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ABSTRACT

This thesis is dedicated to develop a kernel of a symbolic asymptotic modeling software
package MEMSALab which will be used for automatic generation of asymptotic models for arrays
of micro and nanosystems. Unlike traditional software packages aimed at numerical simulations
by using pre-built models, the purpose of MEMSALab is to derive asymptotic models for input
equations by taking into account their own features i.e. the scalar valued/vector valued solution,
di�erent estimates on the solutions and sources, thin structures, periodic structures, multiple
nested scales etc.

We have proposed an approach called "by extension-combination" for the asymptotic model-
ing which allows an incremental model construction so that the wanted features can be included
step by step. In this approach, the derivation starts from a so-called reference proof which is
a periodic homogenization model derivation for a second order elliptic equation with periodic
coe�cient de�ned in a one-dimensional domain, then a complex model is constructed by extend-
ing and combining elementary models, each of which covers a speci�c feature, until all wanted
features are taken into account. On the other hand, a theoretical framework for the computer-
aided asymptotic model derivation is proposed. It relies on a combination of the asymptotic
method used in the �eld of partial di�erential equations with term rewriting techniques coming
from computer science. In this framework, the �rst order rewriting rules (FO-rules) are used
to express mathematical rules and their application are controled by �rst order strategies. The
design of FO-rules bene�ts from the grammar which is proposed for a systematic formulation
of all needed mathematical objects, ie geometry domains, functions, operators etc, used in the
model derivation. Then second order rewriting rules (SO-rules) and strategies are introduced
to built elementary models by extending existing proofs and to combine them to built com-
plex models. To avoid con�icts in the combination of extensions, each SO-rule is formulated
as a combination of unit outward growths. Each unit outward growth is a composition of an
R-semantic conservation SO-rule and an Admissible parameterized SO-rule corresponding to
semantic conservation transformation and parametrization of the FO-rules. Thanks to the sim-
ple formulation of the unit outward growth, the behavior of their combination becomes possible
to be studied. Then the rules for �uent combinations are proposed.

The interest of this approach is that if features of the input model are covered by the existing
elementary models, the derivation can be generated by applying combination of the existing
rules on the reference proof. This facilitates the programming for new models.

Next, an homogenization model of the electrothermoelastic equation de�ned in a multi-
layered thin domain has been derived following the reference proof by using extended mathe-
matical rules and some extended steps. It contributes in two aspects. First, the model can be
used for simulation embedded in an optimization loop. Second, it prepares the design of related
extensions for its inclusion in MEMSALab.

At last, an optimization tool has been developed by combining a house-made optimization
software package SIMBAD and COMSOL-MATLAB simulation and it has been applied for
optimization of a SThM probe. General optimization principles have been summarized and an
optimal design has been obtained.

Keywords: Multi-scale, Arrays, Nanosystem, Asymptotic model, Rewriting technique, extension-
combination, Elementary model, Thin-domain, Feature, Optimization



Résumé

Cette thèse est consacrée au développement d'un noyau du logiciel MEMSALab de modélisation
par calcul symbolique qui sera utilisé pour la génération automatique de modèles asymptotiques
pour des matrices de micro et nanosystèmes. Contrairement à des logiciels traditionnels réal-
isant des simulations numériques utilisant des modèles prédé�nis, le principe de fonctionnement
de MEMSALab est de construire des modèles asymptotiques qui transforment des équations
aux dérivées partielles en tenant compte de leurs caractéristiques, à savoir : la nature scalaire
ou vectorielle de la solution, les ordres des estimations des solutions et des sources, la périodicité
de coe�cients ou de géométries, la minceur de certaines parties, ou bien la présence d'échelles
multiples imbriquées.

Nous avons proposé une méthode appelée "par extension-combinaison" pour la modélisation
asymptotique, qui permet la construction de modèle de façon incrémentale de sorte que les
caractéristiques désirées soient incluses étape par étape. Par cette approche, la construction
d'un modèle utilise la démonstration d'un modèle qui sert de référence. Ce dernier est un
modèle d'homogénéisation périodique d'une équation elliptique du second ordre avec coe�cient
périodique dé�nie dans un domaine mono-dimensionnel. Un modèle complexe est ensuite réalisé
par la combinaison d'extensions élémentaires de ce modèle, chaque extension tenant compte
d'une caractéristique spéci�que, jusqu'à ce que toutes les caractéristiques nécessaires soient
prises en compte. Un cadre théorique a été proposé pour la formulation de cette méthode
de façon à ce qu'elle puisse être mise en oeuvre de façon informatique. Il repose sur une
combinaison de méthodes asymptotiques issues de la théorie des équations aux dérivés partielles
et de techniques de réécriture issues de l'informatique. Dans ce cadre, les règles de réécriture du
premier ordre sont utilisées pour exprimer des règles mathématiques et leur applications sont
contrôlées par des stratégies du premier ordre. Ces règles et stratégies sont exprimées dans
une grammaire qui permet de prendre en compte tous les objets mathématiques nécessaires, à
savoir les domaines géométriques, les fonctions, les opérateurs etc... . Des règles de réécriture
et des stratégies du second ordre servent à construire des extensions de la preuve de référence et
à les combiner. Pour éviter les con�its dans la combinaison d'extensions, ces règles du second
ordre sont formulées par des opérations simples ou par leurs combinaisons, introduites pour
l'occasion, appelées "gre�es". Grâce à ce concept, la combinaison devient une opération facile
à réaliser. L'intérêt de cette approche est que si les caractéristiques du modèle d'entrée sont
bien couvertes par les extensions élémentaires existantes, la construction du nouveau modèle
asymptotique est générée par simple combinaison des extensions de la preuve de référence. Cela
permet la construction et la programmation de nouveaux modèles.

Ensuite, un modèle d'homogénéisation de l'équation d'électro-thermo-mécanique posée dans
un domaine mince multicouche est établi en suivant les étapes de la construction du modèle de
référence, mais utilisant des propriétés plus générales. Cette contribution conduit d'une part
à un nouveau modèle qui peut être utilisé comme modèle simpli�é qui peut être intégré dans
un calcul d'optimisation pour accélérer les calculs. D'autre part, elle prépare l'implantation de
la construction de ce modèle dans MEMSALab exprimée sous forme d'extensions élémentaires
et de leurs combinaisons. Pour �nir, un outil d'optimisation a été développé en combinant
SIMBAD, une boite à outils logicielle pour l'optimisation et développée en interne, et COMSOL-
MATLAB. Il a été appliqué pour étudier la conception optimale d'une classe de sondes de
microscopie atomique thermique et a permis d'établir des règles générale pour leurs conception.

Mots-clés: Multi-échelle, réseau, nanosystèmes, modèle asymptotique, technique de réécriture,
extension-combinaison, modèle primaire, mince-domaine, caractéristique, Optimisation
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1. Micro-system arrays, asymptotic methods

1 Context of the thesis: micro-system arrays, asymptotic

methods and their implementation

During the past two decades, in the �eld of micro and nanotechnologies, a number of devices
involving arrays on a chip, or MEMS1 Arrays have been fabricated. Typical ones are micro-
conveyors, arrays of micro-cantilevers (used for atomic force microscopy, nano-lithography or
data storage), arrays of micro-mirrors and micro-lenses (used in optical applications e.g. in
video projectors and lithography masks, and in many applications such as �lters for �ber
optic and laser arrays), arrays of microneedles, micro-bolometers, etc, see Figure 1. These

Figure 1: Examples of micro-system arrays

systems have common features: they are distributed, often spatially periodic, and they have
multi-physics and various multi-scale characteristics. Because of the complex geometry of their
cells, having possibly a multiscale structure, and their large number the direct simulation of
the micro-system arrays by a numerical method as the Finite Element Method (FEM) turns
out to be impractical. Extensive development of such systems requires design and simulation
tools which motivates this work and more generally a research activity at the FEMTO-ST
institute. It is worthwhile mentioning that the presented application is about scanning thermal
microscopy and involves a relatively complex microsystem, but not an array. However, as the
reader will see, the developed model �ts well with the illustration needed by our approach.

Asymptotic methods. One possible solution is to use asymptotic methods and especially
periodic homogenization methods. Asymptotic methods applied to partial di�erential equations
(PDE, for short) are model reduction techniques, their purpose is to approximate the initial
model, given as a PDE, by a second model of which the simulation by the FEM can be done in
a reasonable time. They are very useful for complex system simulation and are of great interest
in the software design community. They have experienced strong growth since 1980, with an
increasing range of applications in all �elds of physics and engineering: thermal, solid and �uid
mechanical, electromagnetism, etc. They have rigorous mathematical foundation and can lead
to error estimates based on the small parameters involved in the approach. This is a valuable
aspect from the model reliability point of view. They have been applied when a physical
problem depends on one or more small parameters which can be some coe�cients or can be
related to the geometry. Their principle is to identify the asymptotic model obtained when the
parameters tend to zero. For instance, this method applies in periodic homogenization, i.e. to
systems consisting of a large number of periodic cells, the small parameter being the ratio of the
cell size over the size of the complete system, see for instance [7, 30, 44]. Another well-developed
case is when parts of a system are thin, e.g. thin elastic plates as in [26], that is to say that
some of their dimensions are small compared to others. A third kind of use is that of strongly
heterogeneous systems e.g. [15], i.e. when equation coe�cients are much smaller in some parts

1Micro-Electro-Mechanical Systems
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of a system than in others. These three cases can be combined in many ways leading to a broad
variety of con�gurations and models. In addition, it is possible to take into account several
nested scales and the asymptotic characteristics can be di�erent at each scale: thin structures
to a scale, periodic structures to another, e.g. [11], [12], [13], [46], etc. It is also possible
to cover cases where the asymptotic phenomena happen only in certain regions or even are
localized to the boundary. Moreover, di�erent physical phenomena can be taken into account:
heat transfer, solid deformations, �uid �ow, �uid-structure interaction or electromagnetics. In
each model, the coe�cients can be random or deterministic. Finally, di�erent operating regimes
can be considered as the static or the dynamic regimes, or the associated spectral problems.
Today, there exists a vast literature covering an impressive variety of con�gurations.

Asymptotic methods, enjoy a number of advantages. The resulting models are generally
much faster (often by several order of magnitude � depending on the kind of model simpli�cation
�) to simulate than the original one and are fully parameterized, which is not the case with
other model order reduction approaches. In addition, they do not require any long numerical
calculation for building them, so they can be inserted into identi�cation and optimization loops
of a design process. Finally, they are of general use and they can be rigorously applied whenever
a model depends on one or several small parameters and the error between their solution and
nominal model solution can be estimated.

There is a vast literature on asymptotic methods for PDEs both in applied mathematics
and in many modeling areas. Many reference books have been published, and there are several
journal devoted to them. (SIAM: Multi-scale Modeling and Simulation, Asymptotic Analysis,
Networks and Heterogeneous Media, International Journal for Multi-scale Computational En-
gineering, Journal of Multi-scale Modeling, International Journal of Theoretical and Applied
Multi-scale Mechanics etc...).

Two-scale convergence. For periodic homogenization, several methods have been emerg-
ing over the years. In this thesis, we focus on the two-scale convergence. In 1989 in [52], the
notion of two-scale convergence was introduced for periodic homogenization problems and this
method was further developed in [1]. Independently, in 1990, the reference [3] introduced a
dilation operation to study homogenization for a periodic medium with double porosity. This
technique was used again in [16], [2] and [50]. M. Lenczner with his co-workers in [45]-[49] used
the same idea to develop a complete framework yielding similar results for periodic homoge-
nization as the two-scale convergence method. They introduced this new technique to address
homogenization of spatially periodic analog electronic circuits in view of their application in
arrays of MEMS. Then, J. Casado Diaz et al. [23], [24]-[25] combined it with the two-scale
convergence to study perforated domains and thin structures. Then, the same concept was
called periodic unfolding method by D. Cioranescu, A. Damlamian and G. Griso who have de-
veloped a number of their properties, including error estimates, in [25], [28], [37] [38] and [39].
This technique has been extensively developed by many other authors in a variety of applica-
tions. In particular, it has been applied to �nd models of complex structures combining other
asymptotic features, as thin structure or strong heterogeneity of coe�cients, with the periodic
homogenization, see among others [11], [12], [13], or [46]. We notice that in [47], an attention
has been paid to formulate the proofs of model derivation as a sequence of algebraic calculation
without relying on abstract arguments.

Existing FEM simulation software and homogenization software. FEM simulation
software packages have been developed and applied in a lot of �elds in the recent decades. The
comercial �nite element analysis software packages ABAQUS, ANSYS, COMSOL and CONVENTOR

are the most famous and widely used among the software simulation packages. They are
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2. Contributions of the thesis

used in the simulation of multi-physics, and in particular, CONVENTOR is specialized in the
simulation of the micro-system arrays. On the other hand, free �nite element analysis software
packages, such as Code Aster, FreeFem++, have also been developed. Such software implement
very limited number of multi-scale models. However, a number of homogenization software
packages also exist. For example, Helius from Firehole, MAC/GMC from NASA, CZone from
Engenuity, and DIGIMAT from eXstream Engineering. Helius and DIGIMAT are specialized in
the analysis of the properties of composite materials by using di�erent homogenization methods.
The Multicontinuum Technology is used in Helius, and the Mean-Field homogenization method
is used in DIGIMAT. In these homogenization software packages, the homogenized models are
pre-computed case-by-case. They can cover a limited number of possible models, which remains
a tiny fraction of possible cases, with regards to the wide variety of possible physical features
and geometrical con�gurations.

Drawbacks of the asymptotic methods, motivation of the thesis. Commercial soft-
ware already available on the market, such as MDS, DIGIMAT, Firehole, Czone mentioned above,
are well connected with classical �nite element software and their e�ciency is clearly estab-
lished. Of course, the homogenized models being implemented are speci�c to a physical �eld,
and new models might be derived if another physics has to be taken into account. Other
asymptotic features, as for instance those considered in this paper, are not used in the above-
mentionned software. To take them into account would considerably multiply the number of
possible models and render ine�ective a model-by-model approach.

In addition to the problem of the number of possible models generated by combining various
asymptotic methods, another limitation to their dissemination in engineering software is that
each new con�guration requires new long hand-made calculations that may be based on several
techniques. In the literature, each published paper focuses on a special case regarding geometry
or physics, and no academic work is oriented in an e�ort to deal with a more general picture.
Moreover, even if a large number of models combining various features have already been
derived, the set of already addressed problems represents only a tiny fraction of these could be
derived from all possible asymptotic feature combinations based on existing techniques.

Summing up, we can say that on the one hand, periodic homogenization models are well
disseminated in some engineering communities, and that on the other hand transfering, in
software for engineers, models built from combination of several asymptotic methods is not yet
done, and seems to be not achievable in a model-by-model approach. We consider that this
challenge can be formulated as a scienti�c problem that deserves to be posed and we propose
�rst components of solution. Namely, we establish a mathematical framework for combining
asymptotic methods of di�erent natures and thus for producing, aided by a computer, a wide
variety of complex models. The proposed solution combines principles of asymptotic model
derivations, also called proofs, and rewriting methods issued from computer science.

2 Contributions of the thesis

Contrary to the approach followed in the homogenization software packages, our approach is
more general: we rely on a systematic application of asymptotic methods, and we aim to
implement them in a software package, called MEMSALab2, that constructs approximated
models. The architecture of MEMSALab is shown in Figure 2. It is designed to complement

2For MEMS Arrays
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a FEM software package that has an internal formal representation of PDEs as COMSOL or
FreeFEM++. It envisionned functioning consists in three steps completed with an optimization
tool. The �rst step, by the FEM software/ MEMSALab interface, is a transfer, from a FEM
software package, of a PDE (or a system of PDEs) and its translation in the grammar of the
symbolic computation language used in the kernel of MEMSALab. In the second step, the
multi-scale model (MSM) is symbolically derived and the result is saved. In the third step,
by the MEMSALab / FEM Software interface, the MSM is translated back to the format
of the FEM software package and its simulation is launched. The parameter updating and
optimization tool is interfaced with the FEM software package.

This thesis, contributes only to some of these aspects, namely, the kernel of MEMSALab i.e.
the MSM constructor depicted in the right-bottom of Figure 2 as described in Section 2.1, and
the optimization tools for the application of MSM, introduced in Section 2.2. The latter has
been done for an application to a class of systems governed by thermoelectroelasticity equations
ie for scanning probes used in thermal microscopy. Moreover, an asymptotic model has been
built that has indeed a wider range of applications as explained in Section 2.2. Its derivation
follows the rules for being implemented in MEMSALab.

Figure 2: MEMSLab software architecture.

