with little or
no changes, in other applications in the field of microsystem arrays as for bolometers or arrays
of cantilevers with thermal actuation e.g. the millipede from IBM. From the point of view of
its implementation in MEMSA Lab, the model includes several special features compared to the
reference model and we expect to formulate it using the extension-combination method.

Coupling SIMBAD and COMSOL and applications. The software SIMBAD provides
a generic simulation-based design tool for investigating the behaviour of complex modeled
systems. A MATLAB link has been set between COMSOL, which is then considered as FEM software
in our approach, and SIMBAD so that COMSOL models may be used as an input for a design under
SIMBAD. It includes the definition of the optimization problem: the initial value of parameters,
the parameter relative ranges, the objective features and the constraints for geometry and
objective features. It serves to transmit current parameters between the two software packages.
For the application to the NANOHEAT probe, three objective optimization results are reported,
namely to decrease the thermo-mechanical tip deflection, to increase the Joule heating effect
in the tip and to increase the sensitivity of the piezoresistive sensor. Three SIMBAD toolboxes
have been used. The design sensitivity and effects analysis toolbox is used to quantify the
impact of design variable modifications on the design objective of interest. It allows the design
space to be reduced to the subset of influential variables. The multi-objective performance
optimization toolbox is used to obtain an approximation of the Pareto front for the different
design objectives. It provides the analyst with a useful indicator on the trade-offs between
the objectives of interest. Finally, the model validation and uncertainty quantification is used
to quantify the impact of both aleatory and epistemic (lack of knowledge) uncertainties in
the design variables and system environment on the design objectives and constraints. A
very complete analysis has been carried out to explain the interactions between concurrent
phenomena and to conclude to design guidelines.

3 Organization of the thesis

The thesis is organized as follows:

e In Chapter 1 we introduce a framework for computer-aided derivation of multi-scale mod-
els. It relies on a combination of an asymptotic method used in the field of partial differ-
ential equations with term rewriting techniques. In this framework, a multi-scale model
derivation is characterized by the features taken into account in the asymptotic analysis.
Its formulation consists in a derivation of a reference model associated to an elementary
reference model, and in a set of transformations to apply to this proof until it takes into
account the wanted features. We apply the method to generate a family of homogenized
models for second order elliptic equations with periodic coefficients that could be posed
in multi-dimensional domains, with possibly multi-domains and/or thin domains.

10
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e In Chapter 2 we address the problem of the combination of the extensions of the proofs
related to the multi-scale model derivations. For this purpose, we develop further exten-
sion mechanisms that refine the ones introduced in Chapter 1. We elaborate necessary
conditions under which these mechanisms can be correctly combined giving rise to rich
extensions. We apply these extension mechanisms to many examples, namely to the
derivation of the linear operator associated to the microscopic problem in the reference
proof. Thus the results of this Chapter significantly improve the results of Chapter 1
since it is not possible, at least in a straightforward way, to provide necessary conditions
so that the extension mechanisms established in Chapter 1 can be combined.

e The model of thin multilayer periodic thermoelectromechanical system is derived in Chap-
ter 3. It follows strictly the reference proof excepted a change that has been introduced
for the sake of simplification: in some step we prefer to use the two-scale convergence
of Nguetseng and Allaire instead of this based on the two-scale transform. All necessary
properties and proof are updated.

e The last chapter focuses on the optimization results obtained by coupling SIMBAD to
COMSOL through MATLAB. The complete analysis is detailed including the sensitivity anal-
ysis, the reduction of the number of active optimization variables and the multi-criteria
optimization. General conclusions are drawn in view of helping future SThM probe de-
signers.

11
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Chapter 1

A Rewriting Framework For
Computer-Aided Derivation Of
Multi-Scale Models

Abstract. In this Chapter we introduce the first part of a framework for computer-aided deriva-
tion of multi-scale models. It relies on a combination of an asymptotic method used in the field
of partial differential equations with term rewriting techniques coming from computer science.
In our approach, a multi-scale model derivation is characterized by the features taken into ac-
count in the asymptotic analysis. Its formulation consists in a derivation of a reference model
associated to an elementary nominal model, and in a set of transformations to apply to this
proof until it takes into account the wanted features. In addition to the reference model proof,
the framework includes first order rewriting principles designed for asymptotic model deriva-
tions, second order rewriting principles dedicated to elementary extensions of model derivations
and their combinations. The latter point is only briefly sketched and will be detailed in another
work. We report implementation results regarding three simple extensions of the reference proof.
The results of this Chapter were the subject of the publication [59].

1.1 Introduction

In this Chapter we introduce a method called "by extension-combination”. It consists of three
principles.

1. A reference model is introduced together with its derivation. It covers a very simple case
but its proof is expressed in a sufficiently general form.

2. Then, elementary extensions (also called generalizations) are built by elementary trans-
formations of the reference derivation, each of them covering a different feature.

3. Finally, elementary transformations are combined resulting in a complex transformation.

The latter is in turn applied to the reference proof to generate a complex model including
all features of the elementary extensions.

The present Chapter focuses on the two first steps when the last one, i.e. combination of
transformations, will be detailed in Chapter 2.

13



Chapter 1. A Rewriting framework for asymptotic modeling

We select as the reference problem that of the periodic homogenization of a scalar second
order elliptic equation posed in a one-dimension domain and with Dirichlet boundary conditions.
Its derivation is based on the use of the two-scale transform operator introduced in [3], and
reused in [17]. We quote that homogenization of various problems using this transformation
was performed according to different techniques in [45, 48, 47, 23, 27, 29|. Here, we follow
[47], so a number of basic properties coming from this paper are stated and considered as the
building blocks of the proofs. The complete derivation of the model is organized into seven
lemmas, it is performed by a sequence of applications of these properties. Their extension
to another problem requires generalization of some of the properties, which is assumed to be
made independently. It may also require changes in the path of the proof, and even adding
new lemmas. Regarding the level of detail in the representation of mathematical objects, on
the one hand it has enough precision to cover a fairly wide range of models and on the other
hand the calculations are reasonably sized. Moreover, the way the generalizations are made is
important so that they could be formulated in a single framework.

The computational framework used to express the method is based on the theory of rewrit-
ing. The required mathematical concepts are common in the field of partial differential equa-
tions: geometric domains, variables defined on these domains, functions of several variables,
operators (e.g. derivatives, integrals, two-scale transform, etc.). The proofs of Lemmas are de-
signed to be realizable by rewriting. Precisely, each property is expressed as a rewrite rule that
can be conditional, so that it can be applied or not according to a given logical formula. A step
in a lemma proof is realized by a strategy that expresses how the rule applies. The complete
proof of a lemma is then a sequence of such strategies. Ones we use have been developed in a
previous work [6] that is implemented in Maple. Here we provide its formalization. To allow the
successful application of rewriting strategies to an expression that contains associative and/or
commutative operations, such as +,*,U,N, etc, we use the concept of rewriting modulo an
equational theory [4, §11|. Without such concept one needs to duplicate the rewriting rules.

Rewriting operates on expressions whose level of abstraction accurately reflects the mathe-
matical framework. Concrete description of geometric domains, functions or operators are not
provided. Their description follows a grammar that has been defined in order that they carry
enough information allowing for the design of the rewriting rules and the strategies. In some
conditions of rewriting rules, the set of variables on which an expression depends is required.
This is for example the case for the linearity property of the integral. Rather than introducing
a typing system, which would be cumbersome and restrictive, we introduced a specific function-
ality in the form of a A-term (i.e. a program). The language of strategy allows this use. Put
together all these concepts can express a lemma proof as a strategy, i.e. a first order strategy,
and therefore provide a framework of symbolic computation. The concept of generalization of a
proof is introduced as second order rewrite strategies, made with second order rewriting rules,
operating on first order strategies. They can transform first order rewrite rules and strategies
and, where appropriate, remove or add new ones. This framework has been implemented in
the software Maple. We present its application to the complete proof of the reference prob-
lem and also to the generalizations of the first lemma, by applying second order strategies, to
multi-dimensional geometrical domains, multi-dimensional thin domains and multi-domains.

1.1.1 Organization of the Chapter

This Chapter is organized as follows. The complete method, of extension-combination, is
sketched through an example in Section 1.2. Section 1.3 is devoted to all mathematical as-
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1.2.  Illustration of the method of extension-composition

pects. This includes all definitions and properties, the lemmas and their proof. The principles
of rewrite rules and strategies are formulated in Section 1.4. Section 1.5 is devoted to the
theoretical framework that allows to derive a model and its generalizations. Implementation
results are described in Section 1.7.

1.2 Illustration of the method of extension-composition

The extension-combination method is illustrated on a model of the mechanical behavior of an
array of thin elastic periodic cantilevers supported by an elastic base. It has been established
in [47] and later studied in [41], [46] and [42]. The derivation in [47] only partially fits with
the reference derivation of this Chapter. The difference is that it is done in two steps, first
a thin elastic plate model is obtained, using a different technique, by only assuming small
thickness of the whole structure. Second, the periodicity assumption is combined with a special
ratio between the thicknesses of the base and the cantilevers. Through a technique of periodic
homogenization for strongly heterogeneous media fitting well with the scheme of the reference
proof, this yields the final model.

The same model can be obtained by a one-step proof transforming the three-dimensional
nominal model into an homogenized two-dimensional model. Such derivation combines the
same features as the two-step proof but is consistent with the reference proof. It requires
three orders of magnitude listed in decreasing order: for the period, the base thickness and the
cantilever thickness. This forms part of an ongoing work.

The goal of the extension-combination method, as mentioned in page 5, is to build such one-
step derivation as a transformation of the reference derivation by a combination of elementary
transformations. Figure 3 represents the derivations and the transformations to be applied to
derivations as big and little parchments respectively. The reference proof is denoted by Ref. The
transformation II; yields a derivation of a three-dimensional homogenized model of a periodic
single-layered elastic media. The periodic cell is pierced by a large hole. The transformation
T1, is for the derivation of a periodic thin elastic plate model i.e. a model where the thickness is
another small parameter. Then, there are many possible combinations, all denoted by II; + II,
for the sake of simplicity, of the two transformations so that the final model inherits their
features. The bottom left and right sketches represent two final homogenized models. The first
is for a thick periodic layer made with a pierced periodic cell whose hole is partly occupied by
a clamped thin moving plate. The second is similar except that the whole structure is thin
instead of beeing thick; it corresponds precisely to the model established in [47]. The framework
developed in the rest of this Chapter is for expressing model derivations, as those represented
by big parchments, and transformations of model derivations as II; and II,. Formulating
combinations of transformations of model derivations, such as II; + Il,, is another big part of
the solution will be presented in Chapter 2.

1.3 Skeleton of two-scale modeling

We recall the framework of the two-scale convergence as presented in [47], and the proof of the
reference model whose implementation and extension under the form of algorithms of symbolic
computation are discussed in Section 1.7. The presentation is divided into three subsections.
The first one is devoted to basic definitions and properties, stated as Propositions. The latter
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are admitted without proof because they are assumed to be prerequisites, or building blocks, in
the proofs. They are used as elementary steps in the two other sections detailing the proof of the
convergence of the two-scale transform of a derivative, and the homogenized model derivation.
The main statements of these two subsections are also stated as Propositions and their proofs
are split into numbered blocks called lemmas. Each lemma is decomposed into steps refering to
the definitions and propositions. All components of the reference model derivation, namely the
definitions, the propositions, the lemmas and the proof steps are designed so that to be easily
implemented and also to be generalized for more complex models. We quote that a number of
elementary properties are used in the proof but are not explicitely stated nor cited.

1.3.1 Notations, Definitions and Propositions

Note that the functional framework used in this section is not as precise as it should be for
a usual mathematical work. The reason is that the functional analysis is not covered by our
symbolic computation. So, precise mathematical statements and justifications are not in the
focus of this work.

In the sequel, A C R™ is a bounded open set, with measure |A|, having a "sufficiently" regular
boundary A and with unit outward normal denoted by nss. We shall use the set L'(A) of
integrable functions and the set L?(A), for any p > 0, of functions f such that f? € L'(A), with
norm ||v||ze(ay = (f, [0 dz)'/P. The Sobolev space H'(A) is the set of functions f € L?(A)
whose gradient Vf € L*(A)". The set of p times differentiable functions on A is denoted by
CP(A), where p can be any integer or co. Its subset C§(A) is composed of functions whose partial
derivatives are vanishing on the boundary 0A of A until the order p. For any integers p and ¢,
C1(A) C LP(A). When A = (0,a1)X...x(0, a,) is a cuboid (or rectangular parallelepiped) we say
that a function v defined in R™ is A-periodic if for any ¢ € Z", v(y + >, l;a;e;) = v(y) where
e; is the i vector of the canonical basis of R™. The set of A-periodic functions which are C* is
denoted by Cg°(A) and those which are in H'(A) is denoted by Hj(A). The operator tr (we say
trace) can be defined as the restriction operator from functions defined on the closure of A to
functions defined on its boundary OA. Finally, we say that a sequence (uf).-o € L?(A) converges
strongly in L*(A) towards u’ € L*(A) when ¢ tends to zero if lim._,o [|u® — u°||f2(4) = 0. The
convergence is said to be weak if lim._,o [,(u® — u”)v dz = 0 for all v € L*(A). We write
uf = u® + O4(e) (respectively O, (c)), where O,(e) (respectively O, (¢)) represents a sequence
tending to zero strongly (respectively weakly) in L?(A). Moreover, the simple notation O(g)
refers to a sequence of numbers which simply tends to zero. We do not detail the related usual
computation rules.

Proposition 1 [Interpretation of a weak equality] For u € L*(A) and for any v € C°(A),
if / u(z) v(z) dv =0 then u=0
A

in the sense of L*(A) functions.

Proposition 2 [Interpretation of a periodic boundary condition] For w € H'(A) and
for any v € C© (A),

if u(z) v(z) nga(z) dr =0 then u € Hﬁ1 (A).
0A
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Proposition 3 /[Weak convergence of product| For sequence w, — u strongly, v, — v
weakly, then the product u,v, — uv weakly.

This proposition is followed in mathematical proof but not in the programme. The reference
proof proposed in this chapter is a simulation of the programme, so this proposition is not refered
explictly.

In the remainder of this section, only the dimension n = 1 is considered, the general definitions
being used for the generalizations discussed in Section 1.7.

N(e)
Notation 4 [Physical and microscopic Domains] We consider an interval Q = |J Q¢ C
c=1
R divided into N (¢) periodic cells (or intervals) QL¢, of size € > 0, indexed by c, and with center

z.. The translation and magnification (QL° —x.)/e is called the unit cell and is denoted by Q.
The variables in Q and in Q' are denoted by x° and x'.

The two-scale transform 7' is an operator mapping functions defined in the physical domain €2
to functions defined in the two-scale domain QF x Q! where for the reference model QO = Q. In
the following, we shall denote by I', I'* and I'! the boundaries of Q, Qf and Q.

An example of the configuration of physical domain, macroscopic domain and microscopic
domain is given in the following.

e M Q
| l ! Q# .E 4
o

X
x ot

LS, T

|
(a) 1D (b) 2D

Figure 1.1: Physical domian, macroscopic domain and microscopic domain

Definition 5 [Two-Scale Transform] The two-scale transform T is the linear operator de-
fined by

(Tw)(ze, 2') = u(ze + ext) (1.1)
=u

and then by extension T (u)(z*, 1) (z. +ext) for all ¥ € Q¢ and each c in 1,.., N(g).
Notation 6 [Measure of Domains] x° = ap ond K= IQTIWI

The operator T' enjoys the following properties.

Proposition 7 [Product Rule] For two functions u, v defined in €2,

T(uv) = (Tu)(Tv). (1.2)
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Proposition 8 [Derivative Rule] If u and its derivative are defined in ) then

T(M)_lmﬂq L3

dr )~ ¢ Ot

Proposition 9 [Integral Rule] If a function u € L*(Q) then Tu € L' (0 x Q') and

/io/ u dr = /11/ (Tw) dafda’. (1.4)
Q QExQl
The next two properties are corollaries of the previous ones.

Proposition 10 [Inner Product Rule] For two functions u, v € L*(§2),
Ho/u vdr = /il/ (Tw) (Tv) do*dx*. (1.5)
Q QFxQ!

Proposition 11 [Norm Rule] For a function u € L*(Q),
2 2
KO ulliaq) = &' I Tull 208 o) - (1.6)

Definition 12 [Two-Scale Convergence] A sequence u® € L*(Q) is said to be two-scale
strongly (respect. weakly) convergent in L?(F x Q) to a limit u®(z* 2t) if Tus is strongly
(respect. weakly) convergent towards u® in L?(2* x Q).

Definition 13 [Adjoint or Dual of T] As T is a linear operator from L?(Q) to L*(QF x Q1),
its adjoint T* is a linear operator from L?(¥F x Q) to L*(Q) defined by

K / T"v u dx = Iil/ v Tu da*dxt, (1.7)
Q Qfx Q1

The expression of T* can be explicited, it maps regular functions in Q2 x Q' to piecewise-constant

functions in €2. The next definition introduces an operator used as a smooth approximation of
T

Definition 14 [Regularization of T*] The operator B is the linear continuous operator
defined from L*(QF x Q) to L*(Q2) by

Bu :v(x,g). (1.8)

The nullity condition of a function v(z* 2') on the boundary 992 x Q! is transferred to the
range Bv as follows.

Proposition 15 [Boundary Conditions of Bv] If v € C°(2%;,C>(Q)) then Bv € C(9).

Proposition 16 [Derivation Rule for B] If v and its partial derivatives are defined on
OF x Q' and they are smooth enough, then

d(Bv) v

ov
=B

+ 5—13(%). (1.9)
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1.3. Skeleton of two-scale modeling

The next proposition states that the operator B is actually an approximation of the operator
T* for Q'-periodic functions. This property is only used for the test functions so that v could
be regular enough.

Proposition 17 [Approrimation between T* and B] If v(z*, z') is continuous, continu-
ously differentiable in x* and Q-periodic in x' then

L Ov
Conversely,
Bu :T*(v)+5T*(xla—;) +20,(e). (1.11)

The proof of this proposition is detailed in Appendix 3 of reference [47].

Remark 18 Operators T, T* and B depend on the small parameter €, but we do not write it
explictly just for simplification of notations.

Next, the formula of integration by parts is stated in a form compatible with the Green formula
used in some extensions. The boundary I' is composed of the two end points of the interval
Q, and the unit outward normal nr defined on I' is equal to —1 and +1 at the left- and
right-endpoints respectively.

Proposition 19 [Green Rule] If u, v € H'(Q) then the traces of u and v on T are well
defined and
d
/Qué dx = /Ftr(u) tr(v) nr ds(z) — /v% dx. (1.12)
The last proposition is stated as a building block of the homogenized model derivation.

Proposition 20 [The linear operator associated to the Microscopic problem] For i €
R, there exist 8" € Hﬁl(Ql) solutions to the linear weak formulation

000" Ow o Ow
/ 0O ! —u/ et for all w € (), (1.13)
m
and 691 15 unique. Since the mapping p |—> from R to L*(QY) is linear then
oot ola
ot~ Moxt (1.14)

Moreover, this relation can be extended to any u € L?(F).

19



Chapter 1. A Rewriting framework for asymptotic modeling

1.3.2 Two-Scale Approximation of a Derivative

Here we detail the reference computation of the weak two-scale limit n = lim._, T(%) in
L2(QF x Q') when
du®

- C, (1.15)

L2(Q)

] 2y amd \

C being a constant independent of €. To simplify the proof, we further assume that there exist
u’, ut € L2(QF x Q) such that

T(uf) = u® + eu' + 0, (e),

i.e.

/ (T(uf) — u® — eu)v dafda’ = eO(e) for all v € L*(QF x Q). (1.16)
Qfx Q1

We quote that Assumption (1.16) is not necessary, it is introduced to simplify the proof since
it avoids some non-equational steps. The statement proved in the remaining of the subsection
is the following.

Proposition 21 [Two-scale Limit of a Derivative| If u° is a sequence bounded as in (1.15)
and satisfying (1.16), then u® is independent of x',

at = u' — 210’ (1.17)
defined in QF x Q' is Q'-periodic and
ou’  oul
= — 4+ —. 1.1
U * ox! (1.18)

Moreover, if u =0 on I’ then u® = 0 on I'.

The proof is split into four Lemmas corresponding to the first four blocks discussed in Section
1.7, the other three being detailed in subsection 1.3.3.

Lemma 22 [First Block: Constraint on u°] u° is independent of x'.

Proof. We introduce

\Ilzelfo/du Bv dx
Qdﬂ?

with v € C§°(92%; C°(2Y)). From the Cauchy-Schwartz inequality and (1.15), lim, o ¥ = 0.

e Step 1. The Green formula (1.12) and Proposition 15 =

U = —e/fo/ u8d<BU) dz.
Q dﬂj

e Step 2. Proposition 16 —

e, OV
U= RO/QU B(5—) dz+ O(e).
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1.3. Skeleton of two-scale modeling

Step 3. Proposition 17 —

U=k /QST*(;CI) dz + O(e).

Step 4. Definition 13 —

ov
1
\Il—/ﬁz/mXQIT( )_0x1 dx + O(g).

Step 5. Assumption (1.16) and passing to the limit when ¢ - 0 =

Step 6. The Green formula (1.12) and v =0 on Qf x I'' =

Hl/ aivd:U—O
Qi xO1 81’

Step 7. Proposition 1 —
ou®

dat

|
Lemma 23 [Second Block: Two-Scale Limit of the Derivative] n = %%

Proof. We choose v € C°(Q%;C5°(Q)) in

U= /{1/ T(du Ju drtdzt. (1.19)
Qf xO1 dx

d 15
U = KJO/ Y T*v dx.
Q dCL‘

e Step 2. Proposition 17 (to approximate 7% by B), the Green formula (1.12), the linearity
of integrals, and again Proposition 17 (to approximate B by T%) =

e Step 1. Definition 13 =

ov K ov 0%v
q] — &T* _ ST* _ 13 * .
K / (&tﬂ)d 8/Qu (axl)dx K / T(8x18 xt) dz + O(e)

e Step 3. Definition 13 =

ov Kl ov
U = —x! T detdet — = T(uf)=— datdz!
a /g;ﬁxgl ( )axﬁ v 13 Qi xO1 ( )axl * dm

—1/ T(uf)z! O dr*da + O(e)
. 5 iam drtde £).
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Chapter 1. A Rewriting framework for asymptotic modeling

e Step 4. Assumption (1.16) =

0 1 0 0
v = —/il/ uo—vjj dotdx! — i/ uo—v1 datdxt — lil/ u1_U1 drtdx!
Qixgl O e Jaixor O Qixol 0%
0%v
1 0 1
— Ole).
" /mxmu axlaxﬁx +0()

e Step 5. The Green formula (1.12), Lemma 22, and passing to the limit when ¢ - 0 =

1

ou® 0
lil/ nv detdet = Iil/ 9y datda? + /{1/ llv datda?,
Qi xQL Qi xQL Oxt Qi xQl ox

e Step 6. Proposition 1 =
o’ N ou'
T 9t T Bt
|

Lis Ql-periodic.

Lemma 24 [Third Block: Microscopic Boundary Condition] i
Proof. In (1.19), we choose v € C5°(Q2% C°(2')).

e Step 1. The steps 1-5 of the second block =

ou’ ou®  ou!
ﬁl/ nu dxﬁdxl—/fl/ (ul—xli)v nri dxﬁdxl—/il/ (i—i-—ul)v da*dxt = 0.
QExQL Qi xTL o Qi xO1L oxt  Ox

e Step 2. Lemma 23 —

0
/ (ut — yclai)v np datds(zt) = 0. (1.20)

QixI! Oa*
e Step 3. Definition (1.17) of @' and Proposition 2 =
@t is Q'-periodic. (1.21)
|

Lemma 25 [Fourth Block: Macroscopic Boundary Condition] u° vanishes on T'*.
Proof. We choose v € C5°(Q),
e Step 1. The steps 1-5 of the second block and u* =0 on ' =
/ u’v npe ds(2f)da' = 0.
rtxQt
e Step 2. Proposition 1 —

u’ =0 on I'.
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1.3. Skeleton of two-scale modeling

1.3.3 Homogenized Model Derivation

Here we provide the reference proof of the homogenized model derivation. It uses Proposition
21 as an intermediary result. Let u®, the solution of a linear boundary value problem posed in

Q,

d, ., du(z), .
{ _%(a (x) dr )=[fin (1.22)
u®=0on I,

where the right-hand side f € L?(2), the coefficient a® € C*(Q) is eQ!-periodic, and there exist
two positive constants a and 8 independent ¢ such that

0<a<a(z)<p. (1.23)

The weak formulation is obtained by multiplication of the differential equation by a test function
v € C§°(Q2) and application of the Green formula,

KO/QM )‘i;; ZZ v =k /f (1.24)

It is known that its unique solution u° is bounded as in (1.15). Moreover, we assume that for
some functions a®(z') and fO(x%),

T(af) = a® and T(f) = f2(z*) + Oy l(e). (1.25)

The next proposition states the homogenized model and is the main result of the reference proof.
For 6' a solution to the microscopic problem (1.13) with g = 1, the homogenized coefficient
and right-hand side are defined by

06"\
a'? :/ a1+ -] dz'and f7 = 1O dat. (1.26)
X! ox! foX!

Proposition 26 [Homogenized Model] The limit u° is solution to the weak formulation

7 du® do°
f_— H, 0 7.4
/ma g dx /mf v dx (1.27)

for all v° € C°(QF).
The proof is split into three lemmas.

Lemma 27 [Fifth Block: Two-Scale Model] The couple (u°,u") is solution to the two-scale
weak formulation

o’ out\ [ ol
’ e — 0,0 7.47.1
/M“ <8xﬂ +3x1) (axﬁ * axl) di’dz /mmlf O difdat (1.28)

for any v° € C3°(¥) and v*' € C(QF, C(QY)).

Proof. We choose the test functions v* € C3°(), v € C°(U, G2 (Q1)).
e Step 1 Posing v = B(v” + ev') in (1.24) and Proposition 15 =

B
Bv € C° () andﬁo/a Cf;;d (vda—jl—ev /va + ev') da.
Q
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Chapter 1. A Rewriting framework for asymptotic modeling

e Step 2 Propositions 16 and 17 —

du® o’ 0
@ [ (G oo [ e 000

e Step 3 Definition 13 and Proposition 7 —

dut . (O Ovt
1 T(a)T =+ o | dafdat = 1/ T(f) o° datdat (12
K /mml (a%) (dx)(axﬂ+ax1) datda' = K e (f) v° datda' +O(e). (1.29)

e Step 4 Definitions (1.25), Lemma 21, and passing to the limit when ¢ — 0 =

ou’ out\ (o ov'
Naz+-7 — 4+ — f el — 0,0 7.4 7.1
/mxgl ¢ (83:11 + 8351) (axﬁ + @3:1) da*dx /mxgl frv” datdx

which is the expected result.

|
ou’

Lemma 28 [Sixzth Block: Microscopic Problem] u' is solution to (1.13) with p = 9t

and

oat ou® 96!

ox'  Oxt Ozt
Proof.  We choose v° = 0 and v!(2% ') = w(z!)p(z*) in (1.28) with ¢ € C>®(QF) and
wh € C2(Q).

e Step 1 Proposition 1, Lemma 22, and the linearity of the integral =—

ot dwt oul owt
/Qla agj‘l axl dr = —w G ﬁ dx. (130)
0
e Step 2 Proposition 20 with u = B oy =
out  ou’ 06’
oxt Ozt Ox!

as announced.
|
Lemma 29 [Seventh Block: Macroscopic Problem] u° is solution to (1.27).

oY 06!

Proof. We choose v° € C5°(Q) and v! = Sl BT

€ C° (W, Cgo(QY)) in (1.28).

e Step 1 Lemma 28 —

ou’ 90" oul\ [’ 06 o
0 b Rl f7.1 0,0 7,471
/mxﬂla (aﬁ + oIS c%ﬁ) <8xﬁ + 9l 8xﬁ) dx*dx /mxgl fov" dafdxt. (1.31)

e Step 2 Factorizing and definitions (1.26) =

8u8v
li_ H,0 #
/ma 8xﬁ8xﬂd /mfvdx.
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1.4. Rewriting strategies

1.4 Rewriting strategies

In this section we recall the rudiments of rewriting, namely, the definitions of terms over a
signature, of substitution and of rewriting rules. We introduce a strategy language: its syntax
and semantics in terms of partial functions. This language will allow us to express most of the
useful rewriting strategies.

1.4.1 Term, substitution and rewriting rule.

We start with an example of rewriting rule. We define a set of rewriting variables X = {z,y}
and a set of function symbols ¥ = {f, g,a,b,c}. A term is a combination of elements of X U,
for instance f(x) or f(a). The rewriting rule f(z) ~» g(x) applied to a term f(a) is a two-
step operation. First, it consists in matching the left term f(x) with the input term f(a) by
matching the two occurences of the function symbol f, and by matching the rewriting variable
x with the function symbol a. Then, the result g(a) of the rewriting operation is obtained by
replacing the rewriting variable = occuring in the right hand side g(z) by the subterm a that
have been associated to x. In case where a substitution is not possible, as in the application of
f(b) = g(x) to f(a), we say that the rewriting rule fails.

Definition 30 Let X be a countable set of function symbols, each symbol f € ¥ is associated
with a non-negative integer n, its arity ar(f) i.e. the number of arguments of f. Let X be
a countable set of variables such that X N X = (. The set of terms, denoted by T (X, X), is
inductively defined by

o X CT(X,X) (i.e. every rewriting variable is a term),

e for all f € ¥ of arity n, and all t,...,t, € T(X,X), the expression f(ti,...,t,) €
T(X,X) (i.e. the application of function symbols to terms gives rise to terms).

We denote by ¥, the subset of X of the function symbols of arity n. For instance in the example
f and g belong to ¥; while a and b belong to Xj. Two other common examples of terms are the
expressions Integral($Y, f(z),x) and diff (f(x),z) which represent the expressions [, f(z)dx

d
and M Notice that Integral € X3, diff€ X9, f € ¥ and 2,0 € ¥,. For the sake of

simplici%y we often keep the symbolic mathematical notation to express the rewriting rules. In
the following we see a term as an oriented, ranked and rooted tree as it is usual in symbolic
computation. We recall that in a ranked tree the child order is important. For instance the tree
associated to the term Integral(S), f(x),z) has Integral as its root which has three children in
the order €2, f, x and f has one child .

Definition 31 A substitution is a function o : X — T(3,X) such that o(z) # x for x €
X. The set of variables that o does not map to themselves is called the domain of o, i.e.
Dom(o) ={x € X | o(z) # z}. If Dom(o) = {x1, -+ ,x,} then we might write o as o = {x;

ti, ...,y — tu} for some terms ty,...t,. Any substitution o can be extended to a mapping
T, X) = T(E,X) as follows: for x € X, 6(x) = o(x), and for any non-variable term
s = f(s1,-++,8n), we define 6(s) = f((s1), - ,0(sn)). To simplify the notation we do not

distinguish between a substitution o : X — T (X, X) and its extension ¢ : T (X, X) — T (X, X).
The application of a substitution o to a term t, denoted by o(t), simultaneously replaces all
occurrences of variables in t by their o-images.
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Chapter 1. A Rewriting framework for asymptotic modeling

For instance, the maping o defined by o(z) = a is a substitution and its extension & maps f(x)
and g(x) into f(a) and g(a).

A rewriting rule, is a pair (I,7) where [ and r are terms in 7 (X, X); it will also be denoted by
[ ~ r. We observe that for any two terms s, ¢, there exists at most one substitution ¢ such that
o(s) =t. We mention that a rewriting rule stands for the rule application at the top position.
It is more useful to be able to apply a rule at arbitrary position, and more generally to specify
the way rules are applied. For this purpose we next present a strategy language that allows
to built strategies out of basic constructors. To this end, we introduce strategy constructor
symbols ;,~», &, i, etc that do not belong to ¥ U X'. Informally, the constructor ”;” stands
for the composition, ” & 7 for the left choice, Some for the application of a strategy to the
immediate subterms of the input term, n(z) for the fail as identity constructor, Child(j, s)
applies the strategy s to the j™ immediate subterm, X is a fixed-point variable, and p is the
fixed-point or the iterator constructor, its purpose is to define recursive strategies. For example,
the strategy pX.(s; X) stands for s;s;. .., that is, it is the iteration of the application of s until
a fixed-point is reached. The precise semantics of these constructors is given in Definition 33.

Definition 32 (Strategy) Let F be a finite set of fized-point variables. A strategy is inductively
defined by the following grammar:

su=l~1r | 555 | s@s | nis) | Some(s) | Child(j,s) | X | pX.s (1.32)

where j € N and X € F. The set of strategies defined from a set of rewriting rules in T (X, X) X
T(3,X) is denoted by St.

We denote by I the failing result of a strategy and 7*(3,X) = T (2, X) UF.

Definition 33 (Semantics of a strategy) The semantics of a strategy is a function [.] :
Sty = (THE, X) = TH(X, X)) defined by its application to each grammar component:

[s](F) =F
o(r) ifo(l)=
[~ rlt) = F otherwise
[s15 82 () = [s2] (1] (2))
[ [s1]()  if [sa](t) #F
]

51D s2] (£) = [se](t)  otherwise
i if [s](t) =
[n(s)1(2) {[[ 1(t) otherwise
P if ar(t) =0
[Some(s)](t) = { F@(s)E1), - (s () ift = F(trs.. ) and 3i € [Ln] st [s](t) £ F
F otherwise

o | F dfar(t) =0, ort= f(t1,...,tn) and j >n
[Child(j, s)I(8) = {f(tl,...,tj_l, [s1(t5),tjs1, - tn) ift = f(t1,...,t,) and j < n.