2.1 MEMSALab software design

Underlying principles of MEMSALab. Our design methodology consists of three aspects.

1. The �rst one is to establish a general mathematical theoretical framework for the multi-
scale model derivations. In this uni�ed framework, the derivations � in a setting of
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di�erent physical features and geometries � could be di�erent in details, but the skeleton
of the derivations remains "the same". The mathematical proofs underling the model
derivations are written in an algebraic way, few abstract reasoning is used. The algebraic
nature of the proofs is crucial, since it allows implementation of the proofs as symbolic
transformations.

2. The second aspect is the design and the implementation of a symbolic transformation
tool to implement the multi-scale model derivations. The designer formulates the math-
ematical properties as well the elementary derivations (i.e. the skeleton proofs) with this
tool.

3. Since only the elementary derivations of the general framework are implemented in MEM-
SALab, the third aspect of our design methodology consists in developing an extension
mechanism allowing the combination of the already implemented derivations. This is
a systematic way to build complex models by reusing and combining already existing
proofs.

Main steps of model derivation. The mathematical framework is this developed in [47]
based on the two-scale transform also called the periodic unfolding operator. We think that it
has the potential to be adapted to a large number of con�gurations without major change in
the �ow of the proofs, but we are aware that a lot of speci�c steps have to be changed/added.
Basically, the model derivation by this approach has the three following steps commonly shared
by most of the asymptotic methods:

1. Asymptotic expansions of the solutions, in a two-scale sense in our work, are assumed
with regards to norm estimates, which are admitted in the current state. Then, weak
limits of two-scale transforms of �rst-order derivatives are derived.

2. The model derivation starts from weak formulations where test functions are chosen
according to the asymptotic analysis to be carried out. An asymptotic two-scale is derived
by using Step 1.

3. Elimination of micro-scale �elds of the two scale model yields the reduced asymptotic
model.

Principle of model derivation by extension-combination. In order to carry on a
systematic approach for the derivation of multi-scale models that allows to cover a variety
of physical features and geometries, we develop a method called "by extension-combination".
Figure 3 illustrates the idea behind this method through an example. This method relies on
three key principles.

1. Firstly, we introduce a reference model, also called skeleton model, together with its deriva-
tion. This derivation is called the reference proof. The reference model is the periodic ho-
mogenization model of a scalar second-order elliptic equation posed in a one-dimensional
domain, with Dirichlet boundary conditions. Its derivation is based on the technique of
the two-scale transform introduced in [3], and reused in [17]. Here, we follow the model
derivation approach of [47] which relies on algebraic reasoning only. Although the ref-
erence model covers a very simple case, its proof is expressed in a su�ciently general
way. A number of basic algebraic properties are formulated as transformation rules, they
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Figure 3: An extension of the reference proof (top) to the 3-dimensional setting (left) and to the
thinness setting (right). The combination of these two extensions is depicted on the bottom.

are considered as the building blocks of the proofs. The full derivation of the model is
formulated as a sequence of applications of these rules. The proof of some properties is
also performed by a sequence of applications of mathematical rules when the others are
admitted e.g. the Green rule.

2. Then, an elementary extension (also called elementary generalization) is obtained by an
application of an elementary transformation to the reference proof. Such elementary
transformation covers a particular feature. More generally, many elementary transfor-
mations can be applied simultaneously to the reference proof, where each transformation
covers a distinct feature. We notice that, in practice, when a single feature is taken into
account, only a small change occurs in a relatively long proof. In other words, while con-
sidering an elementary extension, most of the existing rules could be reused by operating
a small change on them, and, on the other hand, only a small number of new rules has to
be manually introduced. From this empirical observation, it follows that the extension of
the existing proofs to cover a new feature can be generated almost automatically.

3. Finally, we make possible the combination of two initial extensions to produce a new
extension that takes into account the features covered by each initial extension. By
iterating this process, many elementary extensions can be combined together. The use
of the mechanism of the combination of several existing elementary extensions instead
of the development of new extension transformations has the advantage of reducing the
development e�ort by avoiding doing complex changes manually. Thus, the "by extension-
combination" method is a reasonable one since it facilitates the implementation of the
two-scale methods.

Rewriting-based principles used in the extension-combination method. We rely on
a theoretical tool from computer science, called term rewriting. The reason is that equational
reasoning can naturally be described by rewriting rules, see [4] for a classical reference. Roughly
speaking, an equation t = u can be turned into two rewriting rules t → u and u → t, where
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t and u are rewriting terms consisting of function symbols and rewriting variables. The rule
t→ u states that every occurrence of t has to be transformed into u. Rules can have conditions
and can be combined by specifying strategies that determine how to apply the rules, see e.g.
[56, 32, 31, 14, 33].

The mathematical objects, such as geometric domains, variables de�ned on these domains,
functions of many variables, operators (e.g. derivatives, integrals, two-scale transform, etc.),
are common in the �eld of partial di�erential equations. The precise description of these objects
is given by a grammar. In other words, mathematical expressions need a precise description
since they carry all the information required in the formulation of the multi-scale models and
their derivations.

Some of the rewriting rules require the computation of the set of mathematical variables
on which an expression depends. For instance, in order to establish the linearity rule L(λα) →
λL(α), where L is a linear operator and λ is a scalar, one needs to compute the variables on
which λ depends in order to decide whether it is a scalar. For this purpose, we develop a variable
dependency analyzer. Within this framework, a proof is a sequence of rewriting rules. In order
to carry on the extension of the proofs and their combination (i.e."extension-combination"
mechanism), we rely on the second-order rewriting rules which are applied to the (�rst-order)
rewriting rules in order to extend them.

Implementation of model derivations and of the composition of extensions. We
use the symbolic transformation language symbtrans, proposed in [6], to implement the proofs
and their extensions as rewriting strategies. This language supports the rewriting modulo
associativity and commutativity of the operations +,×,∪ and ∩. It is implemented with the
scienti�c computing language Maple. Since, the rewriting strategies in symbtrans are Maple

expressions, it is possible to apply the symbtrans strategies to themselves. This allowed us to
implement the extension of the proofs (each proof is given as a symbtrans strategy) by means of
symbtrans strategies. A proof is decomposed into blocks, each block is a series of applications
of rewriting rules and strategies. Each rewriting rule corresponds to a mathematical property
e.g. Green rule, linearity of certain operators, properties of the two-scale operators. The blocks
can be grounded into a strategy that is applied to an initial expression that corresponds to the
input PDE. Under some assumption3, the combination of two extensions, each of which is a
symbtrans strategy, is nothing but their sequential composition. This result can be found in
[59] and it is detailed in Chapter 1 of this thesis.

Although, the combination of extensions as a sequential composition was useful for some
situations, one could see its limitation. This motivates our next point.

A framework for the combination of extensions. It turns out that it is not easy
to study the combination of extensions if these extensions are formulated as strategies, as
presented in Chapter 1. To solve this problem, we re�ne the notion of extension. Firstly, a
rewriting rule is transformed into a more general rule such that they remain mathematically
equivalent. Secondly, the second rule is generalized by means of a parametrization that consists
in the replacement of some terms by rewriting variables. For example, consider the rule s:

s := ∂x(uv) → v∂xu+ u∂xv

3Namely, when there is not con�ict between the extensions, i.e. when they operate on di�erent parts of the
initial proof.
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that represents the derivative of a product of two functions in the 1-dimensional setting. We
want to build the rule s′′:

s′′ := ∂xi
(uv) → v∂xi

u+ u∂xi
v

which is the counterpart of the rule s in the n-dimensional setting. We proceed in two steps.
In a �rst step, we transform s to s′:

s′ := ∂x1(uv) → v∂x1u+ u∂x1v.

We notice that s and s′ are mathematically equivalent and, in some sense, s′ is more general
than s. In a second step, we replace the constant 1 by the variable i and we get s′′.

In Chapter 2 we establish a framework allowing the de�nition of the notion of generalization
and parametrization and their combination.

2.2 Multiscale model and optimization of a thermoelectromechanical
system

Since this work has been partially supported by the NANOHEAT project4, a modelling and
optimization activity has been developped for scaning thermal microscopy. We notice that

Motivations of the Scanning Thermal Microscopy. Modern technology of micro/nanoelectronic
components, sensors and MEMS/NEMS (Micro/Nano-Electro-Mechanical-Systems) requires
increasingly the control of materials at the sub-micrometer down to the nanometer scale. Ad-
ditionally, the heat transfer phenomena, including e.g. phonon heat conduction mechanism in
micro- and nanostructures, may di�er signi�cantly from that on the macroscale. Therefore,
micro- and nanometer resolution is required for most of the experiments.

Scanning Thermal Microscopy (SThM) is a versatile scanning probe technique allowing
for high resolution mapping of the thermal properties and temperature of various substrates.
SThM, as every AFM (Atomic Force Microscopy) related technique enables study at micro-
and nanoscale which allows designers to a better understanding of heat transport in micro- and
nanoelectronic devices.

The invention of the scanning tunneling microscope (STM) [10] and the atomic force mi-
croscope (AFM) [9] have allowed sub-micrometer and, at times, atomic scale spatially resolved
imaging of surfaces. The spatial resolution of these near-�eld techniques is only limited by the
active area of the sensor (which in the case of STM may only be a few atoms at the end of a
metal wire). As described by Dinwiddie and Pylkki in 1994, �rst scanning thermal microscopy
(SThM) probes employed resistance thermometry to measure thermal properties [34]. These
probes were fashioned and made from Wollaston process wire consisting of a thin platinum
core (ca. 5 µm in diameter) surrounded by a thick silver sheath (ca. 75 µm). Because of its
high endurance, Wollaston probe is attractive for microsystem diagnostics , however the active
area in the range of a few micrometers does not allow quantitative thermal investigations at the
nano-scale. Then, a new thermal probe has been designed in the framework of the NANOHEAT
project to achieve quantitative measurement in the range of few tenths nanometers.

The probe design This novel type of nanosensor is equipped with sharp, conductive tip,
an integrated de�ection sensor, and an actuation system. It is integrated with de�ection detec-
tion, which will signi�cantly improve the system versatility and will enable new applications.
As it is free of the bulk and complicated optical de�ection sensors, it can be used in small
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(a) Schematic view of NANOHEAT SThm
probe

(b) First design of the cantilever

Figure 4: NANOHEAT SThM probe

chambers. The described SThM nanoprobes are designed to operate in two modes: a) as a
passive thermosensing element or b) as an active heat �ux meter. In the latter case, a larger
current is passed through the resistive tip probe. The power that is required to maintain a con-
stant temperature gradient between the tip and the sample corresponds to the local thermal
conductivity of the sample. During active measurements temperature of the tip is increased
by 20− 30 K above room temperature. In order to perform quantitative measurements of heat
transport between the tip and the surface several crucial criteria have to be met:

-low thermal mass of the microtip allowing for AC thermal measurements (e.g. in the range
of 10 kHz)

-high mechanical sti�ness of the microtip. This ensures high endurance of the thermal
sensor, which is brought into contact while surface scanning.

-low sti�ness of the SThM cantilever, which is brought in contact with the investigated sur-
face. The low sti�ness of the SThM cantilever will enable surface measurements with relatively
low load forces. As a consequence the tip wear is reduced and the sample is not modi�ed.

-high thermal resistance of the SThM cantilever and tip's support. The high thermal re-
sistance of the cantilever will reduce the heat transfer from the thermal tip to the cantilever
supporting body. The e�ective thermal mass of the SThM sensor will be reduced, and its
in�uence on the thermal behavior of the investigated structure will be minimized.

Moreover, the heat transferred from the tip to the cantilever base causes parasitic de�ection
of the sensor. First results of modeling and simulations exhibit signi�cant parasitic, 200 nm
de�ection of the cantilever due to tip's heating by 11 degrees above the room temperature.

According to the applications, developed SThM nanoprobe will enable surface measurements
in contact scanning probe microscopy mode at load force ranging from 10 nN up to 1 microN.
The load force will be detected with the resolution of 10 pN in the bandwidth of 100 Hz. The
low load forces as well as sub-nanometer vertical spatial resolution in the range will be needed
in investigations of graphene and molecular samples, whereas the high force will be applied in
investigations of high-k insulators.

Modelling of a NANOHEAT probe. A thin plate model model of the thermoelec-
tromechanical SThM probe [43] has been derived. The device is composed of a thin cantilever
equipped with a sharp conductive tip, an integrated de�ection sensor, and an actuation system,
see Figure 4(b). It might be useful to reduce the simulation time and so to facilitate the probe
optimization. The derivation of the model is done following the steps of the reference proof.

4http://www.nanoheat-project.eu/
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To this end, the probe is considered to have a periodic and thin structure, and to the end of
the derivation, the model can be simpli�ed taking into account the fact that the coe�cients
are constant instead of periodic which allows for elimination of the microscale variables in the
in-plane direction. Evidently, the proof is much more complex than the one for the thin elastic
plate model, and help has been found in existing papers, with di�erent techniques, namely
[18] for thin periodic elastic plates and [20], [21], [22] for thin periodic piezoelectric plates with
periodic distributed electric circuits. A byproduct of this approach is a model of periodic ho-
mogenization of multi-layered thermoelectromechanical systems that can be used, with little or
no changes, in other applications in the �eld of microsystem arrays as for bolometers or arrays
of cantilevers with thermal actuation e.g. the millipede from IBM. From the point of view of
its implementation in MEMSALab, the model includes several special features compared to the
reference model and we expect to formulate it using the extension-combination method.

Coupling SIMBAD and COMSOL and applications. The software SIMBAD provides
a generic simulation-based design tool for investigating the behaviour of complex modeled
systems. A MATLAB link has been set between COMSOL, which is then considered as FEM software
in our approach, and SIMBAD so that COMSOL models may be used as an input for a design under
SIMBAD. It includes the de�nition of the optimization problem: the initial value of parameters,
the parameter relative ranges, the objective features and the constraints for geometry and
objective features. It serves to transmit current parameters between the two software packages.
For the application to the NANOHEAT probe, three objective optimization results are reported,
namely to decrease the thermo-mechanical tip de�ection, to increase the Joule heating e�ect
in the tip and to increase the sensitivity of the piezoresistive sensor. Three SIMBAD toolboxes
have been used. The design sensitivity and e�ects analysis toolbox is used to quantify the
impact of design variable modi�cations on the design objective of interest. It allows the design
space to be reduced to the subset of in�uential variables. The multi-objective performance
optimization toolbox is used to obtain an approximation of the Pareto front for the di�erent
design objectives. It provides the analyst with a useful indicator on the trade-o�s between
the objectives of interest. Finally, the model validation and uncertainty quanti�cation is used
to quantify the impact of both aleatory and epistemic (lack of knowledge) uncertainties in
the design variables and system environment on the design objectives and constraints. A
very complete analysis has been carried out to explain the interactions between concurrent
phenomena and to conclude to design guidelines.

3 Organization of the thesis

The thesis is organized as follows:

• In Chapter 1 we introduce a framework for computer-aided derivation of multi-scale mod-
els. It relies on a combination of an asymptotic method used in the �eld of partial di�er-
ential equations with term rewriting techniques. In this framework, a multi-scale model
derivation is characterized by the features taken into account in the asymptotic analysis.
Its formulation consists in a derivation of a reference model associated to an elementary
reference model, and in a set of transformations to apply to this proof until it takes into
account the wanted features. We apply the method to generate a family of homogenized
models for second order elliptic equations with periodic coe�cients that could be posed
in multi-dimensional domains, with possibly multi-domains and/or thin domains.
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• In Chapter 2 we address the problem of the combination of the extensions of the proofs
related to the multi-scale model derivations. For this purpose, we develop further exten-
sion mechanisms that re�ne the ones introduced in Chapter 1. We elaborate necessary
conditions under which these mechanisms can be correctly combined giving rise to rich
extensions. We apply these extension mechanisms to many examples, namely to the
derivation of the linear operator associated to the microscopic problem in the reference
proof. Thus the results of this Chapter signi�cantly improve the results of Chapter 1
since it is not possible, at least in a straightforward way, to provide necessary conditions
so that the extension mechanisms established in Chapter 1 can be combined.

• The model of thin multilayer periodic thermoelectromechanical system is derived in Chap-
ter 3. It follows strictly the reference proof excepted a change that has been introduced
for the sake of simpli�cation: in some step we prefer to use the two-scale convergence
of Nguetseng and Allaire instead of this based on the two-scale transform. All necessary
properties and proof are updated.

• The last chapter focuses on the optimization results obtained by coupling SIMBAD to
COMSOL through MATLAB. The complete analysis is detailed including the sensitivity anal-
ysis, the reduction of the number of active optimization variables and the multi-criteria
optimization. General conclusions are drawn in view of helping future SThM probe de-
signers.
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Chapter 1

A Rewriting Framework For

Computer-Aided Derivation Of

Multi-Scale Models

Abstract. In this Chapter we introduce the �rst part of a framework for computer-aided deriva-
tion of multi-scale models. It relies on a combination of an asymptotic method used in the �eld
of partial di�erential equations with term rewriting techniques coming from computer science.
In our approach, a multi-scale model derivation is characterized by the features taken into ac-
count in the asymptotic analysis. Its formulation consists in a derivation of a reference model
associated to an elementary nominal model, and in a set of transformations to apply to this
proof until it takes into account the wanted features. In addition to the reference model proof,
the framework includes �rst order rewriting principles designed for asymptotic model deriva-
tions, second order rewriting principles dedicated to elementary extensions of model derivations
and their combinations. The latter point is only brie�y sketched and will be detailed in another
work. We report implementation results regarding three simple extensions of the reference proof.
The results of this Chapter were the subject of the publication [59].

1.1 Introduction

In this Chapter we introduce a method called "by extension-combination". It consists of three
principles.

1. A reference model is introduced together with its derivation. It covers a very simple case
but its proof is expressed in a su�ciently general form.

2. Then, elementary extensions (also called generalizations) are built by elementary trans-
formations of the reference derivation, each of them covering a di�erent feature.

3. Finally, elementary transformations are combined resulting in a complex transformation.

The latter is in turn applied to the reference proof to generate a complex model including
all features of the elementary extensions.

The present Chapter focuses on the two �rst steps when the last one, i.e. combination of
transformations, will be detailed in Chapter 2.
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We select as the reference problem that of the periodic homogenization of a scalar second
order elliptic equation posed in a one-dimension domain and with Dirichlet boundary conditions.
Its derivation is based on the use of the two-scale transform operator introduced in [3], and
reused in [17]. We quote that homogenization of various problems using this transformation
was performed according to di�erent techniques in [45, 48, 47, 23, 27, 29]. Here, we follow
[47], so a number of basic properties coming from this paper are stated and considered as the
building blocks of the proofs. The complete derivation of the model is organized into seven
lemmas, it is performed by a sequence of applications of these properties. Their extension
to another problem requires generalization of some of the properties, which is assumed to be
made independently. It may also require changes in the path of the proof, and even adding
new lemmas. Regarding the level of detail in the representation of mathematical objects, on
the one hand it has enough precision to cover a fairly wide range of models and on the other
hand the calculations are reasonably sized. Moreover, the way the generalizations are made is
important so that they could be formulated in a single framework.

The computational framework used to express the method is based on the theory of rewrit-
ing. The required mathematical concepts are common in the �eld of partial di�erential equa-
tions: geometric domains, variables de�ned on these domains, functions of several variables,
operators (e.g. derivatives, integrals, two-scale transform, etc.). The proofs of Lemmas are de-
signed to be realizable by rewriting. Precisely, each property is expressed as a rewrite rule that
can be conditional, so that it can be applied or not according to a given logical formula. A step
in a lemma proof is realized by a strategy that expresses how the rule applies. The complete
proof of a lemma is then a sequence of such strategies. Ones we use have been developed in a
previous work [6] that is implemented in Maple. Here we provide its formalization. To allow the
successful application of rewriting strategies to an expression that contains associative and/or
commutative operations, such as +, ∗,∪,∩, etc, we use the concept of rewriting modulo an
equational theory [4, �11]. Without such concept one needs to duplicate the rewriting rules.

Rewriting operates on expressions whose level of abstraction accurately re�ects the mathe-
matical framework. Concrete description of geometric domains, functions or operators are not
provided. Their description follows a grammar that has been de�ned in order that they carry
enough information allowing for the design of the rewriting rules and the strategies. In some
conditions of rewriting rules, the set of variables on which an expression depends is required.
This is for example the case for the linearity property of the integral. Rather than introducing
a typing system, which would be cumbersome and restrictive, we introduced a speci�c function-
ality in the form of a λ-term (i.e. a program). The language of strategy allows this use. Put
together all these concepts can express a lemma proof as a strategy, i.e. a �rst order strategy,
and therefore provide a framework of symbolic computation. The concept of generalization of a
proof is introduced as second order rewrite strategies, made with second order rewriting rules,
operating on �rst order strategies. They can transform �rst order rewrite rules and strategies
and, where appropriate, remove or add new ones. This framework has been implemented in
the software Maple. We present its application to the complete proof of the reference prob-
lem and also to the generalizations of the �rst lemma, by applying second order strategies, to
multi-dimensional geometrical domains, multi-dimensional thin domains and multi-domains.

1.1.1 Organization of the Chapter

This Chapter is organized as follows. The complete method, of extension-combination, is
sketched through an example in Section 1.2. Section 1.3 is devoted to all mathematical as-
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pects. This includes all de�nitions and properties, the lemmas and their proof. The principles
of rewrite rules and strategies are formulated in Section 1.4. Section 1.5 is devoted to the
theoretical framework that allows to derive a model and its generalizations. Implementation
results are described in Section 1.7.

1.2 Illustration of the method of extension-composition

The extension-combination method is illustrated on a model of the mechanical behavior of an
array of thin elastic periodic cantilevers supported by an elastic base. It has been established
in [47] and later studied in [41], [46] and [42]. The derivation in [47] only partially �ts with
the reference derivation of this Chapter. The di�erence is that it is done in two steps, �rst
a thin elastic plate model is obtained, using a di�erent technique, by only assuming small
thickness of the whole structure. Second, the periodicity assumption is combined with a special
ratio between the thicknesses of the base and the cantilevers. Through a technique of periodic
homogenization for strongly heterogeneous media �tting well with the scheme of the reference
proof, this yields the �nal model.

The same model can be obtained by a one-step proof transforming the three-dimensional
nominal model into an homogenized two-dimensional model. Such derivation combines the
same features as the two-step proof but is consistent with the reference proof. It requires
three orders of magnitude listed in decreasing order: for the period, the base thickness and the
cantilever thickness. This forms part of an ongoing work.

The goal of the extension-combination method, as mentioned in page 5, is to build such one-
step derivation as a transformation of the reference derivation by a combination of elementary
transformations. Figure 3 represents the derivations and the transformations to be applied to
derivations as big and little parchments respectively. The reference proof is denoted by Ref. The
transformation Π1 yields a derivation of a three-dimensional homogenized model of a periodic
single-layered elastic media. The periodic cell is pierced by a large hole. The transformation
Π2 is for the derivation of a periodic thin elastic plate model i.e. a model where the thickness is
another small parameter. Then, there are many possible combinations, all denoted by Π1 +Π2

for the sake of simplicity, of the two transformations so that the �nal model inherits their
features. The bottom left and right sketches represent two �nal homogenized models. The �rst
is for a thick periodic layer made with a pierced periodic cell whose hole is partly occupied by
a clamped thin moving plate. The second is similar except that the whole structure is thin
instead of beeing thick; it corresponds precisely to the model established in [47]. The framework
developed in the rest of this Chapter is for expressing model derivations, as those represented
by big parchments, and transformations of model derivations as Π1 and Π2. Formulating
combinations of transformations of model derivations, such as Π1 + Π2, is another big part of
the solution will be presented in Chapter 2.

1.3 Skeleton of two-scale modeling

We recall the framework of the two-scale convergence as presented in [47], and the proof of the
reference model whose implementation and extension under the form of algorithms of symbolic
computation are discussed in Section 1.7. The presentation is divided into three subsections.
The �rst one is devoted to basic de�nitions and properties, stated as Propositions. The latter
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are admitted without proof because they are assumed to be prerequisites, or building blocks, in
the proofs. They are used as elementary steps in the two other sections detailing the proof of the
convergence of the two-scale transform of a derivative, and the homogenized model derivation.
The main statements of these two subsections are also stated as Propositions and their proofs
are split into numbered blocks called lemmas. Each lemma is decomposed into steps refering to
the de�nitions and propositions. All components of the reference model derivation, namely the
de�nitions, the propositions, the lemmas and the proof steps are designed so that to be easily
implemented and also to be generalized for more complex models. We quote that a number of
elementary properties are used in the proof but are not explicitely stated nor cited.

1.3.1 Notations, De�nitions and Propositions

Note that the functional framework used in this section is not as precise as it should be for
a usual mathematical work. The reason is that the functional analysis is not covered by our
symbolic computation. So, precise mathematical statements and justi�cations are not in the
focus of this work.

In the sequel, A ⊂ Rn is a bounded open set, with measure |A|, having a "su�ciently" regular
boundary ∂A and with unit outward normal denoted by n∂A. We shall use the set L1(A) of
integrable functions and the set Lp(A), for any p > 0, of functions f such that f p ∈ L1(A), with
norm ||v||Lp(A) = (

∫
A
|v|p dx)1/p. The Sobolev space H1(A) is the set of functions f ∈ L2(A)

whose gradient ∇f ∈ L2(A)n. The set of p times di�erentiable functions on A is denoted by
Cp(A), where p can be any integer or∞. Its subset Cp

0(A) is composed of functions whose partial
derivatives are vanishing on the boundary ∂A of A until the order p. For any integers p and q,
Cq(A) ⊂ Lp(A). When A = (0, a1)×...×(0, an) is a cuboid (or rectangular parallelepiped) we say
that a function v de�ned in Rn is A-periodic if for any ℓ ∈ Zn, v(y+

∑n
i=1 ℓiaiei) = v(y) where

ei is the ith vector of the canonical basis of Rn. The set of A-periodic functions which are C∞ is
denoted by C∞

♯ (A) and those which are in H1(A) is denoted by H1
♯ (A). The operator tr (we say

trace) can be de�ned as the restriction operator from functions de�ned on the closure of A to
functions de�ned on its boundary ∂A. Finally, we say that a sequence (uε)ε>0 ∈ L2(A) converges
strongly in L2(A) towards u0 ∈ L2(A) when ε tends to zero if limε→0 ||uε − u0||L2(A) = 0. The
convergence is said to be weak if limε→0

∫
A
(uε − u0)v dx = 0 for all v ∈ L2(A). We write

uε = u0 + Os(ε) (respectively Ow(ε)), where Os(ε) (respectively Ow(ε)) represents a sequence
tending to zero strongly (respectively weakly) in L2(A). Moreover, the simple notation O(ε)
refers to a sequence of numbers which simply tends to zero. We do not detail the related usual
computation rules.

Proposition 1 [Interpretation of a weak equality] For u ∈ L2(A) and for any v ∈ C∞
0 (A),

if

∫
A

u(x) v(x) dx = 0 then u = 0

in the sense of L2(A) functions.

Proposition 2 [Interpretation of a periodic boundary condition] For u ∈ H1(A) and
for any v ∈ C∞

♯ (A),

if

∫
∂A

u(x) v(x) n∂A(x) dx = 0 then u ∈ H1
♯ (A) .

16



1.3. Skeleton of two-scale modeling

Proposition 3 [Weak convergence of product] For sequence un → u strongly, vn → v
weakly, then the product unvn → uv weakly.

This proposition is followed in mathematical proof but not in the programme. The reference
proof proposed in this chapter is a simulation of the programme, so this proposition is not refered
explictly.
In the remainder of this section, only the dimension n = 1 is considered, the general de�nitions
being used for the generalizations discussed in Section 1.7.

Notation 4 [Physical and microscopic Domains] We consider an interval Ω =
N(ε)∪
c=1

Ω1,ε
c ⊂

R divided into N(ε) periodic cells (or intervals) Ω1,ε
c , of size ε > 0, indexed by c, and with center

xc. The translation and magni�cation (Ω1,ε
c − xc)/ε is called the unit cell and is denoted by Ω1.

The variables in Ω and in Ω1 are denoted by xε and x1.

The two-scale transform T is an operator mapping functions de�ned in the physical domain Ω
to functions de�ned in the two-scale domain Ω♯ ×Ω1 where for the reference model Ω♯ = Ω. In
the following, we shall denote by Γ, Γ♯ and Γ1 the boundaries of Ω, Ω♯ and Ω1.

An example of the con�guration of physical domain, macroscopic domain and microscopic
domain is given in the following.

(a) 1D (b) 2D

Figure 1.1: Physical domian, macroscopic domain and microscopic domain

De�nition 5 [Two-Scale Transform] The two-scale transform T is the linear operator de-
�ned by

(Tu)(xc, x
1) = u(xc + εx1) (1.1)

and then by extension T (u)(x♯, x1) = u(xc + εx1) for all x♯ ∈ Ω1,ε
c and each c in 1, .., N(ε).

Notation 6 [Measure of Domains] κ0 = 1
|Ω| and κ

1 = 1
|Ω♯×Ω1| .

The operator T enjoys the following properties.

Proposition 7 [Product Rule] For two functions u, v de�ned in Ω,

T (uv) = (Tu)(Tv). (1.2)

17



Chapter 1. A Rewriting framework for asymptotic modeling

Proposition 8 [Derivative Rule] If u and its derivative are de�ned in Ω then

T

(
du

dx

)
=

1

ε

∂(Tu)

∂x1
. (1.3)

Proposition 9 [Integral Rule] If a function u ∈ L1(Ω) then Tu ∈ L1(Ω♯ × Ω1) and

κ0
∫
Ω

u dx = κ1
∫
Ω♯×Ω1

(Tu) dx♯dx1. (1.4)

The next two properties are corollaries of the previous ones.

Proposition 10 [Inner Product Rule] For two functions u, v ∈ L2(Ω),

κ0
∫
Ω

u v dx = κ1
∫
Ω♯×Ω1

(Tu) (Tv) dx♯dx1. (1.5)

Proposition 11 [Norm Rule] For a function u ∈ L2(Ω),

κ0 ∥u∥2L2(Ω) = κ1 ∥Tu∥2L2(Ω♯×Ω1) . (1.6)

De�nition 12 [Two-Scale Convergence] A sequence uε ∈ L2(Ω) is said to be two-scale
strongly (respect. weakly) convergent in L2(Ω♯ × Ω1) to a limit u0(x♯, x1) if Tuε is strongly
(respect. weakly) convergent towards u0 in L2(Ω♯ × Ω1).

De�nition 13 [Adjoint or Dual of T] As T is a linear operator from L2(Ω) to L2(Ω♯×Ω1),
its adjoint T ∗ is a linear operator from L2(Ω♯ × Ω1) to L2(Ω) de�ned by

κ0
∫
Ω

T ∗v u dx = κ1
∫
Ω♯×Ω1

v Tu dx♯dx1. (1.7)

The expression of T ∗ can be explicited, it maps regular functions in Ω♯×Ω1 to piecewise-constant
functions in Ω. The next de�nition introduces an operator used as a smooth approximation of
T ∗.

De�nition 14 [Regularization of T∗] The operator B is the linear continuous operator
de�ned from L2(Ω♯ × Ω1) to L2(Ω) by

Bv = v(x,
x

ε
). (1.8)

The nullity condition of a function v(x♯, x1) on the boundary ∂Ω♯ × Ω1 is transferred to the
range Bv as follows.

Proposition 15 [Boundary Conditions of Bv] If v ∈ C∞
0 (Ω♯; C∞(Ω1)) then Bv ∈ C∞

0 (Ω).

Proposition 16 [Derivation Rule for B] If v and its partial derivatives are de�ned on
Ω♯ × Ω1 and they are smooth enough, then

d(Bv)

dx
= B(

∂v

∂x♯
) + ε−1B(

∂v

∂x1
). (1.9)
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1.3. Skeleton of two-scale modeling

The next proposition states that the operator B is actually an approximation of the operator
T ∗ for Ω1-periodic functions. This property is only used for the test functions so that v could
be regular enough.

Proposition 17 [Approximation between T∗ and B] If v(x♯, x1) is continuous, continu-
ously di�erentiable in x♯ and Ω1-periodic in x1 then

T ∗v = Bv − εB(x1
∂v

∂x♯
) + εOs(ε). (1.10)

Conversely,

Bv = T ∗(v) + εT ∗(x1
∂v

∂x♯
) + εOs(ε). (1.11)

The proof of this proposition is detailed in Appendix 3 of reference [47].

Remark 18 Operators T , T ∗ and B depend on the small parameter ε, but we do not write it
explictly just for simpli�cation of notations.

Next, the formula of integration by parts is stated in a form compatible with the Green formula
used in some extensions. The boundary Γ is composed of the two end points of the interval
Ω, and the unit outward normal nΓ de�ned on Γ is equal to −1 and +1 at the left- and
right-endpoints respectively.