The semantics of the fixed-point constructor is more subtle. One would write:
[uX.s] = [s[X/uX.s]] (1.33)
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but this equation cannot be directly used to define [uX.s], since the right-hand side contains
as a subphrase the phrase whose denotation we are trying to define. Notice that the equation
(1.33) amounts to saying that [uX.s] should be the least fixed-point of the operator F"

F(X) — )\X(T*(Z,X)—ﬂ'*(z,)()) [[S]] (T*(Z,X)—ﬂ'*(E,X))'

Let D =T*(%,X) — T*(3,X) and define C a partial order on D as follows:
w C w' iff graph(w) C graph(w').
Let L be the function of empty graph, and let

Fo=1
F, = F(F,_1).

One can show, using Knaster-Tarsky fixed-point theorem [55|, that F, is the least fixed-point
of the operator F', that is
Flw)=w = Fx Cw.

Such fixed point equations arise very often in giving denotational semantics to languages with

recursive features, for instance the semantics of the loop “while" of the programming languages
53, §9, §10].

Example 34 Out of the basic constructors of strategies given in Definition 32, we built up
some useful strategies. The strateqy Outer Most(s) applies the strategy s to an input term t
in a top down way starting from the root, it stops when it succeeds. That s, if the strategy s
succeeds on some subterm t' of t, then it is not applied to the proper subterms of t'. The strategy
TopDown(s) behaves exactly like Outer Most(s) apart that if the strategy s succeeds on some
subterm t' of t, then it is also applied to the proper subterms of t'. The strategy InnerMost(s)
(resp. BottomUp(s)) behaves like InnerMost(s) (resp. BottomUp(s)) but in the opposite
direction, i.e. it traverses a term t starting from the leafs. The strategy Normalizer(s) iterates
the application of s until a fived-point is reached. The formal definition of these strategies
follows:

OuterMost(s) == uX.(s @ Some(Outer Most(X))),
TopDown(s) := pX.(s; Some(TopDown(X))),
InnerMost(s) := pX.(Some(InnerMost(X)) @ s),
BottomUp(s) := uX.(Some(BottomUp(X)); s),
Normalizer(s) := puX.(s; X).

Example 35 Let the variable set X = {y, z,t,w} and the partition X = 3 UX1UX, of the set of
function symbols with respect to their arity with Lo = {x, z', 2% 0Q,Q, ¢}, 31 = {u,v,n, 0, B},
Yo = {derivative}, X3 = {Integral}. We present the strategy that rewrites the expression

d
v :/ u(z) n(x) B(v(zt,2?)) do — / u(z) —(B(v(z', 2%))) dr + O(e),
e Q dx
taking into account that B(v) vanishes on the boundary OS). This term is written under math-

ematical form for simplicity, but in practice it is written from the above defined symbol of
functions. Remark that the expression B(v(z',z?)) is a function of the variable x but this does
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Chapter 1. A Rewriting framework for asymptotic modeling

not appear explicitly in this formulation. Such a case cannot appear when the grammar for
terms introduced in the next section 1s used. We need the two rewriting rules

rlzz/wdtw w dt,
o0 o0
ro 1= B(U(Z7y)) ~ 07

and the strateqy Outer Most already defined. Notice that the rule r has no effect but to detect
the presence of the integral over the boundary. Finally, the desired strateqy, denoted by F', is:

F = Outer Most(ry; Outer Most(rs)),

and the result is

[F](T) = /8 u(e) n(a) B(0) do / () %

Q

(B(v(z', 2%))) dz + O(e).

1.4.2 Rewriting modulo equational theories

So far the semantics of strategies does not take into account the properties of some function
symbols, e.g. associativity and commutativity equalities of "+". In particular the application
of the rule a + b ~» f(a,b) to the term (a + c) + b fails. More generally we next consider the
rewriting modulo an equational theory, i.e. a theory that is axiomatized by a set of equalities.
For the sake of illustration, we consider the commutativity and associativity theory of +,
E={rz+y=y+uz,(x+y)+2z=2a+ (y+2)} and the rewrite rule f(z +y) ~ f(z)+ f(y)
applying the linearity rule of a function f. Its application to the term f((a+ b) + ¢) modulo E
yields the set of terms {f(a +b) + f(c), f(a) + f(b+¢), f(b) + f(a+ ¢)}. In the following, we
define part of the semantics of a strategy modulo a theory, we use the notation P(7 (X, X)) to
denote the set of subsets of T (3, X).

Definition 36 (Semantics of a strategy modulo) Let be E be a finitary equational the-
ory, the semantics of a strateqy modulo E is a function []" St — (P(TH(8, X)) —
P(T(2,X))) that is defined by

[51° ({11 1)) = U [T (1)

[ 10 = Uy ) £ = o500 =+
fssi52]“(0) = [l “([:]°(1)

52 @ 5:]°(1) = {[[s PO il £

[s205(t)  otherwise

{t} if [s]"(t) = {F}

[s]Z(t) otherwise.

[n()]"(t) = {

The semantics of Some and C'hild is more complex and we do not detail it here. The semantics
of the fixed-point operator is similar to the one given in the rewriting modulo an empty theory.
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1.4.3 Conditional rewriting

Rewriting with conditional rules, also known as conditional rewriting, extends the basic rewrit-
ing with the notion of condition. A conditional rewrite rule is a triplet:

(I,r,c)

where c is a constraint expressed in some logic. The semantics of the rule application is given
by
Uj{oj(r)} if the formula o;(c) can be derived from £,

F otherwise.

H(Z7T7 C)]]E(t) = {

The set of strategies defined over rewriting rules (I,r,¢) € T x T x 7. is denoted by Sr ..

1.4.4 Rewriting with memory

Some definitions or computations require storing the history of the transformations of some
terms. To carry on, we introduce a particular function symbol M € X5 of arity two to repre-
sent the memory. Intuitively the term M(¢1, %) represents the term ¢, besides the additional
information that ¢, was transformed to ¢; at an early stage. From this consideration if fol-
lows that any strategy applied to M(t1,3) should only be applied to t;. Formally, we define
the semantics of strategy application taking into account the memory as a partial function:
[[]] c STy — (TH(E, &) = T¥(X, X)) so that:
Im(t) = ([[s]]M(tl),tg) if t = M(ty,t2), and behaves like [.], otherwise. That is,

Is

[sJu(F) =
o) ifo(l)=t

[~ rhaa(t) = F otherwise

[s15 s2lua(t) = [s2]na([s1]m(?))

o s [s1m(®)  if [s1]m(t) #F

[51 & s2u(®) = [so]m(t) otherwise

etc.

1.5 A Symbolic Computation Framework for Model Deriva-
tion

In this section we propose a framework for the two-scale model proofs. As in Example 35, the
latter are formulated as rewriting strategies. We notice that the following framework differs
from that used in Example 35 in that it allows for the complete representation of the data. It
does not rely on external structures such as hash tables. To this end, we define the syntax of
the mathematical expressions by means of a grammar G.

1.5.1 A Grammar for Mathematical Expressions

The grammar includes four rules to built terms for mathematical functions F, regions R, mathe-
matical variables V, and boundary conditions C. It involves X reg, Xvar, Xrun; Zoper, and Xcons
which are sets of names of regions, variables, functions, operators, and constants so subsets of
>o. Empty expressions in Yge, and Ypy,, are denoted by Ly and Lg. The set of usual algebraic
operations Yo, = {+,—, X, /, "} is a subset of ¥5. The elements of Xr,,. = { Unknown, Test,
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Known, Lry,e} C 3o, Lrype denoting the empty expression, are to specify the nature of a
function, namely an unknown function (as u®, u°, u! in the proof), a test function (as v, v°,
v') in a weak formulation or another known function (as a®, f¢, a°, f° or np1). The boundary
conditions satisfied by a function are specified by the elements of Ypc = {d,n, pd, apd,t} C X
to express that it satisfies Dirichlet, Neuman, periodic, anti-periodic or transmission condi-
tions. The grammar also involve the symbols of functions Reg, Fun, IndexedFun, IndexedReg,
IndexedVar, Oper, Var, and BC that define regions, mathematical functions, indexed func-
tions or regions or variables, operators, mathematical variables and boundary conditions. The

grammar reads as

F=(FF) | d|V |
Fun(f,[V,...,V],[C,...,C,K) |
IndexedFun(F,V) |
Oper(A,[F,....F],[V,....,V],[V,...,V],[d,...,d]) |
Ly | M(F,3),

R ::=Reg(Q,[d,...,d,{R,..., R} R, F) |
IndexedReg(F,V) |
Lz | M(R,R),

V ::=Var(z,R) | IndexedVar(V,V) | M(V,V),

C:=BC(¢,R,F) | M(C,0),

where the symbols Q, d, ®, f, K, A, x and c hold for any function symbols in Xprey, Xcons,
X 0py LFuns DTypes 20per; 2vars ald Xpc. The arguments of a region term are its region name,
the list of its space directions (e.g. [1,3| for a plane in the variables (z1,x3)), the (possibly
empty) set of subregions, the boundary and the outward unit normal. Those of a function
term are its function name, the list of the mathematical variables that range over its domain,
its list of boundary conditions, and its nature. Those for an indexed region or variable or
function term are its function or variable term and its index (which should be discrete). For
an operator term these are its name, the list of its arguments, the list of mathematical variable
terms that it depends, the list of mathematical variable terms of its co-domain (useful e.g. for
T when the image cannot be deduced from the initial set), and a list of parameters. Finally,
the arguments of a boundary condition term are its type, the boundary where it applies and
an imposed function if there is one. For example, the imposed function is set to 0 for an
homogeneous Dirichlet condition and there is no imposed function in a periodicity condition.
We shall denote by Tx(3,0), T#(2,0), Tv(X,0), and Te(X, 0) the set of terms generated by the
grammar starting from the non-terminal R, F, V. and C. The set of all terms generated by the
grammar (i.e. starting from R, F, V, or @) is denoted by Tg(X, (). Finally, we also define the
set of terms Tg(2, X') where each non-terminal R, F, V, and € can be replaced by a rewriting
variable in X'. Equivalently, it can be generated by the extension of § obtained by adding " |
2" with x € X in the definition of each non-terminal term. Or, by adding N ::= x, with x € X
for each non-terminal N.

Example 37 Throughout this Chapter, an underlined symbol represents a shortcut whose name
corresponds to the term name. For instance,

Q = Reg(Q7 [2]7 @727 Q)a where I = Reg(ra []a wa Lg, J—?);
n = Fun(n, [2], ], Known), 2’ = Var(z,Q') and ' = Reg(,[2],0,T, Lg)
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1.5. A Symbolic Computation Framework for Model Derivation

represents a region-term a one-dimensional domain named 2, oriented in the direction xo,
with boundary I and with outward unit normal n. The shortcut I is also for a region term
representing the boundary named T,

Example 38 An unknown function u(z) defined on Q satisfying homogeneous Dirichlet bound-
ary condition u(x) =0 on L is represented by the function-term,

u(z) = Fun(u, [z],BC(d, L, 0), Unknown) where z = Var(zx,{2).

1.5.2 Short-cut Terms

For the sake of conciseness, we introduce shortcut terms that are constantly used in the end
of the Chapter: Q € Tg(X,X), z € Ty(X, X) defined in Q, I € Tx(X, X) used for (discrete)
indices, i € Ty(X,X) used as an index defined in I, u € T3, X) or u(z) € T5(X,X) to
express that it depends on the variable z and u; the indexed-term of the function u indexed by
i. Similar definitions can be given for the other notations used in the proof as Qﬁ, zt QY 2,
Q' 2/, v(z*, 21) ete. The operators necessary for the proof are the integral, the derivative, the
two-scale transform 7', its adjoint 7™, and B. In addition, for some extensions of the reference
proof we shall use the discrete sum.

Instead of writing operator-terms as defined in the grammar, we prefer to use the usual math-
ematical expressions. The table below establishes the correspondance between the two formu-
lations.

/gdg = Oper(Integral,u, [z],[],[]),

% — Oper(Partial, u, [z], [z], ).
tr(u, z)(z") = Oper(Restriction, u, [z], [2],[]),
T(u,z)(z" z') = Oper (T, u, [@L (2%, 2], [e]),
T (0, 2, 2']) (@) = Oper(T", v, [z, 2'], ], £]),
B(v, [2*,z"])(z) = Oper (B, v, [z*, 2", [z], [¢]),
(Sum, w;, [4], [], [])-

s M
I
Il
(@]
e
[0}
H

The multiplication and exponentiation involving two terms f and g are written fg and f9 as
usual in mathematics. All these conventions have been introduced for terms in 7 (3, (). For
terms in 7 (2, X) as those encoutered in rewriting rules, the rewriting variables can replace any
of the above short cut terms.

Example 39 The rewriting rule associated to the Green rule (1.12) reads

—U dxw—/u— d:c—l—/ r(u) tr(v) n dz'.

with the short-cuts T = Reg(T',d1,0, Ly, Ly), © = Reg(2,d2,0,T,n), z = Var(z,Q) and 2’ =
Var(z,L'). The other symbols u, v, x, Q, I, d1, d2, n are rewriting variables, and for instance

% = Oper(Partial,u, z,|[],[]).
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Chapter 1. A Rewriting framework for asymptotic modeling

Applying this rule according to an appropriate strateqy, say the top down strateqy, to a term in
T(X,0) like
0f(2)
U= / —5—9(2) dz,

for a given variable term z and function terms i, g- As expected, the result is

/f—‘dz%—/ig

with evident notations for n and 2'.

1.5.3 A Variable Dependency Analyzer

The variable dependency analyzer © is related to effect systems in computer science [51]. It is a
function from 73(X, () to the set P(Tv(3,0)) of the parts of Ty(X, ). When applied to a term
t € T#(X,0), it returns the set of mathematical variables on which ¢ depends. The analyzer ©
is used in the condition part of some rewriting rules and is inductively defined by

O(d) =0 for d € Tcons,
O(z) = {z} for z € Ty(%,0),
O(®(u,v)) = O(u) UB(v) for u,v € T3(X,0) and ® € 3o,

(z',..,2") = {z,..,2"} for u € T5(%,0) and z', .., 2" € Ty(%,0),
= O(u) for u € Ty(%, @) and i € Ty(%,0),
) = () U UO) for . u" € T5(5,0).

du O(u) if O(z) C O(u),
@(8_;> B { 0 g)ﬁlerWls(e,) "
O(tr(u, z)(z)) = O(z)),
O(T (u, z)(z*, 2") = (B(w) \ O(z)) UO([z*, z']) if O(z) NO(u) # 0,
O(T* (v, [z", z'])(z)) = (O(v) \ ©([z*, z'])) UB(z) if O([z*, 2']) N O(v) # 0,
O(B(v, [z', z'])(z))) = (B(v) \ O([z*, 2'])) U O(z) if O([z*, 2']) N O(v) # 0,
(

We observe that these definitions are not very general, but they are sufficient for the applications
of this Chapter. To complete the definition of ©, it remains to define it on memory terms,

Example 40 For

v Iﬂ :El
v = /m[/gl T(E(&),E)(ﬂ,gl)%df]@u € T+, 0),
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the set O(V) of mathematical variables on which VU depends is hence inductively computed as fol-
lows: ©(u(z) = {}, OT(u(x), 2)(e ")) = {z,2'}, O(ule?, 1>> = {ah,2'), O(2e) -

'UIuw U"Euw
{zf,2'}, O(T(ulz),z) (¢f,2") 2E2)) = {of 2"}, O([q T(ul),z)(a, 2") H5Eda!) =
{2*}, and ©(V) = 0, that is, V is a constant function.

1.5.4 Formulation of the Symbolic Framework for Model Derivation

Now we are ready to define the framework for two-scale model derivation by rewriting. To
do so, the rewriting rules are restricted to left and right terms (I,7) € Tg(X, X) x Tg(2, X).
Their conditions ¢ are formulas generated by a grammar, not explicited here, combining terms
in 7g(X,X) with the usual logical operators in A = {V, A, ], €}. It also involves operations
with the dependency analyzer ©. The set of terms generated by this grammar is denoted by
Te(X,X,G6,0,A).

It remains to argue that, given a strategy s in ST;;(E,X),TL(Z,X,Q,G),A)a the set of terms Tg(%, 0)
is closed under the application of s. It is sufficient to show that for each rewriting r rule in s,
the application of r to any term ¢ € Tg(X,0) at any position yields a term in 7g(X, ). As an
example, Tg(2, () is not closed under the application of the rule = ~ Q, where x is a variable.
But it is closed under the application of the linearity rule fz f+gde ~ fz fdz+ fz gdx at any
position, where f, g, x, z are rewriting variables. The argument is, since fz f+gdreTz%,0),
then f+g € T3(%,0), and hence f,g € T#(3,0). Thus, [, fdx+ [ gdx € T5(X,0). That is, a
term in 73(3, () is replaced by a another term in 7#(3,()). A more general setting that deals
with the closure of regular languages under specific rewriting strategies can be found in [35].
A model derivation is divided into several intermediary lemmas. Each of them is intended to
produce a new property that can be expressed as one or few rewriting rules to be applied in
another part of the derivation. Since dynamical creation of rules is not allowed, a strategy is
covering one lemma only and is operating with a fixed set of rewriting rules. The conversion of
a result of a strategy to a new set of rewriting rules is done by an elementary external operation
that is not a limitation for generalizations of proofs. The following definition summarizes the
framework of symbolic computation developed in this Chapter.

Definition 41 The components of the quintuplet = = (X, X, E, G, ©) provide a framework for
symbolic computation to derive multi-scale models. A two-scale model derivation is expressed

as a strategy ™ € S75(3,x),7.(5,x,9.0,0) Jor which the semantics [7]7 is applicable to an initial
expression ¥ € T (3, 0).

In the end of this section we argue that this framework is in the same time relatively simple,
it covers the reference model derivation and it allows for the extensions presented in the next
section.

The grammar of terms is designed to cover all mathematical expressions occuring in the proof
of the reference model as well as of their generalizations. A term that follows the grammar
includes locally all useful information. This avoids the use of external tables and facilitates
design of rewriting rules, in particular to take into account the context of subterms to be
transformed. It allows also for local definitions, for instance a same name of variable x can
be used in different parts of a same term with different meaning, which is useful for instance
in integrals. A limitation regarding generalizations presented in the next section, is that the
grammar must cover by anticipation all needed features.

33



Chapter 1. A Rewriting framework for asymptotic modeling

Each step in the proof consists in replacing parts of an expression according to a known math-
ematical property. This is well done, possibly recursively, using rewriting rules together with
strategies allowing for precise localization. Some steps need simplifications and often use the
second linearity rule of a linear operator, A(Au) = MAu when X is a scalar (or is independent
of the variables in the initial set of A). So variable dependency of each subterm should be de-
termined, this is precisely what O, the variable dependency analyzer, is producing. The other
simplifications do not require the use of ©. In addition to the grammar G, the analyzer © must
be upgraded in view of each new extension.

In all symbolic computation based on the grammar G, it is implicitely assumed that the deriva-
tives, the integrals and the traces (i.e. restriction of a function to the boundary) are well defined
since the regularity of functions is not encoded.

Due to the algebraic nature of the mathematical proofs, this framework has been formulated
by considering these proofs as a calculus rather than formal proofs that can be formalized
and checked with a proof assistant [8, 57|. Indeed, this is far simpler and allows, from a
very small set of tools, for building significant mathematical derivation. To cover broader
proofs, the framework must be changed by extending the grammar and the variable dependency
analyzer only. Yet, the language Tom [5] does not provide a complete environment for the
implementation of our framework since it does not support the transformation of rewriting
rules, despite it provides a rich strategy language and a module for the specification of the
grammar.

1.6 Transformation of Strategies as Second Order Strate-
gies

For a given rewriting strategy representing a model proof, one would like to transform it to
obtain a derivation of more complex models. Transforming a strategy ™ € Sy(x x) is achieved
by applying strategies to the strategy = itself. For this purpose, we consider two levels of
strategies: the first order ones S(x x) as defined in Definition 32, and the strategies of second
order in such a way that second order strategies can be applied to first order ones. That is, the
second order strategies are considered as terms in a set 7(X, X) of terms where 3 and X’ remain
to be defined. Given a set of strategies S7(x x) that comes with a set of fixed-point variables
F, we pose ¥ D YU {~,;,®, Some, Child,n, u} UF. Let X be a set of second order rewriting
variables such that X N (X UX) = (. Notice that first order rewriting variables and fixed-point
variables are considered as constants in 7 (X, X), i.e. function symbols in ¥y. Notice also that
the arity of the function symbols ~,; &, Child, pu is two, and the arity of Some and 7 is one.
In particular, the rule [ ~» r can be viewed as the term ~~ ([,r) with the symbol ~» at the
root, and the strategy ©X.s viewed as the term p(X,s). This allows us to define second order
strategies ET@;) by the grammar

Su=lwr | §5 | 5@s5 | 7(s) | Some(s) | Child(j,s) | X | pX.5 (1.34)

Again we assume that the symbols ~,7, @, . .. of the second order strategies do no belong to X.
The semantics of the strategies in ET(E,Y) are similar to the semantics of first order strategies.
In addition, we assume that second order strategies transform first order strategies, to which
they are applied, into first order strategies. Composing several second order strategies and
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S1

%

52
\
S

\
S3

%

3

2

Figure 1.2: An example of the composition of transformations of strategies.

applying such composition to a given first order strategy s provide successive transformations
of s.

In the following example we illustrate the extension of an elementary strategy which is a rewrit-
ing rule.

Example 42 For the set X = {i,j,z, 2% 2, u,e} we define s1, so, 53, and sy3 four rewriting
rules,

foo1
o= T8 ) (ot o) = DTN

or € ox!

ou 10T (u, ) (2%, x1)
f 1 ~ ) )

axz7$)(:€ 7‘1: ) € axl

(2

for z € Q and (2, 21) € QF x QF,

sp:=T( for x € Q and (2%, 2") € OF x QF,

0 10T ‘!

53 1= T(a—z,x)(:cﬁ,xl) pl (u’gi(lm ) for x € Q; and (2%, 2") € QE x Q]
ou 10T (u, z)(zt, 2t

So3 1= T(axi,x)(:cu,xl) A ( aig ) for © € Q; and (2%, 2") € Qg x €.

The rule sy is encountered in the reference proof, ss is a (trivial) generalization of s1 in the
sense that it applies to multi-dimensional regions Q' referenced by a set of variables (x});, and
s3 is a second (trivial) generalization of sy on the number of sub-regions (€2;);, (Qg)] and (£2);
in Q, QOF and Q. The rule so3 is a generalization combining the two previous generalizations.
First, we aim at transforming the strategy si into the strateqy so or the strateqy ss. To this
end, we introduce two second order strategies with X = {v,z} and ¥ D {i, j, Q, QF, QY
Partial, Indexed Fun, IndexedV ar, IndexedReg},

_ - Ov _ Ov
Il = TopDown(&«%aZ‘)

[T, := TopDown(QQ;); TopDown(Qﬁ«EQg-); TopDown(Ql«EQ})

_ _ ov _ 0
Notice that 11y (resp. 1ly) applies the rule a_”@ Y (resp. 1=, QﬁQQg, and Qlw_%le) at all
z Zi

of the positions ® of the input first order strategy so that

1:.[1(81) = S92 and 1:12(81) = S3.

®Notice the difference with Outer Most which could not apply these rules at any position.
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Chapter 1. A Rewriting framework for asymptotic modeling

Once I1; and 1y have been defined, they can be composed to produce S :
1:.[2].:[1(81) = S923 OT ].:[11:[2(81) = S923.
The diagram of Figure 1 illustrates the application of I, Iy and of their compositions.

The next example shows how an extension can not only change rewriting rules but also to
add new ones.

Example 43 To operate simplifications in the reference model, we use the strategy

s1 1= OuterMost(g—z ~ 1).

In the generalization to multi-dimensional regions, it is replaced by two strategies involving the
Kronecker symbol 0, usually defined as 6(i,j) =1 if i =5 and §(i,j) = 0 otherwise,

Ox;

: = QuterMost | =— ~~ d(i, ), x =
So uter M os <8yj (17])7 x y>7
sy : = OuterMost (6(i,j) ~ 1, i =j),
sy : = OuterMost (6(i,7) ~ 0, i # 7).

The second order strategy that transforms sy into the strategy Normalizer(sq @ s3 @ s4) 18

I1 := Outer Most(s;~sy @ 53 ® 84).

36



1.7. Implementation and Experiments

1.7 Implementation and Experiments

The framework presented in Section 1.5.4 has been implemented in Maple®. The implemen-
tation includes the language Symbtrans of strategies already presented in [6]. The derivation
of the reference model presented in Section 1.3 has been fully implemented. It starts from an
input term which is the weak formulation (1.24) of the physical problem,

ou 0v B
/Qa—za—g dz = /[Q dz, (1.35)

where a = Fun(a, [©], [ |, Known), u = Fun(u, [], [Dirichlet], Unknown),

v = Fun(u, [Q], [Dirichlet], Test), Q2 = Reg(L, [1],0,T, ng), L = Reg(T", [],0, L, Ly), Dirichlet =
BC(Dirichlet,I',0) and where the short-cuts of the operators are those of Section 1.5.2. The
information regarding the two-scale transformation is provided through the test functions. For

instance, in the first block the proof starts with the expression

U= / %B(y(x_ﬁ,x_l)(z) da,

Z

where the test function B(v(z#, 2!)(z) is also an input, with v = Fun(a, [2#, 2!], [Dirichlett], Test),
Q! = Reg(Q,[1],0, T, ng1), 't = Reg(I'', [],0, L, L), and Dirichlett = BC(Dirichlets, I, 0).

The proofis divided into five strategies corresponding to the five blocks of the proof, each ending
by some results transformed into rewriting rules used in the following blocks. The rewriting
rules used in the strategies are FO-rules and can be classified into the three categories.

e Usual mathematical rules: that represent the properties of the derivation and integration
operators, such as the linearity, the chain rule, the Green rule, etc,

o Specialized rules: for the properties of the two-scale calculus, as those of the two-scale
transform, the approximation of B by the adjoint 7™ etc,

o Auziliary tools: for transformations of expressions format that are not related to operator
properties such as the rule which transforms ¢, = 1, into ¥, — ¢, = 0.

Usual Rules | Specialized Rules | Aux. Tools
Skeleton 53 14 28

Table 1.1: The number of first order rules used in the reference model.

The Table 1.1 summarizes the number of first order (FO) rules, used in the reference model,
by categories.

The reference model has been extended to cover three different kinds of configurations. To
proceed to an extension, the new model derivation is established in a form that is as close as
possible of the reference proof. The grammar and the dependency analyzer should be completed.
Then, the initial data is determined, and second order (SO) strategies yielding the generalized
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Chapter 1. A Rewriting framework for asymptotic modeling

model derivation are found and optimized. As it has been already mentioned, § and © have
already been designed to cover the three extensions.

The first generalization is to cover multi-dimensional regions, i.e. @ C R™ with n > 1. When
n = 2, the initial term is

Ju 0
ZZ/_Ja—xua%dw—/iydL

=1 j=1
where Q = Reg(2,[1,2],0,I',ng), a;; = Indexed(Indexed(a,j),i), i = Var(i,[), and I =

35
Reg(7,[1,2],0, Lg, L5) and the choice of the test function is trivially deduced. Then, the model
derivation is very similar to this of the reference model, see [47], so much so it is obtained simply
by applying the SO strategy Il defined in Example 42. This extension has been tested on the

four first blocks.

The second generalization transforms the reference model into a model with several adjacent
one-dimensional regions (or intervals) (€x)r=1_m so that € is still an interval i.e. Q C R.
For m = 2, the initial term is the same as (1.35) but with Q@ = Reg(€,[1], {Q41, 2}, [, ng),
Q) = Reg(Ql,[ ], 0, T'y,nq,), and Qs = Reg(£s, [1], 0, T'y,ng,). The two-scale geometrles,
all variables, all kind of functions and also the operators B and T' are defined subregion by
subregion. All definitions and properties apply for each subregion, and the proof steps are the
same after spliting the integrals over the complete region €2 into integrals over the subregions.
The only major change is in the fourth step where the equality u{ = u9 at the interface between
Q) and €, which is encoded as transmission conditions in the boundary conditions of u{ and
uy.

The third extension transforms the multi-dimensional model obtained from the first generaliza-
tion to a model related to thin cylindrical regions, in the sense that the dimension of €2 is in the
order of ¢ in some directions i € I% and of the order 1 in the others i € I* e.g. Q = (0,1) x (0, ¢)
where 1" = {2} and I* = {1}. The boundary I is split in two parts, the lateral part I, and
the other parts I'yiner where the Dirichlet boundary conditions are replaced by homogeneous
Neuman boundary conditions i.e. % = 0. In this special case the integrals of the initial term
are over a region whose size is of the order of ¢ so it is required to multiply each side of the
equality by the factor 1/e to work with expressions of the order of 1. Moreover, the macroscopic
region differs from €, it is equal to Qf = (0, 1) when the microscopic region remains unchanged.
In general, the definition of the adjoint 7% is unchanged but (Bv)(x) = v((2i)icr, (x — 2¥) /¢)
where zf is the center of the ¢/ cell in QF. It follows that the approximations (1.10, 1.11) are
between T* and eB with ), z; 81’@ instead of Y1, xl 9 With these main changes in the

definitions and the preliminary propertles, the proof steps may be kept unchanged.

Usual Rules | Specialized Rules | Aux. Tools
Multi-Dimension 6 0 4
Thin-Region 2 0 0
Multi-Region 3 0 0

Table 1.2: The number of first order rules used in the three extensions.

The mathematical formulation of the second and third extensions has been derived. This allows
for the determination of the necessary SO-strategies, but they have not been implemented nor
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tested. To summarize the results about the principle of extension of strategies, we show its
benefit through some statistics. In particular the main concerned is the reusability and the
extensibility of existing strategies. The Table 1.2 shows an estimate of the number of new
FO-rules for the three extensions in each category and for the first four blocks.

Usual Rules | Specialized Rules | Aux. Tools
Multi-Dimension 9 2 3
Thin-Region 0 0 0
Multi-Region 1 0 0

Table 1.3: The number of second order strategies used in the extension of proofs.

Input model | Resulting model | % Modi. FO-rules | % Modi. FO-strategies
Reference Multi-Dim. 16.6% 5%
Multi-Dim. Thin 0 0

Thin Multi-Reg. 0 2.5%

Table 1.4: The ratio of modified FO-rules and FO-strategies.

The Table 1.3 shows the number of SO-strategies used in each extension. Finally, the Table
1.4 shows the ratio of the modified FO-rules and the ratio of the modified FO-strategies. The
reusability ratio is high since most of the FO-strategies defined in the skeleton model are reused.
Besides very little number of SO-strategies is used in the extensions. This systematic way of
the generation of proofs is a promising path that will be further validated within more complex
configurations for which the proofs can not be obtained by hand. In the future, we plan to
introduce dedicated tools to aid in the design of composition of several extensions.
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Chapter 2

Extension Mechanisms and Their
Combination For Multi-Scale Model
Derivations

Abstract In this Chapter we address the problem of the combination of the extensions of the
proofs related to the multi-scale model derivations. For this purpose, we develop further exten-
ston mechanisms which turn to be more rudimentary than the ones introduced in Chapter 1.
The simplicity of these new mechanisms allows us to elaborate necessary conditions under which
these mechanisms can be correctly combined giving rise to rich extensions. We illustrate the
application of these extension mechanisms to many examples, namely to the derivation of the
linear operator associated to the microscopic problem in the reference proof. Thus the results
of this Chapter significantly improve the results of Chapter 1 since it is not possible, at least
n a straightforward way, to provide necessary conditions so that the extension mechanisms
established in Chapter 1 can be combined.

2.1 Introduction

We follow the approach presented in Chapter 1 that consists in formalizing the multi-scale proofs
by means of symbolic transformations. In particular, the mathematical properties, lemmas
and theorems are represented as rewriting rules; and the proofs are represented as rewriting
strategies.

In this Chapter we address the problem of the generation of complex models by reusing
the proofs and tools used for the generation of simpler models. More precisely, we address
the problem of the combination of the extensions. This problem can be formulated as follows:
Given a reference proof, an extension E; (viewed as a transformation) of the reference proof
to some general setting (e.g. multi-dimensional setting), an extension F5 of the reference proof
to an another general setting (e.g. thinness setting), we would like to construct an extension
E’ so that the application of E’ to the reference proof yields a proof that covers both the two
settings.

It turned out that it is not easy to study the combination of extensions if these extensions
are formulated as second-order strategies, as presented in Chapter 1. To solve this problem, we
refine the notion of extension by proposing two extension mechanisms:

1. Firstly, we follow the approach of Chapter 1 that consists in extending first-order rules by
means of second-order rules. Since, obviously, not every second-order rule is adequate for
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this extension, we provide some syntactic requirements under which second-order rules
can extend first-order ones. These syntactic requirements deal with the notions of:

(a) a second-order rule sy being subsumed by a second-order rule s;. This can be un-
derstood as s; being more general than s, and

(b) the mathematical equivalence between second-order rules. For instance, we would
like to formulate the idea that the two expressions Zij a; and a are mathematically
equivalent.

However, it is not clear how to build these second-order rules nor how to combine them.
This leads to the second point.