Proposition 19 [Green Rule] If u, v ∈ H1(Ω) then the traces of u and v on Γ are well
de�ned and ∫

Ω

u
dv

dx
dx =

∫
Γ

tr(u) tr(v) nΓ ds(x)−
∫
Ω

v
du

dx
dx. (1.12)

The last proposition is stated as a building block of the homogenized model derivation.

Proposition 20 [The linear operator associated to the Microscopic problem] For µ ∈
R, there exist θµ ∈ H1

♯ (Ω
1) solutions to the linear weak formulation∫

Ω1

a0
∂θµ

∂x1
∂w

∂x1
dx1 = −µ

∫
Ω1

a0
∂w

∂x1
dx1 for all w ∈ C∞

♯ (Ω1), (1.13)

and ∂θµ

∂x1 is unique. Since the mapping µ 7→ ∂θµ

∂x1
from R to L2(Ω1) is linear then

∂θµ

∂x1
= µ

∂θ1

∂x1
. (1.14)

Moreover, this relation can be extended to any µ ∈ L2(Ω♯).
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Chapter 1. A Rewriting framework for asymptotic modeling

1.3.2 Two-Scale Approximation of a Derivative

Here we detail the reference computation of the weak two-scale limit η = limε→0 T (
duε

dx
) in

L2(Ω♯ × Ω1) when

∥uε∥L2(Ω) and

∥∥∥∥duεdx

∥∥∥∥
L2(Ω)

≤ C, (1.15)

C being a constant independent of ε. To simplify the proof, we further assume that there exist
u0, u1 ∈ L2(Ω♯ × Ω1) such that

T (uε) = u0 + εu1 + εOw(ε),

i.e. ∫
Ω♯×Ω1

(T (uε)− u0 − εu1)v dx♯dx1 = εO(ε) for all v ∈ L2(Ω♯ × Ω1). (1.16)

We quote that Assumption (1.16) is not necessary, it is introduced to simplify the proof since
it avoids some non-equational steps. The statement proved in the remaining of the subsection
is the following.

Proposition 21 [Two-scale Limit of a Derivative] If uε is a sequence bounded as in (1.15)
and satisfying (1.16), then u0 is independent of x1,

ũ1 = u1 − x1∂x♯u0 (1.17)

de�ned in Ω♯ × Ω1 is Ω1-periodic and

η =
∂u0

∂x♯
+
∂ũ1

∂x1
. (1.18)

Moreover, if uε = 0 on Γ then u0 = 0 on Γ♯.

The proof is split into four Lemmas corresponding to the �rst four blocks discussed in Section
1.7, the other three being detailed in subsection 1.3.3.

Lemma 22 [First Block: Constraint on u0] u0 is independent of x1.

Proof. We introduce

Ψ = εκ0
∫
Ω

duε

dx
Bv dx

with v ∈ C∞
0 (Ω♯; C∞

0 (Ω1)). From the Cauchy-Schwartz inequality and (1.15), limε→0 Ψ = 0.

• Step 1. The Green formula (1.12) and Proposition 15 =⇒

Ψ = −εκ0
∫
Ω

uε
d(Bv)

dx
dx.

• Step 2. Proposition 16 =⇒

Ψ = κ0
∫
Ω

uεB(
∂v

∂x1
) dx+O(ε).
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1.3. Skeleton of two-scale modeling

• Step 3. Proposition 17 =⇒

Ψ = κ0
∫
Ω

uεT ∗(
∂v

∂x1
) dx+O(ε).

• Step 4. De�nition 13 =⇒

Ψ = κ1
∫
Ω♯×Ω1

T (uε)
∂v

∂x1
dx+O(ε).

• Step 5. Assumption (1.16) and passing to the limit when ε→ 0 =⇒

κ1
∫
Ω♯×Ω1

u0
∂v

∂x1
dx = 0.

• Step 6. The Green formula (1.12) and v = 0 on Ω♯ × Γ1 =⇒

κ1
∫
Ω♯×Ω1

∂u0

∂x1
v dx = 0.

• Step 7. Proposition 1 =⇒
∂u0

∂x1
= 0.

Lemma 23 [Second Block: Two-Scale Limit of the Derivative] η = ∂u1

∂x1 .

Proof. We choose v ∈ C∞
0 (Ω♯; C∞

0 (Ω1)) in

Ψ = κ1
∫
Ω♯×Ω1

T (
duε

dx
)v dx♯dx1. (1.19)

• Step 1. De�nition 13 =⇒
Ψ = κ0

∫
Ω

duε

dx
T ∗v dx.

• Step 2. Proposition 17 (to approximate T ∗ by B), the Green formula (1.12), the linearity
of integrals, and again Proposition 17 (to approximate B by T ∗) =⇒

Ψ = −κ0
∫
Ω

uεT ∗(
∂v

∂x♯
) dx− κ0

ε

∫
Ω

uεT ∗(
∂v

∂x1
) dx− κ0

∫
Ω

uεT ∗(
∂2v

∂x1∂x♯
x1) dx+O(ε).

• Step 3. De�nition 13 =⇒

Ψ = −κ1
∫
Ω♯×Ω1

T (uε)
∂v

∂x♯
dx♯dx1 − κ1

ε

∫
Ω♯×Ω1

T (uε)
∂v

∂x1
dx♯dx1

−κ1
∫
Ω♯×Ω1

T (uε)x1
∂2v

∂x1∂x♯
dx♯dx1 +O(ε).
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• Step 4. Assumption (1.16) =⇒

Ψ = −κ1
∫
Ω♯×Ω1

u0
∂v

∂x♯
dx♯dx1 − κ1

ε

∫
Ω♯×Ω1

u0
∂v

∂x1
dx♯dx1 − κ1

∫
Ω♯×Ω1

u1
∂v

∂x1
dx♯dx1

−κ1
∫
Ω♯×Ω1

u0
∂2v

∂x1∂x♯
x1 +O(ε).

• Step 5. The Green formula (1.12), Lemma 22, and passing to the limit when ε→ 0 =⇒

κ1
∫
Ω♯×Ω1

η v dx♯dx1 = κ1
∫
Ω♯×Ω1

∂u0

∂x♯
v dx♯dx1 + κ1

∫
Ω♯×Ω1

∂u1

∂x1
v dx♯dx1.

• Step 6. Proposition 1 =⇒

η =
∂u0

∂x♯
+
∂u1

∂x1
.

Lemma 24 [Third Block: Microscopic Boundary Condition] ũ1 is Ω1-periodic.

Proof. In (1.19), we choose v ∈ C∞
0 (Ω♯; C∞

♯ (Ω1)).

• Step 1. The steps 1-5 of the second block =⇒

κ1
∫
Ω♯×Ω1

ηv dx♯dx1−κ1
∫
Ω♯×Γ1

(u1−x1∂u
0

∂x♯
)v nΓ1 dx♯dx1−κ1

∫
Ω♯×Ω1

(
∂u0

∂x♯
+
∂u1

∂x1
)v dx♯dx1 = 0.

• Step 2. Lemma 23 =⇒∫
Ω♯×Γ1

(u1 − x1
∂u0

∂x♯
)v nΓ1 dx♯ds(x1) = 0. (1.20)

• Step 3. De�nition (1.17) of ũ1 and Proposition 2 =⇒

ũ1 is Ω1-periodic. (1.21)

Lemma 25 [Fourth Block: Macroscopic Boundary Condition] u0 vanishes on Γ♯.

Proof. We choose v ∈ C∞
0 (Ω♯),

• Step 1. The steps 1-5 of the second block and uε = 0 on Γ =⇒∫
Γ♯×Ω1

u0v nΓ♯ ds(x♯)dx1 = 0.

• Step 2. Proposition 1 =⇒
u0 = 0 on Γ♯.
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1.3.3 Homogenized Model Derivation

Here we provide the reference proof of the homogenized model derivation. It uses Proposition
21 as an intermediary result. Let uε, the solution of a linear boundary value problem posed in
Ω, {

− d

dx
(aε(x)

duε(x)

dx
) = f in Ω

uε = 0 on Γ,
(1.22)

where the right-hand side f ∈ L2(Ω), the coe�cient aε ∈ C∞(Ω) is εΩ1-periodic, and there exist
two positive constants α and β independent ε such that

0 < α ≤ aε(x) ≤ β. (1.23)

The weak formulation is obtained by multiplication of the di�erential equation by a test function
v ∈ C∞

0 (Ω) and application of the Green formula,

κ0
∫
Ω

aε(x)
duε

dx

dv

dx
dx = κ0

∫
Ω

f(x)v(x) dx. (1.24)

It is known that its unique solution uε is bounded as in (1.15). Moreover, we assume that for
some functions a0(x1) and f 0(x♯),

T (aε) = a0 and T (f) = f 0(x♯) +Ow(ε). (1.25)

The next proposition states the homogenized model and is the main result of the reference proof.
For θ1 a solution to the microscopic problem (1.13) with µ = 1, the homogenized coe�cient
and right-hand side are de�ned by

aH =

∫
Ω1

a0
(
1 +

∂θ1

∂x1

)2

dx1 and fH =

∫
Ω1

f 0 dx1. (1.26)

Proposition 26 [Homogenized Model] The limit u0 is solution to the weak formulation∫
Ω♯

aH
du0

dx♯
dv0

dx♯
dx♯ =

∫
Ω♯

fHv0 dx♯ (1.27)

for all v0 ∈ C∞
0 (Ω♯).

The proof is split into three lemmas.

Lemma 27 [Fifth Block: Two-Scale Model] The couple (u0, ũ1) is solution to the two-scale
weak formulation∫

Ω♯×Ω1

a0
(
∂u0

∂x♯
+
∂ũ1

∂x1

)(
∂v0

∂x♯
+
∂v1

∂x1

)
dx♯dx1 =

∫
Ω♯×Ω1

f 0v0 dx♯dx1 (1.28)

for any v0 ∈ C∞
0 (Ω♯) and v1 ∈ C∞

0 (Ω♯, C∞
♯ (Ω1)).

Proof. We choose the test functions v0 ∈ C∞
0 (Ω♯), v1 ∈ C∞

0 (Ω♯, C∞
♯ (Ω1)).

• Step 1 Posing v = B(v0 + εv1) in (1.24) and Proposition 15 =⇒

Bv ∈ C∞
0 (Ω) and κ0

∫
Ω

aε
duε

dx

dB(v0 + εv1)

dx
dx = κ0

∫
Ω

f B(v0 + εv1) dx.
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• Step 2 Propositions 16 and 17 =⇒

κ0
∫
Ω

aε
duε

dx
T ∗
(
∂v0

∂x♯
+
∂v1

∂x1

)
dx = κ0

∫
Ω

f T ∗(v0)dx+O(ε).

• Step 3 De�nition 13 and Proposition 7 =⇒

κ1
∫
Ω♯×Ω1

T (aε)T (
duε

dx
)

(
∂v0

∂x♯
+
∂v1

∂x1

)
dx♯dx1 = κ1

∫
Ω♯×Ω1

T (f) v0 dx♯dx1+O(ε). (1.29)

• Step 4 De�nitions (1.25), Lemma 21, and passing to the limit when ε→ 0 =⇒∫
Ω♯×Ω1

a0
(
∂u0

∂x♯
+
∂ũ1

∂x1

)(
∂v0

∂x♯
+
∂v1

∂x1

)
dx♯dx1 =

∫
Ω♯×Ω1

f 0v0 dx♯dx1

which is the expected result.

Lemma 28 [Sixth Block: Microscopic Problem] ũ1 is solution to (1.13) with µ =
∂u0

∂x♯
and

∂ũ1

∂x1
=
∂u0

∂x♯
∂θ1

∂x1
.

Proof. We choose v0 = 0 and v1(x♯, x1) = w(x1)φ(x♯) in (1.28) with φ ∈ C∞(Ω♯) and
w1 ∈ C∞

♯ (Ω1).

• Step 1 Proposition 1, Lemma 22, and the linearity of the integral =⇒∫
Ω1

a0
∂ũ1

∂x1
∂w1

∂x1
dx1 = −∂u

0

∂x♯

∫
Ω1

a0
∂w1

∂x1
dx1. (1.30)

• Step 2 Proposition 20 with µ =
∂u0

∂x♯
=⇒

∂ũ1

∂x1
=
∂u0

∂x♯
∂θ1

∂x1

as announced.

Lemma 29 [Seventh Block: Macroscopic Problem] u0 is solution to (1.27).

Proof. We choose v0 ∈ C∞
0 (Ω♯) and v1 =

∂v0

∂x♯
∂θ1

∂x1
∈ C∞

0 (Ω♯, C∞
♯ (Ω1)) in (1.28).

• Step 1 Lemma 28 =⇒∫
Ω♯×Ω1

a0
(
∂u0

∂x♯
+
∂θ1

∂x1
∂u0

∂x♯

)(
∂v0

∂x♯
+
∂θ1

∂x1
∂v0

∂x♯

)
dx♯dx1 =

∫
Ω♯×Ω1

f 0v0 dx♯dx1. (1.31)

• Step 2 Factorizing and de�nitions (1.26) =⇒∫
Ω♯

aH
∂u0

∂x♯
∂v0

∂x♯
dx♯ =

∫
Ω♯

fHv0 dx♯.
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1.4 Rewriting strategies

In this section we recall the rudiments of rewriting, namely, the de�nitions of terms over a
signature, of substitution and of rewriting rules. We introduce a strategy language: its syntax
and semantics in terms of partial functions. This language will allow us to express most of the
useful rewriting strategies.

1.4.1 Term, substitution and rewriting rule.

We start with an example of rewriting rule. We de�ne a set of rewriting variables X = {x, y}
and a set of function symbols Σ = {f, g, a, b, c}. A term is a combination of elements of X ∪Σ,
for instance f(x) or f(a). The rewriting rule f(x)  g(x) applied to a term f(a) is a two-
step operation. First, it consists in matching the left term f(x) with the input term f(a) by
matching the two occurences of the function symbol f, and by matching the rewriting variable
x with the function symbol a. Then, the result g(a) of the rewriting operation is obtained by
replacing the rewriting variable x occuring in the right hand side g(x) by the subterm a that
have been associated to x. In case where a substitution is not possible, as in the application of
f(b) → g(x) to f(a), we say that the rewriting rule fails.

De�nition 30 Let Σ be a countable set of function symbols, each symbol f ∈ Σ is associated
with a non-negative integer n, its arity ar(f) i.e. the number of arguments of f . Let X be
a countable set of variables such that Σ ∩ X = ∅. The set of terms, denoted by T (Σ,X ), is
inductively de�ned by

• X ⊆ T (Σ,X ) (i.e. every rewriting variable is a term),

• for all f ∈ Σ of arity n, and all t1, . . . , tn ∈ T (Σ,X ), the expression f(t1, . . . , tn) ∈
T (Σ,X ) (i.e. the application of function symbols to terms gives rise to terms).

We denote by Σn the subset of Σ of the function symbols of arity n. For instance in the example
f and g belong to Σ1 while a and b belong to Σ0. Two other common examples of terms are the
expressions Integral(Ω, f(x), x) and di� (f(x), x) which represent the expressions

∫
Ω
f(x) dx

and
df(x)

dx
. Notice that Integral ∈ Σ3, di� ∈ Σ2, f ∈ Σ1 and x,Ω ∈ Σ0. For the sake of

simplicity we often keep the symbolic mathematical notation to express the rewriting rules. In
the following we see a term as an oriented, ranked and rooted tree as it is usual in symbolic
computation. We recall that in a ranked tree the child order is important. For instance the tree
associated to the term Integral(Ω, f(x), x) has Integral as its root which has three children in
the order Ω, f, x and f has one child x.

De�nition 31 A substitution is a function σ : X → T (Σ,X ) such that σ(x) ̸= x for x ∈
X . The set of variables that σ does not map to themselves is called the domain of σ, i.e.
Dom(σ) = {x ∈ X | σ(x) ̸= x}. If Dom(σ) = {x1, · · · , xn} then we might write σ as σ = {x1 7→
t1, . . . , xn 7→ tn} for some terms t1, .., tn. Any substitution σ can be extended to a mapping
T (Σ,X ) → T (Σ,X ) as follows: for x ∈ X , σ̂(x) = σ(x), and for any non-variable term
s = f(s1, · · · , sn), we de�ne σ̂(s) = f(σ̂(s1), · · · , σ̂(sn)). To simplify the notation we do not
distinguish between a substitution σ : X → T (Σ,X ) and its extension σ̂ : T (Σ,X ) → T (Σ,X ).

The application of a substitution σ to a term t, denoted by σ(t), simultaneously replaces all
occurrences of variables in t by their σ-images.
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Chapter 1. A Rewriting framework for asymptotic modeling

For instance, the maping σ de�ned by σ(x) = a is a substitution and its extension σ̂ maps f(x)
and g(x) into f(a) and g(a).

A rewriting rule, is a pair (l, r) where l and r are terms in T (Σ,X ); it will also be denoted by
l r. We observe that for any two terms s, t, there exists at most one substitution σ such that
σ(s) = t. We mention that a rewriting rule stands for the rule application at the top position.
It is more useful to be able to apply a rule at arbitrary position, and more generally to specify
the way rules are applied. For this purpose we next present a strategy language that allows
to built strategies out of basic constructors. To this end, we introduce strategy constructor
symbols ; , ,⊕, µ, etc that do not belong to Σ ∪ X . Informally, the constructor ”; ” stands
for the composition, ” ⊕ ” for the left choice, Some for the application of a strategy to the
immediate subterms of the input term, η(x) for the fail as identity constructor, Child(j, s)
applies the strategy s to the jth immediate subterm, X is a �xed-point variable, and µ is the
�xed-point or the iterator constructor, its purpose is to de�ne recursive strategies. For example,
the strategy µX.(s;X) stands for s; s; . . ., that is, it is the iteration of the application of s until
a �xed-point is reached. The precise semantics of these constructors is given in De�nition 33.

De�nition 32 (Strategy) Let F be a �nite set of �xed-point variables. A strategy is inductively
de�ned by the following grammar:

s ::= l r | s; s | s⊕ s | η(s) | Some(s) | Child(j, s) | X | µX.s (1.32)

where j ∈ N and X ∈ F . The set of strategies de�ned from a set of rewriting rules in T (Σ,X )×
T (Σ,X ) is denoted by ST .

We denote by F the failing result of a strategy and T ∗(Σ,X ) = T (Σ,X ) ∪ F.

De�nition 33 (Semantics of a strategy) The semantics of a strategy is a function [[.]] :
ST (Σ,X ) → (T ∗(Σ,X ) → T ∗(Σ,X )) de�ned by its application to each grammar component:

[[s]](F) = F

[[l r]](t) =

{
σ(r) if σ(l) = t

F otherwise

[[s1; s2]](t) = [[s2]]([[s1]](t))

[[s1 ⊕ s2]](t) =

{
[[s1]](t) if [[s1]](t) ̸= F
[[s2]](t) otherwise

[[η(s)]](t) =

{
t if [[s]](t) = F
[[s]](t) otherwise

[[Some(s)]](t) =


F if ar(t) = 0

f(η(s)(t1), . . . , η(s)(tn)) if t = f(t1, . . . , tn) and ∃i ∈ [1..n] s.t. [[s]](ti) ̸= F
F otherwise

[[Child(j, s)]](t) =

{
F if ar(t) = 0, or t = f(t1, . . . , tn) and j > n

f(t1, . . . , tj−1, [[s]](tj), tj+1, . . . , tn) if t = f(t1, . . . , tn) and j ≤ n.

The semantics of the �xed-point constructor is more subtle. One would write:

[[µX.s]] = [[s[X/µX.s]]] (1.33)
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but this equation cannot be directly used to de�ne [[µX.s]], since the right-hand side contains
as a subphrase the phrase whose denotation we are trying to de�ne. Notice that the equation
(1.33) amounts to saying that [[µX.s]] should be the least �xed-point of the operator F :

F (X) = λX(T ∗(Σ,X )→T ∗(Σ,X )) [[s]](T
∗(Σ,X )→T ∗(Σ,X )).

Let D = T ∗(Σ,X ) → T ∗(Σ,X ) and de�ne ⊑ a partial order on D as follows:

w ⊑ w′ i� graph(w) ⊆ graph(w′).

Let ⊥ be the function of empty graph, and let

F0 = ⊥
Fn = F (Fn−1).

One can show, using Knaster-Tarsky �xed-point theorem [55], that F∞ is the least �xed-point
of the operator F , that is

F (w) = w =⇒ F∞ ⊑ w.

Such �xed point equations arise very often in giving denotational semantics to languages with
recursive features, for instance the semantics of the loop �while" of the programming languages
[53, �9, �10].

Example 34 Out of the basic constructors of strategies given in De�nition 32, we built up
some useful strategies. The strategy OuterMost(s) applies the strategy s to an input term t
in a top down way starting from the root, it stops when it succeeds. That is, if the strategy s
succeeds on some subterm t′ of t, then it is not applied to the proper subterms of t′. The strategy
TopDown(s) behaves exactly like OuterMost(s) apart that if the strategy s succeeds on some
subterm t′ of t, then it is also applied to the proper subterms of t′. The strategy InnerMost(s)
(resp. BottomUp(s)) behaves like InnerMost(s) (resp. BottomUp(s)) but in the opposite
direction, i.e. it traverses a term t starting from the leafs. The strategy Normalizer(s) iterates
the application of s until a �xed-point is reached. The formal de�nition of these strategies
follows:

OuterMost(s) := µX.(s⊕ Some(OuterMost(X))),

T opDown(s) := µX.(s;Some(TopDown(X))),

InnerMost(s) := µX.(Some(InnerMost(X))⊕ s),

BottomUp(s) := µX.(Some(BottomUp(X)); s),

Normalizer(s) := µX.(s;X).

Example 35 Let the variable set X = {y, z, t, w} and the partition Σ = Σ0∪Σ1∪Σ2 of the set of
function symbols with respect to their arity with Σ0 = {x, x1, x2, ∂Ω,Ω, ε}, Σ1 = {u, v, n,O,B},
Σ2 = {derivative}, Σ3 = {Integral}. We present the strategy that rewrites the expression

Ψ =

∫
∂Ω

u(x) n(x) B(v(x1, x2)) dx−
∫
Ω

u(x)
d

dx
(B(v(x1, x2))) dx+O(ε),

taking into account that B(v) vanishes on the boundary ∂Ω. This term is written under math-
ematical form for simplicity, but in practice it is written from the above de�ned symbol of
functions. Remark that the expression B(v(x1, x2)) is a function of the variable x but this does
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Chapter 1. A Rewriting framework for asymptotic modeling

not appear explicitly in this formulation. Such a case cannot appear when the grammar for
terms introduced in the next section is used. We need the two rewriting rules

r1 :=

∫
∂Ω

w dt 
∫
∂Ω

w dt,

r2 := B(v(z, y)) 0,

and the strategy OuterMost already de�ned. Notice that the rule r1 has no e�ect but to detect
the presence of the integral over the boundary. Finally, the desired strategy, denoted by F , is:

F := OuterMost(r1;OuterMost(r2)),

and the result is

[[F ]](Ψ) =

∫
∂Ω

u(x) n(x) B(0) dx−
∫
Ω

u(x)
d

dx
(B(v(x1, x2))) dx+O(ε).

1.4.2 Rewriting modulo equational theories

So far the semantics of strategies does not take into account the properties of some function
symbols, e.g. associativity and commutativity equalities of "+". In particular the application
of the rule a + b  f(a, b) to the term (a + c) + b fails. More generally we next consider the
rewriting modulo an equational theory, i.e. a theory that is axiomatized by a set of equalities.
For the sake of illustration, we consider the commutativity and associativity theory of +,
E = {x + y = y + x, (x + y) + z = x + (y + z)} and the rewrite rule f(x + y)  f(x) + f(y)
applying the linearity rule of a function f . Its application to the term f((a+ b) + c) modulo E
yields the set of terms {f(a+ b) + f(c), f(a) + f(b+ c), f(b) + f(a+ c)}. In the following, we
de�ne part of the semantics of a strategy modulo a theory, we use the notation P(T (Σ,X )) to
denote the set of subsets of T (Σ,X ).

De�nition 36 (Semantics of a strategy modulo) Let be E be a �nitary equational the-
ory, the semantics of a strategy modulo E is a function [[.]]E : ST (Σ,X ) → (P(T ∗(Σ,X )) →
P(T ∗(Σ,X ))) that is de�ned by

[[s]]E({t1, . . . , tn}) = ∪n
i=1[[s]]

E(ti)

[[l r]]E(t1) = ∪j{σj(r)} if E =⇒ σj(l) = t,

[[s1; s2]]
E(t) = [[s2]]

E([[s1]]
E(t))

[[s1 ⊕ s2]]
E(t) =

{
[[s1]]

E(t) if [[s1]](t) ̸= {F}
[[s2]]

E(t) otherwise

[[η(s)]]E(t) =

{
{t} if [[s]]E(t) = {F}
[[s]]E(t) otherwise.

The semantics of Some and Child is more complex and we do not detail it here. The semantics
of the �xed-point operator is similar to the one given in the rewriting modulo an empty theory.
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1.4.3 Conditional rewriting

Rewriting with conditional rules, also known as conditional rewriting, extends the basic rewrit-
ing with the notion of condition. A conditional rewrite rule is a triplet:

(l, r, c)

where c is a constraint expressed in some logic. The semantics of the rule application is given
by

[[(l, r, c)]]E(t) =

{
∪j{σj(r)} if the formula σj(c) can be derived from E,

F otherwise.

The set of strategies de�ned over rewriting rules (l, r, c) ∈ T × T × Tc is denoted by ST ,Tc .

1.4.4 Rewriting with memory

Some de�nitions or computations require storing the history of the transformations of some
terms. To carry on, we introduce a particular function symbol M ∈ Σ2 of arity two to repre-
sent the memory. Intuitively the term M(t1, t2) represents the term t1, besides the additional
information that t2 was transformed to t1 at an early stage. From this consideration if fol-
lows that any strategy applied to M(t1, t2) should only be applied to t1. Formally, we de�ne
the semantics of strategy application taking into account the memory as a partial function:
[[.]]

M
: ST (Σ,X ) → (T ∗(Σ,X ) → T ∗(Σ,X )) so that:
[[s]]M(t) = M([[s]]M(t1), t2) if t = M(t1, t2), and behaves like [[.]], otherwise. That is,
[[s]]M(F) = F

[[l r]]M(t) =

{
σ(r) if σ(l) = t

F otherwise
[[s1; s2]]M(t) = [[s2]]M([[s1]]M(t))

[[s1 ⊕ s2]]M(t) =

{
[[s1]]M(t) if [[s1]]M(t) ̸= F
[[s2]]M(t) otherwise

etc.

1.5 A Symbolic Computation Framework for Model Deriva-

tion

In this section we propose a framework for the two-scale model proofs. As in Example 35, the
latter are formulated as rewriting strategies. We notice that the following framework di�ers
from that used in Example 35 in that it allows for the complete representation of the data. It
does not rely on external structures such as hash tables. To this end, we de�ne the syntax of
the mathematical expressions by means of a grammar G.

1.5.1 A Grammar for Mathematical Expressions

The grammar includes four rules to built terms for mathematical functions F, regions R, mathe-
matical variables V, and boundary conditions C. It involves ΣReg, ΣV ar, ΣFun, ΣOper, and ΣCons

which are sets of names of regions, variables, functions, operators, and constants so subsets of
Σ0. Empty expressions in ΣReg and ΣFun are denoted by ⊥R and ⊥F. The set of usual algebraic
operations ΣOp = {+,−,×, /, ˆ} is a subset of Σ2. The elements of ΣType = {Unknown, Test ,
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Known, ⊥Type} ⊂ Σ0, ⊥Type denoting the empty expression, are to specify the nature of a
function, namely an unknown function (as uε, u0, u1 in the proof), a test function (as v, v0,
v1) in a weak formulation or another known function (as aε, f ε, a0, f 0 or nΓ1). The boundary
conditions satis�ed by a function are speci�ed by the elements of ΣBC = {d, n, pd, apd, t} ⊂ Σ0

to express that it satis�es Dirichlet, Neuman, periodic, anti-periodic or transmission condi-
tions. The grammar also involve the symbols of functions Reg, Fun, IndexedFun, IndexedReg,
IndexedVar, Oper, Var, and BC that de�ne regions, mathematical functions, indexed func-
tions or regions or variables, operators, mathematical variables and boundary conditions. The
grammar reads as

F ::= ~ (F,F) | d | V |
Fun(f, [V, . . . ,V], [C, . . . ,C], K) |
IndexedFun(F,V) |
Oper(A, [F, . . . ,F], [V, . . . ,V], [V, . . . ,V], [d, . . . , d]) |
⊥F | M(F,F),

R ::= Reg(Ω, [d, . . . , d], {R, . . . ,R},R,F) |
IndexedReg(F,V) |
⊥R | M(R,R),

V ::= Var(x,R) | IndexedVar(V,V) | M(V,V),

C ::= BC(c,R,F) | M(C,C),

where the symbols Ω, d, ~, f, K, A, x and c hold for any function symbols in ΣReg, ΣCons,
ΣOp, ΣFun, ΣType, ΣOper, ΣV ar, and ΣBC . The arguments of a region term are its region name,
the list of its space directions (e.g. [1,3] for a plane in the variables (x1, x3)), the (possibly
empty) set of subregions, the boundary and the outward unit normal. Those of a function
term are its function name, the list of the mathematical variables that range over its domain,
its list of boundary conditions, and its nature. Those for an indexed region or variable or
function term are its function or variable term and its index (which should be discrete). For
an operator term these are its name, the list of its arguments, the list of mathematical variable
terms that it depends, the list of mathematical variable terms of its co-domain (useful e.g. for
T when the image cannot be deduced from the initial set), and a list of parameters. Finally,
the arguments of a boundary condition term are its type, the boundary where it applies and
an imposed function if there is one. For example, the imposed function is set to 0 for an
homogeneous Dirichlet condition and there is no imposed function in a periodicity condition.
We shall denote by TR(Σ, ∅), TF(Σ, ∅), TV(Σ, ∅), and TC(Σ, ∅) the set of terms generated by the
grammar starting from the non-terminal R, F, V, and C. The set of all terms generated by the
grammar (i.e. starting from R, F, V, or C) is denoted by TG(Σ, ∅). Finally, we also de�ne the
set of terms TG(Σ,X ) where each non-terminal R, F, V, and C can be replaced by a rewriting
variable in X . Equivalently, it can be generated by the extension of G obtained by adding " |
x" with x ∈ X in the de�nition of each non-terminal term. Or, by adding N ::= x, with x ∈ X
for each non-terminal N .

Example 37 Throughout this Chapter, an underlined symbol represents a shortcut whose name
corresponds to the term name. For instance,

Ω = Reg(Ω, [2], ∅,Γ, n), where Γ = Reg(Γ, [], ∅,⊥R,⊥F),

n = Fun(n, [x′], [], Known), x′ = Var(x,Ω′) and Ω′ = Reg(Ω, [2], ∅,Γ,⊥F)
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represents a region-term a one-dimensional domain named Ω, oriented in the direction x2,
with boundary Γ and with outward unit normal n. The shortcut Γ is also for a region term
representing the boundary named Γ.

Example 38 An unknown function u(x) de�ned on Ω satisfying homogeneous Dirichlet bound-
ary condition u(x) = 0 on Γ is represented by the function-term,

u(x) = Fun(u, [x], BC(d,Γ, 0), Unknown) where x = Var(x,Ω).

1.5.2 Short-cut Terms

For the sake of conciseness, we introduce shortcut terms that are constantly used in the end
of the Chapter: Ω ∈ TR(Σ,X ), x ∈ TV(Σ,X ) de�ned in Ω, I ∈ TR(Σ,X ) used for (discrete)
indices, i ∈ TV(Σ,X ) used as an index de�ned in I, u ∈ TF(Σ,X ) or u(x) ∈ TF(Σ,X ) to
express that it depends on the variable x and ui the indexed-term of the function u indexed by
i. Similar de�nitions can be given for the other notations used in the proof as Ω♯, x♯, Ω1, x1,
Ω′, x′, v(x♯, x1) etc. The operators necessary for the proof are the integral, the derivative, the
two-scale transform T , its adjoint T ∗, and B. In addition, for some extensions of the reference
proof we shall use the discrete sum.
Instead of writing operator-terms as de�ned in the grammar, we prefer to use the usual math-
ematical expressions. The table below establishes the correspondance between the two formu-
lations. ∫

u dx ≡ Oper(Integral, u, [x], [], []),

∂u

∂x
≡ Oper(Partial, u, [x], [x], []),

tr(u, x)(x′) ≡ Oper(Restriction, u, [x], [x′], []),

T (u, x)(x♯, x1) ≡ Oper(T, u, [x], [x♯, x1], [ε]),

T ∗(v, [x♯, x1])(x) ≡ Oper(T ∗, v, [x♯, x1], [x], [ε]),

B(v, [x♯, x1])(x) ≡ Oper(B, v, [x♯, x1], [x], [ε]),∑
i

ui ≡ Oper(Sum, ui, [i], [], []).