2. Secondly, we establish a second extension mechanism that consists in defining rudimentary
components, called added terms, allowing, on the hand, to express the kind of extensions
that we want to make, and, on the other hand, they can be combined to build more
complex components. These components will be inserted at certain positions of a FO-
term and a FO-rule. The careful choice of the added terms as well as the way they are
combined ensure the correctness of the extension.

As a concrete application, we apply the second extension mechanism to extend one step
of the two-scale model derivation of the stationary heat equation (Eq. (1.22)) to the multi-
dimensional and the vector-valued settings as well as their combination. We plan to implement
these extensions mechanisms with the symbolic transformation language if proposed in [6]. It
is worth mentioning that if was successfully used to encode many examples of the multi-scale
derivations e.g. [58, 59, 6].

2.1.1 Organization of the Chapter

The Chapter is organized as follows: Section 2.2 introduces computer science tools and con-
cepts which will be used to formulate the extension mechanisms for the multi-scale model
derivations. Namely, the notion of term rewriting will be introduced. In section 2.3 we intro-
duce the notion of second-order rewriting rules that operate on (first-order) rewriting rules and
we define a grammar for the mathematical expressions. In section 2.4 we introduce the first ex-
tension mechanism that consists in the extension of (first-order) rules by means of second-order
rules that fulfill some conditions. In section 2.5 we introduce the second extension mechanism,
called the outward growth, for the extension of mathematical expressions. In order to construct
complex extensions by means of outward growths, we define the operation of combination of
outward growths and its properties. In section 2.6 we formulate the outward growth mechanism
as second-order rewriting rules. Such outward growths are called second-order outward growth.
We define the operation of combination of second-order outward growths as well as its prop-
erties. In section 2.7 we introduce the mechanism of parametrization that can be composed
with the mechanism of outward growth. In section 2.8 we apply the mechanism of the outward
growth to extend one step in the two-scale model derivation of the stationary heat equation. In
section 2.9 we conclude the Chapter with several remarques and perspectives, namely we will
discuss the formulation of the outward growths and the parametrization and their combination
by means of strategies.
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2.2. Term rewriting

2.2 Term rewriting

In this section we introduce some computer science concepts and tools which will be used to
formulate the extension mechanisms for the multi-scale model derivations. In particular, we
shall introduce the notion of term rewriting. Before we formally introducing it, we firstly give
the main ideas behind it.

The set of rewriting terms, denoted by 7 (F, X), is built up as a combination of function
symbols in a set F and rewriting variables in a set X. Besides, each function symbol in F
comes with a fized arity. The arity of a function symbol can be viewed as the number of its
"arguments". Therefore, the function symbols F can be written as a union F = FyUF; ... UF,
of function symbols, where F; is a set of function symbols of arity i. In particular, function
symbols of zero arity, i.e. those in Fy, are called constants. We emphasize that function symbols
should not to be confused with mathematical functions, and on the other hand, rewriting
variables should not be confused with mathematical variables. For example, let X = () and
F = FoUFLUF, where Fy = {z,Q}, F; = f and F3 = Integral. Then, Integral(f, f(z),z)
is a term in 7 (F,X). It corresponds to the mathematical expression [, f(z)dx. Notice that
both = and €2 are function symbols of arity zero, i.e. they are constants in the rewriting sense
while z is a variable in the mathematical sense. To make clear this distinction, the mathematical
variables will be denoted by the letters z, v, 2, . . . however the rewriting variables will be denoted
by the capital letters X, Y, Z, ...

A rewriting rule is a pair

(L,r) e T(F,X)x T(F,X)

of terms. It transforms a term [ to the term r. We shall write [ — 7 instead of (/,r). For
example the equation sin(a)? = 1 — cos(a)? can be turned into two rewriting rules:

sin(X)? — 1 — cos(X)?, and
1 — cos(X)? — sin(X)?,
where sin, cos, 1, and '—" € F and X € X.
The grammars of mathematical objects such as regions, functions and variables are dis-
cussed. By the grammar, all mathematical information required i.e. the dimension of the

region, the domain of the variables and the variables of the functions, for the derivation are
saved, in fact, this grammar gives the base for the mathematical derivation.

2.2.1 Terms, positions, substitutions, rewriting rule, term rewriting

In what follows, let F be a set of function symbols, each symbol having a fixed arity and let X
be a set of variables.

Definition 44 (Terms) The syntax of the terms in T (F,X) is defined by the following gram-
mar:

t o= X | f(t,...,1)
where X € X, f € F.

Definition 45 (Positions [4]) Let ¢t be a term in T (F, X).
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1. The set of positions of the term t, denoted by Pos(t), is a set of strings® of positive
integers such that:

o I[ft=X € X, then Pos (t) = {e}, where € denotes the empty string.
o Ift=f(ty,....tn) then

Pos (t) = {e} U U {ip | p € Pos(t;)}.

We denote the set of the positions of a subterm r in a term t by Pos (t,r). The position
€ s called the root position of term t, and the function or variable symbol at this position
15 called root symbol of t.

2. The prefiz order defined as
p < q iff there exists p' such that pp’ = q (2.1)

is a partial order on positions. We say that the position p,q are parallel (p || q) iff p and
q are incomparable with respect to <. The position p is above q if p < q. The position p
is strictly above q, written p < q iff there exists p' such that p' # € and pp’ = q.

We define a binary relation T on the positions as follows:
pCq iff (p<qorplq) (2:2)

Similarly, we define a binary relation T on the positions as follows:
pCq iff (p<qorplq (2.3)

3. Forp € Pos(t), the subterm of t at position p, denoted by t|,, is defined by
15|E = t,
f(tlw-'atn) ‘iq = ti|q'
Note that, for p =iq,p € Pos(s) implies that t is of the form t = f (t1,...,t,) with i < n.
The replacement of a term u by a term s in t, denoted by tlu := s, is defined by

tlu = s] = ((tsllp)[sllps) - ) [sllp, where {py,....pn} = {p € Pos(t) s.t. t], = u}

4. For p € Pos(t), we denote by t[s], the term that is obtained from t by replacing the
subterm at position p by s, i.e.

ts], = s,

€

Fltrnta) sy = f(tl,...,ti[s]q,...,tn>

6A string is an element of N¥ = {¢} UNU (N x N)U(Nx N x N)U---. Given two strings p = p1p2...p, and
4= q1q2 - - - qm, the concatenation of p and ¢, denoted by p - ¢ or simply pq, is the string p1p2...Pnq1q2 - .. Gm-
Notice that (N, ) is a monoid with € as the identity element.

44



2.2. Term rewriting

5. By Var (t) we denote the set of variables occurring in t, i.e.
Var (t) ={x € X |Ip € Pos (t) : t|, = x}

We call p € Pos (t) a variable position if t|, is a variable.

Example 46 Let t be the term
t = Oper(Integral, Fun(u,Var(z,Reg({2,1))), Var(z,Reg(£2,1)),0) (2.4)

where Var(t) = (). It represents the norm of a function u in L? (). Its tree structure as well
as the positions of all its subterms are depicted in Figure 2.1.

‘Oper

2/\\4\

Integral Var

21/ \22 31/ \32

u Var = Reg

221/ \222 321/ \322

T Reg
2221 / \2222
Q 1

Figure 2.1: The tree structure of the term ¢ defined in Eq. (2.4) and the positions of its
subterms.

The set of all the positions of t can be computed as follows. Let t = f(t1,ta,t3,14), where
tr = th, ta = tly, ts =tz , ta = tls, tor = tloe = ta]o = (t|a]2) and toyr = ta|or = ta)i =

((tl2) [2) [1-

Firstly, notice that Pos (ta1) = Pos (taa1) = Pos (taga1) = Pos (tage) = {€}. Hence, the set
of positions Pos (t2), in the second branch of t, can be computed as follows:
Pos (tgg) = {E} U {1p | P € Pos (t221>} U {2]? | P € Pos (t222)}
= {e1,2,21,22}.
Pos (tggg) = {6} U {1p | pE Pos <t2221)} U {2]9 ‘ pE Pos (tzggg)}
= {67 ]'7 2} Y
Pos (ta) = {e}U{lp|p € Pos(tar)} U{2p | p € Pos(ts2)}
= {e,1,2,21,22,221,222} .
Secondly, notice that Pos (t31) = Pos (ts21) = Pos (ts2) = {€}. Hence the set of positions
Pos (ts3) in the third branch of t can be computed as follows:
Pos (ts2) = {e;U{lp|p € Pos(tsen)} U{2p|p € Pos(ts0)}
{¢,1,2}
Pos(tz) = {e}U{lp|p € Pos(ts1)} U{2p|p € Pos(tz)}
= {e1,2,21,22}.
Finally, since Pos (t1) = Pos (t4) = {€}, the set of positions Pos (t) of the term t is given by:

Pos(t) = {efU{lp|pePos(t1)} U{2p|p € Pos(tz)} U{3p|p € Pos(ts)}U{dp|pe Pos(ts)}
= {}u{1}U{2,21,22,221,222,2221,2222} U {3,31,32,321,322} U {4} .
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The claims in the following Proposition are not hard to prove.

Proposition 47 (See [4, Chapter 1]) Let s,t,r be terms and p,q be strings. The following
hold.

1. If pg € Pos (s), then s|pg = (s[p) |-

2. If p € Pos(s) and q € Pos (t), then

3. If pq € Pos(s), then

(s0tl,) 11, = 0],

4. If p and q are parallel positions in s (i.e. p || q), then

(st,) e = slo
(s10,) ), = (s071,) 14,
Proof. See Annex 2.10.1. H

Definition 48 (Substitution) A 7 (F, X)-substitution, or a substitution for short, is a func-
tion o : X — T(F,X) such that 0 (X) # X for only finitely many Xs. The (finite) set of
variables that o does not map to themselves is called the domain of o:

Dom (o) & {X € X | 0 (X) # X}
If Dom (o) = {X1, ..., X,,} then we write o as:
oc={X1—~o(Xy),.,Xpn—0o(X,)}.

The range of o is Ran (o) := {o (X) | X € Dom (0)}, and the variable range of o consists of
the variables occurring in Ran (o) :

VRan (o) = U Var (o (X)) .

XeDom(o)

A substitution o @ X — T(F,X)) uniquely extends to an endomorphism ¢ : T(F,X) —
T(F,X) defined by:

1. 0(X) =0(X) for all X € Dom(o),
2. 0(X) =X for all X & Dom(o),
3. 0(f(tr,....tn)) = f(@(t1),...,0(tn)) for f € F.
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2.2. Term rewriting

In what follows we do not distinguish between a substitution and its extension. The set of all
T (F, X)—substitutions will be denoted by Sub(T (F, X)) or simply Sub. The composition o~y
of two substitutions o and 7y is defined by

for all X € Dom(7).

Now we are ready to define the notions of rewriting rule and rewriting system.

Definition 49 (Rewriting rule, term rewriting system) A rewriting rule over a signa-
ture F is a pair (I,r) € T(F,X) x T(F,X), denoted by | — r, such that

Var(r) C Var(l). (2.5)

Usually, | # x with x € X. Besides, | is called the left-hand side of the rewriting rule and r the
right-hand side.
A term rewriting system (TRS) is a set of rewriting rules.

We next define the notion rewriting relation yielded by a rewriting system R. Intuitively, a
term t rewrites into a term w if there exists a rewriting rule of R that can be applied to position
of ¢t and yields the term u. The formal definition follows.

Definition 50 (Term rewriting) Given a rewriting system R, we say that t € T(F,X)
rewrites into a term u € T(F,X) w.r.t. R, denoted by t —x u, iff there exist

(1) a position p € Pos(t),
(ii) a rewrite rule l —r € R, and

(111) a substitution o with Dom(o) = Var(l) such that

tp=o0(l) and u=tlo(r)],
We can use the notation t =23 u to make explicit the corresponding rewriting rule, position
and substitution respectively. We denote by —* r the reflexive transitive closure of the relation
— R

2.2.2 Term unification

We introduce a well known algorithmic process, called unification. It has been widely used in
logic and automated reasoning for solving equations over symbolic terms. It will be used in
Section 2.6 in the extension of first-order rules.

Definition 51 A term w is subsumed by a term t if there is a substitution o s.t. o(t) =u. A
substitution o is subsumed by a substitution 7y, where Dom(c) = Dom(7), iff for every variable
X € Dom(o), the term o(X) is subsumed by the term v(X).

Definition 52 (Unification problem, unifier, complete and minimal set of unifiers)
Let t;, u; be terms where i =1,...,n.
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Chapter 2. FExtension Mechanisms and Their Combination

o A unification problem E is a set of oriented equations:

E:{tliul,...,tniun}.

e A unifier of E is a substitution o which is a solution of E, i.e. o(l;) = o(t;) for all
i€ {l,...,n}. If E admits a solution, then it is called solvable.

e For a given unification problem E, a (possibly infinite) set S = {o1,09,...} of unifiers of
E is complete iff each solution of E is subsumed by some unifier o; € S. The set S is
manimal if none of its substitutions subsumes another one.

The existence of a complete and minimal solution of a unification problem is ensured by the
following proposition:

Proposition 53 (See [4]) Each solvable unification problem E has a complete and minimal
singleton solution set {c}. The solution o is called the most general unifier of E, and it is
denoted by mgu(E).

A unification algorithm. We mention that there is a simple algorithm, see for instance [4],
that computes the most general unifier of a unification problem £ by transforming the equations
of F into a set of equations of the form {X; = uy,..., X,, = u,,} where X; are distinct variables
and wu; are terms so that none of them contains a variable among { Xy, ..., X,,}. We reproduce
next the unification algorithm which is specified as a set of reduction rules.

Algorithm 1: Unification
input : A unification problem E = {t; = uy,...,t, = u,}, where t;, u; are terms.
output: The most general unifier of E' if it exists, see Definition 52 and Proposition 53.

Eu{t=t}~F (delete)

EU{f(tr,...,tn) = flur,...,un)} ~> EU{t; =uy,... b, =un} (decompose)
EU{f(ty,....tn) =g(ur,...,up)} ~ fail ifg# f (conflict)
EU{f(t1,....t,) =X} ~» EU{X = f(t1,...,tn)} (swap)

EU{zx =t} ~ E[X =tjUu{X =t}
if X ¢ Var(t) and X € Var(E) (eliminate)
FEU{X = f(Xy,....X,)} ~ fail if X € Var(f(Xy,...,X,)) (recursion)

2.3 Second-order rules, SA-expressions and short-cut terms

In this section we introduce second-order rewriting rules that operate on (first-order) rewriting
rules. Then we define a grammar for the mathematical expressions.
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2.3.1 Second-order rules

Given a rewriting strategy representing a a model derivation, we would like to transform it in
order to obtain a derivation of more complex models. This can be achieved, see e.g. [59], by
transforming first-order strategies by second-order strategies. Unlike [59], in this Section we only
deal with the particular setting in which only first-order rules are transformed by second-order
rules. This particular setting is powerful enough in practice to extend our two-scale models.
Hence, we need to consider two levels of rules: the first-order ones as defined in Definition 54,
and the second-order one in such a way that second-order rules can be convincingly applied to
first-order ones. More precisely a first-order rule [ — r will be considered the first-order term
— (I,r) where "—" is a functional symbol of arity two.

Definition 54 (Second-order rules) Let X° be a set of FO-variables, and F° be a set of FO-
function symbols. Let X' be a set of SO-variables such that the sets X9 F°, X1 are pairwise
disjoint. Let SConst = {—}.

(i) The set of FO-terms is the set of terms T (F°, X°).
(ii) A FO-rule is a pair of FO-terms in T (F°, X°) x T(F?, X°).
(iii) The set of SO-terms is the set of terms T (F° U XY U SConst, X1).

(iv) A SO-rule is a pair of SO-terms in T(F°UX°USConst, X1) x T(FOUX°USConst, X1).
A SO-rule will be denoted by | = r.

Item (ii1) of Definition 54 states that the variables of the first order become constants in the
second order, and the FO-rule constructor " — " becomes SO-function symbols. That is, the
FO-rules become SO-terms. Item (iv) of the same definition states that SO-rules operate on
SO-terms, in particular they operate on FO-rules. FO-variables will be denoted by the letter
X,Y, Z, ... and SO-variables will be denoted by «, f3,.... The semantics of the SO-rules (i.e.
rule application at the top) is defined in the same way as the one of FO-rules.

2.3.2 A grammar for SA-expressions, short-cut terms

We propose a more precise way to represent the mathematical expressions and the data used
in the formulation of the proofs and their extensions. Such mathematical expressions as well as
the data coming with are henceforth called specific application expressions, or SA-expressions
for short. More precisely, instead of representing the SA-expressions by terms in 7 (F, X), see
Definition 44, we represent them by the sub set of terms in 7 (F, X) that follow the grammar
J defined afterwards.

Let MathVar = {x,y,...} be the set of mathematical variable names, MathDiscVar =
{i,7j,...} be the set of discrete mathematical variable names, MathDiscDom = {I,J,...} be
the set of discrete mathematical variable domain names, MathFun = {f,g,...} be the set
of mathematical function names, MathFunKind = {known,unknown,test}, MathReg =
{Q,T,...} be the set of region names, MathOper = {Deriv, Integral, Sum,...} be the set
of mathematical operator names, MathDim = {dy,ds, ...} UN be the set of symbolic/numeric
dimensions, and ® = {+, x,—}. The syntax of SA-expressions is defined by the following
grammar:

Fu=V|FoF | F* | Fun(f,[V,---,V],k) | Indexed(F,V) | Oper(o,F,[F,---,F])
V = Var(z,R) | Indexed(F,V) | Index(i,Set(l,{l,d}))
R ::=Reg(Q),d)
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Chapter 2. FExtension Mechanisms and Their Combination

where n € N, f € MathFun, k € MathFunKind, o € MathOper, x € MathVar,
i € MathDiscVar I € MathDiscDom, 2 € MathReg, and [,d € MathDim.

For simplicity and to improve the readability, we use the short-cut expressions instead of
complete SA-expressions, leading to more concise expressions. An example of the short-cut
terms is given bellow.

eg(Q,d), (2.6)

R
v
v
) = Index(i,Set(/,{1,d})),
J = Index(i,Set ([, {1,d})),
u(z) = Fun(u, [z], unknown),
u(z,y) = Fun(u, [z, y], unknown),
v(z) = Fun(v, [z], test),
u,;(z) = Indexed(u(z),1),
u;;(z) = Indexed (Indexed (u(z),i),j), (2.7)
L) — opor (periv, ula), 1) 29)
Ou,(x
(_’;x(‘ = Oper(Deriv, v, (), [z)]), (2.9)

/g(g) dz = Oper(Integral,u(z), [z]),
[ .y de = oper(integral.u(a. ). [x). (2.10)

D w(x) = Oper (Sum,u;(z), [i]) (2.11)
> uy(x) = Oper (Sum,u;(2). i) (2.12)

The tree structures of the short-cut terms dyu(x), duz;, [ u( > u(z) and u(z)? are
depicted in Figure 2.2.
d 0 f v A
/N ..-/ \'\ x"‘ \ /N Y
/ \ \ / \\\ / \\ / -\\
u(z) z w(z) z; u(z) =z u(z) i u(z) 2

Figure 2.2: Tree structures of the short-cut terms d,u(x), Quz;, [u(z)dz, 3, u(z) and u(z)®.

—1— ]7
The following example shows a rewriting rule that uses short-cut terms of SA-expressions.

Example 55 The rewrite rule which transforms any function u into its L*-norm is defined by

si=ulo) [ (o)
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By replacing the short-cut terms with their related full SA-expressions, we get the rewriting
rule:

s := Fun(U, [Var(X, Q)|, K) — Oper(Integral, Fun(U, [Var(X, Q)], K) 2, Var(X, Q))

where U, X, K, Q € X° are rewriting variables.

2.4 Extension of first-order rules by second-order rules

In this section we introduce the first mechanism allowing the extension of FO-rules. It consists
in the extension of FO-rules by means of SO-rules that enjoy certain properties. More precisely,
we provide a set of requirements that the SO-rules must fulfill so that they can extend FO-rules.

2.4.1 Parametrization of second-order rules

A SO-rewriting rule is called parametrized if its right-hand side part contains FO-variables
which are not in its left-hand side part. The idea behind parametrization is to build The
formal definition of parametrized SO-rules follow.

Definition 56 (Parametrized SO-rule) Let S =1 =21 be a SO-rule. The set of parameters
of S, denoted by V°(S), is the set of FO-variables defined by:

VO(S) = Var®(r) \ Var(l)
The SO-rule S is called parametrized iff V°(S) is non-empty.

Example 57 Consider the equation

H'(u(z)) = /(d%(;)fdz (2.13)

that represents the H' norm of the function u(x), where

H'(u(z)) =0per(H' u(z) x), and
x = Var(x,Reg(2, 1))

are SA-expressions and u,x,$ are function symbols in F°. The equation (2.13) can be turned
into the FO-rule s:

where

z = Var(z,Reg(2,1)), and
u,x, e X

Let S be the SO-rule:

5= (1 ute) ~ [ WD 13) = (H (i) — / Zag(j)df)

L
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where

18
Il

Var (z, Reg(Q, 1)),
2 = Var(z,Reg(Q,d)),
u,x,Q,d e X°.

The SO-rule S transforms the FO-rule s into its n-dimensional counterpart. If we denote by lg
(resp. rs) the left-hand side (resp. right-hand side) of S, then we have that

Var®(ls) = {u,z,Q}, and
Var®(rg) = {u,z,9Q, d}.
Therefore,
VU(S) = Var®(rs) \ Var’ (ls) = {d} € &°.

Since V°(S) is non-empty, then according to Definition 56, the SO-rule S is parametrized.
The application of the SO-rule S to the FO-rule s, denoted by S(s), yields the FO-rule:

5() =i ute) — [ 32 B ay

where

2’ = Var(z,Reg(Q,d)), and
u,z,Q,de X°.

The FO-rule S(s) is a generalization of the FO-rule s to the n-dimensional setting.

In the following, the concept of generalization of FO-rules by means of SO-rules is defined.

2.4.2 Mathematical equivalence between first-order rules

The notion of the mathematical equivalence between FO-rules, is a crucial ingredient in the
formulation of the extension mechanisms by SO-rules. For instance sz £ and [ are mathe-
matically equivalent, where [ is an SA-expression. The notion of mathematical equivalence is
formulated in Definition 58 bellow by means of an equational system R, i.e. a set of equations.
Two FO-rules are mathematically equivalent if they are syntactically equal “ modulo the system
R.

Definition 58 (Mathematical equivalence) Let s; and s2 be two FO-rules. Let R an equa-
tional system composed. The rules sy and s are mathematically equivalent with respect to 'R,
written s1 ~g So, iff they are syntactically equal modulo R.

Definition 59 (R-semantic conservation SO-rule) Let R be an equational system. A SO-
rule S is R-semantic conservation iff for all FO-rule s, we have that S(s) ~g s.

"The syntactic equality between rewriting rules has always to be done modulo a-equivalence. Two rewriting
rules are a-equivalent if they are syntactically identical up to a renaming of their variables. For instance,
the rules f(z) — g(x) and f(y) — g(y), where x and y are variables, are a-equivalent. Two strategies are
a-equivalent if they are syntactically identical up to a renaming of the variables of their rewriting rules. For
instance, the strategies BottomUp(f(z) — g(x)) and BottomUp(f(y) — ¢(y)) are a-equivalent.
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Example 60 Let Sy be the SO-rule:

S0 (i ue) > [(A2Y ar) = (o) > [ Sy )

where
xr = Var(z,Reg(f2, 1)),
Z - Var(i7 Reg([, 1))7
z; = Indexed(z,i), and
i, I, u,z,Q € X1

Notice that the variable 1 ranges from 1 to 1 in the right-hand side of So. Let R be the equational

system:
R = { Z a = q,

Indexed (o, Index(i, Set(1,{1,...,1}))) = a} (2.14)

The second equation of R states that an expression oy s equal to o if © ranges from 1 to 1. We
have that Sy is an R-semantic conservation, since for every FO-rule s, So(s) is mathematically
equivalent to s modulo R.

2.4.3 Generalization of first-order rules by admissible parameterized
second-order strategies

Combining the notions of parametrization and mathematical equivalence, defined respectively
in Definitions 56 and 58, we are able to define the notion of generaliztion of FO-rules.

Definition 61 (Generalization of a parametrized SO-rule) Let S be a parametrized SO-
rule and S" be a SO-rule. We say that S generalizes S’ if there exists a mapping v of the first
order variables in V(S) such that

() =5

Example 62 Consider the parametrized SO-rule S of Example 57 and the SO-rule Sy of Ez-
ample 60. We have that S is a generalization of Sy, since for the mapping v = {d — 1}, we
get v(S") = S.

Definition 63 (Admissible parametrized SO-rule) Let S be a parametrized SO-rule and
S" be an R-semantic conservation SO-rule for an equational system R. We say that S is
(S'-R)-admissible iff S’ is R-semantic conservation and S generalizes S’. We shall simply say
that S is admissible if it is (S’-R)-admissible for some R-semantic conservation strateqy S'.

Using the concepts introduced so far, we are ready to define the notion of generalization
of a FO-rule. We notice that the notion of generalization of a FO-rule has not to be confused
with the one of generalization of a parametrized SO-rule given in Definition 61.

Definition 64 (Generalization of a FO-rule) Let sy and s; be FO-rules. We say that s; is
a generalization of so iff there exists an admissible parametrized SO-rule S such that

s1 = S(so).

And we say that S generalizes sy to sy.
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Example 65 Let sg be the FO-rule:

where

u,z,0 e X°.

Let s; be the FO-rule :

where
z = Var(x,Reg(,d)) and
u,z,9,d e X% and
i€ FO.
We shall find an admissible parametrized SO-rule S’ that generalizes sy to si. We start from
the semantic conservation SO-rule Sy:

S0 (ie) —» [(BE ar) = (o) — [ SO i),

where

L= Var@? Reg([> 1))7
u,x,Q € X!, and
I,ie FO.

By replacing the constant 1 by the variable d € X° in both x and i in the right-hand side of
So, we get the SO-rule S’:

§' = () - [ dr) = (w) - [ YO ).

where x = Var(z,Reg(2,d)), i = Var(i,Reg(I,d)), u,z,Q € X' and I, i € F°. We have that
the SO-rule S’ is (So— R)-admissible, where R is the equational system given in Eq 2.14. Since
S'(s0) = s1, then sy is a generalization of So.

2.5 Extension of first-order terms by outward growths

In Section 2.4, we have established the first mechanism for the extension of FO-rules. There, we
have defined requirements for SO-rules so that they can correctly extend FO-rules. However,
we did not provide a clear process to build such SO-rules. To deal with this issue, we elaborate
a second mechanism for the extension of FO-terms (in this section) and of FO-rules (in section
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2.5. FExtension of first-order terms by outward growths

2.6). This second mechanism is based on the notion of outward growths that, roughly speaking,
consists in the following: (i) firstly, we need to define rudimentary components, called added
terms, allowing, on one hand, to express the kind of extensions that we want to make, and,
on the other hand can be combined to build more complex components. (i) Secondly, these
components will be inserted at certain positions of a FO-term and a FO-rule. That is, the
positions on which the extension is made.

In fact, these two extension mechanisms are equivalent in the sense that they have the same
effect when applied to the same term. Besides, outward growth mechanisms can be used to
construct semantic preservation as well as admissible SO-rules.

Definition 66 Let 7 = FO U {1} where L¢ F°. The set of "added terms”, denoted by
T4, is defined by T = T(F¥, X°).

Throughout this chapter, we assume that the symbol L occurs only once in an added term
in 7%, The position of L in 7 is denoted by ¢(7). In what follows we use the arrow '~ to
denote mappings/reductions rules, not to be confused with the rewrite rules. We mention that
the notion of added terms is close to the one of context.

2.5.1 Unit outward growths to the root and their composition

Definition 67 (Unit outward growth to the root) The unit outward growth with an added
term T € T denoted by G., is a mapping from T (F°, X°) to T(F°, X°) defined by:

G, t~ T[t],
The ground outward growth G, is called parametrized if T includes variables from X°.

The application of a unit outward growth G, to a term ¢ to the root is depicted in Figure
7?7 bellow.

Figure 2.3: Schematic diagram of the application of a unit outward growth G, (with an added
term 7) to a term t to the root.

Example 68 Let t = h(c) be a term where ¢ is a constant. Let T = Indexed(L,7) be an added
term. Let G, : t ~> T[t], be an outward growth with the added term 7. The application of G, to
t yields the term:

The terms t, T and h; are depicted in Figure 2.4.
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t T G- (t)

h Indexed Indexed

c ) h 1
C

Figure 2.4: Application of the unit outward growth G, (of added term 7) to the term ¢ to the
root.

Definition 69 (Composition of added terms) The composition for two added terms T, 7' €
T s defined in the usual sense by

7 =7l € T
Remark 70 Notice that the composition of added terms is associative but not commutative.
Example 71 Let 7 and 7' be the added terms

7 = Indexed(L,i), and

T =2(1)

K

Their composition 7'/ /T = > (Indexed(L,1)) is depicted in Figure 2.5.

L

=
~
...L
T
oy

Y Indexed b
/\ /\ / \
] 1 =2 Indexed i

!

1 i

Figure 2.5: Composition of two added terms.

Notice that the composition 7//7" = Indexed () (L),i) has no significance since it does not

2

allow to build a sound SA-expression.

Property 72 (Composition of two unit outward growths to the root) For anyT,7' €
T the composition G.; G- of two unit ground outward growths to the root is the unit ground
outward growth with added term 7'/ /7, i.e.

Gr; G = Grrypr it~ (7] [T) [t (e )

Since the composition of added terms is not commutative, the composition of outward
growth to the root is not commutative as well.
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2.5. FExtension of first-order terms by outward growths

2.5.2 Unit outward growths to a position and their combination

We next generalize the definition of unit outward growths to the root to be applied to any
position.

Definition 73 (Unit outward growth to a position) Let G, be unit ground outward growth
and p be a position. The unit outward growth G, , to position p is a mapping

Grp t t~ G (tp)]ps
which is defined only if p € Pos(t).

If there is no ambiguity, unit outward growths to a position will be simply called unit
outward growths.

The application of a unit outward growth G,, with an added term 7 to a term ¢ at the
position p is depicted in Figure 2.6.

¢ i Gra(t)

Figure 2.6: Schematic diagram of the application of a unit outward growth G, ,, (with an added
term 7) to a term ¢ at the position p.

Example 74 Let t = 0,u(x) be a term and 7 := Indexed(L,i) be an added term. Let p be the
position of x in t, that is, p = 2. The application of the unit outward growth G, , to t yields:

The terms t, T and G, ,(t) are depicted in Figure 2.7.

Property 75 (Composition of two unit outward growths to the same position) Let G,
and G, be two unit outward growths to the same position p. Their composition, denoted by
Gr ;G p, can be expressed as follows:

GrpiGrp =Gri/jrp it~ t[gT’//T(t\p)]p'
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t T Grp(t)
19 indered .
A\
;..n' \\P ,u"l ll". / \13
u(z) =z 1 2 u(zx) indexed
|lll|ll 1"""-
T 1

Figure 2.7: Application of the unit outward growth G, (of added term 7) to the term ¢ at the
position p.

Example 76 Let t = [a dz be a term and p be the position of a in t. Let 7 and 7' be the
added terms:

7 = Indexed(L,1),
7 =>(1).

i

Let G, ,, and G, be two unit outward growths to the position p. We have

7T = Z(Indexed(l>i))~

)

Therefore
(Grp3 Grrp) (1) = gT’//T,p@)

:/Zi:gidg.

We define next the composition of outward growths to different positions.

Definition 77 (Composition of two unit outward growths to different positions) Let
Grp and Gy be two unit outward growths to the position p and p', respectively. Their compo-
sition Gy »; Gr p is defined if and only if when p’ C p.

Notice that if the positions p and p’ are incomparable, i.e. p || p' then G, ,;; G+ v = G y; Gr -
On the other hand, we can justify the condition p’ C p on the positions p and p’ in Definition
77, ie. p' < por p| p, while composing unit outward growths as follows. The application
of a unit outward growth at a position p followed by an application of another unit outward
growth at a lower position p’ might lead to an undesired result since the new position at which
we would like to apply the second outward growth might change. This possible change of the
position does not happen when the two positions p and p’ are incomparable or the position p
is lower than p’. As an illustration, see Example 78 bellow.

Example 78 Let ¢t := [(d,u(z))® dz be a term. Let T and 7' be the added terms
7 = Indexed(L,1),

= Y(L).

(2
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2.5. FExtension of first-order terms by outward growths

Let G112 and G, ;1 be the outward growths to the positions 112 and 1 respectively, and associated
with the added terms T and 7' respectively. The term t, the positions 1 and 112, and the added
terms T and 7' are depicted in Figure 2.8.

Indexed

/I\ K \
L i

N\l

°J
1;\
ANz
/\

a 2
/ \612
ulz) =z

Figure 2.8: The term ¢ = [(d,u(z))* dz and the added terms 7 = Indexed(L,i) and 7/ =

2.(L).

i

Since 1 < 112, the composition G, 112; G 1 is well defined. The result of the application of
Gr112; G 1 to t is depicted in Figure 2.9. This is done in two steps: firstly we apply G112 to t,
yielding the term ty, then we apply G 1 to ;.

Howewver, the application of G, 1 followed by the application to t of G112 yields an undesired
result as shown in Figure 2.10. Notice that after the application of G- 1 to t that give the term
wy, the position of wy at which we would like to apply G, has changed. In other words, to obtain
the desired result, the outward growth G, has to be applied at the position 1112 of wy instead of
112.