The multiplication and exponentiation involving two terms f and g are written fg and f g as
usual in mathematics. All these conventions have been introduced for terms in T (Σ, ∅). For
terms in T (Σ, X) as those encoutered in rewriting rules, the rewriting variables can replace any
of the above short cut terms.

Example 39 The rewriting rule associated to the Green rule (1.12) reads∫
∂u

∂x
v dx −

∫
u
∂v

∂x
dx+

∫
tr(u) tr(v) n dx′.

with the short-cuts Γ = Reg(Γ, d1, ∅,⊥R,⊥F), Ω = Reg(Ω, d2, ∅,Γ, n), x = Var(x,Ω) and x′ =
Var(x,Γ). The other symbols u, v, x, Ω, Γ, d1, d2, n are rewriting variables, and for instance

∂u

∂x
≡ Oper(Partial, u, x, [], []).
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Applying this rule according to an appropriate strategy, say the top down strategy, to a term in
T (Σ, ∅) like

Ψ =

∫
∂f(z)

∂z
g(z) dz,

for a given variable term z and function terms f, g. As expected, the result is

−
∫
f
∂g

∂z
dz +

∫
f g n dz′

with evident notations for n and z′.

1.5.3 A Variable Dependency Analyzer

The variable dependency analyzer Θ is related to e�ect systems in computer science [51]. It is a
function from TF(Σ, ∅) to the set P(TV(Σ, ∅)) of the parts of TV(Σ, ∅). When applied to a term
t ∈ TF(Σ, ∅), it returns the set of mathematical variables on which t depends. The analyzer Θ
is used in the condition part of some rewriting rules and is inductively de�ned by

Θ(d) = ∅ for d ∈ ΣCons,

Θ(x) = {x} for x ∈ TV(Σ, ∅),
Θ(~(u, v)) = Θ(u) ∪Θ(v) for u, v ∈ TF(Σ, ∅) and ~ ∈ ΣOp,

Θ(⊥F) = ∅,
Θ(u(x1, .., xn)) = {x1, .., xn} for u ∈ TF(Σ, ∅) and x1, .., xn ∈ TV(Σ, ∅),
Θ(ui) = Θ(u) for u ∈ TV(Σ, ∅) and i ∈ TV(Σ, ∅),
Θ([u1, . . . , un]) = Θ(u1) ∪ · · · ∪Θ(un) for u1, . . . , un ∈ TF(Σ, ∅).

The de�nition of Θ on the operator-terms is done case by case,

Θ(

∫
u dx) = Θ(u) \Θ(x),

Θ(
∂u

∂x
) =

{
Θ(u) if Θ(x) ⊆ Θ(u),
∅ otherwise,

Θ(tr(u, x)(x′)) = Θ(x′),

Θ(T (u, x)(x♯, x1)) = (Θ(u) \Θ(x)) ∪Θ([x♯, x1]) if Θ(x) ∩Θ(u) ̸= ∅,
Θ(T ∗(v, [x♯, x1])(x)) = (Θ(v) \Θ([x♯, x1])) ∪Θ(x) if Θ([x♯, x1]) ∩Θ(v) ̸= ∅,
Θ(B(v, [x♯, x1])(x))) = (Θ(v) \Θ([x♯, x1])) ∪Θ(x) if Θ([x♯, x1]) ∩Θ(v) ̸= ∅,

Θ(
∑
i

ui) =
∪
i

Θ(ui).

We observe that these de�nitions are not very general, but they are su�cient for the applications
of this Chapter. To complete the de�nition of Θ, it remains to de�ne it on memory terms,

Θ(M(u, v)) = Θ(u).

Example 40 For

Ψ =

∫
Ω♯

[

∫
Ω1

T (u(x), x)(x♯, x1)
∂v(x♯, x1)

∂x1
dx1]dx♯ ∈ TF(Σ, ∅),
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the set Θ(Ψ) of mathematical variables on which Ψ depends is hence inductively computed as fol-

lows: Θ(u(x)) = {x}, Θ(T (u(x), x)(x♯, x1)) = {x♯, x1}, Θ(v(x♯, x1)) = {x♯, x1}, Θ(∂v(x
♯,x1)

∂x1 ) =

{x♯, x1}, Θ(T (u(x), x) (x♯, x1) ∂v(x♯,x1)
∂x1 ) = {x♯, x1}, Θ(

∫
Ω1 T (u(x), x)(x♯, x1)

∂v(x♯,x1)
∂x1 dx1) =

{x♯}, and Θ(Ψ) = ∅, that is, Ψ is a constant function.

1.5.4 Formulation of the Symbolic Framework for Model Derivation

Now we are ready to de�ne the framework for two-scale model derivation by rewriting. To
do so, the rewriting rules are restricted to left and right terms (l, r) ∈ TG(Σ,X ) × TG(Σ,X ).
Their conditions c are formulas generated by a grammar, not explicited here, combining terms
in TG(Σ,X ) with the usual logical operators in Λ = {∨,∧, ⌉,∈}. It also involves operations
with the dependency analyzer Θ. The set of terms generated by this grammar is denoted by
TL(Σ,X ,G,Θ,Λ).

It remains to argue that, given a strategy s in STG(Σ,X ),TL(Σ,X ,G,Θ,Λ), the set of terms TG(Σ, ∅)
is closed under the application of s. It is su�cient to show that for each rewriting r rule in s,
the application of r to any term t ∈ TG(Σ, ∅) at any position yields a term in TG(Σ, ∅). As an
example, TG(Σ, ∅) is not closed under the application of the rule x Ω, where x is a variable.
But it is closed under the application of the linearity rule

∫
z
f + g dx 

∫
z
f dx+

∫
z
g dx at any

position, where f, g, x, z are rewriting variables. The argument is, since
∫
z
f + g dx ∈ TF(Σ, ∅),

then f + g ∈ TF(Σ, ∅), and hence f, g ∈ TF(Σ, ∅). Thus,
∫
z
f dx+

∫
z
g dx ∈ TF(Σ, ∅). That is, a

term in TF(Σ, ∅) is replaced by a another term in TF(Σ, ∅). A more general setting that deals
with the closure of regular languages under speci�c rewriting strategies can be found in [35].
A model derivation is divided into several intermediary lemmas. Each of them is intended to
produce a new property that can be expressed as one or few rewriting rules to be applied in
another part of the derivation. Since dynamical creation of rules is not allowed, a strategy is
covering one lemma only and is operating with a �xed set of rewriting rules. The conversion of
a result of a strategy to a new set of rewriting rules is done by an elementary external operation
that is not a limitation for generalizations of proofs. The following de�nition summarizes the
framework of symbolic computation developed in this Chapter.

De�nition 41 The components of the quintuplet Ξ = ⟨Σ,X , E,G,Θ⟩ provide a framework for
symbolic computation to derive multi-scale models. A two-scale model derivation is expressed
as a strategy π ∈ STG(Σ,X ),TL(Σ,X ,G,Θ,Λ) for which the semantics [[π]]E is applicable to an initial
expression Ψ ∈ T (Σ, ∅).

In the end of this section we argue that this framework is in the same time relatively simple,
it covers the reference model derivation and it allows for the extensions presented in the next
section.

The grammar of terms is designed to cover all mathematical expressions occuring in the proof
of the reference model as well as of their generalizations. A term that follows the grammar
includes locally all useful information. This avoids the use of external tables and facilitates
design of rewriting rules, in particular to take into account the context of subterms to be
transformed. It allows also for local de�nitions, for instance a same name of variable x can
be used in di�erent parts of a same term with di�erent meaning, which is useful for instance
in integrals. A limitation regarding generalizations presented in the next section, is that the
grammar must cover by anticipation all needed features.
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Each step in the proof consists in replacing parts of an expression according to a known math-
ematical property. This is well done, possibly recursively, using rewriting rules together with
strategies allowing for precise localization. Some steps need simpli�cations and often use the
second linearity rule of a linear operator, A(λu) = λAu when λ is a scalar (or is independent
of the variables in the initial set of A). So variable dependency of each subterm should be de-
termined, this is precisely what Θ, the variable dependency analyzer, is producing. The other
simpli�cations do not require the use of Θ. In addition to the grammar G, the analyzer Θ must
be upgraded in view of each new extension.

In all symbolic computation based on the grammar G, it is implicitely assumed that the deriva-
tives, the integrals and the traces (i.e. restriction of a function to the boundary) are well de�ned
since the regularity of functions is not encoded.

Due to the algebraic nature of the mathematical proofs, this framework has been formulated
by considering these proofs as a calculus rather than formal proofs that can be formalized
and checked with a proof assistant [8, 57]. Indeed, this is far simpler and allows, from a
very small set of tools, for building signi�cant mathematical derivation. To cover broader
proofs, the framework must be changed by extending the grammar and the variable dependency
analyzer only. Yet, the language Tom [5] does not provide a complete environment for the
implementation of our framework since it does not support the transformation of rewriting
rules, despite it provides a rich strategy language and a module for the speci�cation of the
grammar.

1.6 Transformation of Strategies as Second Order Strate-

gies

For a given rewriting strategy representing a model proof, one would like to transform it to
obtain a derivation of more complex models. Transforming a strategy π ∈ ST (Σ,X ) is achieved
by applying strategies to the strategy π itself. For this purpose, we consider two levels of
strategies: the �rst order ones ST (Σ,X ) as de�ned in De�nition 32, and the strategies of second
order in such a way that second order strategies can be applied to �rst order ones. That is, the
second order strategies are considered as terms in a set T (Σ,X ) of terms where Σ and X remain
to be de�ned. Given a set of strategies ST (Σ,X ) that comes with a set of �xed-point variables
F , we pose Σ ⊃ Σ∪{ , ; ,⊕, Some,Child, η, µ}∪F . Let X be a set of second order rewriting
variables such that X ∩ (X ∪Σ) = ∅. Notice that �rst order rewriting variables and �xed-point
variables are considered as constants in T (Σ,X ), i.e. function symbols in Σ0. Notice also that
the arity of the function symbols  , ; ,⊕, Child, µ is two, and the arity of Some and η is one.
In particular, the rule l  r can be viewed as the term  (l, r) with the symbol  at the
root, and the strategy µX.s viewed as the term µ(X, s). This allows us to de�ne second order
strategies ST (Σ,X ) by the grammar

s̄ ::= l ̄r | s̄̄;s̄ | s̄⊕̄s̄ | η̄(s̄) | Some(s̄) | Child(j, s̄) | X | µ̄X.s̄ (1.34)

Again we assume that the symbols  ̄, ;,⊕, . . . of the second order strategies do no belong to Σ.
The semantics of the strategies in ST (Σ,X ) are similar to the semantics of �rst order strategies.
In addition, we assume that second order strategies transform �rst order strategies, to which
they are applied, into �rst order strategies. Composing several second order strategies and
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Figure 1.2: An example of the composition of transformations of strategies.

applying such composition to a given �rst order strategy s provide successive transformations
of s.
In the following example we illustrate the extension of an elementary strategy which is a rewrit-
ing rule.

Example 42 For the set X = {i, j, x, x♯, x1, u, ε} we de�ne s1, s2, s3, and s23 four rewriting
rules,

s1 := T (
∂u

∂x
, x)(x♯, x1) 1

ε

∂T (u, x)(x♯, x1)

∂x1
for x ∈ Ω and (x♯, x1) ∈ Ω♯ × Ω1,

s2 := T (
∂u

∂xi
, x)(x♯, x1) 1

ε

∂T (u, x)(x♯, x1)

∂x1i
for x ∈ Ω and (x♯, x1) ∈ Ω♯ × Ω1,

s3 := T (
∂u

∂x
, x)(x♯, x1) 1

ε

∂T (u, x)(x♯, x1)

∂x1
for x ∈ Ωj and (x♯, x1) ∈ Ω♯

j × Ω1
j ,

s23 := T (
∂u

∂xi
, x)(x♯, x1) 1

ε

∂T (u, x)(x♯, x1)

∂x1i
for x ∈ Ωj and (x♯, x1) ∈ Ω♯

j × Ω1
j .

The rule s1 is encountered in the reference proof, s2 is a (trivial) generalization of s1 in the
sense that it applies to multi-dimensional regions Ω1 referenced by a set of variables (x1i )i, and
s3 is a second (trivial) generalization of s1 on the number of sub-regions (Ωj)j, (Ω

♯
j)j and (Ω1

j)j
in Ω, Ω♯ and Ω1. The rule s23 is a generalization combining the two previous generalizations.
First, we aim at transforming the strategy s1 into the strategy s2 or the strategy s3. To this
end, we introduce two second order strategies with X = {v, z} and Σ ⊃ {i, j, Ω, Ω♯, Ω1,
Partial, IndexedFun, IndexedV ar, IndexedReg},

Π̄1 := TopDown(
∂v

∂z
 ̄ ∂v

∂zi
)

Π̄2 := TopDown(Ω ̄Ωj);TopDown(Ω
♯ ̄Ω♯

j);TopDown(Ω
1 ̄Ω1

j)

Notice that Π̄1 (resp. Π̄2) applies the rule
∂v

∂z
 ̄ ∂v

∂zi
(resp. Ω ̄Ωj, Ω

♯ ̄Ω♯
j, and Ω1 ̄Ω1

j) at all

of the positions 5 of the input �rst order strategy so that

Π̄1(s1) = s2 and Π̄2(s1) = s3.

5Notice the di�erence with OuterMost which could not apply these rules at any position.
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Once Π̄1 and Π̄2 have been de�ned, they can be composed to produce s23 :

Π̄2Π̄1(s1) = s23 or Π̄1Π̄2(s1) = s23.

The diagram of Figure 1 illustrates the application of Π̄1, Π̄2 and of their compositions.

The next example shows how an extension can not only change rewriting rules but also to
add new ones.

Example 43 To operate simpli�cations in the reference model, we use the strategy

s1 := OuterMost(
∂x

∂x
 1).

In the generalization to multi-dimensional regions, it is replaced by two strategies involving the
Kronecker symbol δ, usually de�ned as δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise,

s2 : = OuterMost

(
∂xi
∂yj
 δ(i, j), x = y

)
,

s3 : = OuterMost (δ(i, j) 1, i = j) ,

s4 : = OuterMost (δ(i, j) 0, i ̸= j) .

The second order strategy that transforms s1 into the strategy Normalizer(s2 ⊕ s3 ⊕ s4) is

Π̄ := OuterMost(s1 ̄s2 ⊕ s3 ⊕ s4).
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1.7 Implementation and Experiments

The framework presented in Section 1.5.4 has been implemented in Maple
R⃝
. The implemen-

tation includes the language Symbtrans of strategies already presented in [6]. The derivation
of the reference model presented in Section 1.3 has been fully implemented. It starts from an
input term which is the weak formulation (1.24) of the physical problem,∫

a
∂u

∂x

∂v

∂x
dx =

∫
f v dx, (1.35)

where a = Fun(a, [Ω], [ ], Known), u = Fun(u, [Ω], [Dirichlet], Unknown),
v = Fun(u, [Ω], [Dirichlet], T est), Ω = Reg(Ω, [1], ∅,Γ, nΩ), Γ = Reg(Γ, [ ], ∅,⊥R,⊥F), Dirichlet =
BC(Dirichlet,Γ, 0) and where the short-cuts of the operators are those of Section 1.5.2. The
information regarding the two-scale transformation is provided through the test functions. For
instance, in the �rst block the proof starts with the expression

Ψ =

∫
∂u

∂x
B(v(x♯, x1)(x) dx,

where the test functionB(v(x♯, x1)(x) is also an input, with v = Fun(a, [x♯, x1], [Dirichlet♯], T est),

x♯ = Var(x♯,Ω♯), x1 = Var(x1,Ω1), Ω♯ = Reg(Ω♯, [1], ∅,Γ♯, nΩ♯), Γ♯ = Reg(Γ♯, [ ], ∅,⊥R,⊥F),
Ω1 = Reg(Ω1, [1], ∅, Γ1, nΩ1), Γ1 = Reg(Γ1, [ ], ∅,⊥R,⊥F), andDirichlet♯ = BC(Dirichlet♯,Γ♯, 0).

The proof is divided into �ve strategies corresponding to the �ve blocks of the proof, each ending
by some results transformed into rewriting rules used in the following blocks. The rewriting
rules used in the strategies are FO-rules and can be classi�ed into the three categories.

• Usual mathematical rules: that represent the properties of the derivation and integration
operators, such as the linearity, the chain rule, the Green rule, etc,

• Specialized rules: for the properties of the two-scale calculus, as those of the two-scale
transform, the approximation of B by the adjoint T ∗ etc,

• Auxiliary tools: for transformations of expressions format that are not related to operator
properties such as the rule which transforms ψ1 = ψ2 into ψ1 − ψ2 = 0.

Usual Rules Specialized Rules Aux. Tools
Skeleton 53 14 28

Table 1.1: The number of �rst order rules used in the reference model.

The Table 1.1 summarizes the number of �rst order (FO) rules, used in the reference model,
by categories.

The reference model has been extended to cover three di�erent kinds of con�gurations. To
proceed to an extension, the new model derivation is established in a form that is as close as
possible of the reference proof. The grammar and the dependency analyzer should be completed.
Then, the initial data is determined, and second order (SO) strategies yielding the generalized
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Chapter 1. A Rewriting framework for asymptotic modeling

model derivation are found and optimized. As it has been already mentioned, G and Θ have
already been designed to cover the three extensions.

The �rst generalization is to cover multi-dimensional regions, i.e. Ω ⊂ Rn with n ≥ 1. When
n = 2, the initial term is

n∑
i=1

n∑
j=1

∫
aij

∂u

∂xi

∂v

∂xj
dx =

∫
f v dx,

where Ω = Reg(Ω, [1, 2], ∅,Γ, nΩ), aij = Indexed(Indexed(a, j), i), i = Var(i, I), and I =

Reg(I, [1, 2], ∅,⊥R,⊥F) and the choice of the test function is trivially deduced. Then, the model
derivation is very similar to this of the reference model, see [47], so much so it is obtained simply
by applying the SO strategy Π̄1de�ned in Example 42. This extension has been tested on the
four �rst blocks.

The second generalization transforms the reference model into a model with several adjacent
one-dimensional regions (or intervals) (Ωk)k=1,..,m so that Ω is still an interval i.e. Ω ⊂ R.
For m = 2, the initial term is the same as (1.35) but with Ω = Reg(Ω, [1], {Ω1,Ω2}, Γ, nΩ),
Ω1 = Reg(Ω1, [1], ∅, Γ1, nΩ1), and Ω2 = Reg(Ω2, [1], ∅, Γ2, nΩ2). The two-scale geometries,
all variables, all kind of functions and also the operators B and T are de�ned subregion by
subregion. All de�nitions and properties apply for each subregion, and the proof steps are the
same after spliting the integrals over the complete region Ω into integrals over the subregions.
The only major change is in the fourth step where the equality u01 = u02 at the interface between
Ω1 and Ω2 which is encoded as transmission conditions in the boundary conditions of u01 and
u02.

The third extension transforms the multi-dimensional model obtained from the �rst generaliza-
tion to a model related to thin cylindrical regions, in the sense that the dimension of Ω is in the
order of ε in some directions i ∈ I♮ and of the order 1 in the others i ∈ I♯ e.g. Ω = (0, 1)× (0, ε)
where I♮ = {2} and I♯ = {1}. The boundary Γ is split in two parts, the lateral part Γlat and
the other parts Γother where the Dirichlet boundary conditions are replaced by homogeneous
Neuman boundary conditions i.e. duε

dx
= 0. In this special case the integrals of the initial term

are over a region whose size is of the order of ε so it is required to multiply each side of the
equality by the factor 1/ε to work with expressions of the order of 1. Moreover, the macroscopic
region di�ers from Ω, it is equal to Ω♯ = (0, 1) when the microscopic region remains unchanged.
In general, the de�nition of the adjoint T ∗ is unchanged but (Bv)(x) = v((xi)i∈I♯ , (x − x♯c)/ε)
where x♯c is the center of the c

th cell in Ω♯. It follows that the approximations (1.10, 1.11) are
between T ∗ and εB with

∑
i∈I♯ x

1
i
∂v

∂x♯
i

instead of
∑n

i=1 x
1
i
∂v

∂x♯
i

. With these main changes in the

de�nitions and the preliminary properties, the proof steps may be kept unchanged.

Usual Rules Specialized Rules Aux. Tools
Multi-Dimension 6 0 4
Thin-Region 2 0 0
Multi-Region 3 0 0

Table 1.2: The number of �rst order rules used in the three extensions.

The mathematical formulation of the second and third extensions has been derived. This allows
for the determination of the necessary SO-strategies, but they have not been implemented nor
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tested. To summarize the results about the principle of extension of strategies, we show its
bene�t through some statistics. In particular the main concerned is the reusability and the
extensibility of existing strategies. The Table 1.2 shows an estimate of the number of new
FO-rules for the three extensions in each category and for the �rst four blocks.

Usual Rules Specialized Rules Aux. Tools
Multi-Dimension 9 2 3
Thin-Region 0 0 0
Multi-Region 1 0 0

Table 1.3: The number of second order strategies used in the extension of proofs.

Input model Resulting model % Modi. FO-rules % Modi. FO-strategies
Reference Multi-Dim. 16.6% 5%
Multi-Dim. Thin 0 0

Thin Multi-Reg. 0 2.5%

Table 1.4: The ratio of modi�ed FO-rules and FO-strategies.

The Table 1.3 shows the number of SO-strategies used in each extension. Finally, the Table
1.4 shows the ratio of the modi�ed FO-rules and the ratio of the modi�ed FO-strategies. The
reusability ratio is high since most of the FO-strategies de�ned in the skeleton model are reused.
Besides very little number of SO-strategies is used in the extensions. This systematic way of
the generation of proofs is a promising path that will be further validated within more complex
con�gurations for which the proofs can not be obtained by hand. In the future, we plan to
introduce dedicated tools to aid in the design of composition of several extensions.

39



Chapter 1. A Rewriting framework for asymptotic modeling

40



Chapter 2

Extension Mechanisms and Their

Combination For Multi-Scale Model

Derivations

Abstract In this Chapter we address the problem of the combination of the extensions of the
proofs related to the multi-scale model derivations. For this purpose, we develop further exten-
sion mechanisms which turn to be more rudimentary than the ones introduced in Chapter 1.
The simplicity of these new mechanisms allows us to elaborate necessary conditions under which
these mechanisms can be correctly combined giving rise to rich extensions. We illustrate the
application of these extension mechanisms to many examples, namely to the derivation of the
linear operator associated to the microscopic problem in the reference proof. Thus the results
of this Chapter signi�cantly improve the results of Chapter 1 since it is not possible, at least
in a straightforward way, to provide necessary conditions so that the extension mechanisms
established in Chapter 1 can be combined.

2.1 Introduction

We follow the approach presented in Chapter 1 that consists in formalizing the multi-scale proofs
by means of symbolic transformations. In particular, the mathematical properties, lemmas
and theorems are represented as rewriting rules; and the proofs are represented as rewriting
strategies.

In this Chapter we address the problem of the generation of complex models by reusing
the proofs and tools used for the generation of simpler models. More precisely, we address
the problem of the combination of the extensions. This problem can be formulated as follows:
Given a reference proof, an extension E1 (viewed as a transformation) of the reference proof
to some general setting (e.g. multi-dimensional setting), an extension E2 of the reference proof
to an another general setting (e.g. thinness setting), we would like to construct an extension
E ′ so that the application of E ′ to the reference proof yields a proof that covers both the two
settings.

It turned out that it is not easy to study the combination of extensions if these extensions
are formulated as second-order strategies, as presented in Chapter 1. To solve this problem, we
re�ne the notion of extension by proposing two extension mechanisms:

1. Firstly, we follow the approach of Chapter 1 that consists in extending �rst-order rules by
means of second-order rules. Since, obviously, not every second-order rule is adequate for
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this extension, we provide some syntactic requirements under which second-order rules
can extend �rst-order ones. These syntactic requirements deal with the notions of:

(a) a second-order rule s2 being subsumed by a second-order rule s1. This can be un-
derstood as s1 being more general than s2, and

(b) the mathematical equivalence between second-order rules. For instance, we would
like to formulate the idea that the two expressions

∑i=1
i=1 αi and α are mathematically

equivalent.

However, it is not clear how to build these second-order rules nor how to combine them.
This leads to the second point.

2. Secondly, we establish a second extension mechanism that consists in de�ning rudimentary
components, called added terms, allowing, on the hand, to express the kind of extensions
that we want to make, and, on the other hand, they can be combined to build more
complex components. These components will be inserted at certain positions of a FO-
term and a FO-rule. The careful choice of the added terms as well as the way they are
combined ensure the correctness of the extension.

As a concrete application, we apply the second extension mechanism to extend one step
of the two-scale model derivation of the stationary heat equation (Eq. (1.22)) to the multi-
dimensional and the vector-valued settings as well as their combination. We plan to implement
these extensions mechanisms with the symbolic transformation language if proposed in [6]. It
is worth mentioning that if was successfully used to encode many examples of the multi-scale
derivations e.g. [58, 59, 6].

2.1.1 Organization of the Chapter

The Chapter is organized as follows: Section 2.2 introduces computer science tools and con-
cepts which will be used to formulate the extension mechanisms for the multi-scale model
derivations. Namely, the notion of term rewriting will be introduced. In section 2.3 we intro-
duce the notion of second-order rewriting rules that operate on (�rst-order) rewriting rules and
we de�ne a grammar for the mathematical expressions. In section 2.4 we introduce the �rst ex-
tension mechanism that consists in the extension of (�rst-order) rules by means of second-order
rules that ful�ll some conditions. In section 2.5 we introduce the second extension mechanism,
called the outward growth, for the extension of mathematical expressions. In order to construct
complex extensions by means of outward growths, we de�ne the operation of combination of
outward growths and its properties. In section 2.6 we formulate the outward growth mechanism
as second-order rewriting rules. Such outward growths are called second-order outward growth.
We de�ne the operation of combination of second-order outward growths as well as its prop-
erties. In section 2.7 we introduce the mechanism of parametrization that can be composed
with the mechanism of outward growth. In section 2.8 we apply the mechanism of the outward
growth to extend one step in the two-scale model derivation of the stationary heat equation. In
section 2.9 we conclude the Chapter with several remarques and perspectives, namely we will
discuss the formulation of the outward growths and the parametrization and their combination
by means of strategies.
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2.2 Term rewriting

In this section we introduce some computer science concepts and tools which will be used to
formulate the extension mechanisms for the multi-scale model derivations. In particular, we
shall introduce the notion of term rewriting. Before we formally introducing it, we �rstly give
the main ideas behind it.

The set of rewriting terms, denoted by T (F ,X ), is built up as a combination of function
symbols in a set F and rewriting variables in a set X . Besides, each function symbol in F
comes with a �xed arity. The arity of a function symbol can be viewed as the number of its
"arguments". Therefore, the function symbols F can be written as a union F = F0∪F1 . . .∪Fn

of function symbols, where Fi is a set of function symbols of arity i. In particular, function
symbols of zero arity, i.e. those in F0, are called constants. We emphasize that function symbols
should not to be confused with mathematical functions, and on the other hand, rewriting
variables should not be confused with mathematical variables. For example, let X = ∅ and
F = F0∪F1∪F2 where F0 = {x,Ω}, F1 = f and F3 = Integral. Then, Integral(Ω, f(x), x)
is a term in T (F ,X ). It corresponds to the mathematical expression

∫
Ω
f(x) dx. Notice that

both x and Ω are function symbols of arity zero, i.e. they are constants in the rewriting sense
while x is a variable in the mathematical sense. To make clear this distinction, the mathematical
variables will be denoted by the letters x, y, z, . . . however the rewriting variables will be denoted
by the capital letters X,Y, Z, . . .

A rewriting rule is a pair

(l, r) ∈ T (F ,X )× T (F ,X )

of terms. It transforms a term l to the term r. We shall write l → r instead of (l, r). For
example the equation sin(α)2 = 1− cos(α)2 can be turned into two rewriting rules:

sin(X)2 → 1− cos(X)2, and

1− cos(X)2 → sin(X)2,

where sin, cos, 1, and '−' ∈ F and X ∈ X .
The grammars of mathematical objects such as regions, functions and variables are dis-

cussed. By the grammar, all mathematical information required i.e. the dimension of the
region, the domain of the variables and the variables of the functions, for the derivation are
saved, in fact, this grammar gives the base for the mathematical derivation.

2.2.1 Terms, positions, substitutions, rewriting rule, term rewriting

In what follows, let F be a set of function symbols, each symbol having a �xed arity and let X
be a set of variables.

De�nition 44 (Terms) The syntax of the terms in T (F ,X ) is de�ned by the following gram-
mar:

t ::= X | f(t, . . . , t)

where X ∈ X , f ∈ F .

De�nition 45 (Positions [4]) Let t be a term in T (F ,X ).
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1. The set of positions of the term t, denoted by Pos (t) , is a set of strings6 of positive
integers such that:

• If t = X ∈ X , then Pos (t) = {ϵ} , where ϵ denotes the empty string.

• If t = f (t1, ..., tn) then

Pos (t) = {ϵ} ∪
n∪

i=1

{ip | p ∈ Pos (ti)} .

We denote the set of the positions of a subterm r in a term t by Pos (t, r) . The position
ϵ is called the root position of term t, and the function or variable symbol at this position
is called root symbol of t.

2. The pre�x order de�ned as

p ≤ q i� there exists p′ such that pp′ = q (2.1)

is a partial order on positions. We say that the position p, q are parallel (p ∥ q) i� p and
q are incomparable with respect to ≤. The position p is above q if p ≤ q. The position p
is strictly above q, written p < q i� there exists p′ such that p′ ̸= ϵ and pp′ = q.

We de�ne a binary relation @ on the positions as follows:

p @ q i�
(
p < q or p ∥ q

)
(2.2)

Similarly, we de�ne a binary relation ⊑ on the positions as follows:

p ⊑ q i�
(
p ≤ q or p ∥ q

)
(2.3)

3. For p ∈ Pos (t) , the subterm of t at position p, denoted by t|p, is de�ned by

t|ϵ = t,

f (t1, ..., tn) |iq = ti|q.

Note that, for p = iq, p ∈ Pos (s) implies that t is of the form t = f (t1, ..., tn) with i ≤ n.

The replacement of a term u by a term s in t, denoted by t[u := s], is de�ned by

t[u := s] =
(
((t[s]|p1)[s]|p2) . . .

)
[s]|pn where {p1, . . . , pn} = {p ∈ Pos(t) s.t. t|p = u}

4. For p ∈ Pos (t) , we denote by t [s]p the term that is obtained from t by replacing the
subterm at position p by s, i.e.

t [s]ϵ = s,

f (t1, ..., tn) [s] |iq = f
(
t1, ..., ti [s]q , ..., tn

)
6A string is an element of Nω = {ϵ}∪N∪ (N×N)∪ (N×N×N)∪ · · · . Given two strings p = p1p2 . . . pn and

q = q1q2 . . . qm, the concatenation of p and q, denoted by p · q or simply pq, is the string p1p2 . . . pnq1q2 . . . qm.
Notice that (Nω, ·) is a monoid with ϵ as the identity element.
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5. By Var (t) we denote the set of variables occurring in t, i.e.

Var (t) = {x ∈ X |∃p ∈ Pos (t) : t|p = x}

We call p ∈ Pos (t) a variable position if t|p is a variable.

Example 46 Let t be the term

t = Oper(Integral, Fun(u, Var(x, Reg(Ω, 1))), Var(x, Reg(Ω, 1)), ∅) (2.4)

where Var(t) = ∅. It represents the norm of a function u in L2 (Ω). Its tree structure as well
as the positions of all its subterms are depicted in Figure 2.1.

Figure 2.1: The tree structure of the term t de�ned in Eq. (2.4) and the positions of its
subterms.

The set of all the positions of t can be computed as follows. Let t = f (t1, t2, t3, t4), where
t1 = t|1, t2 = t|2, t3 = t|3 , t4 = t|4, t22 = t|22 = t2|2 = (t|2|2) and t221 = t2|21 = t22|1 =
((t|2) |2) |1.

Firstly, notice that Pos (t21) = Pos (t221) = Pos (t2221) = Pos (t2222) = {ϵ}. Hence, the set
of positions Pos (t2), in the second branch of t, can be computed as follows:

Pos (t22) = {ϵ} ∪ {1p | p ∈ Pos (t221)} ∪ {2p | p ∈ Pos (t222)}
= {ϵ, 1, 2, 21, 22} .

Pos (t222) = {ϵ} ∪ {1p | p ∈ Pos (t2221)} ∪ {2p | p ∈ Pos (t2222)}
= {ϵ, 1, 2} ,

Pos (t2) = {ϵ} ∪ {1p | p ∈ Pos (t21)} ∪ {2p | p ∈ Pos (t22)}
= {ϵ, 1, 2, 21, 22, 221, 222} .