In order to be able to construct complex outward growths, we slightly generalize the notion
of composition of two unit outward growths given in Definition 77 so that we can compose two
unit outward growths to two positions independently on their relative order. The generalized
composition of unit outward growths is called combination. Its definition follows.

Definition 79 (Combination of two unit outward growths) The combination of two unit
outward growths G, , and G, denoted by G, ,0G, , is defined as follows:

gT,p; gT’,p’ pr E p/7
GrpiGrp otherwise.

gT,pOgT/,p/ = {

Notice that the combination operation ¢ is associative but not commutative. However it
can be commutative if the positions to witch the outward growths are applied are distinct as
stated in the following Proposition.

Proposition 80 Let 71,72 be two added terms and let qy,qa be two positions. If g1 # g2 then

gﬁ#h ¢ gm,qz - gmﬂz ¢ gﬁ,fh'
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t1=0; 112(t) t2=Gs 4 (t1)

t — ty — to = (Gr112; Grr 1) (1)

\
2 : :
112 / 112 ;f \ 110
u(a) u(z) [Tndexed )
ff \\ / \

T o1 u(z) Indexed

Figure 2.9: The application of the composition G, 112;G, 1 to t.

2.5.3 Outward growths and their combination

Definition 81 (Outward growth) Let 7 = (74,...,7,) be a tuple of n added terms and let
7 = (q1,-.-,qn) be a tuple of n positions with py > ps > ... > pn. The outward growth
=7 on the added terms T to the positions ¢ is the composition of the n unit outward growths
Griqis---1Y9rnqn- That is,
G76=Yri i Yrnan-

In the following we shall define the operation of combination of two outward growths Gz z
/

and G o, where 7 = (71,...,7), @ = (q1,--., ), 7= (r,...,7)and ¢ = (¢},...,q,).
This operation generalizes the operation of combination of unit outward growths at different
positions given in Definition 77. Firstly, we need to perform some treatment on the vectors of

positions ¢ and ¢’ as well as on their related vectors of added terms 7 and 7.

Definition 82 Let 7 = (71,...,7n) and T = (Tpy1, - Tnim) be two tuples of added terms.
Let = (q1,---,qn) and @ = (qni1,s-- - Gnim) be two tuples of positions, where the positions
Qs - Qnim are pairwise comparable, i.e. either ¢; < q; or q; < q; for alli,5 € {1,...,n+m}.
Define the mapping f as f(q;) = 7i, for all i € {1,...,n+m}. We define the product (7, q) ®
(7,q) as follows.

1. Firstly, sort the tuple (q1,...,Gnim) in the descending order. That is, let (¢i, ..., ¢ )
be such that:

Z) {q/177Q7/7,+m} = {q17"'7qn+m}7 and
i.) ¢ < g iff i <j foralli,je{l,....,n+m}.

2. Secondly, delete the redundant positions from (qy, ..., Q) m). That is, let

—

¢ =(d, - q) (2.15)
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tLIl:g'_r- (t] I2=g|_, 2( ! ]
y G wy wa=Gr 121 wy = Gr112(Gr 1 (1))

A
a 2 i
/v / \112
u(z) 9 0
/\ /\
: u(z) =z

Figure 2.10: The application G, 112(G, 1(t)) yields an undesired result.

i
[\
2 1

be such that {q{,.... ¢} ={d\,- -, @y}, and ¢/ > g/, for alli € {1,...,r —1}. This

yields a surjective function g : {1,....,n+m} = {1,...,r} s.t. g(i) = j iff ¢ = qj.

)

3. Thirdly, replace all the added terms in (f(q}), ..., f(¢,4.m)) which are to the same position
by their composition. That s, let

=T (2.16)

ror

be such that: i = f(q1,)//---//f(@,) iff 97 () = {k1,... ka} and ky < ky < ... < kg
forallie {1,...,r}.

4. Finally, we let

- - def .,
(7,9 (.d)= 7.9
where 7' is defined in Eq. (2.16) and §" is defined in Eq. (2.15) above.

The following Proposition is not hard to prove.
Proposition 83 The operation ® is associative.

However, the operation ® is not commutative in general, but it can be under commutative
under some assumptions, namely when each position of ¢ is distinct than each position of 11’

Proposition 84 Let 7 and 7 be a two tuples of n added terms. Let ¢ = (qi,...,qn) and
7 = (q, -, q,) be two tuples of n positions with q; > q2 > ... > qn, and q; > ¢4 > ... > q.,.
Then,

ifVi=1,....n, ¢ #q then (79 ((7,.7)=F,7)® (7
Now we are ready to define the combination of two outward growths.

Definition 85 (Combination of two outward growths) The combination of two outward

growths Gz g and Gz 7 is defined by

de . o .
Gri0Gr o D G, where  (7'.7") = (7,0 @ (7, 7).
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Proposition 86 The operation { of combination of outward growths is associative.

Proof. The associativity of ¢ follows from the associativity of the product operation ®, see
Proposition 83. W

The combination operation ¢ is not commutative in general since ® is not commutative.
However, we can generalize the Proposition 80 and claim that the operation { can be commu-
tative under some conditions:

Proposition 87 Let 7 and 7 be a two tuples of n added terms. Let ¢ = (qi,...,qn) and
qd = (q, ..., q,) be two tuples of n positions with q1 > qa > ... > g, and ¢} > g2 > ... > ¢.,.
Then,

ifvi=1,...,n, ¢ #q then Gzp0Gwq) = 9= 0%

Proof. The proof follows from Proposition 84. W
The following Proposition relates the outward growths to the unit outward growths by
means of the operation ¢.

Proposition 88 Let 7= (7y,...,7,) a tuple of added terms and let ¢ = (q1,...,qn) be a tuple
of positions where q > ... > q,. Then,

gF,(T = ng,q1<> ce Ogrn,qn'
Proof. Immediate from the definition of ®, that is, (7,¢) = (71, 1) ® ... @ (Tn, qn). W

Remark 89 Let 7q,...,T, be an tuples of added terms, and qi, . .., q, be n tuples of positions
where |T;| = |G| for alli € {1,...,n}. From Proposition 86 on the associativity of the operation
O of the combination of outward growths, it follows that there exist a tuple of added terms T
and a tuple of positions q such that

Gri=Gm.00 - 0G0z,

Example 90 (Combination of outward growths) Let t be the term

ti= / adyu(z) dx

depicted on the top left of Figure 2.11. Consider the following subterms of t with their related
positions:

Consider the added terms T1, T11, T122, T}, Thy and Thy;:
T = Z(L>7
i
T11 = T192 = Indexed(L,1),
T = Z(J_), and
J
T, = T19; = Indexed(L, 7).
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Consider the outward growths Gz 5 and Gz z:

giﬁ = g7'1227122 O gT11711 O gn,u and
gf’l,ﬁ’ = g"'/1217121 <> gT/uvll <> gT/lvl'

A straightforward application of Definition 85 gives

T = (7'122,711771),

P = (122,11, 1),

7__” = (T/121a7—/11’7—/1)7 a'nd
po=(121,11,1).

Now we shall compute the outward growth Gz z::
G r = Gz 50 Gy
That is, we need to compute 7" and p" which, according to Definition 85, are defined by
(7,0") = (7.0 @ (7. 7).

Notice that 11 > 1 and both the positions 122 and 121 are incomparable with the positions 11
and 1. Besides, the positions 122 and 121 are incomparable. On the other hand, p' and p' share
the positions 11 and 1. Therefore, from Definition 82 it follows that

{ﬁ" = (122,121,11,1), and

7= (7—1227 7_/12177_11//7-/1177-1//7-/1)

Notice that, from Proposition 88, it follows that the outward growth Gz 7 can be written as
a combination of unit outward growths as follows:

g’?”ﬁ" = 97122,122 O gT'121,121 O g(7'11//7"11),11 O g(’rl//’r'l),1 (2'17)

According to Definition 79, the combination of unit outward growths in Eq. (2.17) can be written
as a composition of unit outward growths as follows:

g‘?",;ﬁ"’ = g7122,122 ) gﬂ"lgl,ul ) g(T11//T'11)711 ; g(Tl//T'l),1 (2'18)

Using the formulation of the outward growth Gz 5 given in Eq. (2.18), the application of
Gz g to the term t is illustrated in Figure 2.11. It yields the term:

G (1) = /Zzggaxiﬂg_'(@ dz.
i

63



Chapter 2. FExtension Mechanisms and Their Combination

2.6 Outward growths as second-order rewriting rules

We follow the extension approach established in Section 2.5. In this section we formulate the
outward growths of the previous section as well as their combination as SO-strategies. For
readability, we call them second-order outward growths.

2.6.1 Second-order outward growth

A SO-unit outward growth is a SO-order rule | = r where its right-hand side term r is the
result of the application of a FO-outward growth to [ at some position, see Definition 91 bellow.
We notice that we only deal with the SO-outward growths applied to the root since it is enough
to consider the application of a SO-outward growth (i.e. a SO-rule) to a FO-rule to the root.
In other words, the left-hand term [ above is considered as a FO-rule (that possibly contains
SO-variables) and the SO-outward growth [ = r will be applied to a FO-rule (to the root).
The formal definition of SO-unit outward growth to the root follows.

Definition 91 (Second-order unit outward growth to the root) Let 7 € T4(F X) be
an added term, p be a position, and | a SO-term. The SO-unit outward growth to the root gi,p
15 the SO-rewrite rule:

G, < 1= 6.,0)

SO-outward growths to the root can be defined similarly to SO-unit outward growths to the
root.

Definition 92 (Second-order outward growth to the root) Let 7 be a tuple of n added
terms, p be a tuple of n positions in the decreasing order, and | a SO-term. The SO-outward
growth, to the root GL - is the SO-rule:

Gty 1= Gogll)

The application of g%ﬁ to a SO-term is defined in the usual way.

We recall that the notion of the most general unifier of a unification problem F, denoted
by mgu(F), was given in Definition 52.

2.6.2 Combination of second-order outward growths

The notion of the combination of SO-outward growths to the root can be defined in a natural
way by means of the combination of their related (FO-)outward growths as follows.

Definition 93 (Combination of two SO-outward growths) Let G ; and (J;’,ﬁ be two SO-
outward growths where Var'(l) N Var' (') = (0. Assume that the mgu of the unification problem
{l =1} with respect to the second-order variables is decidable. The combination g%ﬁo g;’,ﬁ I8

defined by

def i

/
g;ﬁo g;_,ﬁ = Gzn 5 where

g;”,ﬁ/ = g?,ﬁo g‘r-/ﬂ, and
I"=0o(l)=0o(l'), where c =mgu({l =1'}).
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Notice that if Var! (I)NVar!(I') # (), then one can rename the SO-variables in both [ and I’ so
that Var!(l)NVar!(l') = (). Notice also that from Definition 93 it follows that the combination
of two SO-outward growth is a SO-outward growth.

Proposition 94 The combination operation & of SO-outward growths is associative.

Proof. The claim follows, on the one hand, from the associativity of the composition of out-
ward growths, see Proposition 86, and on the other hand from the fact that mgu({o;y =1"}) =
mgu({! = oy »}), where o,y =mgu({l =1'}) and oy =mgu({I' =1"}). A

Example 95 Let

Lo =L%u(z) = [v* dz, lo =L2W(2))— [+ d,
71 = Indexed(Ll,1), and To = > (L,1),
p = Pos(v,ly), pa = Pos(v,ly),
where

Q) = Reg(9,d),

z = Var(z, Q),

i = Index(i,Set(I,{1,d})),

u(x) = Fun(u, [z], unknown),

and u,x,Q,d,v, z,u,z, Y, d v, 2 are SO-variables in X' and i is a constant in F°. Let Gi

T1,P1
and gg o be two SO-unit outward growths. A simple computation yields:
Grip(h) = L(u(z)) — [(vg)* dz
and
Orape(l2) = L2(W/(2)) — [0 d2'.
where

v; = Indexed(v,1).
Therefore we have:
Gt =G, (0)
— (Lu@) > [ @ d) = (Bla) » [©0) ), (2.19)
and
%mwb:@mb

—>/v dz') = (L*(u/(2)) %/;v’ dz'). (2.20)

The tree structure of G2  (I1) and G2

2 0, (l2) is depicted in Figure 2.12 and Figure 2.13,
respectively.
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Now we compute the combination gﬂ plogig,m, which is defined (see Definition 93) by:

def

gﬁ’ﬁ = gTLpl O gT2,P27 and

I Iy
Grim O Grap = l=0(lh) =0(ly), where o =mgu({l; = l2}).

!
Gz where {
On the one hand, since py > ps, it follows from Definitions 85 and 82 that:

ﬁ = (p17p2)7 and
7

= (71,72)

On the other hand, we need to compute the substitution o which is the mgu of the unification
problem:

~

U =u
x =ua
v? =
z =7
We get:
o={uru 2 — 0 0% 2}
Finally,
l1 la def l
ng:pl <> g7'27p2 gTP

g(Tl T2),(P1,P2)

= U(ll> o g(Tl 72),(P1,p2) (l1>>

D [ de) = (L) - >tw)

2.7 Extension of first-order terms by combining outward
growths and parametrizations

In order to construct richer extensions it is natural to combine the extension tools that we have
at our disposal so far. That is, the combination of outward growths and parametrizations gives
arise to richer mechanism called generalization.

2.7.1 A motivating example

Let © be a d dimensional domain, u a scalar function defined on Q, and u = (uy, ..., u,) a vector
function defined on €. The L? norm of u and u are respectively defined by:

1/2

lullzz@) = (Jo lul?) ",
N 1/2
il = (35 Jalul?)
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Their formulation by means of rewriting rules is given by the FO-rewriting rules s and ¢/,
respectively, as follows:

s =)~ (fyluto) Par)

1/2
s =L (y(z) — <Zl Jo | (z) |2dz> ,

where

ISR R |D
I
<
)
o]
—~
8
Ra

= Index (i,Set (I,{1,...,n})),

and Q,x,u, I,i are FO-variables in X° and d,n are constants in F°. By applying the notions
and techniques developed in Section 2.3, we show next how to build the FO-rules s and s’ by
means of SO-rules. For this purpose, we need the SO-rule s° and s' defined as follows:

(

) 1/2
s' =L (g (z) — (; Jo lu; (2) |2d£> ,

1/2
sto= L (uy (2) = (Elfalua () Pd@) :

\ L

where

i = Index (i,Set (I,{1,...,1})),
¢ = Index (i,Set (I,{1,...,7})),

and 7 is a FO-variable in X°.
We define the SO-rules S° and S! as follows:

SV i=s5=2 80
St =5 = sk

The following claims are not hard to prove:
Fact 96 The following hold:

1. The SO-rule S° is a semantic conservation SO-rule w.r.t the rewriting system R defined
in Eq (2.14) of Section 2.3.

2. St is a parametrized SO-rule in the sense of Definition 56 of Section 2.3.
3. The SO-rule S' is admissible with respect to S°.

4. The FO-rule s’ is a generalization of the FO-rule s in the sense of Definition 61 of Section
2.3.
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Item 2 follows from the fact that
Var®(S') = Var®(sh) — Var®(s) = {r} # 0.
Item 3 follows from the fact that
o (5") =5% where o ={r—1}.
Item 4 follows from the fact that S is an admissible SO-rule and that
S'(s) = s (modulo a-conversion)

We give next an equivalent formulation of S° and S* in terms of a combination of outward
growths and parametrization, where parametrization means the replacement of a FO-term by
a FO-variable. For this purpose we introduce two unit outward growths. Let 71 and 74 be the
added terms:

71 = Indexed (L, Index (i,Set (I,{1,...,1}))),
79 = Oper (Sum, L, Index (7, Set (1, {1,...,1})),0) .

They are depicted in Figure 2.14.
Let p1, p2 and p3 be the positions of s defined by:

n = 227
b2 = 327
Py = 32222,

Notice that p; || po and p; || ps and py < ps. The tree structure of s and the related positions
are depicted in Figure 2.15.
We define Gz 5 as follows:

def

giﬁ = ngvPl ¢ gﬁ,p:’, O g727p2
= g‘rlml ; gﬂ,m; gTz,pz

= g(T1,Tl,Ts)7(p1,P3,P2)

We have that
g?—,ﬁ(s) = So-

Let q1, ¢2 and g3 be the positions in Pos (s") defined by:

@ = 22222,
G = 322222222,
g5 = 32322.

Notice that ¢; || ¢2 and ¢2 || g3 and ¢1 || g3. Let r be a FO-variable in X°. We define the
parametrization Pz as follows

def
P(FVq) = P(T7T7T)7(Q1 »q2 ,(13)

def
= ,PNh ; Pﬁfn; Pﬂ%
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where P, ,(t) stands for the replacement of the subterm of ¢ at the position ¢ (i.e. t|,) by 7.
Finally we have that

= P (s0)
= S51.

The tree structure of the rules sy and s; are depicted in Figure 2.17 and 2.18.

Discussion. The example 2.7.1 above shows the constant symbols 1 in unit outward growths
upon the added terms 71 and 75, must be repalced by a FO-variable. Therefore, while combining
outward growths and parametrizations, one has to apply the outward growths first then the
parametrizations. In what follows we shall define the combination of two parametrizations

thQl <> 7)332,!12

as well as the composition of outward growth with parametrization

g‘l’,p <> Px,q

2.7.2 Unit parametrizations, parametrizations and their combination

The parametrization consists in replacing a term by a FO-variable at a given position.

Definition 97 (Unit parametrization) Lett be a term, q a position of t and x a FO-variable
in X°. A unit parametrization Py, : X° — T(F°, X°) is a mapping:

Py it —>t[],.

A composition of unit parametrizations applied to incomparable positions yields the notion
of parametrization:

Definition 98 (Parametrization) Let ¢ = (q1, - ,qn) be a tuple of n > 1 positions such
that ¢; || q; for alli,j € {1,...,n} and i # j. Let ¥ = (x1,--- ,x,) be a tuple of FO-variables
in X°. A parametrization Pz g is defined by

def
Pf@ = FPryq - 7Pxn,qn'

Definition 99 (The combination of two parametrizations) Let Pz; and Py g be two parametriza-
tions, where P = (p1,-++ ,qn) and ¢ = (q1,--+ ,qm) are two tuples of positions, and T =
(r1,...,2,) and § = (y1,...,Yym) are two tuples of FO-variables in X°. The combination

of Pz and Py g is defined if and only when

pi |l g forallie{1,...,n} and j € {1,...,m},
as the parametrization Pz :

= (1, Ty Y1y o, Tn), and

= (pla--'aPmQh--me)

def zZ
PziOPyg = Pzr, where {ﬁ
7
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2.7.3 Unit generalizations, generalizations and their combination

The definition of unit generalization follows.

Definition 100 (Unit generalization) Let ¢ and p be two positions. Let T be an added term
and x be a FO-variable in X°. A unit generalization G2l is defined by

T undefined,  otherwise

Gor — {QT,q; Prp ifpCyq

where G- 4 is a unit outward growth (see definition 73) and Py, is a unit parametrization (see

definition 97).

We notice that while composing an outward growth G, ;, and a parametrization P, , to build a
generalization G717 = G; 4 P.p, it is, on the one hand more flexible to start with the application
of the outward growth first since this allows, among other things, to apply the parametrization
to the added term. On the hand, the condition p C ¢ in Definition 100 on the positions ¢ and p
(in which the outward growth and the parametrization are applied respectively) is natural and
ensures that a parametrization can either

i) operate on a proper subterm of t,, i.e. in this case we have p < ¢, or

ii) operate on a subterm of ¢ that does not overlap with ¢, i.e. in this case we have p || q.

Definition 101 (Generalization) Let q = (q1, -, Gn) and T = (P1y . D) be two tuples of
positions such that q; || q; for alli,j € {1,...,n} and i # j, and p; || p; for alli,j € {1,...,m}
and i # j. Let 7 = (T1,...,Tn) be a tuple of added terms and 7 = (X1, e, Tm) be a tuple of
FO-variables in X°.

A generalization Gﬁ:g 15 defined by

T undefined,  otherwise

Gf’ﬁ: {gq‘—’@; 735;‘7;5’ prz [ q]',Vi € {1, Ce ,n} cmd \V/j € {1, N ,m}

where Gz ; is an outward growth (see Definition 81) and Pz is a parametrization (see Definition
98).

We generalize the relation C between positions (Item (2) of Definition 45) to pairs of posi-
tions.

Definition 102 Let q1,q2,p1 and ps be positions. Define the binary relation T between pairs
of positions as follows:

(q1,p1) C (q2,p2) iff @ E g2 and p1 C g2 and p1 C po

Definition 103 (Composition of two unit generalizations) Let GI'F! and G727 be two

unit generalizations. Their composition, denoted by G7Vb; G282, is defined as follows:

v v G2P2(GIvbi(t))  if (qu,p1) C (g2, p2)
(GHa Gri) () = { e

undefined, otherwise.
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We notice that the condition (g1, p1) T (g2, p2) on the positions in Definition 103 are natural
since:

i) ¢1 T g ensures that the composition of the outward growths G, 4 G, 4 can be done
correctly, see Definition 77.

ii) p1 C go ensures that the outward growth G,, ,, can not be applied at a position bellow p;
since the subterm at p; has been replaced by a variable by means of the parametrization

Plhpl .

iii) similarly, p; C po ensures that the parametrization P, ,, can not be applied at a posi-
tion bellow p; since the subterm at p; has been replaced by a variable by means of the
parametrization Py, ,,.

Lemma 104 The composition of two unit generalizations is a generalization.

Proof. Let G*F' and G*2P2 be two unit generalizations with (q1,p1) T (g2, p2). To prove the

71,91 72,92
Lemma it is enough to compute 7, ¢, &, p'such that

GEP — @FuP1 . GF2:P2
T?q

T1,91 7 72,92

This can be achieved by considering many cases depending on the relative position of p1, ps, 1
and ¢;. W

Definition 105 (Combination of two unit generalizations) Let G0 and G202 be two

unit generalizations. Their combination, denoted by G701 O G721, is defined as follows:

Govp Gzb2 o if (q1,p1) T (go, p2)
G*oPL ) G¥2P2 = { Gr2P2 . (GE1P1 Zf <q2’p2) C (Q1,p1)

T1,41 72,42 72,92 7 71,41

undefined, otherwise.
Lemma 106 The combination of two unit generalizations is a generalization.

Proof. Follows from Lemma 106 on the composition of two unit generalizations. H

In order to inductively define the composition of two generalizations, we need first to consider
the composition of a generalization and a unit generalization. Before that we need to generalize
the relation C between pairs of positions (Definition 102).

Definition 107 Let ¢= (q1,...,qn) and p'= (p1,...,pn) be two tuples of positions. Let q and
p be two positions. Define the binary relation T as follows:

(J?m[<qap> Zﬁ ngqandpl[:qandpzlzpa forallz:l,,n

Definition 108 (Composition of a generalization and a unit generalization) Let Gijg

be a generalization and G7¥ be a unit generalizations, where

T = (7—17 ) Tn)
CTZ (CI17 7Qn)
T=(T1,...,Tm)
ﬁ: (pla"'apn)
The composition of G?’g and G771, denoted by Gg:g; Gh, is defined as follows:
L G=P(GE2(¢ f (7.p) C
(G?Z_)" Gf,g) (t) — ‘r,q( T,q( )) I[’f <QJﬁ) = <Q7p>
4 ’ undefined, otherwise.
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Chapter 2. FExtension Mechanisms and Their Combination

Similarly, once can show that the composition of a generalization and a unit generalization
is actually a generalization. Therefore, one can inductively define the composition/combination
of two generalizations as well.

2.8 Application to the extension of the derivation of the
linear operator associated to the microscopic problem
to the multi-dimensional and the vector-valued setting.

In this section we apply the technique of outward growth and their combination to extend
one step of the two-scale model derivation of the stationary heat equation. More precisely,
we show how to extend the rewriting rule that corresponds to the derivation of the linear
operator associated to the microscopic problem in the reference proof to the multi-dimensional
and the vector-valued settings as well as their combination. It turns out that such combination
is nothing but the derivation of the linear operator associated to the microscopic problem of
elasticity.

The derivation of the linear operator associated to the microscopic
problem in the reference proof as a FO-rewriting rule.

Let s be the FO-rewrite rule used in the reference proof that corresponds to the derivation
of the linear operator associated to the microscopic problem. It is defined as follows:

oVarphi oVarphi
el — (/Qﬂa_w dzt = — 1L Qaw dxl) — < el = aﬁ) (2.21)

oz! Ozt dxt ox! H ozt
where
(a = Fun(a, x, known),
Varphi = Fun(Varphi, x, unknown),
w = Fun(w, z, test),
z! = Var(z!,Q),
Q = Reg(%2, )
0 = Fun(0, 2!, known),
and

7

a,z, Varphi,w,z',Q, d, i are FO-variables in X°, and
=70, test , known ,unknown are function symbols in F°.

Notice that the equality symbol "=" in s/ is considered as a function symbol in F° of arity

two. However, we write "t; = ¢," instead of "= (t1,%3)", where t; and ty are two terms. The
tree structure of the rule s/ is depicted in Figure 2.19, together with the positions py, ..., pi7.
These positions will be used next to define outward growths.
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The derivation of the linear operator associated to the microscopic
problem in the multi-dimensional setting as a FO-rewriting.

Let 5™ be the FO-rewriting rule that represents the derivation of the linear operator associated
to the microscopic problem in the multi-dimensional setting. It is the counterpart of the FO-
rewriting rule s/ (defined in Eq. (2.21)) in the multi-dimensional setting. It is defined as
follows:

N Varphi ow ow 3Va7“phz
"= Z /—2] Gx 83: d£1 = = Zl’[’] /CLUF d£1 - Zlupa$
3,7 -2 3,7

(2.22)

where

= Index (i,Set (I,{1,...,d})),
= Index (j,Set (J, {1,...,d})),
= Index (p,Set (P, {1,...,d})).

IS I~. I

The derivation of the linear operator associated to the microscopic
problem in the vector-valued setting as a FO-rule.

Let s” be the FO-rewriting rule that represents the the derivation of the linear operator as-
sociated to the microscopic problem in the vector-valued setting. It is the counterpart of the
FO-rewriting rule s/ of Eq. (2.21) in the multi-valued setting. It is defined as follows:

GVanhz Ow, (9Va7’phz

Z/akl oz 8951 dz' = Zﬂl/akla =dz' | — oz 7_2/%13

(2.23)

Extension of the FO-rule (i.e. the derivation of the linear operator) of

the reference proof to the multi-dimensional setting by an admissible
SO-rule.

We show how to construct the FO-rule r"¢ needed in the multi-dimensional setting (given in
Eq. (2.22)) out of the FO-rule s/ used in the reference proof (given in Eq. (2.21)) by means
of an admissible SO-rule. That is, we need to find an admissible SO-rule S™? such that

S"d(s’”ef) = g (2.24)
Let S™ be the SO-rule:
S = rd = (2.25)
where
e ([ aeon do —yfade i) - (De ).
and
nd (Z”f U@@gz de ==Y, 15 [ ay st d;(;) (ngm _y, p%) |
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and
. . i =Var(i, 1),
Varphi = Fun(Varphi,y), , ,
— j =Var(j I),
w = Fun(w, y), and =
0 = Fun(f, z), g
I =Reg(l,d),
and

a, Varphi,y,w, i, 0 are SO-variables in X!, and
i,7,d are FO-variables in X°, and
p, I are constant symbols in F°.

The following claims can be easily checked:

i.) The SO-rule 8™ (defined in Eq. (2.25)) is parametrized in the sense of Definition 56 since
Var®(8™) =) Var® (r*) \ Var® (")
={i,7,d} #0.
ii.) The SO-rule S defined by
St = ot?(S8™),  where o3%={d— 1}
Is a semantic conservation.

iii.) Therefore, S™ is admissible w.r.t Sy¢.

iv.) The FO-rule s™ is a generalization of the FO-rule s"/ (in the sense of Definition 64) since
S™ is admissible and S"?(s"/) = s

Extension of the FO-rule (i.e. the derivation of the linear operator)
of the reference proof to the multi-dimensional setting by outward
growths.

Now we construct an outward growth G" which have the same effect of the SO-rule S™ (given
in E.q (2.25)). In other words, we show how to construct the rule s of the multi-dimensional
setting (given in Eq. (2.22)) out of the rule s/ of the reference model (given in Eq. (2.21)) by
means of an outward growth. That is, we need to construct an outward growth G"¢ such that

Gri(smel) = 5" (2.26)

The outward growth G™ can be constructed as a combination of unit outward growth by
comparing the FO-rules 5™ and s"?. That is, this comparison allows one to enumerate the
set of added terms needed in the construction of the unit outward growths. Let 7%, 7%, 77, 7%, 7J
and 72 be the added terms defined as follows:

=

7" = Indexed(Ll,q)
7/ = Indexed(L, )
7P = Indexed(L,p)

i = (L,9)
o =>(L,7)
(78 =>_(L,p)
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2.8. Application to the extension of the derivation of the linear operator

Let G, G7,GP and G® be the outward growths defined as follows:

QZ def .96 O gﬂpu
= G(ri i), (b p11) (Definition 85)
and
def

gj = 73,pa <> grj D8 <> gTj ,P13 <> gTj P17

= g(Tj 7Tj 7Tj 7Tj )7(p4 »P8 7}713,2917)

(Definition 85)

and
def
gp ng ,P15 0 g‘rp P17
= G(rv.79), (06, p11) (Definition 85)
and
s def
g = 74,p14
Finally we are ready to define the outward growth Gne:
de ; :
G2 GOGOGr0g. (2.27)

Extension of the FO-rule (i.e. the derivation of the linear operator) of
the reference model to the vector-valued setting by an admissible rule.

We show how to construct the FO-rule 7V (given in Eq. (2.23)) needed in the vector-valued
setting out of the FO-rule s™/ (given in Eq. (2.21)) used in the reference proof by means of an
admissible SO-rule. That is, we need to find an admissible SO-rule S such that

SY(s") = s (2.28)
Let S8Y be the SO-rewrite rule:
SUi= "= (2.29)
where
s 0Va7"phz ow e — ow i OVarphi 00
.—/a or oz —,u/ o T Tor Mo
and
OVarphi, ow, w, OVarphz
where
(& = Var(k, I),
l = Var(l, I),
q = Var(q, 1),
I = Reg(/, dy),
Varphi = Fun(Varphi,y, unknown),
w = Fun(w, y, test),
0 = Fun(0, z, known),
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and

a? Varph/L?y? m7w7l'1' E Xl’
k.l d, € X° and
[,qe}'ﬂ

By substitution of = {d, — 1}, we get S§ = o(5") which a semantic conservation SO-rule for
s and SV is admissible for SY.
The following claims can be easily checked:

i.) The SO-rule S (defined in Eq. (2.29)) is parametrized in the sense of Definition 56 since

Var®(SY) 24 Var®(r¥) \ Var®(¢")
— (k0 d) £ 0.

ii.) The SO-rule S§ defined by
Sg =00(8%), where oy ={d, > 1}
is a semantic conservation.
iii.) Therefore, SY is admissible w.r.t S.

iv.) The FO-rule s’ is a generalization of the FO-rule s"/ (in the sense of Definition 64) since
S? is admissible and SV(s™/) = s°.

Extension of the FO-rule (i.e. the derivation of the linear opera-
tor) of the reference proof to the vector-valued setting by SO-outward
growths.

Now we construct an outward growth G¥ which have the same effect of the SO-rule SV (given in
E.q (2.29)). In other words, we show how to construct the rule s™ of multi-dimensional setting
(given in Eq. (2.22)) out of the rule s/ of the reference model (given in Eq. (2.21)) by means
of an outward growth. That is, we need to construct an outward growth G* such that

Go(s") = 5" (2.30)

Again, the outward growth G can be constructed as a combination of unit outward growths.
We need to enumerate the set of added terms needed in the construction of these unit outward

growths. Let 7% 7!, 79 7% 7! and 77 be the added terms defined as follows:

)78y '8

(7F = Indexed(L, k)
7 = Indexed(L,])
79 = Indexed(l,q)
. =2(Lk)
=L
1 =25

QI

\7
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2.8. Application to the extension of the derivation of the linear operator

Let G*, G!,G9 and G® be the outward growths defined as follows:

def
gk = ng,pQ O grk,pg O ng,pE) O ng,plO

= g(Tk 7Tk 77_k 7Tk)7(p2 ,P9,P5 71710)
and

gl L ng D2 <> ng D9 <> grl,pg <> ng D8 Q ng,pm <> ngvPIG

= g(Tl 7Tl 77_l 7Tl 7Tl 77_l)7(p2 »P9,P3,P8,P12 7p16)
and

(Definition 85)

(Definition 85)

def
gq = Y115 <> gTq,p16
= g(Tq:Tq%(pls,pls) (Deﬁnition 85)
and

gS

def
(rk,78),(p1,p7) OQ( 74),(p1,p7) Ogu,pm

Finally we are ready to define the outward growth G":

def

G''= G 060G 06" (2.31)
Extension of the FO-rule (i.e. the derivation of the linear operator) of
the reference proof to the elasticity setting.

Thanks to the two outward growths G" and G, defined respectively in Eq. (2.27) and Eq.
(2.31), we are able to construct the FO-rewriting rule that corresponds to the derivation of the
linear operator associated to the microscopic problem of elasticity. That is, we able to construct

the counterpart of the FO-tule 5™/, defined in Eq. (2.21), for the elasticity setting. Consider
the outward growth G¢:

g Y griogy (2.32)

The application of G¢ to s™/ yields the FO-rule:

. \
Gel (sl 8Va7"ph2 awk o 8wk " GVarphz (?qup
(s7) = Z Qijki O, T a9r1 8m Z'uﬂl —Ukl@ - T Z W@ 1 :
klyi,j kli,j J P
Example 109 Let s,s',s" and s" be the FO-strategies:
— .
Si=u— —
dx
/ dgz
si=u, > —
ou?
"._ ud N
ou?
" d —
N i ™ Gy
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where the underlined shortcut terms have been introduced in (2.12), we repreoduce them
newt:
= Index(i,Set (/,{1,...,d;}))
= Index(j,Set(J,{1,...,d,}))

|,
|

J

z = Var(z,Reg(Q,1))
u = Fun(u,x)
z¢ = Var (z%,Reg(Q, d;))
gd = Fun (u, gd) .

"

Therefore the strategy s,s',s"” and s can be explicitly rewritten as follows:

s = u — Oper (Deriv,g, L, (Z)>
s' := Indexed (u,i) — Oper (Deriv, Indexed (u,7),

z,0)
s" .= u? — Oper (Deriv,gd, Indexed (Var (z,Reg (Q2,d)),j) ,0)
s” := Indexed (u”,i) — Oper (Deriv, Indexed (u’ i), Indexed (Var (z,Reg ({2, d)),j) ., 0)

""is depicted in Figures

where k,d € X°. The tree structure of the strategies s,s’,s" and s
2.20, 2.21, 2.22 and 2.23.

In fact, the strategy s corresponds to the derivative of a scalar function defined on one
dimensional domain 2, the application of s yields a scalar. The strategy s’ corresponds to the
derivative of a vector function defined on one dimensional domain ), the result of the applicatuib
of s is a vector. The strateqy s” corresponds to the derivative of a scalar function defined on
muti-dimensional domain ), the result is a vector. Finally, the strateqy s" corresponds to
the derivative of a wvector function defined on muti-dimensional domain €2, the result of the
application of 8" is a matriz.

Give the -strategies S,S’, 5" such that S (s) = s, 5" (s) = 5" and S" (s) = §", in grammar
form

S : u — Oper (Deriv, u,z,)) = Indexed (u,i) — Oper (Deriv, Indexed (u,i),z,0)

in which y,v € X', the needed unit outward growth 7 = Indexed (L, k) which will apply to
position p1o on the left hand-side and position pi133 on the right hand-side of strategy s.

S(s) = s |rlsloal,| =5 [7 [sloal,

P12 p132
gT,(P12,P132) (5)
S’ . Fun(u,Var (z,Reg (2, 1))) — Oper (Deriv, Fun (u, Var (z,Reg (2,1))),Var (z,Reg (2, 1)) ,0) =

u’ — Oper (Deriv,u’, Indexed (Var (z,Reg (Q,d)),j) ,0)

a subsitution o’ that can change 1 into d at positions piaass on the left hand-side and pi3202, P13322
on the right hand-side of strateqy s (need a grammar for it ?27), a unit outward growth T\ =
Indexed (J-’l) applies to postions p133 on the right hand-side of strategy s.

’ .
S (S) = g0’7(p12222,P13222,p13322)ﬂ gT'l,p133 (5>

S can be written as a combination of S and S’

" . .
S (3) = gd’,(p122227p13222,p13322)7gT'l,P133’gT7(P12,p132) (S)

= 5:5(s)
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2.9 Perspectives

We end up this Chapter with some perspectives and concluding remarks.

2.9.1 Extention mechanisms as strategies: outerward growth, parametriza-
tion and generalization as strategies

In section 2.5 (resp. section 2.7), the outward growths (resp. parameterizations and generaliza-
tion) by means of static positions. That is, one needs to specify the exact positions on which the
outward growths and the parameterizations are applied. Despite the fact that this formulation
in terms of positions is useful to understand many issues related to the composition and the
combination of the outward growths and parameterizations, it has clear drawbacks. Basically,
it is not practical since one has to enumerate the set of all positions on which he would like
to apply the extension. We illustrate another approach that consists in the formulation of the
outward growths and parametrizations in terms of strategies.

More precisely, instead of providing the set of positions on with the outward growth has to
be applied, we provide a pattern on which the outward growth has to be applied. Then, an
adequate traversal strategies, namely the InnerMost strategy, is used to explore the term and
search for the pattern. However, the formulation of the combination of outward growths and
parameterizations in terms of strategies remains an open problem. It turns out that these two
formulations are not equivalent in general, but it is possible to establish some conditions under
which the two formulations are equivalent. In what follows, u and 7 are FO-terms, and z is
a FO-variable. The outward growth (resp. parametrization) formulated in terms of a strategy
will be denoted by G, , (resp. P, ) in order to distinguish them from the usual outward growth
G,p (resp. parametrization P,,). We shall call them pattern outward growth and pattern
parametrization, or P-outward growth and P-parametrization for short.

def

§T,u = u— (let(L:=u) in 7) (P-Outward Growth at the root)
Gru = InnerMost(guvT) (P-Outward Growth at the inner most positions)
97w e/ BottomUp(gT,u) ("Vectorial" P-Outward Growth from the bottom)
UAJLU “Wu— (Parametrization at the root)
P X InnerMost(UA)m,u) (P-Parametrization)

2.9.2 Second-order pattern matching modulo alpha-conversion and
second-order unification

In Definition 54, Section 2.3, our SO-pattern matching is not done modulo a-conversion of the
FO-order variables. That is, the SO-pattern matching algorithm considers the FO-variables as
constants, while it would be convenient to rename them. Let us illustrate this idea through an
example. Let S be the SO-rule:

Si=(f(x) = f(z)) = (f(x) = f(z)),

where x is a FO-variable. Let s be the FO-rule:

s:= f(y) = f(y),
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where y is a FO-variable. According to our definition 54, the application S(s) fails because
f(y) = f(y) does not match f(z) — f(x) since x and y are considered as constants. However,
this is a severe limitation since, morally, the SO-rule S tends to transform a FO-rule f(z) —
f(z) to g(z) — g(x) for any FO-variable x. Therefore, the SO-pattern matching algorithm
has to a-convert the FO-variables if necessary, e.g. by renaming y by x in s. Another problem
is that we need to give syntactic conditions so that the SO-unification modulo a-conversion is
decidable, see e.g. [19]. This is necessary for the computability of the operation of combination
of SO-outward growths given in Definition 93.

2.10 Appendix

2.10.1 Proofs of Section 2.2
Proposition 110 Let s,t,r be terms and p,q be strings. The following hold.
1. If pq € Pos (s), then s|p, = (S|p) |q-

2. If p € Pos(s) and q € Pos (t), then

3. If pqg € Pos (s), then

4. If p and q are parallel positions in s (i.e. p || q), then

(st e = slo

(stt,) 01, = (s07,) 10,

Proof. A detailed proof can be found in [4], page 37 and 38. We reproduce here the
main arguments. In order to prove (1), we assume that p = ij...i,,then s|,; = S|y g =

f(Slj--->Sn1)|i1...inq = Snlm...inq = f(si117"'78i1n2)‘izminq = e = Sil..vin|q = Sp\q = (s p) !q-

In order to prove (2a),we know that pg € Pos (s [t]p>, apply (1), we have (3 [t]p> lpg =
<<s [t]p> |p) |, = t|,- In order to prove (2b), we denote s = (s [t]p) r],, and s" = s [t [r]q}
p

From (1) (2a), s'|,q = 8"|pq = 7. Therefore, we need to compare the structures of s” and s except
positon pq, the position of 7. Since the remain structures of both s”, s’ are built from s and ¢

by changing s|, by ¢, we have s' = s". In order to prove (3a), we denote s' = (s [t}pq) |p, 8" =

(slp) [t],,8° = slt],,, we have st = s, = s. Since s" = f (51,...,51-1 [t]g s+ Sna ) » we have
sy, = 8%, = siy [t],, - Since s;, [t],, = f (Sm, ey Siyiy [t g » ...,sim> , we have s, = s?|;, =
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Siris [t],n, - Continue the same step, we have s, = s, [t], = (s[,), = s". This result leads to
if we change the subterm s°|, actually we will chang the term (s|,) [t], which includes ¢, so
that the remain structure of s keeps the same structure of s except position p. Now we will

prove (4a), since p and ¢ are parallel positions in term s, i.e. p || ¢ or there is no k such
that pk = q or ¢k = p, we denote s' = (s [t]p> gy 8" = s|, and s = s[t]p. We have Va €
Pos (s)\{pj | 7 € Pos(s|,)} : s°la = $|a and from assumption ¢ & {pj | j € Pos(s|,)}, so that
Solq = $|q or s; = s,. This result leads to the fact that p and ¢ are not in the same branch, so

that we can replace s|, or s|, first without changing the another position, which leads to the
property (4b). W
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Chapter 3

A two-scale model derivation for a SThM
probe

Abstract. In this chapter we state the two-scale model derivation for an SThM probe developed
in the NANOHEAT project. In the derivation, the mathematic approach proposed in 1 is fol-
lowed. In the new proof, the features (i) the multi-dimensional domain, (ii) thin domain, (iii)
sub-domains with different physics, (iv) vector solution and (v) multi-physics are taken into ac-
count. By taking into account these new features, mathematical rules used in the reference proof
in 1 are extended and new steps are added. Then follow the same framework, the homogenized
model for the Joule-heating thermoelasticity is derived.

3.1 Introduction

This chapter is devoted to derive a two-scale model for an SThM probe developed in the
NANOHEAT project. The derivation is presented in the perspective of its use to enrich ex-
tensions of the reference proof introduced in Chapter 1. The features to be taken into account
are: (i) the multi-dimensional domain of R?, (ii) thin domain, (iii) sub-domains with different
physics, (iv) vector solution, (v) multi-physics ie the coupling between thermal effects, elasticity
deformations and the electric current flowing in the conductive parts. Other features are also
taken into account but they are due to technical reason and will appear later. To put this model
in our framework, we consider, in addition to the thinness of the domain, that the coefficients
are periodic and get an homogenized model in a thin structure as in [18] [21] and [22]. We
notice that one of the differences with the latter references is that the asymptotic behavior
regarding the periodicity and the thinness are taken into account through a single technique,
that is the technique used in the reference proof. Moreover, we bring a simplification of the
proofs by replacing in some places the two-scale convergence, based on the two-scale transform
(ie this used in the unfolding method) by the two-scale convergence of G. Nguetseng and G.
Allaire.

3.1.1 Organization of the Chapter

The chapter is organized as follows: in Section 3.2, the physical problem is stated. The rest
of the chapter has the structure of the reference proof. In the first part of Section 3.3, the
definitions and properties of two-scale transform operators are discussed. In the second part,
the weak limits of two-scale transform of first order derivatives of solutions are derived. The
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Chapter 3. A two-scale model derivation for a SThM probe

last section is focused on the derivation of the two-scale model and then of the homogenized
model.

3.2 Physical model description

The probe is designed as a thin three-layered structure and is located in a domain denoted by
). See Figure 4(a) and Figure 4(b). For illustration, we notice that in the last fabrication Qg;
the silicon (Si) supporting layer is 5 gum thin and it is covered by a 50 nm silicon dioxide (SiO2)
insulator layer Qgips. Finally, a 100 nm thick platinum (Pt) track Qp; used for both a heating
circuit and a sensing circuit is deposited. A current source is applied to one end I, of the
platinum track, and the other end I, is electrically grounded. The conductive tip is heated
through the Joule heating effect and the heat flux through the tip-sample interface is measured
by the sensing circuit through the variation of the tip voltage.

The behavior of the SThM probe is governed by the thermoelasticity equation with Joule
heating. The electric resistivity of the platinum layer affects the Joule heating effect in the
probe. It varies with the temperature. We use C°, M?, k® and a® to denote the elasticity
coefficient tensor, the matrix of thermal expansion coefficients, the matrix of thermal conduc-
tivity and the matrix of electric conductivity. Obviously, C°, M and k® are piecewise constant
functions and we assume that C¢, k® and a® satisfy the usual ellipticity conditions. We use
u® = (uj,us, us), 0° and ¢° to denote the mechanical displacement vector, the difference of the
temperature to the ambient temperature and the electric potential respectively. Since the Si02
layer is a good insulator, the electric potential ¢ is only defined in Qp;. The Joule heating is
the only heat source of the probe.

The thermoelasticity equations with Joule heating are:

—div(o®) = fM< in O

—divg® = (V)T a*V© in Qp;
—div qg =0in QSi U QSiOQ
—div (a®*Ve©) = 0 in Qpy,

(3.1)

where 0 = C®s(u®) + M*6° is the tensor of stresses, s(u®) = (Vu® + (Vu©)”) is the tensor
of strains, f*< is the body force load, q° = k°V6 is the heat flux, a® = (1 + \°)~tare/<
is the electric conductivity, A is the temperature coefficient and a"/ is the tensor of electric
conductivity at ambient temperature. Regarding the boundary conditions, the cantilever is
clamped and with an imposed temperature on a part I'j of the boundary, i.e. u® = 0 and
0° = 6y, and is mechanically free loaded and thermally insulated on the other part I'y, i.e.
on = g™ and °n = 0 where n denotes the outward normal vector to the boundary. Finally,
a current source j° is applied to L'y, ie fFél a*Vp°n dz® = j°, I'yy is grounded ie ¢° = 0 and the
other boundaries are electrically insulated ie a*Vp*n = 0 on 9/(To; U T'ga).

M, ,,He

The weak formulation is obtained by choosing test functions v v#< and v®* satisfying
the boundary conditions v = 0, v7* = 0 on Iy and v®¢ = 0 on I'ge. After some usual
calculation, we get the weak form of Equation (3.1) with a scaling x° = 1/|Q),

KV Vol de + k° / a*Vo© Volfs da

Qpy

K /Q(Cgs(us) + M=6°)s(v*) da + mo/

Q

= &’ / fMeyMe dr + /@0/ a*Vo© Vo© v dr + /iof/ vBe dat + /10/ ghhevMe dy
Q Qp+ To1 ry
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with the Dirichlet-like conditions u® = v = 0 and 6° = v = 0 on Iy, ¢* = v¥* =0 on
['g2. We notice that the boundary condition 6y has been taken equal to zero for simplicity, and
this is also sufficient for the current application.

In the following asymptotic analysis, the whole probe is assumed to be thin, ie its thickness
(which is in the range of a small parameter ¢) is small compared to its lengths in the two
other directions and the coefficients are assumed to be periodic with period e, which includes
the case with constant coefficients. Moreover, the thermal conductivity in the insulating layer
made of silicon dioxide is assumed to be in the range of €2 when it is the range of 1 in the
other components. From the mathematical point of view, we say that this coefficient is strongly
heterogeneous.

For the asymptotic model derivation with respect to the small parameter £, we will assume
(without proof) some usual uniform estimates of the data and of the solution. To simplify, we
introduce the scaled L?-norm for functions defined over a domain A

1/
ol = — [ % dx.
Il = 1 /.

We assume that the data are uniformly bounded,

—1 M,
11£25< 111G and [[le™ 5771

<
75| < C

and that the solution u®, 6° and ¢° satisfy the a priori estimates, inspired from [26], [15] and
221,

I1w)icallla < C, [lleusllly < €, sl < C :
OIS, VOIS, < C5 [IIVE[lIG,, < C and [[[eVElo,,, < C (3:5)
e, NIV, < C

C denoting various constants independent of €. These assumptions take the place of assumption
f € L*(Q2) and assumption (1.15) for unknowns in the reference proof.

To conclude this section, we list the additional features taken into account in comparison
with those already present in the reference proof:

e it is posed in a multi-dimensional (three-dimensional) domain;

e the domain is thin;

e several subdomains (the three layers where the coefficients are constant) are distinguished;
e the solution is comprised with several fields u® = (uj, u§, u5), 6° and ¢°;

e the matrix k® has strongly heterogeneous coefficients ie k* ~ &2 in Qgjoo which implies
the uniform estimate of ||[eVO®|[[3, .3

e the scaled field cu§ satisfies a uniform L*-estimate.
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3.3 The SThM Probe model derivation

3.3.1 Notations, Definitions and Propositions

Notations, definitions and proposition of the reference proof are extended to cover the present
case and new ones are added. All domains and variables are multi-dimensional without to
be explicitely said in each case. Notice that, in the current status, the propositions are not
defined in an optimized manner for further extensions. They are chosen to work for the current
application.

Convention 111 (i) Latin indices and exponents: 1,7, h,k, ..., take their values in the set
{1,2,3}, unless otherwise indicated.

(i1) Greek indices and exponents: o, 3,0, ..., take their values in the set {1,2}, unless oth-
erwise indicated.

(11i) The repeated index summation conventions is systematically used in conjunction with

rules (i) and (ii).

Notation 112 /Kronecker delta function/

P 0 A

Notation 113 [Characteristic function] The characteristic function is denoted by

() 1ifreA,
X(4) T\ 0 otherwise

where x 1s variable and A 1s a set or a domain.
Notation 114 [Mean value of integral] §, dz = ﬁ o, dz.

Notation 115 [Strain operator| u is a vector valued function defined in a domain A, x is
the coordinate variable, then the strain operator with respect to x s

si(u) = % (Owiuj + Oy u5) -

ij

Property 116 [Integral rule for subdomain/Suppose A = Ay U Ay and Ay N Ay = &, then

/dz:/ dz+/ dz.
A Aq As

Property 117 [Integral rule for subdomain/ Suppose Ay C A and a(x) is a function defined
in Ay, then the integral of a(x) is extended to A by

/a dz :/ XEZ)I)a(x) dz.
A A
Property 118 [Interpretation of a weak equality] Foru € L*(A) and for any v € C§°(A),
if / u(z) v(x) de =0 thenu=0
A
in the sense of L*(A) functions.
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3.3. The SThM Probe model derivation

Property 119 [Interpretation of a periodic boundary condition] For v € H'(A) and
for any v € C° (A),

if u(z) v(x) ng, (z) de =0 then u is x,-periodic in A,
0A

where n,_ is the a component of the outward normal vector n.

Property 120 Suppose A is a rectangle, w = (uy,us) is a vector valued function in A, if for
a, B €{1,2} and v € C°(A), [54(Ne,us 4 Nuytia)v de =0 then u is xq-periodic in A.

Property 121 For u a periodic function in A and for any v € C;° (A), we have

/ uwv(z)ngpa(z) de = 0.
0A

Property 122 (Linear dependency) For u a function defined in A and x the coordinate
variable, a is any function independent of x, if O,u = a, then

u(z) =za+u
where u s a function independent of x.
Property 123 If u(z) = xqa(x) + b is x4-periodic, then a(x) = 0.

Property 124 Suppose A is a rectangle, u = (uy,us) is an A-periodic vector valued function
in A, if for a, € {1,2}, Op,up + Opyuq = 0, then u is a constant in A.

Property 125 A is a domain and Uy is a part of its boundary with out normal vector n, u is
a scalar function defined in A, if for o € {1,2} and Vv € C* (A) so that

/ unyv dr =0,
To

then u =0 on I'y.

Property 126 u = (u1, us) is a vector valued function defined in A, Ty is a part of its boundary
with out normal vector n =(0,b) for b # 0, if for Vv € C* (A) and a, B € {1,2}, so that

/ (uang + ugng) v de =0,
o
then uy =0 and uy =0 on I'y.

Property 127 [Green Rule] If u, v € H'(Q)) then the traces of u and v on T are well defined
and

/u@xiv dx = /tr(u) tr(v) ng, ds(x) — / vy, dx.
Q r

Q
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Property 128 (Introduction of a Kronecker symbol) Fori,j € {1,2,3}, o, 8 € {1,2},

then
Ao + ZZ a; = ZZ ai(1+ 6ia), bap + Zij bij = Zij bij(1+ 0iadjp)-

In the following, the two-scale transform related notations and properties are introduced.

N(e)
Notation 129 [Physical and microscopic Domains| We consider an domain Q = |J Q¢ C

c=1
R divided into N(g) periodic cells QL¢, of size € > 0, indexed by c, and with center x.. The

translation and magnification (QL1° — x.)/e is called the unit cell and is denoted by Q. The
variables in Q0 and in Q' are denoted by x° and x'.

The two-scale transform 7' is an operator mapping functions defined in the physical domain
Q to functions defined in a two-scale domain QF x Q!. The configuration of Q, Qf and Q' in
1-dimensional and 2-dimensional case have been explaned in Chapter 1. The same principle is
applied in 3-dimensional case also. We notice that the dimension of QF is less or equal to the
dimension of €2 and the relation just depends on the configuration of €.

Notation 130 (Macroscopic domain indices) We denote by I* the set of coordinate indices
of variables of the macroscopic domain U and denote by I the set of coordinate indices of
variables of the physical domain €.

In the SThM probe model, I* = {1,2} and I = {1,2,3}.

Definition 131 [Two-Scale Transform| The two-scale transform T is the linear operator
defined by
(Tu)(x,, ') = u(z. + xt) (3.7)

and then by extension T(u)(z", z') = u(z. + ext) for all x° € QL¢ and each c in 1,..,N(e).

The operator T" enjoys the following properties.
Property 132 [Product Rule] For two functions u, v defined in 2,

T(uwv) =T(u)T(v).

Property 133 [Derivative Rule] If u and its partial derivative are defined in ) then

for¥i e I, T (duu) = %aﬁT(m. (3.8)

Property 134 [Integral Rule] If a function u € L*(Q) then T'(u) € L*(QF x Q) and

%u dx = ?{ T(u) dx’dx’.
Q QfxQl
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The next two properties are corollaries of the previous ones.

Property 135 [Inner Product Rule] For two functions u, v € L*(Q),

%u v dx :% T(u) T(v) dz’dx’.
Q QfxQ1

Property 136 [Norm Rule] For a function u € L*(Q),

llle = N7 @)[[6e 0 (3.9)

Definition 137 [Two-Scale Convergence] A sequence u® € L*(Q) is said to be two-scale
strongly (respect. weakly) convergent in L*(QF x Q) to a limit u®(2° 2t) if T'(u®) is strongly
(respect. weakly) convergent towards u® in L*(2F x Q).

Definition 138 [Adjoint or Dual of T] As T is a bounded linear operator from L*(Q) to
L2(QF x QY its adjoint T* is a bounded linear operator from L*(Q* x Q) to L*(Q) defined by

ng*(v) u dx :]{ v T(u) da’dz’. (3.10)

Qi x QL

The expression of T* can be detailed, it maps regular functions in QFf x Q! to piecewise-constant
functions in 2. The next definition introduce an operator used as a smooth approximation of
T~

Definition 139 [Regularization of T*| The operator B is the linear continuous operator
defined from L*(QF x QY) to L?(Q2) by

Buv :v(x,g). (3.11)

The nullity condition of a function v(z° ') on the boundary 9Q% x Q! is transferred to the
range Bv as follows.

Property 140 [Boundary Conditions of Bv] If v € C3(Q%C>(Q)) then Bu € C°(Q).

Property 141 [Derivation Rule for B] If v and its partial derivatives are defined on 2 x Q!
then
fori €1, 0,,(Bv) = x5z (i) B(O,0v) + 8713(8%11}). (3.12)

The next proposition states that the operator B is actually an approximation of the operator
T* for Q'-periodic functions.
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Property 142 [Approzimation between T* and B] If v(z°, x') is continuous, continuously
differentiable in 2° and Q-periodic in x' then

T( U—SZ 2}0,00) + £04(e). (3.13)

Conversely,
B(v) T*v+5z 2} 0,00) + £0,(e). (3.14)

The next two proposition are used for the homogenized model derivation, they are extension
of Proposition 20.

Proposition 143 [The linear operator associated to the Microscopic problem H] Here
we assume a convention of summation over o from 1 to n. For any p € R™, under ellipticity
condition on ° there exist ¢* € HJ(Y') solutions to the linear weak formulation

act ow o Ow
/Ql C?ja—x]la—xll dl‘l = —/,La/ w‘a 1 d$ fOT' allw e Cﬁ (Ql) (315)
with unique derivatives gc—;f Since the mapping p — V1" from R™ to L*(QY™ is linear,
act ot
< % (3.16)

8_%1- —Maa—x;?

where C\ is solution to (3.15) for p, =1 and pg =0 for B # a,

¢t ow o Ow
0 250 2 gl — 0! _
/Ql Cij 9 0] dx / i gl dz' for all w € C°(Q). (3.17)

Moreover, the relation (3.15) can be extended to any p € L?(QF)".

Proposition 144 [The linear operator assoctated to the Microscopic problem M]
Here we assume a convention of summation over h, k from 1 to n. Under usual ellipticity
condition of ¢°, for p € R™ ", there exist ¢ € Hy (Q')" solutions to the linear weak formulation

/Q ClinSTk(C")ST (W) dat = —puye /Q ST (w) dat for all w € CF(QY)",  (3.18)
and S,f,i((“) is unique. Since the mapping p — S;’f,i((“) from R™ "™ to L2(QY)"™ " is linear,
S (C") = Loguktyg (3.19)
where Lygn, = St (CL,) and (), € HY(QY)" is the solution to (3.18) for p,, = 1,
/Q & ST (CL) ST (w) dat = — /Q & 57 (w) dt for all w € CF(Q1)",
Moreover, the relation (3.19) can be extended to any p € L*(QF)™",
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3.3. The SThM Probe model derivation

Proposition 145 Suppose A is a rectangle, 't and I~ are the top and bottom surface, I''
is the lateral boundary, ki; for i,j € {1,2} is a constant matriz, a and b are two constants, if
a function 0 € H'(A) enjoys

— 23 02, (3 (Kij0,0)) = 0 in A
(32, KijO;0)n0, = 0 on TF
0=aonI*

O—bonl",

then 6 = af™ + b0~ , where 07 and 6~ are solutions to

(=2 axi(zj<kijaxj9+)) =0imA
kij0p 0 )ny, = 0 on Lot

(Z] )T ) 9+ . F+ (320)
. 6" =0onT",
— 3300, (32 (ki0:,07)) = 0 mLA
kijOp. 0 )0y, =0 on Thot

(2 i, ) 0" =0 on I'F (3.21)
0~ =1onT".

\

Proposition 146 Suppose A is a rectangle with a boundary I, I'™ is the bottom surface of A,
kij fori,j € {1,2} is a constant matriz, a is a constant, if a function 6 € H'(A) enjoys

— 2205, (kij0,,0)) = 0 in A
(Zj kijaxje)nxi =0onl —-T"
0=aonl~

then 0 = a.

Proposition 147 [Solution to microscopic problem| If (A;),_, 5 s To-periodic in A and
Oz, Me = Onalis, then A\, = 130x30pq-

Proposition 148 [Zero solution for free load elasticity] Suppose A is a cubic with elas-
tic coefficient tensor cijur, (ui)i:123 1s the displacement filed and is periodic on the lateral

directions, if for V<Ui>¢:1,2,3 € Ct?%A)’

S A CijnkOu, uk0y,v; d =0
(Ui)i—1 05 18 Ta-periodic on DA,

then (u;);_; 95 = 0.

In the previous part, the general notations, properties and propositions have been intro-
duced. In the following, we introduce specific notations that are used to simplify the presenta-
tion of the SThM probe model.

Notation 149 [Domain decomposition| The domain Q is decomposed in parts with regard
to their number of layers: €y is the two-layered subdomain and 3 is the three-layered sub-
domain. We denote by Q5" and Q5% the silicon layer and the silicon diozide layer in Qy:
Qgi = Qg N Qy and QgiOQ = Qgio2 N Q. Stmilarly, notations Qgi and 92102 are defined by
Qgi = QSi N Qg and QgiOQ = QSiOQ N Qg.
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Chapter 3. A two-scale model derivation for a SThM probe

Figure 3.1: Configuration of the probe

The configuration of the probe is shown in Figure 3.1.

Notation 150 [Two-scale domains| The subdomains Qs and Q3 are partitioned in cylindri-
cal cells that intersect the x-y plane by € X e-squares. The cells are denoted as Q25 and €25, which
after shift by x. and scaling by e~ yield the scaled cells Q% and Q. Considering the multi-layered
structures of Q3 and QX they are decomposed into Qf = Q& UQL o, and QF = QL UQL, UQL,.
The domains Qg and Qg are the projections of Qs and Q3 on the x-y plane. Then the two-scale
domains corresponding to Q5 and Q5% are O x QL and Q4 x Odioy, when those of QFF, Q5102
and Qp, are Q4 x QL) Qf x Qoo and QL x QL. and those of Qs and Q3 are QO x QL and Qf x 929
The projection of I'y and Loz on the x-y plane is denoted by Fg and sz.

Notation 151 [Volume Ratios|/The volume ratios of each component of the whole probe is
denoted by: r§ = |5 (Q7", 75102 = Q51O |7, #5F = Q5| |Q, 1502 = Q59?07
P = QP Q7 ry = [Qof |7 and 73 = Q5] 107

3.3.2 Two-Scale Approximation of Derivatives

This section is aimed to compute the two-scale limits of strains and gradients of temperature
and electric potential. This is an extension of Section 1.3.2. Considering the configuration of
the microscopic domains, the physical domain €2 is separated to the two-layered subdomain
)5 and the three-layered subdomain €23. The computation of the weak limits of the two-scale
transform of s%5(u®), VO, eV and Vy© are discussed in €2 and €23 separately because of the
different configuration of the microscopic domains. On the other hand, the derivation for each
term on {25 and €23 are very similar, so the discussion is only detailed in €23. In the following,
we introduce assumptions of the two-scale approximations of the fields u®, #° and ¢ designed
accordingly to the a priori estimates.

98



3.3. The SThM Probe model derivation

Assumption 152 [Two-scale approzimation of u] There exist (ul,ul, u?)i—13, 0°, ' €

L2(Q4 x Q1) and ¢°, o' € L2(Q x QL) such that

for i € {1,2,3}, %%y Bu da —j{ uf v da’dx' = O(e), (3.22)
Q3 QixQl
for m € {Si, Si02, Pt}, 6° Bu dx —f 0° v da’dzt = O(e), (3.23)
Qp QixQL,
and
jQ{ ¢° Bv dx —7{ ©° v dx’dxt = O(e), (3.24)
Qpy Q4 x 0L,

for all v e C=(Qh x Q),

forie{1,2,3}: £8yS By dx — 7{ (u) + eu; + e*u?) v da’dx' = €O(e), (3.25)

Q3 Qf x0l
for m € {51, 5102, Pt}, 0° Bv dx — ]{ (0° + £0") v d2’da’ = O(e), (3.26)
Qm Qi xQl,
and
]{ ¢° Bv dx —]{ (% 4+ eph) v dz’dat = cO(e) (3.27)
Qpt Q5 xQL,

for all v € D(Q; C2(Q4)).

0

1Q4xQL,’

6, . and 6, _, are three functions, but we do not distinguish them for simplicity. The
|QSXQ§102 ‘f_ls‘XQSi .

following Proposition extends Proposition 21.

In fact, #° and ' are functions depending on the microscopic layers. For example, 0

Proposition 153 [Two-scale Limit of a Derivative] If (uS,)ac1,2}, €u5, 0° and ¢° are se-

quences bounded as in (3.4,5.5,3.6) and satisfying (3.22-3.27), then (U))acq1 2}, U3, us, ellﬂﬁ,xﬂ}:tuflgxﬁéi

and ¢° are independent of x', (ui)ae{m}, u3, ellﬂgxﬂétuﬂgxﬂéi and ©* are xl-periodic, and
for a, B € {1,2} : § (Or,uj + Opyuy) Bu dv — ngXQ% nisv daldx' = O(e),
for a € {1,2} : §, (Onyug, + 0y, u5)Bv dv — fggm% My dx’dxt = O(e),
$o, Ozus By dx — §Q§x9§ n¥v dx®dzt = O(e),
o, 007 Bv dzx — 5693”211% nfv da®dx' = O(e),
fﬁgi 0,,0°Bv dx — fﬂgx%' nHv da’dzt = O(e),
$og00 E0n0°BU dz — $os o v da’dazt = O(e),
$op, O " Bu do — ngX%t nPv dalds' = O(e),
where
My = — w300t + Ol + Dug W + D + Doy uf in O x O
77%) = @cgué + 8zéu§ + 8xéu}1 m Qg X Qé,
My = Oguj in Q5 x Qf,

m = Xpay(0)0,00° + 0,10 in 0 x Qp,
no= X{1,2}(’i)ax?‘90 + 62361 in 0 x

o= 06" in QO x Qo
nY = Xy (0)0,09" + 00" in Qf x Q.
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Chapter 3. A two-scale model derivation for a SThM probe

Moreover, if u® = 0, 6° = 0 on Ty, ¢ = 0 on Ty, then u® = 0 and 6° = 0 on T N 0N and
0 _ #
@’ =0 on L'y,.

The proof of Proposition 153 is decomposed into seven lemmas extending those of the
reference proof, which are proved for each set of assumptions. The new steps in the extensions
are remarked by Substep of the main steps in the reference proof.

Lemma 154 [First Block-1: Constraint of u°] (a) axéug—i-@xau% =0, (b) u is independent
of x, (c) Opyug, + o ug + Opyuy = 0, (d) ug is independent of w3, (e) uy is independent of v}

in 4 x QL (f) 0° is independent of 2 in Q% x QL,, (g) 0° is independent of x* in Q% x QL. (h)

@ is independent = in Qf x Qb,.

Proof. a-Source term. For each «, 5 € {1,2}, we set the initial term
U= 5]{ (Oppug, + Op,up)Bu dx
Q3

with v € Cg;g(Qg; o0l (€21)). From the Cauchy-Schwartz inequality and (3.4), lim. o ¥ = 0.

We follow Step 1 - Step 5 in the proof of Lemma 22 in Chapter 1. Instead of using the
propositions in Section 1.3.1, we use their extended form posed in Section 3.3.1, and for the

assumptions for the two-scale convergence, we use (3.22).

b-Source term. For each o € {1,2}, the initial term is
U= 62]{ (Opgug, + Oy, u3)Bu dx
Qs
with v € Cg‘ég(Qg; o0l (€21)). The proof is the same as for Lemma 154(a).

c-Source term. For each a € {1,2}, the initial term is

3 Yo

U= 57{ (Opsuis, + Oy, u3)Bu dx (3.28)
Q3

with v € Cg?zg(Qg; CS?;; (€23)). From the Cauchy-Schwartz inequality and (3.4), lim._,o ¥ = 0.
e Step c-1. Propositions 127 and 140 —

U = —67{ u;, 0y, Bu + u50,, Bu dx.
Q3

e Step c-2. Proposition 141 and the boundness (3.4) =

1
U= 7{ u;, BO,iv + —eu5B(e00v + Op1v) do + O(e).
Qs 3 € a a

e Step c-3. Assumption (3.22) and (3.25) =

]{ﬁ udd,1v + (u§ + eul) (Ouov + £~ Oy ) da’dat = O(e).
Qix Q1
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3.3. The SThM Probe model derivation

Substep c-3-1. Expand the second term

j{n (ui@xév + u30,0v + ude D v + Euéaxgv%—u%@mgyv) dz’dx' = O(e).
Qix0L

Step c-4. Proposition 127 and v = 0 on Qg x 00 =

]{ﬁ (8xéu3 + Opouf + £ O ug + €00 uy + Oy uy)v da’dat = O(e)
QEx Q1

Substep c-4-1. Lemma 154(b) =

7{2 (Ot + Dug i + €0pguz + Oy uz)v da’da = O(e)

Passing to the limit when ¢ — 0 =

% (O + Dpoud + Opr ug)v da’da’ =0
afxal °

Step c-5. Proposition 118 =
@E%ug + @wgug + az(llué =0.

d-Source term. The initial term is

U= 52j€2 Opsuz Bu dx
3

with v € Cg?lg(Qg; o0l (€21)). The proof is the same as for Lemma 154(a).

e-Source term. The initial term is

U = 5?4 Op,uz Bu dx
Q3

with v € Cg?)g(Qg; o0l (€21)). The proof is the same as for Lemma 154(c).

f-Source term. The initial term is

U=¢ 0,,0°Bv dx
Qpy

with v € Cg‘;)g(Qg; gg%)t(Qlljt)). The proof is the same as for Lemma 154(a).

g-Source term. The initial term is

V=cdp 0,0 Bvdx
o5

with v € Cg‘ég(Qg; g?zé(Qél)) The proof is the same as for Lemma 154(a).

h-Source term. The initial term is
U = sjg Oy, 0" Bv dx
Qpy

with v € Cg‘ég(Qg; g?)}%(Qlljt)). The proof is the same as for Lemma 154(a). W
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Chapter 3. A two-scale model derivation for a SThM probe

Lemma 155 [Second Block-1: Two-Scale Limit of the Derivative] (a) 0l = 5m%ug +
&Egu% —l—@xbu}x + (‘L}lu}j, (b) Ny = Oouy + 8@1@ +0,1u3, (¢) i = améug in Qg x QL (d)
nfl = X{1,2}(i>8x990 + aleel i Qg X Qby, (e) nff = X{1,2}(i)ax§90 + axgel i Qg x Qg (f)
= 0,05 in O x Qhioy (9) nF = X(1.2)()0,00° + D10t in Qf x Q.

Proof. a-Source term. The initial term is

U= 7{ (Ozpug, + Op,uz)Bu dw (3.29)
Qs

thvec%gﬂgc%gayy

The steps are the same as the proof of Lemma 23 in Chapter 1 and we get the conclusion

(a).

b-Source term.
U= f (Opsuts, + Oy, u3) Bu dx (3.30)
Q3
mmvecw@ﬁ;%g%».

a9

e Step b-1. The Green formula (127), Proposition 141 and the linearity of integrals —

U = —]{ uf,e tB(0,10) + euse B(0yv + e 0,0 v) da.
Qs 3 a «

Step b-2. Assumption 3.25 and 3.25 =

U = ]{u (e M + ué)(‘)zév + (ud + eus + *u3)e " (O0v + e 10, v) da’dx’ + Ofe).
Qix0L

Substep b-2-1. Expand and factorizing by exponent of ¢ —>

U= 7{ e ?ug0, v da’dat + f g (ugaxév + U300 v + ué@zév> dz’dx?
Qi x0l Qi x0l

—i—]{ (uiaﬁw + uz0,0v + u%@zav> dz’dx' 4 O(e).
Qfxql °

Step b-3. The Green formula (127) and factorizing =
U = ]{ 5_28@111130 R jl{ gt <6x1ug + axgug + Gméu:%)) v dx’da?
QixQl Qfxl :

+ j{ (@gué + O us + 8x1ué> v dz'dz' + O(e).
Qfxql :

Step b-4. Lemma 154(b) and (c¢), passing to the limit when ¢ - 0 =

U = f <8xgu§ + O uj + 8x1u(1l) v dx’dzx’.
Qi xQl ’
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3.3. The SThM Probe model derivation

e Step b-5. Proposition 118 —

M 1 2 1
Nag = 8zgu3 + 81(11143 + 8x§ua.

c-Source term.

:f Opsus Bv dx
Q3

with v € €, (; dQl(Ql)). We follow the steps of the proof of Lemma 23 to find the conclu-

sion.

a9} (

d-Source term. The initial term is

U= 0,,0° Bu dz for each ¢ € {1,2,3} (3.31)
Qpy

with v € C*®

conclusion.

ot (Q4;C 0L, (5,)). We follow the steps of the proof of Lemma 23 to find the

e-Source term. The initial term is
U= Ja{ 0,,0°Bv dz for each i € {1,2,3}
o5t
with v € CBQ,j (Q4: BoL, (QL)). We follow the steps of the proof of Lemma 23 to find the
conclusion.

f-Source term. The initial term is

U= j{ £0,,0° Bv dx for each i € {1,2,3}, (3.32)
0OSio2

with v € €, (Q4;C°

conclusion.

(Qéim)). We follow the steps of the proof of Lemma 23 to find the

aQﬁ o0

g-Source term. The initial term is

= f Oy, 0" Bu dx for each i € {1,2,3}, (3.33)
Qpy
with v € Caﬂﬂ (Qh; Ce o0, (2%,)). We follow the steps of the proof of Lemma 23 to find the
conclusion. W

Lemma 156 [Third Block-1: Microscopic Boundary Condition] (a) ul, (b) ul, (c)u}
and (d) u3 are x}-periodic in Q3, (e) GIQ” QL is . -periodic in QU (f) ngu <L, and (g) @' are

zl -periodic in Qb, and (h) 6° is continuous in Q.

Proof. a-Source term. The initial term is

U= ]{ (Oppug, + Op,up)Bu d
Q3
with v € CaQﬁ (Q; 891(Ql)). From the Cauchy-Schwartz inequality and (3.4), lim._,o ¥ = 0.
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e Step a-1. The Step 1 to Step 3 of the proof of Lemma 154(a)=

|08

o b Fl(@ 1ug, + O up)v da’da’ = O(e).
3)(

—j{ (0, 1u + O up)v da’da’ + =
Q5 xQ}

e Step a-2. Lemma 154 and passing to the limit when ¢ - 0 =
7{ (ugng + ugng Jv da’de’ = O(e).
o xI'i p “

e Step a-3. Proposition 120 —-

for a € {1,2} u? is z-periodic in ;.

b-Source term. In (3.30), we choose v € Cagﬁ (Qg,Cg’o(Qé)) The proof is the same as for

Lemma 24. In Step 3, we replace Proposition 2 by Proposition 120.

c-Source term. In (3.28), we choose v € C™° Qg,Cé’o(Qé)) and vanish on the top and

aﬂﬁ (
bottom surface. We use Fé’Lat to denote the lateral boundary of Q2.

e Step c-1. The steps 1-4 for the proof of Lemma 154(c) =

j{n 1 (Ot + Opg g + € O ug + €0p0 g + Dy uz)v da’da’
Q5 xQ

1’\1
1%l (e udng +ugng v da’dz’ = O(e)
|Qé| ngFé’L“t

e Step c-2. Lemma 154, Property 121 and passing to the limit when ¢ - 0 =

7{ uyng v da’de' = 0.
ngFé’L‘”

e Step c-3. Proposition 119 —

for a € {1, 2} ug is Q3-periodic.

d-Source term. Choose test function v € C®
and bottom in (3.30).

oot (Qg,Cé’O(Q};)) and let v vanish on the top

e Step d-1. Steps b-1 to b-4 in Lemma 155, —>

U = j{ ((%o uy + Op1 us + O, u}l) v dmodxl—j{ (ngaul + ngiud) v da’dz'+0(e).
afxap v ° ° : Qfxritet 0 ° :

e Step d-2. Lemma 155, Lemma 156(c), Property 121, passing to the limit when ¢ — 0,

=
—7{ nxaugv dz’dx' = 0.
ngFé’L‘“
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3.3. The SThM Probe model derivation

e Step d-3. Property 119 —-
uj is wl-periodic in Q3.

The proofs of (e) (f) and (g) are the same as for the Lemma 24 in Chapter 1.

h-Source term. We choose v € aQ” (Q; aQ1((21)), the initial term is

3

|| 198100 Q5 xQ,

3
nfv dadat + nv da'dax!

|1 1925102 Qi xaL,

1 H
- ! d Od 1
TIOLTOE] o
—_— 0,0 Bv dx’dx’ + —% 0,0 Bv dx’dx’
|QHQ@H£H || Q8100 Jo,
1
|Q Tanl €0,,0 Bv dxod:cl—l—O(e)
Pt Si02

e Step h-1. Follow steps 1-3 of the proof for Lemma 155.

€ 9

H 071
n; v dr’dx
|| 1928500 Q4 x Qs '

H 071
_ n; v de dr +
Q%] Q102 QixQL, '

1
h 0.1
+ W . n,v dx dx
Pt Q ><QSlO2
1 0 0,1 1 0.1
W 0p10°v dz”dx — 1 H‘Qu o Na1¥ dz dx
12| 192100 Qi x0L, Q5 (Th,NTE 00 Pt
1 1
+ e 0,10% daldxt — = GIQﬁ 1 M}V da’dx!
|25, ] [Qi02] Q4 x0l A Q% (PL,NT; )
1 1
- 0,10 v daldxt — = 6, . navdadxt
’Q HQ | ¢ A ! (T Arl Q25 x€2500 *3
ptl Jaixal 04X (TL,NT'L )
1

S 6°

‘Qu Qsio
A ng(réimréiOZ) 102

ngv de'dz' + O(e).
T3

with A = Q4] Q00| |92 125]-

e Step h-2. Lemma 154, Lemma 155, passing to the limit when ¢ — 0 =

1 1
0 0.1 0 0.1
1/, 0|Q§x911> np1v de-de” + 1. 0|ngﬂé'n$év dx’dx
Q% (TpNTgi02) ‘ Qx (FgMTgi0,) '
1 1
+ — 0° nav de’det + = 6° nav de’dzt = 0.
# 1 # 1
A Jo 2030500 ¥3 A Jor 125 xQ5;60, *3
Q3 x(TpNi0,) ' Q3% (T§NT§i00) '

e Step h-3. Factorizing by integration domains =
1

A QX (Ph, N0
1

07,1 _
+ 1 <9|Qﬁxﬂl H‘Qu ) ngv dedr” =0
Qf x(TLNTL ,) P03

07,1
) (0IQﬁXQI lex%lm) N1 U dx"dx
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e Step h-4. Proposition 125=

0 0 _ 1 1 0 0 _ 1 1

Lemma 157 [Fourth Block-1: Macroscopic Boundary Condition] (a) u2, (b) u3, (c)

ul (d) 9|0qu91 , (e) Q?Qﬁxgl vanishes on T N8 and (f) ©° vanishes on T%,.
3 Si 3 Pt
Proof. a-Source term. In (3.29), we choose v € Cg‘égirg(Qg; 501 Q).

e Step a-1. The steps 1-3 of the proof for Lemma 155 and use u®* =0 on I'y =

7{ niv da’dz' = 7{ (8,2 ug + 02 uf + Opr ul, + Oprug)v da’da’
Qi xql alxal 7 @ g

0%,
_| ﬁ3| (uomn,: +ugn s Jv da’de’
2] Jagnoay<ay - ’
1
+= 7{ (Oprug + Oprup)v da’dz’ + O(e).
€ Jaixay 7 °
3 3

e Step a-2. Lemma 154 and lemma 155, passing to the limit when ¢ — 0 =
7{ (ugmn,: +ugn s Jv da’dz’.
(T%na0k) x 0l b “

e Step a-3. Proposition 126—

u® =0 on T N 9%,

b-Source term. We choose v € C;?]g_rg(Qg; ggé(Qé)), the initial term is

5]{ nMv da’dxt = 57{ (Opstts, + Oy, u3) Bu dz + O(e).
QixQl Q3
e Step b-1. The steps 1-4 of the proof for Lemma 154 and u®* =0 on I') =

M, 7071 _ 0 0, -1 0 1 1 07,1
5]{ N3t dr'dx” = ]{ (Oprttg + Opousg + €7 Oy ug + €0,0uy + Opaus)v da”da
QixQl QixQl

0% 0 1 0.1
—— (ugngo + euzngo Jv de’dx” + O(e)
5] Jugroapxay T ’

e Step b-2. Lemma 154, passing to the limit when ¢ - 0 =

7{ ugnigfu dz’dx' = 0.
(T%na0k) x 0}
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3.3. The SThM Probe model derivation

e Step b-3. Proposition 125 —

ud = 0 on I N OO,

f. 1 ey .
c-Source term. We choose v € Cg?)g_rg(Qg, 5?2%((23)), the initial term is

]{ Mo daldat = ]{ (Opstts, + Oy, u3) Bu dz + O(e).
QixQl Q3

e Step c-1. The steps 1-3 of the proof for Lemma 155, —
j{ Mo da’dxt = % e720,1 udv da’da’
Qi xQl Qix0l
—i—f et (8x1 ud + &Egug + (‘L}Jué) v dzldxt
Qi xql °

—i—f (&Egué + O ui + O, ui) v do’dx’
Qlxl :

|00%|

Q4] Jirsno0s) <01

(e ugngo + ugngo v da’da’ + O(e)

e Step c-2. Lemma 154, Lemma 155, Lemma 157(b), passing to the limit when ¢ — 0 =

j{ uyngov da’ds' = 0.
(TAN9NL) x

e Step c-3. Proposition 125 —

ut =0 on I N OO,

d-Source term. We choose v € C;?Zg_rg(Qg; g?zéi(Qéi)), the initial term is

j{ nfv dx’dat = 0,,0°Bv dz + O(e).
00 o

Follow steps 1-4 in the proof for Lemma 25 in Chapter 1, we get the conclusion.

e-Source term. We choose v € C, (O oo1 (b)) the initial term is
0041 L,

% nfv dadat = 0,,0°Bv dx + O(e).
Xy, U
Follow steps 1-4 in the proof for Lemma 25 in Chapter |?], we get the conclusion.
f-Source term. We choose v € C;‘;]g_rgQ(Qg; 5?211%(9%“)) the initial term is
]{ nEv da’dx' = 7{ Oy, 0" Bv dx + O(e).
Q4 xQk, Qpt

Follow steps 1-4 in the proof for Lemma 25 in Chapter 1, we get the conclusion. B
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Lemma 158 [Constraint Reduction/ (a) v’ is independent of x', (b) u} is independent of
xh, (¢) u = —x30m0 ug + ul(2°).

Proof.  a-Source term. Lemma 154(a) Oy uj + Gx}}ug = 0 and Lemma 156(b) u? is
xl-periodic in Q3.

e Step a-1. Proposition 124 —-
8:6[13113 =0 for Vo, 8 € {1, 2}.
b-Source term. Lemma 154(c) O,3up, + Opqug + O, ul = 0.
e Step b-1. Equivalent transformation —-
Opruy = — <8xéug + 8m3u2> :
e Step b-2. Lemma 154, Lemma 158(a), Proposition 122 =
uy = —x} (@céug + @Cgug) + Uy ()

e Step b-3. Property 123 —-
8xéug + Opous =0

and u} independent of x..

c-Source term. J,u), + youg =0
e Step c-1. Equivalent transformation —>

0 __ 0

e Step c-2. Lemma 154, Proposition 122, Lemma 158(a) =

0 _ _ .1 0, ~0(.0
Uy, = —X30,0 s + Ug (7).

|

The proofs of Proposition 153 is complete. In the following, according to another assump-
tions of two-scale convergence of the solutions on the two-layered subdomain, a similar propo-
sition is stated for the two-scale limits of strains and gradient of temperature.

Assumption 159 [Two-scale approximation of u] There exist (ul,ul, u?)i—13, 0°, 6" €
L2( x QL) such that

Qo

forie{1,2,3}: %y Bu dx —jI{ ud v de’dz' = O(e)
Qf xl

for m € {Si, Si02} : 6° Bu dx — ]{ﬁ 0° v dz’dat = O(e)
o 0f <0,
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3.3. The SThM Probe model derivation

for all v e C=(Q x Q),

forie{1,2,3}: %y Bu dx — j{ (u) + euj + e*u?) v da’dz' = O(e)
Qo Qfxl

for m € {Si, Si02} : 0° Bv dx — j{n (0° + £0") v da’da’ = O(e)
oy 0hx0l,

for all v € D(Q5; C°(Q)).

Proposition 160 [Two-scale Limit of a Derivative] If (u)acq1 2}, cus, 0° and ¢° are
sequences bounded as in (3.4,5.5,3.6) and satisfying (3.22-3.27), then (W))aci12}, U3, uy and

9|19ng§. are independent of x', (ui)ae{l,Q}’ u3 and Q?ngﬂé. are x}-periodic, and
for a,B € {1,2} 1 §, (On,uf + Opyu;) Bu do — fﬂgm% nhsv da’dzt = O(e),
for a € {1,2} : §, (Opyuf, + Op,u5) Bu do — fggm% Mo dz’drt = O(e),
o, Ousuz Bu d — fﬂgx% n¥v de’dzt = O(e),
§Q§i 0,,0°Bv dzx — ngXQéi nHv dxdz' = O(e),
$osion £05,0° B dx — fﬂ’éxﬂéiog ntv da’dz' = O(e),
where
770% = —xéaigx%ug + 030%173 + axgﬂ% + (91}311; + aﬂféué m Qg X Q%,
77(])% = 3x3u:1,, + (%aug + 8zéui m Qg X Q%,
nky = 8x§u§ in QF x Qb

M = X2y (1)0,00° + 0,10" in % x 05,

o= 9.0 in O x Qdo,.

Moreover, if uf =0, ° =0 on Iy, then u’ =0 and 8° =0 on Fg N 099,

The proof of this proposition is the same as the proof for Proposition 153. The next
proposition shows that u® and ° are continuous on the interface Q% N 9N

Proposition 161 The weak limit u° and 6° are continuous on ALy N AN,

Lemma 162 [Continuity of v’ and 0°] (a) (Ue)acqioy: (b) ug, (¢) ug and (d) Qfﬂéi are
continuous on 9% N AN,

Proof. For convenience of the presentation, we denote by Fg3 the intersection of 6Qn2 and

0%
a-Source term. Choose v* € C;‘g’)girgs(Qg; %(Q%)), vd e C;?zgirgs(ﬁg; ?E)(Q}%))’ the initial
term is

1

1
— nigv? da’dat + — nigv da’da’!
t f 1 f 1
€] Jaixal 0 xl

%]

1 . 8 1 _ )
— m %‘22 (axaulg + 8335’“04)/02 dl’odl’l + m Qg(axauﬁ + 8mBUQ)U3 dxodf]fl.
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Chapter 3. A two-scale model derivation for a SThM probe

e Step a-1. Follow the Step 1 - Step 4 of the proof of Lemma 155 —

1 1
—n naﬁvg dadxt + —— n%vg da’da?
|€25] Jag <oy 14| Jazxa

1

= — (Opoup + Opoud + Oprup + Oprul v da’da’

Q5] Jogxay ’ i ’
1 0 0).,2 7071
T oy (08 )

3113 52] 1352 /T3 %€
1

+— (Opouf + Opoud + Oprup + Oprul )v° da’da’

Ile ajxy ’ " ’

Iouﬁqtn 0 )v da’dax!

|QﬁHQ HQl| /23><Q1
e Step a-2. Lemma 155 —

0 0\ ,2 7,071
nxguﬁjtnx%ua)i) dx"dz

1
|QﬁHQﬁHQl| /23><Q1

u5+n 0l )v dz'dz' = 0.

|QﬂHQ HQ1| /23><Q

e Step a-3. Let v? € C® (Q4), v3 e C>

—

(Q4) and v2 = v = v on T, factoring

904 -1k, 9041k,

0 .0 0 0 0 _
/Fg3 (nxg(uﬂmg uﬁlgu) +n o( Unjos ualﬂg)> vdr’ =0.

e Step a-4. Proposition 126 —=

for Vo, B € {1,2}, u°

0
st~ UYgjat = 0 and

.0 i
‘Qu Ua‘Qg =0 on F23.

b-Source term. Choose v? € C8Qﬁ (Qz, Fl(Q%)), v3 e CBQﬂ (93, Fl(Qé)), for each

a € {1,2}, the initial term is
1 1
U=c—r ]{ (Opgtis, + 0p us) Bv® dote—r ¢ (Opstil, + Oy u) Bv® da,
|Q | o, €2 2| Q3

From the Cauchy-Schwartz inequality and (3.4), lim. o ¥ = 0.

e Step b-1. Follow the Step c-1 to Step ¢-4 in Lemma 154(c) =

1 1
— (Oprud + Opo uf + Opa ui)v® da’da’ — TP e T ngougv® da’dz’
23] Jagxay i 251251925 /s, <03
1 1
+— (&Eéua + Opouf + Oprug)v® da’dz'— ngougv® da’dz' =0

195] Jag o |5 25|24 S, <oy

e Step b-2. Lemma 154(c) =

nxgugUQ dz’dx' — nxgugv?’ dz’dx' = 0.

IQ§|!Q§|\95|/F§3xQ% IQQHQiHQH/F%ngé
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3.3. The SThM Probe model derivation

e Step b-3. Let v? € CaQﬁ (Qﬁ), v3 e CaQﬁ (Qg) and v2 = v® = v on I'%,, factoring
—

0 _
/ﬁ N0 (uSng — Slm)v dz® = 0.
r

23
e Step b-4. Proposition 125 —

0

YL — #
Usigp — Ugigr = 0 on I'55.

c-Source term. Choose v2 € C®

i re, (B CRY (), v € ey (96;CR(92))), for each
a € {1,2}, the initial term is

1 1
|Qﬁ| o (Opg i + azaU:;)BU d$+m " (Opyug, + 3%”?,)303 dz.
2 3

e Step c-1. Follow the Step b-1 to Step b-4 155 —

1 1
— M v? da’dat 4 —— ntt v? daxlda!
’93‘ nggl ’ 2| Q xQ}
1 ( 1
= — Dout + 0 u+0 1u1)02 dxodxl——/ no utv? deldxt
(O Jaguay N\ T e mﬁ,uﬂéum fxad
1 1 2 1.3 7.07.1 1.3 7071
—l—@ bl <8xgu3 + Opiuz + 8:0%%) v° drdx W 4. N0 uzv” dr dr

e Step c-2. Lemma 155(b) =

N 1 1,2 0 1 1 1.3 0 1
_ Qﬁ Qﬁ Ql u ) nzgu?)v dz"dx —m . ) nrgu3v dr’dx = 0.
|€05][€25][23] Jrs, <al €25 [€23]|€25] /<y

e Step c-3. Let v? € Cmﬁ (Qg), vd e CaQﬁ (Qg) and v2 = v® = v on I'ky, factoring
—

1
/ﬁ N0 (uSlQﬁz 3|Qﬁ)v dz® = 0.
r

23
e Step c-4. Proposition 125 —

1

—ut o, = f
Usiop ~ Ugigt = 0 on I'55.

d-Source term. Choose v? € CaQﬁ (Qg, BoL. (QL), v* € CaQ” (Qg, B0l (L)), the
initial term is
1

1
U=—¢ 0,0 Bv dx+77{ 0,,0° Bv dx for each i € {1,2,3}.
€3] Jog: €3] Jag:
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Chapter 3. A two-scale model derivation for a SThM probe

e Step d-1. Follow the Step 1 to Step 4 in the proof of Lemmalb5 —

—1 1
: 771 v dz’de’ + o 1; 24 da®dat
|Q3| ngﬂl | 2| Qﬁxgl
1 .
T 198 Jans (Y12 ()0,06" + 026") v da’da’
3 2 Si

1
ok
1925 Qﬁ ol

0g..1
’QﬁHQﬁHQ / X{l 2} n 0(9'9;1 Qéiv dx dx

(X{1,2}(Z')3xg€0 + 8331191) v daxdx’

07,1
]QﬁHQﬁHQ ‘/ X{1 2} n 09|Qu Qéiv dz dx
e Step d-2. Lemma 155(e) —
0
T |Qti I |/ <l X121 (DB o v dx’da?
23

N, 09 v dxldxt = 0.
KM&WQ|/WQX“” =,

e Step d-3. Let v? € Caﬂ’i (Qg), v e C®
—

oq Fgg(Qg) and v2 = v® = v on I'%,, factoring

/ , X2 (a0 Ol oy, = oz oy Jv da’ = 0.

F23
e Step d-4. Proposition 125 —

0" — ¢

— 0 on 'k,

108 x QL 104 x QL

3.3.3 Homogenized Model Derivation

In the begining of this section, we introduce some assumptions used during the model derivation.
They are assumptions for the boundness and regularity of the solutions, the scaling of the
coefficients and the force loads.

Assumption 163 [Boundness of the Solution] The solutions u®, 6° and ¢©°, force load £°
and current source j° of (3.1) satisfies the boundness (3.4)-(3.6) and (3.2)-(3.3).

Assumption 164 /Strong convergence of two-scale transform of solutions| We assume
that ¢° and 6° are reqular enough so that their two-scale tmnsformatzons T(¢%) and T(6°)
strongly converge to the reqular function (2%, 2') and 0°(2°, ') in (3.24) and (3.23).

Assumption 165 [Scaling for the coefficients and source] We assume that for the scaled
functions Cijnk, kij, a;:’, fi and j, the coefficients and the forced satisfy the following scaling

sk = Cijnks Jo = Ja, I3 =¢f3 10 Q
ki] = kl] m th U QS1

]{36 = 62]@] m Qslog

Qe = o, = j in Q.

i 1] ’

7,_]’
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3.3. The SThM Probe model derivation

For some functions Cy, (z'), kY(z'), al(z') and fP(z* 2'), the two-scale transform of the
scaled functions are

T(Cijr) = Chp(@h), Tky) = k(2" T(aly’) = al(zh), T(f;) = £° and T(j) = ;°.

2, K3

For convenience of the presentation of the following proposition, we introduce some notations
for the homogenized coefficients.

Notation 166 /[Homogenized coefficients and force loads/

e FElectric conductivity:

all = ]4 (G5 + D) B + D7) !

Pt

where €Y7 is the solution to (3.15) for ¢, = af

o

e Coefficient for elastic tensor: For a,b € {D,S}, p',q,p,q € {1,2} and d € {2, 3}

H,ab __ 0
Cp/q/pq — X(Qﬁd) (Jf ) f C]hkLp q/hkqul]de‘

where L o ,hk and L pgij aT€ defined in Proposition 144.

J

e Thermal expansion coefficient: For a,b € {D,S}, p,q € {1,2}, m € {Si,Pt} and
de{2,3)

M2b = 752 (GOl + My ) T Lo dat, M3bm — fa (ComLiim +Qz )qu”dx

2 3

where 1 1
y M;; in Qg . 0 in (g
=19 M0~ in Uiy and Qi = M;;0" in Q0
0 in Qp,, M in Qpy,

0~ and 0% are solutions of Equation (3.20) and Equation (5.21).

e Thermal conductivity:

K25 = k;;’;g‘:f k(06 + 001 C5™) (Gia + 0,25 da, k302 = fli kS;0,16% da'
Ql Fsios ’

S = K (Ge+ 0CE ) B+ D™ da!
Q} ‘

Pt

ISI, Ql P are solutions to (3.15) with &, = k9

where ( i

of Q5102

e Force load:

Psiog are the top/bottom surface

do = Xz (@) 74 Cap et f) = X g (2°) f J5"dat for d € {2,3}.
Qd Qcl
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Chapter 3. A two-scale model derivation for a SThM probe

Property 167 [Equation Separation] Weak formula (3.2) is equivalent to
K [o(Cos(u®) + ME0%)s(v#) da = w° [ £5vMs da® + w0 [ gMevhe da (a)
K0 [ keVO" Volle da® = kP fQPt a*VeVe© v dx (b))  (3.34)
kY fﬂpc a*V© Vobe do = k%5° me vEe dx (c)
The following proposition states the homogenized model for the SThM probe. Its proof is
separated into three lemmas.

Proposition 168 [Homogenized Model]
(a) The limit ©° and 6° are solutions of the coupled problems (a.1) and (a.2) as following:

(a.1)

aH r
7{ 0 ogpoa vE0 42l da® = ’ o1 jovE’O da®,

for all vEY € C;‘&(Qg)
(a.2)

rtt f{ Ko 0u0s o Dagvg” da® + 75102 ]{ Ol o, ( % kSO dat) vy da”

1
QPt

LPty/ ¢ ¢LPt 1 0,0 HO ;.0
7& 7521 1+ Aelm T s+ 0u85 )i+ 0080 o) Dugprp Oz, do

xQb,

for all v ECaQu( )

(b) The limit 90 is solution to the weak formulation
rgij[ k2 Sla 09\9” a, 89301)2 dz’ =0
QQ

for all v} e CFu -~ ().

(c) 9|Qﬁ><Ql is the solution to
3 Si

Si 3,Si Si02 Si02, 5 1y, HO 50 _
s / k.50 OQIQ” a, 00 v da® — 7S ]{ QQﬁXQéi(%l k; de') vy dx” =0
93 Qpy

for all vi° € Cls ot (Q4).
(d) The limit (u )Z 123 and ug satisfy ug, = —x30u0 ug + g, Vaug =0 and Vauy = 0, they
are solutions to the weak formulatwn

/Qm (CHDDDm (u )+CHSDSx @) + M2D0|ﬂ”x91

P'qd'pq p'd'pg P

) D;
+/Q (CHSDDm (u2) + 4 oSS ga (@) + M2se|mxﬂl> S
)-D;

P'a'pq p'q'pg"p'q’
2
H,DD ~z H,SD ¢z ~O 3,D,Pt 3,D,Si
+/Qﬁ (CPquD ( )+Cpqpq5pq( >+M 8|Q” M 0|Q”><S21
3

p'd'pq 'q'pg~p'd

+/Qﬂ <CHSDD:1: ( ) CHSSS:p (~0) M3 SPt@‘Qﬁ (o, +M3SSle|mxﬂl) S;qo(vo) de
3

:/ —qgﬁxgvg—i-f vg—i- o ad:c
Q

for all v° € Hliﬁo(Qu)Q, v) € HY(QF).

114



3.3. The SThM Probe model derivation

Lemma 169 [Fifth Block: Two-Scale Model] (a) The couples (©°, ¢') and (6°,0") are
solutions to the coupled two-scale weak formulations (a.1) and (a.2) as following
(a.1) The (¢°, @) solves

j{n ) (1+ aeo)ila?j (X{l,Q}(j)axg?SOO + ax}<)01> (X{1,2}<i>axng’0 + az}UE’l) da’dz’
Q3x0

T
Q| Jr

700 daldat (3.35)

01><F01

for any (vE%);—01 € CaQ“ (O, Cg2 () with condition 890211;30 =0.

(a.2) The couple (60,91) solves

rgiﬁ K. (X{12}( )0, 09 + 0,10 > (X{LQ}(Z')a ov2 10 1112 ) dzdx?
Q5 x QL

+ 1”;‘02]{ k;?jaxleoa 1112 O dxOdat
Q J

# 1
2X0500

+r§i]{ﬁ kY. (X{12}( )0, 09 + 0,10 ) (X{l’z}(i)a ov3 410 1113 ) dzdx’
0f x0l

Si

+ P 7{)11 o kY, (X{12}( )309 + 010 ) (X{Lz}(i)a 0vy™ + 0 1“3 ) dadz’

4 r§102]{ k%3x1903 11;3 O dx0dat
J
Qi x QL

Si02

0
Pt Z @jj 0( ‘ 0 . . o . .
- 8$ ax > ( ? a:v-v ’ +amv ’ ) dx’dx
2ixop, 1 ISV X1y (1) 9s2 19 ) (X2 (05003 103

(3.36)

for any (vf )i=01 GCam
0 in O xQél and d,1v5 =0 in Qf x QL U Qf x Q.

(b) (W) acq12}, ug, ui and ¢t = (ul,ul,u2) are solutions to the two-scale weak formulation

(95, C(8) and (45"} €

oo (4, Cge(€2)) with condition Gmlwf’o

S St o, (e (—23DELS) + SR(E) + K (uh) + s (6h)) + Mo -
(—adDy (%) + S5/ (¥40) + K3 (v¥) + sty (w)) dadat (3.37)

= Zdrdfmxgl fare < 30 xOUg +Ud0> + fMO 3 dada!
for any 40 vgo,v?) € C®(), whl = (P! i vg?) € COO(QZ,Cti (QD)? for d € {2,3}, where

Dy, S‘”” and Kfj are operators defined by: for Yu € H*(Q%), v eH'(Q4)? and w € H'(Q),
ZL‘O Zl‘ '3 :170 ~
D) = X{daX{iay st S5 (V) = XXy 53 (@), (338)
Kfjo(w) = 51-3)(82}8,3910+5j3)<{1’2}8xgw.

Proof. a.1-Source term. Equation (3.34)-(c). We choose test functions v#0 € C®
(25, C3*(Qhy)).

8Qﬂ (Qg)a

'U < CBQ“
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Chapter 3. A two-scale model derivation for a SThM probe

e Step a.1-1 Posing v%¢ = B(v®? + ev®1) in (3.34)-(c), Assumption 165 and Proposition
140 = Bv € C55,,, (2p¢) and

ﬁo/ (1+ AQa)_lafffﬁmjgoe&CiB(vE’o +evPh) dx = /10/ iFBW"° + ev™) da.
Qpy I

01
e Substep a.1-1-1 Equivalent transformation x° [, dz = x°|A| §, dz, =

_ [Toyl
|Qpt| Jro

7{ (1+ M) a0, %0, BP0 + ev™) da FBH" 4 ev™) dr.
Qpy

e Step a.1-2 Propositions 141 —-

I
f (100) 0557 0,,0°B (1.3 (000" + 0,p0™) o = 'Qm' J*BW"*) da+0(e).
Qpy | Pt| To1
Proposition 142 —-
r
7{ (1+)\95)’1a§;f’58xjg05T* (X{LQ}(Z')@xng’O + (9xl1vE’1) dr = ’QOI| ST (vF0) dz+O(e).
Qpy | Pt| o1

e Step a.1-3 Definition 138 and Proposition 132 —

7{ T((1+ 209 )T ()T (D, %) (X{1 oy (D)D,00™0 + awaJ) %z’ (3.39)
OfxQL, ’ ’ !
_ |Poil

Q] Jrg ry,

T(5%) v dadz' + O(e).

The boundary '}, is one face of QL. with the same out normal vector as I'%,.

e Step a.1-4 Assumption 165 and Proposition 153, passing to the limit when ¢ — 0 =

74 (14 26°) %) (X2 (1)0s00” + 010" ) (Xp1.2y (D020 "0 4+ Do) dalda’
Qi xQL,
o ‘F01|

Q] rd xTd,

GO0E0 470zt

which is the expected result.

a.2-Source term. Equation (3.34)-(b).

e Step a.2-1 Property 116 —
KO/ kfjawje‘e@mivH’E dxr + mo/ kfj(‘?mjﬁeamivH’e dx
Qgi QgiO2

k500,070, 0™ dx 4 K° / k00,070, 0™ dx
Qpy

—Hio/ kfjamjeaa%vfff dx + KO/
st Q

Si02
3

_,.0 5 € e He
=K / ;;0p; " O, " v7° dx
Qpy
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3.3. The SThM Probe model derivation

e Substep a.2-1-1 Proposition 127 on the right side =
Ko/ kfjaxﬂsﬁxivma dx + /io/ kfjﬁxﬂs@xivH’E dx + KO/ kfjaxﬂE@IivH’g dx
Qgi 93102 Qgi

—|—/~£0/ kfj(?xﬂs@xiv[{’g dx + K,O/ kfjaxﬂeﬁxivma dx
QgiOQ QO

Pt

= _Ro/ O, (a5,0,,¢%) ¢° v do — /ﬂo/ ;0 0° 0" Oy, v™E dw
Qpy Q

Pt

0 € € 5 He
+K / ;9" O, "0y 0" d
OQps

e Substep a.2-1-2 Applying Equation (3.1) =
K / kfjaxﬁsaxivH’E dx + K° / kfjﬁxjﬁeamivH’g dx
Qgi QgiOQ

kfjﬁxjﬁgaxivH’s dx + /10/ kfj&cﬁg@mivH’g dx

Qpy,

40 / k04, 0° 05, 0™ da + KO /
Qs Q

Si02
3

— 0 5 €, € H,e
= —K / a;;0p, "% Oy, 0" dx
Qpy

e Substep a.2-1-3 Assumption 165 —
/10/ k,-jﬁacjé’a&civH’a dx + Iio/ 52kij8m].058$ivH’€ dx
Qgi QgiOQ

kij0y,0° 0y, 0™ da + KO / %kij0,,07 0y, 0™ du

Si02
Q3

—|—/<;0/ kijazjg‘g(?mvH’e dr + /{0/
oS Q

Pt

= _Ko/ (1+ AQe)_la:;fﬁmjgoggpe O, 0™ dx
Qpy

e Substep a.2-1-4 Choose test functions v2"* € ngg(ﬂg, C®(Qhiy)), va € C;?zg (5, Ceo(92)),

H,0 00 0o H,1 0o 0o H,0 H1y -
= cmg(Qg,c (Qhoy)), va7' € Cmg(Qg,Cﬁ (Q})) and pose v< = B(vE* 4 cof) in

0y, vie = B(v?{{’o + 503{{’1) in €23, Proposition 140 =
B(v;"") € C%,(Q2), B(v3™) € €35, ()
and

KO/ kijaxjega’”B(vf’o +evy) dr + ’io/ €2kz‘j3x]~9€3xiB(vf’0 +eut) do
Qgi Qgioz
+/<;0 / k’ijarjeeaziB(UgI’o + 87}571) dx + 50 / kijaxjesaxiB<U§LO + 8?)5’1) de
= Qpy
+KO/ €%kij0s, 07 0s, B + evs™) da
QgiOQ

= =" / (1+ A0 a0, 0% 0, Blvg"” + evg™) da
Qpy
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Chapter 3. A two-scale model derivation for a SThM probe

e Substep a.2-1-3 Equivalent transformation x° [, dz = x°|A| §, dz, =

5 0,00 B el ) do4 O P 0,00, B + <0f!) da
—H‘gi]{ kijOr, 070, B(vi"? 4 evlh )da:—l—rptj{ kijOr, 070, B + evf) da
QS] th

7502 7{ k0,070, B(vs™ + cvgt) da
QSlOQ

= —rPt]ﬁ (14 AQE)_Ia;;fﬁx 00, B(va"® + cvl™) du
Pt

e Step a.2-2 Propositions 141 —

rgl%Si ki;0.,0°B (X{1 9y Ot oud 4+ 9 210; 1) dax + r3i0? kij(€0,,0°)B (8 11}5()) dx
2

Qgi02
g 7{251 kijO,;0° B (X{1 230z ov3 49 13 1) dx
3
Pt B B H,1 Si02 B 5 H,0
+r ki;0.,0° B X{l 2}8 ovg "4 9 103 ) da 4y kij(€0,,0°)B ( 0,105 dx
th QSiO2 4

:_rPtj{2 (14_)\95)—1&;?‘8%%0 aB( 82}8 ovs 40 1v3 ) dz 4 O(e)

Proposition 142 —

r j{Si kijOp, 0°T" <X?1),2}8xgvf’o + GIZWQ dx 4 r5i0? j{zsm ij(€0,,0°)T ( 1@2 ) dx
5
73 ﬁs kijOp, 0°T" (X{Bz}a 0U3 1113 > dx
—|—7°Pt7{ kijOp, 07T <X82}8 01)3 °+9 11;3 d:c—l—TSlozj(I{ kij(€0,,0°)T ( 1713 ) dx
Opy Q5102
= Pt 7{2“(1 + AHE)’la:;fﬁxjcpEgogT* (X{m}(i)a OU3 ' 40 1vfl> dz + O(e).
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3.3. The SThM Probe model derivation

e Step a.2-3 Definition 138 and Proposition 132 —

Sl?iuml T (kig) T (0:,0°) (X{m}a 0wy’ + Dprvy” ) dzdx?

Si02

+rj ]{ T (kij) T (0,,6°) (X{M} Lovg 4 Opvgt ) dadat
Qf xQl

+TPt7{n T (ki 8%95 (X{l 2}a 0“504’8 103 1) dx’dat
QF x QL
0 f T (k) 70,0 ( ) s
qugélOQ
1
D0yl )

_ Pt ref . _ "
- f;;ﬁxﬂl T(l + )\QE)T <a/l] ) T (90 ) T (al‘]gp ) (X{LQ}a 0?}3
3 Pt

4§02 7{ T (k) T(0,,0°) ( 108 0) dzdz’
Q5 xQl
3
3 da’dx?

+0(e).

e Step a.2-4 Assumption 165, Assumption 164, Proposition 153 and Proposition 160,
passing to the limit when ¢ - 0 =

> y 0 0,71
Ty f;ﬁml k;: (X{1 2}8 00" + 0, 9 ) (X{12}8 ov2 19 11;2 ) dz°dx

+750? f{ k90,160,105 da’da’
0l J
Q5,xQ

Si02
QEx QL
><

H,0
+ 5102 k20,100,050 da®dat
# 1 R g
Q5 xQ

SiO2

ag; j i
= —rP® ]iu o 11 ;\e(ﬁﬂ (XF{]l)Q}a;c;?SDO +81'J1.<l01> <X5[1),2}a ovg 4+ 10 1) daz dx?

which is expected.

b-Source term Equation (3.34)-(a).

e Step b-1. Property 116 —

[ (Cnastlu) + M) v) da [ (Chusila)+ M55 () da
Qo Qs

Me M Me M
- /10/ £ da 4 K 10" de
Qo

Q3
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Chapter 3. A two-scale model derivation for a SThM probe

e Substep b-1-1 Assumption 165 —>

K’ / (C5 s () + MEO)sE (VM) da + £° / (C5psin(0) + MEO)sE (VM) da
Qg Q3

Mgy M, Mgy M
:/@0/ MM dy 4 kP / efy vy dw + K° / fMepMe do + kP / efy Fvg°
QQ QS

e Step b- 2 For de {2 3}, we choose test functions 2%, v3?, vy € C(Q), (V4 acra) =
—210,0 05" + 080, (1) eqrzy € C(Q5:C2°(Q))), so that
vMe = Bl + ev®), evd’® = Bod° + o' + 20$?) in Q.

«a
(dl d,1l  d2

We denote by wl = (v, vy, v5*), use notation (3.38), we have

st (vMe) = B (—ngfj (Ugl’o) + Sfjo (v + Kfjo (v + sfjl (Wd’l)) in Qy

ij
—

> / Cfshul) + ME#)B (~abDE ) + 55 (50) + K5 (v")) da
+Z / Ciinpsnp(0) + ME0°)B < 84 (wdl)) dx
= Xd:ﬁo . fy’€B< 10w vs? + Ud0> + B (vgl’O) dz

e Substep b-2-1 Equivalent transformation x° [, dz = k°|A| §, dz =

Z ra f{ 5 estn(00) + ME6°) B (_a;;pgg.“ (vf0) + S5 (F40) + K (Vd’1)> do

d d
=S B (a1 7 + (go)dm
d d

e Step b-2-2. Proposition 142 —>
> § (Comstutu) + Ma#IT (<5 () + S5(0) 4 K5 )
+Z7’dj{ ChinkShie(0®) + MEO7)T™ < fjl(wd’l)> dx
= Zm farer ( a:po Ug Ndo) + f3 T <vg’0> dx
d Q4

e Step b-3 Definition 138 and Proposition 132 —

Sraf

Cipe)T (s5(0) + T(ME)T (6°)) (—xéfo( )+ S5 (F0) + Kg (v*)) dada!

xQl
+Zm ) CEn)T (s (0) + T(ME)T (67)) 53 (wh') da’da’t
><Q1
= Zrdj{ T (ff’f) ( ‘T;ﬁ 01)3 +5i’0> +T< é‘“) vgl’O dadaxt
d 2 x )
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3.3. The SThM Probe model derivation

e Step c-4 Denoting by ¢! = (uf, u}, u3), Assumption 165, Proposition 153, Proposition

160 and Property 165 —
> fmxgl ( ijihk ( D7 (uf) + Spp(0°) + K (u') + Siilc(gl)) + Mij90> :
(—xSDz (05°) + 85 (¥99) + Kz (v) + s (wi!)) dada!
Zdrdjgﬂuxﬂl M ( ov3 +vd0> + fAOpE0 da0dzt
|

Lemma 170 [Stzth Block: Microscopic Problem E]
(a) @' is solution to (3.15) with p, = Oy ¢°, ¢}; = af; and Q' = Qp,, then

01g0 —Z(?xogp gLt

(b) 0" is solution to (3.15) with p, = ché’o, ;= k.

’L]|Qg><Qéi

and Q' = QL. then

191 Zaxoeo 1C1 St m Qﬁ X Q
a=1

(¢) 0" is solution to (3.15) with pi, = 0,0 6", 5 = k?j Cand Q' = Qf;, then

010" = Zamoeoa CHSin QF < QL

a=1

(d) 0" is solution to (3.15) with p, = 06, ¥ = k° and Q' = QL. then

ij]QLxQL,

010" = Zaxoeoa CEPE i QF < QL

a=1
(¢) =32, On (K]0 9\9” o) =0 and e‘m oL, 9|QnXQ1.
(f) _ZzJ ax (koa 10|Qﬁ Ql ) 0 and Hlﬂﬁ Q‘Qﬁle 0~ + QIQ]} Ql 6 3 where 9+ and

0~ are solutions of Equation (3 20) and Equation (321}
(g) Let ' = ¢tP +¢b% 4 LK 4 cl’e, then ¢VP, ¢b%, ¢VE and ¢™ are solutions to Equation
IO
(3.18) for py, = th(“g) Pk, = Sh, ( 0); Khg = th(ul) and for c?jhk = M;;0in0jx and py, = 1.

We have
mr(sh?) = ZML,?;M(DZ /(uf))
(6) = 3 Ly (S (80)
ﬁ,lx
i

)

. 1
M) = 3 Ohadrsdag us in {1;.

L2 O
§1,9) Lyi™ (9|QnXQ1 )

(h) Let 6t = ¢bP +¢1S 4 bR p glsip gl then gLP LS LK ¢L¥si gnd ¢19%t are solutions

to Equation (3.18) for j,, = DhZ: Bng = Sh2(~ ), Hne = th( ) for Cz]hk = Qz‘s}(sih‘sjk and
tne = 1, and for C?jhk ng dindjr and g, = 1 respectively, where

V2]

S

Si _ . 1 Pt __ + 1
=9 Mij0" inQgop and Qi = ¢ M0 in Qg9
0 th’ Mj m th,
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Chapter 3. A two-scale model derivation for a SThM probe

and 0~ and 07 are solutions to (3.21) and (3.20). We have

(shP) = quLf,ghk(Dx( )
(S1) =30 Lo (S (00))
50 (SP) =3 Onadrsuo ul
G
r(sh

0

$ 0
gl S ) Liks (Q‘Qﬁxgl )

= Lhi™ (0

N
=
>
)
E
~—

s

|Qﬁ><§211>t)
Ol

in €.

Proof. a-Source term. We choose v¥9 = 0 and vP1(2% 2!) = w(z)y(2*) in (3.35) with

¥ € C®(F) and w' € C°(Q},).
e Step a-1 Proposition 1, Lemma 154, and the linearity of the integral —

(1+ /\90)_1?{ a%@m;gol@x}vﬂl dx’dx' = —(1+ )\«90)_1(92,91@07{ a?aax}vE’l dz°dx?

Pt Qll)t
(3.40)
e Step a-1-1 Equivalent transformation =—-
7{ a?j@c;gol@xwﬂl dz’dzt = —00 gpoyg al 00" daldat
J [ @ [
Q%,t Q%’t
e Step a-2 Proposition 143 with p, = 0,0 ¢ =
8 1 g0 = Z 8960 (p 1 Pt
as announced.
b-Source term We choose vy =0, vi"° =0, vi"' = 0 and V"' (2%, 2") = w(z")Y(2?) in

(3.36) with ¢ € C(€2%) and w' € C (Qél) the proof is the same as for Step a-1 to Step a-2.
c-Source term We choose vj? = () vfl =0, v = 0, oI = w(E)Y(a) in O} x QL
with ¢ € C®(Q4), w' € Coo(2p,) and vyt =0 Qf x (4 U Qsloz) in (3.36), then the proof is
the same as for Step a-1 to Step a-2.

d-Source term. We choose vi"° = 0 vat =0, v = 0, v = w(z) () in O x QL
with ¢ € C>(Q%) and w! € Coo(Q4;) and v =0 in Qﬁ (1, UQsloz) in (3.36), then the proof
is the same as for Step a-1 to Step a-2.

e-Source term. We denote by Fslo2 and Félgg the top/bottom and lateral boundary
of QL. We choose vi® = 0, vl = w(z)y(2®) in QO x QLy, with ¢ € C®(Q4), w
Cli Lt (Qgi02) in (3.36) =

1,+
sio2 Y'sioz

/ k?jaxl@()@x;wl dx'dz! = 0.
Q ’ !

1
Si02
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3.3. The SThM Probe model derivation

e Step e-1. Lemma 156-(g) and Proposition 146 =
0" =0

195 xQL o, 14 xQL"

f-Source term. We choose v2™® = 0, v = w(2")y(2°) in Qf x QLo, with ¢ € C®(Q5),
w E CFl Lat(QéloQ) in (3.36) =

/ Qjaxlﬂoammul dz’dz' = 0.
0l ’ !

Si02
e Step f-1. Lemma 156-(g) and Proposition 145 =
0" =0, 0+ + 0

|Q8xQL o, U Q4xQL,

0.

Q5 xQ;
e Step f-2. Lemma 127 —
— / Op1 (k§30,10°)w' da’dat = 0.
02
e Step f-3. Lemma 118 —
—63311(16? 9) 190) =0in Q X Q&0

g-Source term. Let w>! = 4*(2%)w?(z!) with 9*(z°) € C°(Q5)>3, w?(z!) € C°(Q})?
and let other test functions equal to 0 in (3.37) =

"2 }{21 <Ci0jhk: <—37§fo2(“2) + S (E°) + Kjp(u') + sﬁlk(cl)> + Mi]HO) S (w?) dz' = 0.
2

e Step g-1 Equivalent transformation —-

1

/Oghk:shk( 1)55(‘*’2) da' = /Q ththk(ui%)Sx( )d5171—/ C]hkshk:( )Sf;

2

—/ Cz]thhk( )Sx ( dffl - /Q1 Mijgosfjl(wz) dz'.

(w?) do’

e Step g-2 Let ¢* = ¢bP 4 ¢1 + ¢bE + 610 and separate equation =

{ le zghkShk( ID)SQE( ?) da! _fgl 3530203% hk(US)Sr (w )dxl

¢bP is wl-periodic in QF,

¢S is xl-periodic in Q3,

{ le zjhkshk( IS)SI (w?) dat = le Cghksﬁk(NO)SZ (w?) da'!
¢LF is xl-periodic in Q2

{ le jhkshk 1K)SI (w?) dx' = _fQ; O?jthffk( )Sﬁ (w ) dat

and

¢ is xl per10d1c in Q3.

{ le ]hk‘shk le)Sx( ) dat = leM 9051 ¥) da’ (3.41)
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Chapter 3. A two-scale model derivation for a SThM probe

e Substep g-2-1. Proposition 116 Equation (3.41)

/ Cuhkshk< 19)596( /Q ij \Qﬁxgl Z( ?) da!

0 a: 1

Si02

e Substep g-2-2. Lemma 170-(e) =

/ Ciings sii(s 19)590( /Q ij \mml Z< ?) da!

0 T 1
/Ql Myt o S5 () do

SiO2

e Substep g-2-3. Proposition 117 —-

/ CJhkShk( IG)Sw (W?) dz! = — . Mwe?mxﬂl S;EJ (w?) da’

e Step g-3 Lemma 154, Proposition 144 —

Shk( ) qu L2’[3hk(Dp$0’0q (u3))
) Zp 'q’ Lp’q’hk(spzw’q(’)(uo))

h-Source term. Let w¥! = 1) (2%)w?(2!) with 9*(2°) € C(Q%)*4, wi(z!) € C(93)%,
and let other test functions equal to 0 in (3.37) =

' j{)l <C%thk < th(“:a) + Shlc( %) + th( N+ Sillc(cl)) + Mij90> Sfjl (w?®) dz' = 0.

3

1,D) 1,5) l,K)

The proofs of the linear relation for s%,(s%?), s¥,(¢") and s%,(s>¥X) are the same as in the
proof of (g). We detailed the linear relation for s%, (¢*?) in the following.
We start from the (3.41) and use the same notations for the steps.

e Step h-2

1,0 ;

le jhkshk 16)S$ ( dl‘ - leM GOS$ )daj‘l
¢t is zl per10d1c in Q.

e Substep h-2-1. Proposition 116 Equation (3.41)

/ Uhk hk 19)52 ( /Q1 Mwemﬁxnl w( )da:l

0 x 1
/91 My o S5 (W) da

Si02
Si02

0 z! 1
_ o UGWXQIS (W) dx
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3.3. The SThM Probe model derivation

e Substep h-2-2. Lemma 170-(f) =

[, Chusia(s )5 ) et = [ My 55
Si
—/1 Miybs 0 055 (w?) da!
QSiOQ
— /Q 1 MmefQﬂ 9*5%( %) dat

—/Q1 zﬂ?ﬂnxm Sx (W) da!
e Substep h-2-3. Proposition 117 =

/ O]hkshk( 19)53:( )dx / QSlemuXm Z( ) / thgmuxﬂl Sm( )d$1

with
M, in QU 0 in Qg
Si — . 1 Pt + 1
b= M0 in Qg0 and Q7 = ¢ M;07 in Qg0
0 in Qb M in Qp

e Substep h-2-3-1. Let ¢! = ¢l¥si 4+ ¢19%t and separate equation =

fg; Clpsin(677) S5 (w?) fgl Q&@lgnml " (w?) da?
fﬂé C?jhksﬁk(glﬂpt)sm ( 3 dlE = le QPtgmﬁXQl Szg; ( ) dxl

e Step h-3 Lemma 154, Proposition 144 —
Szllc(gl’GSi) Lilf&wmﬁ ol ) and 3hk<§1 9Pt> L?Lkept(glﬂuXQ%,t) in Qila
|
Lemma 171 Lasp, = —0padrs and 53 (¢V) = >0 Ona k3O uj
Proof. Source term

[ ceSia(€) 5 () dat == [ 85 (w) da for all w e C(@)"

e Step 1. Equivalent transformation —-

/Q Uhka Ck z! Wj da' _/Ql ngpqaxﬁwj da'.
e Step 2. Choose p=a, ¢q=3 =

/Q om0y G Opwy da'! —/Q1 CijaaOntwj da'.
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Chapter 3. A two-scale model derivation for a SThM probe

e Step 3. Proposition 128 and factoring —

/Ql C?jhk (0x,gC23’1 + 5ha5k:3> 8x}wj da' = 0.

e Step 4. Let (Ti)izll3 to be the solution of axw = dpaOk3, factoring =
/ C?jhkasc}i (Cg&l + Tk) Dp1w; dat = 0.
Ql
e Step 5. Proposition 147 and Proposition 148 —
/\k = l’:l))(sha(;kg and CZB’I + T = 0.
e Step 6. Equivalent transformation —
W = 240 hadks.
e Step 7. Proposition 144 —
Lagne = —0nars and sj,(s5) Z OnadkaOug U3
|

Lemma 172 [Seventh Block: Macroscopic Problem]

(a) ©° and Hlm oy, are solutions to the coupled weak equations:
(a.1)
aH r
% Oaxotp(]a UEO dl‘ _ | 01‘ 0, E,0 dr
Qﬁ 1+ Y |QPt|

(a.2)

Pt 3,Pt S1O2 Sio2,+ 1\ ,HO0 ;0
r j{u ks O o@lm al, Opo v da® + 7 fﬂ 8|qu%c(% ks dr') vy dx
Q4 Q 0l

Si02
al.
=t ]iu #(7{21 (855 + 015 ") (Gia + 0,1657") dat) 390%%009008353“5’0 da”
|Qu QL. Pt

(b) H?ng%i is the solution to
rgija k2 Sl@ G‘Qu a, 030 v da® =0
5
(c) Q?ngﬂéi is the solution to
rgi/ k> Sl@ 9|Q“ oL Opova"” da’ rgiOQj{ GIQﬁ <7€21 ESO% daty ol da® =0
Q4

Si02
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3.3. The SThM Probe model derivation

(d) (Ua) ey o and ug are the solutions to

P'a'pg P'a'pg~p'd |08 x QL

/ﬁ <CH DDD:r ( ) CH Ssz ("“0) M2 De
Q2

p'd'pq P'q'pg~p'd

)-D;
Jr/ﬁ (CHSDDx () + CHSS g (~0)+M259|mx91) S
Q
) D

|Qﬁ Ql —|—M3D819

Pa'pg~r'd Q4 QL

+/u (qu[;)qDDx ( )+CHSDSx (~0)_|_M3DP'59
Q3

H,SD H,55 gaf® (0 3,S,Pt 3,S,Si 20 (>0 0
+/Qﬂ (Cpqqu ((uz) + Cpqpqqu( ) + My, G\Q“ oL, + M, 9|Qﬁx9éi> Sy (V) dz
3

:/ qaxovd—i—fvg—l—aadx
Ot

Proof. a.l-Source term. We choose v € € (Q4) and vP! = 9,0 vBO9L™ € C(Qf, C°(Qh,))

in (3.35).

aQﬁ (

e Step a.1-1 Lemma 170 =

0
ij 04 1Pt () B0 B0a 1Pt 0
jg?gxﬁ;t 1 + )\‘90 (X{l 2}0 090 + a 090 8 15 > <X{1 2}8 (Z)U —|—8ng 6%15& > dgj dZE

(3.42)
[To1

— a9 jOUE’Odl‘Od(L’l
| €2y T4 xT§,

e Step a.1-2 Proposition 128

a(.). T
f ] 0(5]ﬁ+a 151 Pt)( za+a 151 Pt) 10 9008 O’UEO dIOd 1 _ | 01| j UE’O dxod:cl
nggllf’t 1+ )0 |th| 01><F(1)1

e Step a.1-3 Factoring and definitions (166) =

H

a;l

7{11 = )\908 09000 0P daldat da® = "Qm\ FovE0 daOdat
Q Pt

with al; = jgﬂl ag; (05 + 0 1§1Pt)(5m + %giﬁ’t) da?
H1

a.2-Source term. Choose v’ = 0, v3"' =0, v € C@Qﬁ (4 at Lat(QSIOQ)) and vy~ =

020 vl 0CEPt i OF x QL, in (3.36), where F;(L;;t is the lateral boundary of Qoo

07

e Step a.2-1. Lemma 170(f) =
TPt %;ﬁ Ql l{}o (X{l 2}6 060 + a 0008 <1 Pt> (Xill)ﬂ}a ng + 81- Oaz3 C;’Pt) d([/‘odxl
X

+7’§102j{ k%@xleoaxw]{’o dx'dz!
04 x 0l ’ '

Si02

0
= _TPtj(én N 1_:_](’;00 (X{12}8 0 —|—8og008 ClPt>( ?1)2}8 003" + Oyo 0300, Clpt> da dx?
3X50py,
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Chapter 3. A two-scale model derivation for a SThM probe

e Step a.2-2. Proposition 128 —
Pt f{ k(85 + 0 1g1 P9 (810 + 0,1CEFH 0,0 090 ofug O da®dat
Qf xQl ' “

H,0
+7’§102 k0-8x1908x1v3’ dx’dax?
Qi xl R !

8102

- rptf{n 1 4 5055 + 001857 ) (Gia + 0 €7 )0ug P Dug v3;” da’d!
aixal, 1+ A0

e Substep a.2-2-1. Lemma 127 —
rPt]{n k(655 + 0, 151“)(5” +0,1(5") 0000, ov3 O dadx?
Q5 x QL

_T51027{ 0,1 (k:?jf)a,l@()) O dxldat + 7"81027{ kgjamlﬂon 1v3 O daldat
Qb xQl ' ! ’

§nl,E
Sio2 Q3xTgi5,

0
as.
- %zu o Toago e+ 0 15 ) (Gia + 0 €57 )0h 0" Dug v drd’!
X 1

e Substep a.2-2-2. Lemma 170(f) =
bt ]{ n k(656 + O, gl "9 (80 + @x1C;’Pt)8x%908xo vl daldat
QExQb, ’

Si02 + 0
+r3 j{n - 9|Qﬁml k:3j8 10 0l da®dat
Qi xI

Si02

0 0
- i{zu o, 1“@5—@(5%8 157 (Bia + 001 €57) 000 00 0rg 5" dadlat
x Q4% QL,

e Step a.2-3. Choose vs"® € C>, (€2) and factoring —>

0%

Pt 3,Pt Si02 Si02,* HO0 ; 0
r jéﬁ ks 600@ aL, axov?) dz° +r3 ]{ H‘QuXQl ks vy dx

3

0

a,;

=P f (T + 01 &) (Gia + D€ P Dug v da’da’
quﬂl 1+)\9‘Qﬁ><911)t °

with

kop' = f k(056 + 001C5") (Gia + 0,1 CE™) da and K502 = ]{ k30,107 da'.
Qll:‘t ' Féng !

H,0

b-Source term. Choose vi’ = 0, vi"' =0, vi"° € CaQ” (Qg,C lLat(QsloQ)) and vi"!

0 0?)2 0¢hSTin QF x QL in (3.36), where Tyt is the lateral boundary of QSiO2'
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3.3. The SThM Probe model derivation

e Step b-1 Lemma 170 =
§1 féﬂ o k (X{l 2}( )(9 09 —1—8 0‘90 Cl Sl> (X{l,Q}(Z)a 0U2 +a 00, 08 Cl Sl> dZL’Od[EI
X Si

—H"Simj{ %8961_008 12}2 O dadat =0
J
Q xQ

Si02

e Step b-2. Proposition 128 —-
rgi 75{2” o k (535 +0 1C1 Sl)((sm + 8x}Ci’Si)ax3908mgva0 ddat
X Si

+r§i02j{ kojﬁxlﬂoﬁ 17}2 0 dadat =0
Qh % !

Si02

e Substep b-2-1. Lemma 127 —

Tgi %ﬁ k (5 i3 +0 1C1 Sl)(5za + 0 161 Sl) x9, 908 OU d$0d$
Q5 xQ,

i H,0
— 5102 0,1 (k?jax;@O) vy " drlda?
04 x0l o !

Si02

i H,0
45102 ng (£9:0,10°) vy daldat = 0
Qixrlt 0N

Si02

e Substep b-2-2. Lemma 170(e) =

rgij{u kD (55+alg151)(5m+a Tosy) zoeoaov dz’dzt =0
Q5 xQl,

e Step b-3. Choose vy"" € C>, (€2%) and factoring =—>

8911 (

i 2,8i H,0
rsi k> 5 00 HQu 910002’ dz® =0
ol | °

2
with
kggl = 7{ k(655 + 0 1g1 N (i + 0,1 CLSY) dat
Ol ¢

Si
c-Source term. Choose vy’ = 0, =0, i ¢ C@Qn (% at Lat(QéiOQ)) and vl =

81,32)3’ 0¢chSTin Q4 x QL in (3.36). Follow the same steps as the proof for (c), we get the

(7
conclusion

Si 3,51 Si02 5102, H,0 5.07.1 _
7“3/ k. 80«9‘9,1 QL 8:,001)3 dz® — 1} ]{9|qu%1]€3 vy drdr =0
Q3
with

kS = f{ K055+ 0, 15 (i + 05:¢™) da' and k307 f k90,0 da'.

1.—
Si l—‘8102
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Chapter 3. A two-scale model derivation for a SThM probe

d-Source term. We choose 10,03, vs € C=(0%), for d € {2,3}, let

5% (whh) = prpx (v9) + prsgq (V0) + )~ 6i80,30,005 in QF x Q)
B

n (3.37).

e Step d-1. Lemma 170, Proposition 128 and Lemma 171 —

1. "‘"2,3 2?0 ~ 9 ;
9 ﬁn o <C7,jhk < pq’th (ug) -+ Lp’q/hksp/ ( 0) + L2 Si (Q‘Qﬁ )) + sze()) X
2 X352

<LWJD$( O+ 120 55 (v )) dzdzt

Pqij = pq

~3,D 20 ~3,5 20 i~ O Oy
RE féﬂ oL (O%thk (Lp’q’thp’q’ (ug) + Ly gnieSpq (0 %) + L3 . (Q‘QuXQl )+ L3 v (an )) + Mijgo) .
3 X343

<quUD””( O+ 120 5% )) dz®dz!

Pqijpq

_Zrd}! I (o 4 7) 4 A0

e Step d-2. Lemma 170(e) and (f), factoring and definitions 166 =
/Qg (Cf D () + CIP s (@) + + M0l o ) - D= (v3) da®
+ /Q : (Cllim D () + Cll Sty (@) + MESOS 1 ) - Sy (7°) o
" /§2§, (qul;‘ll)Dx /(u ) - qus;olgsgq (~O> + MS 5 Ptelgjj M3 5 Slemﬁxﬂé) ' D;:z) (Ug) da’
i /Qé <qus£Dx )+ Sy (8) MSSPtQ\Q” op, © M3S816|Qﬁxnl ) - 53y (V) da®
Z/m—qgaxgv%f vy + f20° da”,

for a,b € {D, S} and m E {Si Pt} the homogenized coefficients are defined by C/14

P'a'pq
2 9 ;
X(Q” 5691 JhkLp q’hk:l’pcmalm MZD fﬂl ( ijhk L ) +M”> quwdx

pqij
homogenlzed force loads are ¢0 = x Qu fgl IngO dx f2 = X(Qg) fgl fél”’o dz’
d

and f) = X(in) f% Fa10 dgt,

3.4 Appendix I: The Reference Proof

This chapter follows the same reference proof as introduced in chapter 1 Section 1.3 with
some modifications corresponding to the new approach. In the previous approach, the weak
expansion of two-scale transform i.e T'(u®) = u® +eu' is applied. The difficulty of this approach
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3.4. Appendiz I: The Reference Proof

is that eu' is non-periodic. In this approach, Assumption (152) which allows a periodic eu' is
applied. This reduces much of the proof.
Only different proof steps between this approach and the previous one is discussed here.

Assumption 173 [Two-scale approrimation of u] There exist u®, u' € L?(Q* x Q) such
that

no/ u® Bv dr — Iil/ u® v dr’dxt = O(e) for allv € C(QF x QY (3.43)
Q Qfx!
and mo/ u® Bv dx — Hl/ (u® + cu')v da’dx’ = €O(e) for all v € D(QF;C°(Q2Y)).
Q QixQ!
(3.44)

In this assumption, we can prove that u! is periodic.

Proposition 174 [Two-scale Limit of a Derivative] If u® is a sequence bounded as in
(1.15) and satisfying (3.44), then u® is independent of x* and

ﬁo/ O uBv dx — /{1/ nu dz’dzt = O(e) for all v € C(QF x Q)
Q QfxQl

where
o’ out

"= Gut T o

Moreover, if u* =0 on I' then u® = 0 on I'%.

(3.45)

The proof is split into four Lemmas.
Lemma 175 [First Block: Constraint on u°] u° is independent of x*.

The proof is the same as for that of Lemma 22. In step 2, instead of using operator 7™, we
use two-scale approximation (3.43) directly. The other part of the proof keeps the same.

Lemma 176 [Second Block: Two-Scale Limit of the Derivative] n = g—qﬁ + g—g“;.

Proof. This proof starts from the source term

du®
U = g0 Bud 4
H/de vdx (3.46)

with v € C (0% C(QY)).

e Step 1. Green formula (1.12), Proposition 16 and the linearity of integrals =

0

R / i B2 4y — / w B2 dr + 0(e),
0 ) Q ox?

2t € T

e Step 2. Assumption (3.43) in the first term and (3.44) in the second one =

ov K ov ov
U= — 1 O—d Od 1__/ O—d Od 1_ 1/ 1_d Od 1 0] ]
K /mxmu B xdx . Qﬁxglu Bl xdrt—k mxmu p x'dx +0(¢g)
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Chapter 3. A two-scale model derivation for a SThM probe

e The following steps are the same as Step 4 to Step 6 of proof of Lemma 3.46, we get

_ow ow
"_axﬂ oxrl’

|
Lemma 177 [Third Block: Microscopic Boundary Condition] u' is Q'-periodic.
Proof. Source term. In (3.46), we choose v € CRg(Q% ().
e Step 1. The steps 1-3 of the second block —-
ou’ K ou’

Iil/ nu dz’dzt — /{1/ eyt daldx' — — U dzldx!
QExQ1 QExO! Ox € Jatxot ox

B 1
—K‘,l/ llv dx’dx' — /fl/ urv np dadxt + O(e).
Qi xar O QfxI1

e Step 2. Lemma 175, and passing to the limit when ¢ — 0 and Lemma 176 =
/ w'v np delds(zt) = O(e). (3.47)
QExT1

e Step 3. Proposition 2 —=
u' is Q'-periodic. (3.48)

|
Lemma 178 [Fourth Block: Macroscopic Boundary Condition] u° vanishes on T*.
Proof. Source term. In (3.46), we choose v € C*(Q; C (),

e Step 1. The steps 1-3 of the second block and u* =0 on ' =

ou® K ou’
ml/ n v daelde' = /11/ —v d2’dat + —/ v da®da?
QfxO1! Qi xOt axﬂ g Qi xOl ax

1
Ry Sy
Q TExQl

fx 0l 3x1

e Step 2. Lemma 175, passing to the limit when ¢ — 0, and using Lemma 176 —
Rl/ uCvng: ds(zh)dz' = 0.
TtxQl

e Step 3. Proposition 1 =
u’ =0 onI'*
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Chapter 4

Optimization for the SThM probe

Abstract. In this chapter we introduce an optimization tool and discuss its application to
the optimization of SThM probe developed in the NANOHEAT project. This tool combines the
house-made optimization software package SIMBAD with COMSOL-MATLAB simulation. The
parametrization of the probe and the simulation conditions are given first. Then the contribution
of each parameters are analyzed independently and some influential ones are selected. In this
step, the optimization principles which could be used in the similar design are summarized.
Next, the optimization of parameters for the identified tradeoffs are implemented and the results
are shown by the pareto front plot.

4.1 Introduction

This chapter is devoted to design an optimization tool for the application of the model from
MEMSLab. Since this part of work is supported by the NANOHEAT project, this tool is
applied for the optimization of the SThM probe developed in this project. This tool is a
combination of the house made optimization software package SIMBAD and the COMSOL-
MATLAB simulation. The application of this tool for the optimization of the SThM probe
contributes in two aspects. The first one is the general optimization principle for the design
and the second one is obtaining an optimal design which improved much the performance than
the original design. The first contribution comes from the general analysis for each parameter
and the second one comes from the trade-off optimization for the influential parameters.

4.1.1 Organization of the Chapter

This chapter is organized as follows: In Section 4.2, the optimization problem for the SThM
probe is described. It includes the description of the probe structure, the physical functioning
of each component, critical phenomena should be considered in the design and the design goal
of the probe. In addition, the limitation of the optimization without using a specialised tool
is illustrated. In Section 4.3, the parametrization of the SThM probe has been done but only
the figure and values are reported. In Section 4.4, a single simulation used in the optimization
loop and some useful features are discussed. In Section 4.5, The house-made software package
Simbad is briefly illustrated. Then in Section 4.6.1, the discussion of the influences of each
parameter is detailed and design rules are summarized. In the Section 4.6.2, trade-offs of some
influential parameters are found by SIMBAD and an optimal design is reported.
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Chapter 4. Optimization for the SThM probe

4.2 Statement of the design problem

The SThM probes used in NANOHEAT project, see [43], as shown in Figure 4.1, are designed
as three-layered structures. A thick Silicon cantilever is at the bottom layer to support the
whole structure and a SiO2 layer is deposited on it to serve as an electric insulator layer. A
thin Platinum trail consisting of four legs and a sharp tip is deposited on the top layer. The
internal two legs are used to form a heating circuit and the external ones are for tip voltage
sensing. The piezo-resistive sensor which is used to measure the tip displacement under a force
is embedded in the silicon layer, covered by the SiO2 layer and located at the bottom of the
middle part.

One can see that

the metal lines are
off-center and have
different thickness

(a) Samples of the SThM probe (b) Tip

Figure 4.1: Samples of SThM probes

Two critical phenomena are considered in the design. They are bimetallic due to the dif-
ferences of the thermal expansion coefficients in each layer and dependence of the tip-sample
interface resistance on the contact pressure, see [36][40] and [54].

In view of the application, the following design objectives should be achieved. First, a
flexible cantilever is needed to prevent the damage of the the fragile tip when the tip-sample
contact force exceeds some limit. Second, the tip displacement caused by the bimetallic effect
should be reduced. Third, a high efficient resistive tip is needed. Last, the piezo-resistive sensor
should be sensitive to the tip displacement at least for the photographic measurement. These
design goals are characterized by some features in the simulation which will be introduced later.

Some efforts has been tried for optimization of this probe by trial and error method. As
shown in Figure 4.1(a), a lot of samples are designed and fabricated, then the best one will
be selected according to their experimental performances. It is time consuming and expensive.
In addition, they could not understand the main optimization rules which might be useful
for future works. On the other hand, the objective features could be predicted by numerical
simulations which is much faster and cheaper than experiments. The simulation could be used
by optimization software packages to find the design rules.

We observe that each sample in Figure 4.1(a) contains a Platinum trail, a small tip, see
Figure 4.1(b), some gaps near the tip and some gaps at the bottom. So instead of studying
these samples one by one, we introduce a parametrization which more or less can covers all
these samples and the analysis is done for this abstract probe.
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4.3 Parametrization of the probe

The parametrization of the geometry is the first step for optimization. It includes the param-
eterized diagram, the initial values and limits of each parameter and the geometry constraints
between them. In this part, the discussion of the complex constraints are not reported.

The parameterized figure of the probe is shown in Figure 4.2(a) and the detailed figure of the
tip is shown in Figure 4.2(b). The red dotted line shows the watching points in the heater and
these points are indexed increasingly from bottom to the top An additional parametrization of
the tip is done for studying the influence of a non-regular shaped tip. Its graphical expression
is shown in Figure 4.2(c). The initial values and limitations of parameters is reported in Table

Tip

Heater,
r2 é\

tip-gap

| 1 Twh2

H2 L17 [ 92

H
Track HJﬂﬂJn
HtT
d1
H1 //a s/ me [ n
i WTb
wel| 8
Wg2
/ IHP
cb Wg1 Whb L
(a) Cantilever (b) Tip (c) Test Tip

Figure 4.2: Parametrization of the first probe design

4.1. The parameters SiTh, SiO2Th, PtTh and PiezoTh correspond to the silicon, SiO2 and
Platinum layer thicknesses and the piezoresistive sensor thickness.

4.4 Simulation

This section is focused on the implementation of the simulation which is used in the optimiza-
tion. First we describe the boundary conditions. Then we explain the COMSOL-MATLAB
modules used in the simulation and objective features that are used in the optimization pre-
sented in the following section. The simulation is written in a COMSOL-MATLAB script so
that to be combined with SIMBAD. This work takes a long time and we close this section by
illustrating the difficulties met during its development.

The simulation is done for the left-half part of the probe thanks to its symmetry property.
A symmetric boundary condition is thus imposed on the symmetric axis. The probe is clamped
at its bottom where a 300K room temperature is imposed.

Two COMSOL modules are applied independently to extract the needed objective features.
Joule-heating thermoelasticity module is the first one used to simulate the Joule-heating and
the bimetallic effects. An electric source is imposed on the inner leg of the metal trail and
the right end of the tip is grounded. Six objective features are extracted from this module:
the maximum absolute value W of displacements generated by bimetallic effect; the maximum
temperature 1" of the tip; the heat flux Flux crossing the interface between the heater and the
trail; the difference T'd between the mean temperature in the tip and that in the heater; the
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Name | L H1 rl H2 r2 r3 H d2 d1 Wceb
Initial | 203 407 103 125 71.5 | 11.5 555 3 3 10
Limit | - - - - - - - - - 2710
Name | Wu hf Whb Wgl d3 Wg2 Wb HJn Win | Hsb
Initial | 5.87 9.4 20 5 9 150 30 80 5 30
Limit | 275.87 | 2714 2720 25710 | - 1287160 | 15775 30780 5730 | -
Name | Ws HsT HTb HTn WTn | WThb HtT Htb Wtb | Wtn
Initial | 10 21 8.5 24 4 16 5 8.5 4 1.5
Limit | - 10721 - - 4714 | 16721 - - 478 | -
Name | Htn Wtg Twhl Hh1 L51 | h51 L17 h17 Htip | SiTh
Initial | 8.5 4.57 1.91 1.91 28.5 | 62.27 31.08 72.5 0.04 |5
Limit | - 274.57 0.171.91 | 171.91 | - - - - - 375
Name | SiO2Th | PtTh WGP WP HGP | HP PiezoTh | Twh2

Initial | 0.2 0.1 11.25 2.5 225 | 1.7 1.5 1.91

Limit | 0.270.5 | 0.0570.15 | - - - - - 0.171.91

Table 4.1: Initial value and limit of parameters

voltage drop SV on the sensing leg when a —5uW heat flux load is imposed to the tip; the heat
distribution in heater is another objective feature, it can only be expressed through a graph.

The second module is a solid mechanic which are used twice with two different loads to
extract two objective features: the maximum absolute value D of displacements for a 1uN
force imposed to the tip; the mean value S of Von-Mises stress in the piezo-resistive sensor for
an imposed 1um tip displacement. Feature D indirectly expresses the probe stiffness.

An simulation is done with the parameters in Table 4.1 for a 0.5V voltage source. The curve
in Figure 4.3(b) shows the temperature along the watching points introduced in Section 4.3. It
decreases to the end of the tip. This phenomenon is made more visible in Figure 4.3(c) where
the temperature variations are represented by color and also by deformation of the volume.
Figure 4.3(d) shows the current density distribution, it provides a good explanation for this
phenomenon. Because of the low current density in the upper end of the tip, that part can not
be self-heated. The singularity of the current density at the corner comes from the property
of Laplace equation which governs the electric equation. The other objective features in this
simulation are D = 0.5248um, W = —0.09915um, T" = 45.76K, SV = 23uV, S = 2.13MPa,
Fluz = 11.65W /m?, T'd = 0.4863K. It takes 130 seconds and 6000 elements are used.

Work History

This report is simple but the process was difficult. This work has been started with the 3.5a
version of COMSOL that offers poor possibilities of script programming. The scrip was not
established until the adopting of COMSOL 4.2b. It accelerates significantly the work because
the standard MATLAB functions can be used. This makes the programming easier and clearer.
However, we found bugs that block the process of the work. Precisely, the system cannot scale
the equations correctly when the non-standard geometry unit is used and the meshing function
cannot work for some small geometries. We derived the scaled equations expressed in pm unit
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Figure 4.3: Temperature and current density distribution of the probe

and identified the limits of each small parameters which allows meshing. We fized all these bugs
when the more powerful version of COMSOL 4.3b appeared. In this version, equation scaling
problem s solved and the meshing function is much improved. So a robust script including
material property setting, equation setting, meshing and objective feature extraction is created.
This rendered the scaled equation no more necessary.

4.5 Simbad

The software package SIMBAD provides a generic simulation-based design tool for investigating
the behaviour of complex modeled systems. A MATLAB link has been set between COMSOL
and SIMBAD so that COMSOL models may be used as an input for a design under SIMBAD.
It includes the definition of the optimization problem including initial value of parameters,
parameter relative ranges, objective features, constraints for geometry and objective features.
It serves to transmit current parameters between the two software packages. Finally, the results
are visualized and reported.The following driver functions are available:

e Design sensitivity and effects analysis

Used to quantify the impact of design variable modifications on the design objective of
interest. This general allows the design space to be reduced to the subset of influential
variables.
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e Mono-objective performance optimization

Used to minimize a scalar function of the design objectives while satisfying design con-
straints.

e Multi-objective performance optimization

Used to obtain an approximation of the Pareto front for the different design objectives. This
provides the analyst with a useful indicator for weighing the trade-offs between the objectives
of interest.

e Reliability analysis under aleatory uncertainty

Used to evaluate system reliability for one or more failure criteria with random uncertainty
a set of design variables.

e Model validation and uncertainty quantification

Used to quantify the impact of both aleatory and epistemic (lack of knowledge) uncertainties
in the design variables and system environment on the design objectives and constraints.

e Info-gap robustness of design decisions to lack of knowledge

Used to investigate the impact of lack of knowledge in design variables on system perfor-
mance.

Three toolboxes were used is this work. The design sensitivity and effects analysis toolbox is
used to quantify the impact of design variable modifications on the design objective of interest.
This allows the design space to be reduced to the subset of influential variables. Then, the
multi-objective performance optimization toolbox is used to obtain an approximation of the
Pareto front for the different design objectives. This provides the analyst with a useful indicator
for weighting the trade-offs between the objectives of interest. Finally, the model validation
and uncertainty quantification is used to quantify the impact of both aleatory and epistemic
(lack of knowledge) uncertainties in the design variables and system environment on the design
objectives and constraints.

4.6 Optimization

This subsection discusses a multi-objective optimization for the SThM probe introduced in
Section 4.2. The varying of some parameters may improve some design properties but worsen
the others. For example, the increase of the silicon layer thickness reduces the bimetallic effect
but increases. In this case, the optimization requires a trade-off between the two requirements.
To the contrary, an optimization of other parameters could be obtained directly from the clear
understanding of their contributions.

This subsection contains two parts. The first one is dedicated to study each parameter
and to identify those whose optimization requires tradeoffs. The second one focuses on the
optimization of parameters for the identified tradeoffs. A set of solutions are reported in the
pareto plot which facilitates the selection of optimal designs.
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4.6. Optimization

4.6.1 Analysis by subset of parameters

The influence of each parameter is analyzed separately, but the analyses are presented for
small groups to make the presentation easy. Precisely, the variables are grouped into heater
dimensions, T-shaped and tip-gap dimensions, layer thicknesses, trail widths and cantilever
dimensions. They are marked by blue, green and red letters in Figure 4.2(b), and by red and
pink letters in Figure 4.2(a).

To make the result presentation easier, a special kind of chart, see Figure 4.4 as an example,
is used. For a parameter v with initial value v* and varies in [av?, bv"], then the current variable
v" of v at level n is computed by v™ = (a+ 15(b—a))v’, for an objective feature w corresponds
to v with w® and w™ correspond to v° and v", the x-axis represents the values of n and the
y-axis represents the ratio w"/w® corresponding to the variation of the objective feature.

Optimization for heater dimension The shape of the heater affects the tip temperature
and sensing voltage directly. It affects also the bimetallic effect through the heat distribution
in metal trail. First, we discuss the influence of a polyline shaped heater, see Figure 4.2(c), on
the tip temperature and on the sensing voltage. This shows that the straight heater yields a
higher sensing voltage and a higher tip temperature. It also exhibits their linear relation. So
in the following, the subsequent results are only for straight shaped heater.

1.05 . 1 .
—o—dx —o—dx
; ; —o—dx1 —o—dx]
g : : —o—dx2 |l 0.95F gty
: ——Nominal ——Nominal
; 09
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Figure 4.4: Sensitivity analysis for varying tip width

In Figure 4.4, the platinum layer is heated by a 0.5V voltage source and the sensing voltage
is measured for a 10uW heat flux load to the tip. The increase of width of any heater segment
yields decrease of both tip temperature and sensing voltage. We conclude that a straight heater
with a small width allows a better performance for these two features. In addition, the voltage-
temperature curve of each sample shown in Figure 4.5 exhibits the linear relation between them.

In the following, we discuss the heat distribution in the straight shaped heater for several
values of parameters shown in Figure 4.2(c). In Figure 4.6,

we use the kind of chart as in Figure 4.3(b). It shows the concentration of the heat distri-
bution in the straight heater. The effects of the width T'hw2 of the tip, the height H f and the
width Wu of the bottom part of the heater are discussed.

In Figure 4.6(a), the blue line with solid circles marks the curve of the highest temperature
concentration. It corresponds to the minimal allowable value of Twh2. Figure 4.6(b) reports
the influence of H f where T'wh2 is fixed to its minimum and a 0.2V heating voltage is imposed.
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The reduce of the heating voltage is to keep the tip temperature in a reasonable range. The
differences of curvatures between each curves are small which means that H f is uninfluential to
the heat distribution. But we still mark the curve of the highest temperature concentration in
Figure 4.6(b) by a bold pink line where H f equal to 8.885um. At last, we study the influence
of Wu where both of Twh2 and H f are fixed. The best curve is marked by bold red circled

250

Temperature(K)

50

Figu

Temperature distribution along the heater

unit pm
—o—Twh2=0.10123

Twh2 =0.3022
—— Twh2 =0.50318
—— Twh2 =0.70415
—— Twh2=0.90513

Twh2 =1.1061
——Twh2=1.3071
—— Twh2 =1.5081

Twh2=1.709
—— Twh2=1.91

38 085 09 0% 1
Tiip

re 4.5:

106 11 115

Temperature distribution along the heater

12

Sensing Voltage VS tip temperature

Temperature distribution along the heater

Temperature(K)

10

20

30 40 50
Watching point index

(a)

Hi=4.704
——Hf =5.7493
——Hf =6.7947
——Hf=7.84

—o—Hf =6.8853

(b)

030 0
‘Watching point index

60 70 80

10

unit um

—Wu=1.761
—Wu=22176
—Wu=26741
—Wu =3.1307
—Wu =35872
Wu =4.0438
—Wu =4.5003
—Wu =4.9569
—Wu =5.4134
—e—Wu =5.87

0 10 20

0 40 50 60 70 80
Watching point index

(©)

Figure 4.6: Heat distribution in the heater for a voltage source

line in Figure 4.6(c) corresponding to the upper limit of Wu.

and 4.7(c) show it for a 2.6mA current source. The conclusion is same as for the voltage source
that H f is uninfluential, the optimal value of Twh2 and Wu should be taken their minimal

Temperature distribution along the heater

Temperature distribution along the heater

The heat distributions in the straight heater for current sources are shown in Figure 4.7.
Figure 4.7(a) shows the temperature distribution for a 8mA current source, and Figure 4.7(b)
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Figure 4.7: Heat distribution in the heater for a current source

allowable value and maximal allowable value.
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4.6. Optimization

The optimization of the parameters in this group does no require any tradeoffs between the
objective features. In conclusion, the optimal heater should have a wide bottom and a sharp

tip.

Optimization for layer thickness We discuss the optimization of thicknesses. Six objective
features D, W, T, S, Flux and T'd are considered. Figure 4.8 shows the influences of the layer
thicknesses on these objective features.
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Figure 4.8: Sensitivity of objective features to Layer thicknesses

Figure 4.8(d) and Figure 4.8(e) show that 7" and Fluz increase with the SiO2 layer thickness.
The increase of the Platinum layer thickness causes the reduction of the electric resistance and
so increases the heating power in the case of a voltage source. The thickness of the SiO2
layer determines the thermal resistance between platinum layer and silicon layer. The SiO2
layer blocks the propagation of the heat from the platinum layer to the silicon layer. When it
becomes thicker, the temperature as well as the heat flux in the platinum layer increase.

The inflection point of the green curve in Figure 4.8(b) corresponds to the thermal bending
tendency change. This change is discussed in the following.

Figure 4.9(a) shows the variation of tip displacement with the SiO2 layer thickness when
the Platinum layer thickness is fixed to 100nm and the tip temperature is fixed to 350K. The
temperature is controlled by the heating voltage. The SiO2 layer thickness varies from 0.2um
to 0.5um. Two colored and deformed volumes are used to detail the displacements when the
probe is equipped with a 0.2um and a 0.5um SiO2 layer, see Figure 4.9(b) and Figure 4.9(c).

In Figure 4.9(a), the tip displacement W starts from a negative value until to be positive
when the SiO2 layer thickness varies from 0.2um to 0.5um. The zero displacement happens
when SiO2Thick reaches 0.370.35um which corresponds to the inflection point in Figure 4.8(b)
as explained in the following.

As shown in Figure 4.9(c), the deformation of the left of the two cantilever legs are upward,
but the deformation of the cantilever under the T-shaped gap is downward. This comes from
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Figure 4.9: Tip displacements for different SiO2 layer thickness

the heat distribution. On the other hand, this dented shape under the T-shaped gap causes the
upward displacement of the tip. A thick SiO2 layer increases the dented shape and so increases
the tip displacement. To keep the probe smooth during its application, the SiO2 layer should
be taken as thin as possible.

Since the influences of the SiO2 layer and silicon layer are not related to the kind of electric
source, the discussion for the current source is only focused on the platinum layer. Figure 4.10
shows the influence of the Platinum layer on the tip temperature and on the tip displacement.

13 2

12 /
unit um
1'1 / —o— ConductorThick 0.06~0.15
1 15 ——Nominal |
. e

2 -

08 B
unit um

07y —o—ConductorThick 0.06~0.15 ‘ 1

06 — Nominal

05l —

04 TR S R o5

t2 3 4 5 6 7 8 9 10 ™ 2 3 4 5 6 7 8 9 10

Level Level
(a) (b)

Figure 4.10: Influence of Pt layer thickness for current source

The increase of the platinum thickness increases the tip displacement and decreases the tip
temperature at the same time. So its optimization does not require the trade-off between these
two features.

In conclusion, the thicknesses of the silicon layer and the SiO2 layer should be taken their
to lower limit to keep the probe flexible and flat. For a voltage source, the platinum layer
thickness could be used to optimize the tip displacement, but in the case of a current source,
the platinum layer should be taken as thin as possible.

Optimization for cantilever dimensions The optimizations of the middle leg and of the
two gaps around the legs of the cantilever are discussed. Figure 4.11 exhibits the influences of
the parameters in this group.

It shows that the parameters in this group influence mainly the probe stiffness. Figure
4.11(a) shows that a wide middle leg and a narrow gap around it yields a stiff cantilever.
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Figure 4.11: Sensitivity of objective features to the cantilever dimension

The pink curves in Figure 4.11(a) and in Figure 4.11(b) show that the increase of W.Jn only
decreases the tip displacement.

In conclusion, the middle leg of the cantilever should have a uniform width, the optimizations
of WJb and W g2 require the trade-off between the tip displacement and the tip deflection.

Optimization for tip gap and T-shaped gap dimensions The influences of the tip
gap and the T-shaped gap are discussed. In fact, these two gaps are influential to the tip
temperature for the original design. In that design, the probe is equipped with a wide tip and
a large area of the cantilever is heated, see Figure 4.3. But when the tip becomes sharp, their
contribution becomes little. Figure 4.12 shows the influences of the tip gap when a probe is
equipped with a 100nm wide tip.

The heat and the heat flux magnitude distribution of the probe is shown in Figure 4.13.

It is clear that the temperature elevation is restricted in a little vicinity of the tip and very
little heat flux goes through the tip gap. The discussion of the T-shaped gap is the same.

We conclude that these two gaps are not useful for the probe with a sharp tip.

Optimization for Trail dimensions The optimization of widths of the sensing trail and
the heating trail are discussed. Since they influence mainly the tip temperature and the tip
displacement, Figure 4.14 only reports their influences on these two features.

It shows that the increase of the sensing trail width does not increase the tip temperature
but only increases the tip displacement, the increase of the heating circuit width increases both
of them.

The same analysis is done for the current source and Figure 4.15 reports the result.

The influence of the sensing circuit is the same but the influence of the heating circuit is
different. Both of the tip temperature and the tip displacement decreases as the increase of the
heating circuit width.
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Figure 4.12: Sensitivity of objective features to Layer thicknesses

This yields the conclusion that the sensing trail should be as narrow as possible and the
optimization of the heating trail width requires a trade-off.

4.6.2 Trade-off optimization

In this section, we find tradeoffs between different objective features for parameters W.Jb, W g2,
Whb and PtThick which are identified in the previous section and a pre-optimized geometry
is used. The tip width is fixed to 100nm and the heater bottom width is fixed to 5.87um, the
sensing trail is fixed to 2um, the width of the middle leg is set to be uniform, the silicon layer
thickness is fixed to 3.5um and the SiO2 thickness is fixed to 0.2pum. In the optimization, a
0.2V voltage source is imposed to the heating circuit.

The optimization is implemented by SIMBAD together with COMSOL-MATLAB simula-
tion. It takes about 19 hours and 522 samples are computed. In the graphical representation,
see Figure 4.16, only four sensitive ones are selected because of the limitation of graphical
representation method. In Figure 4.16, each point corresponds to a sample, their position
is determined by their tip deflection, tip displacement and tip temperature, and the color is
determined by their sensor stresses.

We compare the performances of the optimal design and the original one under the condition
that they have the same tip temperature. So a 0.24V voltage source is imposed to the optimal
design to obtain the same tip temperature as the original one. Table 4.2 reports the comparison.

Table 4.2 shows that the optimal probe is more flexible, the heat distribution around the
tip is more concentrated, the bimetallic effect is much reduced and the sensing voltage is much
increased. The cantilever flexibility comes from the thin silicon layer and the wide gap around
the middle leg. The drawback is then the lower stress in the piezo-resistive sensor, but this
could be remedied by applying signal amplifier in the stress measuring circuit. The concentrated
heat distribution around the tip and the higher sensing voltage are due to the sharp tip. The
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(a) Heat distribution (b) Heat flux distribution

Figure 4.13: Heat and Heat flux distribution around the optimized tip
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Figure 4.14: Sensitivity of objective features to the track dimension

sharp tip together with the narrower sensing trail and the heating trail significantly reduce
the bimetallic effect. This section is closed by Table 4.3 which reports the parameters of the
selected optimal design.

In the end of this section, we sumimarize optimization rules obtained before.

e A straight line shaped heater maximizes the tip temperature and the sensing voltage.

e The heater with a wide bottom and a sharp tip concentrates the heat distribution and
reduces the bimetallic effects.

e The sensing track should be taken as narrow as possible to reduce the bimetallic effect.
e The T-shaped gap and the tip-gap are not useful when the tip is sharp.

e The increase of the heating trail width decreases the electric resistance, so it increases
the temperature for a voltage source but decreases the temperature for a current source.
By anyway, its optimization needs trade-off between the tip temperature and the tip
displacement.

e The middle leg should be designed with a uniform width and its optimization requires
the trade-off between the probe stiffness and the bimetallic effect.

e The width of the gap around the middle leg is influential to the probe stiffness and to
the bimetallic effect, the trade-off between these two features should be considered in its
optimization.
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Figure 4.16: Pareto plot for four objective optimization

e The silicon layer should be taken as thin as possible to have a flexible cantilever. The
SiO2 layer causes the dented shape and it forces the upper part of the probe to bend
upward. To keep the probe flat during its application, the SiO2 layer should be thin.
The increase of the platinum thickness decreases the electric resistance, so it increases
the temperature for a voltage source but increases the temperature of a current source.
This could be used to optimize the bimetallic effect.

e The sensor stress is only sensitive to the thickness of the silicon layer.

4.7 Conclusion

The connection between SIMBAD and COMSOL-MATLAB has been established and a com-
plete optimization loop has been tested. In addition, the COMSOL-MATLAB script based
programming has been studied and the experience could be used in other problems. Through
the detailed discussion regarding the influences of each variable, the parameters needing trade-
offs have been identified and optimization rule for the others have been established. Finally,
the pareto plot of samples for tradeoffs features has been presented.
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Feature | Original design | Optimal design | Relative change

D 0.5248 um 2.26pum +330.64%

W -99.15nm 4.66nm -95.30%

T 45.76K 45.09K -1.46%

S 2.13MPa 1.26MPa -40.85%

Flux 11.65W /m? 1.54W /m? -86.78%

Tdiff 0.48K 34.82K 7154%

SV 23uV 1254V 443%

Table 4.2: Report of one optimal design

Name | L H1 rl H2 r2 r3 H d2 d1 Wceb
Value | 203 407 103 125 71.5 11.5 | 555 |3 3 2
Name | Wu hf Whb | Wgl | d3 Wg2 | WJb | HJn | WJn Hsb
Value | 5.87 | 993 | 11.65 |5 9 164.7 | 16.45 | 80 5 30
Name | Ws Twhl | L51 | h51 | L17 h17 Htip | SiTh | SiO2Th | PtTh
Value | 10 1.91 | 28.5 | 62.27 | 31.08 72.5 | 0.1 3.5 0.2 0.0853
Name | WGP | WP | HGP | HP PiezoTh | Twh2
Value | 11.25 | 2.5 225 | 1.7 1.5 0.1

Table 4.3: Parameters of the selected sample
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A methodology for the kernel of an asymptotic model derivation software package MEM-
SALab has been proposed. Three aspects are included:

First, an approach called "by extension-combination" for the asymptotic model derivation
has been proposed. The method that to construct a complex model derivation by extending
and combining elementary model derivations has been firstly used in the asymptotic method.
Each of them covers a specific feature comparing with the reference model derivation. Then
a theoretical framework which relies on a combination of the asymptotic method with term
rewriting techniques for the computer-aided asymptotic model derivation has been proposed.
FO-rules and strategies for symbolic derivation of the reference model have been designed and
their extensions and combinations are implemented by SO-rules and strategies. For fluent
combination of extensions, each position of nodes in the three structure of FO-rule is sorted
and SO-rules are formulated as a combination of unit outward growths each of which is a
composition of a R-semantic conservation SO-rule and an Admissible parameterized SO-rule
and is applied at one node only at specific positions in the tree structure of a FO-rule. Then
the application of unit outward growths are sorted in the same order as for the positions where
they are applied.

Second, an homogenization model of the electrothermoelastic equation defined in a multi-
layered thin domain has been derived. The derivation follows the reference proof by using
extended mathematical rules and some extended steps. This prepares the design of related
extensions for its inclusion in MEMSALab. New features ie multi-dimension, thin-domain,
sub-domains with different physics, vector valued solutions and multi-physics are taken into
account.

Last, an optimization tool which is a combination of a house-made optimization software
package SIMBAD and COMSOL-MATLAB simulation has been developed. As an example,
it has been applied for optimization of a SThM probe used in the NANOHEAT project. The
general optimization principles for the similar SThM probe designs have been summarized and
a set of optimal designs corresponding to different compromise of objective features have be
obtained.

In fact, only the skeleton of the kernel of MEMSALab has been established in this thesis,
there is still a long way to go to make the kernel complete. In the following, we list some works
need to do in a very near future:

e Rewrite the rewriting strategies of the reference proof in a term rewriting language Caml.
e Implement algorithms for outward growth in Caml.

e Include the homogenization model derived in Chapter 3 in MEMSALab.
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