Secondly, notice that Pos (t31) = Pos (t321) = Pos (t322) = {ϵ}. Hence the set of positions
Pos (t3) in the third branch of t can be computed as follows:

Pos (t32) = {ϵ} ∪ {1p | p ∈ Pos (t321)} ∪ {2p | p ∈ Pos (t322)}
= {ϵ, 1, 2}

Pos (t3) = {ϵ} ∪ {1p | p ∈ Pos (t31)} ∪ {2p | p ∈ Pos (t32)}
= {ϵ, 1, 2, 21, 22} .

Finally, since Pos (t1) = Pos (t4) = {ϵ}, the set of positions Pos (t) of the term t is given by:

Pos (t) = {ϵ} ∪ {1p | p ∈ Pos (t1)} ∪ {2p | p ∈ Pos (t2)} ∪ {3p | p ∈ Pos (t3)} ∪ {4p | p ∈ Pos (t4)}
= {ϵ} ∪ {1} ∪ {2, 21, 22, 221, 222, 2221, 2222} ∪ {3, 31, 32, 321, 322} ∪ {4} .
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Chapter 2. Extension Mechanisms and Their Combination

The claims in the following Proposition are not hard to prove.

Proposition 47 (See [4, Chapter 1]) Let s, t, r be terms and p, q be strings. The following
hold.

1. If pq ∈ Pos (s) , then s|pq = (s|p) |q.

2. If p ∈ Pos (s) and q ∈ Pos (t) , then(
s [t]p

)
|pq = t|q,(

s [t]p

)
[r]pq = s

[
t [r]q

]
p
.

3. If pq ∈ Pos (s) , then (
s [t]pq

)
|p = (s|p) [t]q ,(

s [t]pq

)
[r]p = s [r]p .

4. If p and q are parallel positions in s (i.e. p ∥ q) , then(
s [t]p

)
|q = s|q,(

s [t]p

)
[r]q =

(
s [r]q

)
[t]p .

Proof. See Annex 2.10.1.

De�nition 48 (Substitution) A T (F ,X )-substitution, or a substitution for short, is a func-
tion σ : X → T (F ,X ) such that σ (X) ̸= X for only �nitely many Xs. The (�nite) set of
variables that σ does not map to themselves is called the domain of σ:

Dom (σ)
def
= {X ∈ X | σ (X) ̸= X} .

If Dom (σ) = {X1, ..., Xn} then we write σ as:

σ = {X1 7→ σ (X1) , ..., Xn 7→ σ (Xn)} .

The range of σ is Ran (σ) := {σ (X) | X ∈ Dom (σ)}, and the variable range of σ consists of
the variables occurring in Ran (σ) :

VRan (σ) def
=

∪
X∈Dom(σ)

Var (σ (X)) .

A substitution σ : X → T (F ,X )) uniquely extends to an endomorphism σ̂ : T (F ,X ) →
T (F ,X ) de�ned by:

1. σ̂(X) = σ(X) for all X ∈ Dom(σ),

2. σ̂(X) = X for all X ̸∈ Dom(σ),

3. σ̂(f(t1, . . . , tn)) = f(σ̂(t1), . . . , σ̂(tn)) for f ∈ F .
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2.2. Term rewriting

In what follows we do not distinguish between a substitution and its extension. The set of all
T (F ,X )−substitutions will be denoted by Sub(T (F ,X )) or simply Sub. The composition σγ
of two substitutions σ and γ is de�ned by

σγ (X)
def
= σ (γ (X)) .

for all X ∈ Dom(γ).

Now we are ready to de�ne the notions of rewriting rule and rewriting system.

De�nition 49 (Rewriting rule, term rewriting system) A rewriting rule over a signa-
ture F is a pair (l, r) ∈ T (F ,X )× T (F ,X ), denoted by l → r, such that

Var(r) ⊆ Var(l). (2.5)

Usually, l ̸= x with x ∈ X . Besides, l is called the left-hand side of the rewriting rule and r the
right-hand side.

A term rewriting system (TRS) is a set of rewriting rules.

We next de�ne the notion rewriting relation yielded by a rewriting system R. Intuitively, a
term t rewrites into a term u if there exists a rewriting rule of R that can be applied to position
of t and yields the term u. The formal de�nition follows.

De�nition 50 (Term rewriting) Given a rewriting system R, we say that t ∈ T (F ,X )
rewrites into a term u ∈ T (F ,X ) w.r.t. R, denoted by t −→R u, i� there exist

(i) a position p ∈ Pos(t),

(ii) a rewrite rule l → r ∈ R, and

(iii) a substitution σ with Dom(σ) = Var(l) such that

t|p = σ(l) and u = t [σ(r)]p.

We can use the notation t
l→r,σ,p−→ u to make explicit the corresponding rewriting rule, position

and substitution respectively. We denote by −→∗
R the re�exive transitive closure of the relation

−→R.

2.2.2 Term uni�cation

We introduce a well known algorithmic process, called uni�cation. It has been widely used in
logic and automated reasoning for solving equations over symbolic terms. It will be used in
Section 2.6 in the extension of �rst-order rules.

De�nition 51 A term u is subsumed by a term t if there is a substitution σ s.t. σ(t) = u. A
substitution σ is subsumed by a substitution γ, where Dom(σ) = Dom(γ), i� for every variable
X ∈ Dom(σ), the term σ(X) is subsumed by the term γ(X).

De�nition 52 (Uni�cation problem, uni�er, complete and minimal set of uni�ers)
Let ti, ui be terms where i = 1, . . . , n.
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Chapter 2. Extension Mechanisms and Their Combination

• A uni�cation problem E is a set of oriented equations:

E = {t1
.
= u1, . . . , tn

.
= un}.

• A uni�er of E is a substitution σ which is a solution of E, i.e. σ(li) = σ(ti) for all
i ∈ {1, . . . , n}. If E admits a solution, then it is called solvable.

• For a given uni�cation problem E, a (possibly in�nite) set S = {σ1, σ2, . . .} of uni�ers of
E is complete i� each solution of E is subsumed by some uni�er σi ∈ S. The set S is
minimal if none of its substitutions subsumes another one.

The existence of a complete and minimal solution of a uni�cation problem is ensured by the
following proposition:

Proposition 53 (See [4]) Each solvable uni�cation problem E has a complete and minimal
singleton solution set {σ}. The solution σ is called the most general uni�er of E, and it is
denoted by mgu(E).

A uni�cation algorithm. We mention that there is a simple algorithm, see for instance [4],
that computes the most general uni�er of a uni�cation problem E by transforming the equations
of E into a set of equations of the form {X1

.
= u1, . . . , Xm

.
= um} where Xi are distinct variables

and ui are terms so that none of them contains a variable among {X1, . . . , Xm}. We reproduce
next the uni�cation algorithm which is speci�ed as a set of reduction rules.

Algorithm 1: Uni�cation
input : A uni�cation problem E = {t1

.
= u1, . . . , tn

.
= un}, where ti, ui are terms.

output: The most general uni�er of E if it exists, see De�nition 52 and Proposition 53.

1

E ∪ {t .= t} E (delete)

E ∪ {f(t1, . . . , tn)
.
= f(u1, . . . , un)} E ∪ {t1

.
= u1, . . . , tn

.
= un} (decompose)

E ∪ {f(t1, . . . , tn)
.
= g(u1, . . . , um)} fail if g ̸= f (con�ict)

E ∪ {f(t1, . . . , tn)
.
= X} E ∪ {X .

= f(t1, . . . , tn)} (swap)

E ∪ {x .
= t} E[X := t] ∪ {X .

= t}
if X /∈ Var(t) and X ∈ Var(E) (eliminate)

E ∪ {X .
= f(X1, . . . , Xn)} fail if X ∈ Var(f(X1, . . . , Xn)) (recursion)

2.3 Second-order rules, SA-expressions and short-cut terms

In this section we introduce second-order rewriting rules that operate on (�rst-order) rewriting
rules. Then we de�ne a grammar for the mathematical expressions.
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2.3. Second-order rules, SA-expressions and short-cut terms

2.3.1 Second-order rules

Given a rewriting strategy representing a a model derivation, we would like to transform it in
order to obtain a derivation of more complex models. This can be achieved, see e.g. [59], by
transforming �rst-order strategies by second-order strategies. Unlike [59], in this Section we only
deal with the particular setting in which only �rst-order rules are transformed by second-order
rules. This particular setting is powerful enough in practice to extend our two-scale models.
Hence, we need to consider two levels of rules: the �rst-order ones as de�ned in De�nition 54,
and the second-order one in such a way that second-order rules can be convincingly applied to
�rst-order ones. More precisely a �rst-order rule l → r will be considered the �rst-order term
→ (l, r) where "→" is a functional symbol of arity two.

De�nition 54 (Second-order rules) Let X 0 be a set of FO-variables, and F0 be a set of FO-
function symbols. Let X 1 be a set of SO-variables such that the sets X 0,F0,X 1 are pairwise
disjoint. Let SConst = {→}.
(i) The set of FO-terms is the set of terms T (F0,X 0).

(ii) A FO-rule is a pair of FO-terms in T (F0,X 0)× T (F0,X 0).

(iii) The set of SO-terms is the set of terms T (F0 ∪ X 0 ∪ SConst,X 1).

(iv) A SO-rule is a pair of SO-terms in T (F0∪X 0∪SConst,X 1)×T (F0∪X 0∪SConst,X 1).
A SO-rule will be denoted by l⇒ r.

Item (iii) of De�nition 54 states that the variables of the �rst order become constants in the
second order, and the FO-rule constructor " → " becomes SO-function symbols. That is, the
FO-rules become SO-terms. Item (iv) of the same de�nition states that SO-rules operate on
SO-terms, in particular they operate on FO-rules. FO-variables will be denoted by the letter
X, Y, Z, . . . and SO-variables will be denoted by α, β, . . .. The semantics of the SO-rules (i.e.
rule application at the top) is de�ned in the same way as the one of FO-rules.

2.3.2 A grammar for SA-expressions, short-cut terms

We propose a more precise way to represent the mathematical expressions and the data used
in the formulation of the proofs and their extensions. Such mathematical expressions as well as
the data coming with are henceforth called speci�c application expressions, or SA-expressions
for short. More precisely, instead of representing the SA-expressions by terms in T (F ,X ), see
De�nition 44, we represent them by the sub set of terms in T (F ,X ) that follow the grammar
F de�ned afterwards.

Let MathVar = {x, y, . . .} be the set of mathematical variable names, MathDiscVar =
{i, j, . . .} be the set of discrete mathematical variable names, MathDiscDom = {I, J, . . .} be
the set of discrete mathematical variable domain names, MathFun = {f, g, . . .} be the set
of mathematical function names, MathFunKind = {known, unknown, test}, MathReg =
{Ω,Γ, . . .} be the set of region names, MathOper = {Deriv, Integral, Sum, . . .} be the set
of mathematical operator names, MathDim = {d1, d2, . . .}∪N be the set of symbolic/numeric
dimensions, and ⊙ = {+,×,−}. The syntax of SA-expressions is de�ned by the following
grammar:

F ::= V | F ⊙ F | Fn | Fun(f, [V , · · · ,V ], k) | Indexed(F,V) | Oper(o,F, [F, · · · ,F])
V ::= Var(x,R) | Indexed(F,V) | Index(i, Set(I, {l, d}))
R ::= Reg(Ω, d)
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Chapter 2. Extension Mechanisms and Their Combination

where n ∈ N, f ∈ MathFun, k ∈ MathFunKind, o ∈ MathOper, x ∈ MathVar,
i ∈ MathDiscVar I ∈ MathDiscDom, Ω ∈ MathReg, and l, d ∈ MathDim.

For simplicity and to improve the readability, we use the short-cut expressions instead of
complete SA-expressions, leading to more concise expressions. An example of the short-cut
terms is given bellow.

Ω ≡ Reg(Ω, d), (2.6)

x ≡ Var(x,Ω),

y ≡ Var(y,Ω),

i ≡ Index(i, Set(I, {1, d})),
j ≡ Index(i, Set(I, {1, d})),

u(x) ≡ Fun(u, [x], unknown),

u(x, y) ≡ Fun(u, [x, y], unknown),

v(x) ≡ Fun(v, [x], test),

ui(x) ≡ Indexed(u(x), i),

uij(x) ≡ Indexed
(
Indexed (u(x), i), j

)
, (2.7)

∂u(x)

∂x
≡ Oper(Deriv, u(x), [x]), (2.8)

∂ui(x)

∂xj
≡ Oper(Deriv, ui (x) , [xj]), (2.9)∫

u(x) dx ≡ Oper(Integral, u(x), [x]),∫
u(x, y) dx ≡ Oper(Integral, u(x, y), [x]), (2.10)∑

i

ui(x) ≡ Oper
(
Sum, ui(x), [i]

)
, (2.11)

∑
i

uij(x) ≡ Oper
(
Sum, uij(x), [i]

)
. (2.12)

The tree structures of the short-cut terms ∂xu(x), ∂uixj,
∫
u(x) dx,

∑
i u(x) and u(x)

2 are
depicted in Figure 2.2.

Figure 2.2: Tree structures of the short-cut terms ∂xu(x), ∂uixj,
∫
u(x) dx,

∑
i u(x) and u(x)

2.

The following example shows a rewriting rule that uses short-cut terms of SA-expressions.

Example 55 The rewrite rule which transforms any function u into its L2-norm is de�ned by

s := u(x) →
∫
(u(x))2dx.

50



2.4. Extension of �rst-order rules by second-order rules

By replacing the short-cut terms with their related full SA-expressions, we get the rewriting
rule:

s := Fun(U, [Var(X,Ω)], K) → Oper(Integral, Fun(U, [Var(X,Ω)], K)ˆ2, Var(X,Ω))

where U,X,K,Ω ∈ X 0 are rewriting variables.

2.4 Extension of �rst-order rules by second-order rules

In this section we introduce the �rst mechanism allowing the extension of FO-rules. It consists
in the extension of FO-rules by means of SO-rules that enjoy certain properties. More precisely,
we provide a set of requirements that the SO-rules must ful�ll so that they can extend FO-rules.

2.4.1 Parametrization of second-order rules

A SO-rewriting rule is called parametrized if its right-hand side part contains FO-variables
which are not in its left-hand side part. The idea behind parametrization is to build The
formal de�nition of parametrized SO-rules follow.

De�nition 56 (Parametrized SO-rule) Let S = l⇒ r be a SO-rule. The set of parameters
of S, denoted by V0(S), is the set of FO-variables de�ned by:

V0(S) = Var0(r) \ Var0(l)

The SO-rule S is called parametrized i� V0(S) is non-empty.

Example 57 Consider the equation

H1(u(x)) =

∫
(
du(x)

dx
)2dx (2.13)

that represents the H1 norm of the function u(x), where{
H1(u(x)) ≡ Oper(H1, u(x), x), and

x ≡ Var(x, Reg(Ω, 1))

are SA-expressions and u, x,Ω are function symbols in F0. The equation (2.13) can be turned
into the FO-rule s:

s := H1(u(x)) →
∫

(
du(x)

dx
)2dx

where {
x ≡ Var(x, Reg(Ω, 1)), and

u, x,Ω ∈ X 0

Let S be the SO-rule:

S :=
(
H1(u(x)) →

∫
du(x)

dx
dx
)
⇒
(
H1(u(x′)) →

∫ ∑
i

∂u(x′)

∂x′i
dx′
)
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Chapter 2. Extension Mechanisms and Their Combination

where 
x ≡ Var(x, Reg(Ω, 1)),

x′ ≡ Var(x, Reg(Ω, d)),

u, x,Ω, d ∈ X 0.

The SO-rule S transforms the FO-rule s into its n-dimensional counterpart. If we denote by lS
(resp. rS) the left-hand side (resp. right-hand side) of S, then we have that{

Var0(ℓS) = {u, x,Ω}, and
Var0(rS) = {u, x,Ω, d}.

Therefore,
V0(S) = Var0(rS) \ Var0(ℓS) = {d} ∈ X 0.

Since V0(S) is non-empty, then according to De�nition 56, the SO-rule S is parametrized.
The application of the SO-rule S to the FO-rule s, denoted by S(s), yields the FO-rule:

S(s) :=H1(u(x′)) →
∫ ∑

i

∂u(x′)

∂x′i
dx′

where {
x′ = Var(x, Reg(Ω, d)), and

u, x,Ω, d ∈ X 0.

The FO-rule S(s) is a generalization of the FO-rule s to the n-dimensional setting.

In the following, the concept of generalization of FO-rules by means of SO-rules is de�ned.

2.4.2 Mathematical equivalence between �rst-order rules

The notion of the mathematical equivalence between FO-rules, is a crucial ingredient in the
formulation of the extension mechanisms by SO-rules. For instance

∑i=1
i=1 β and β are mathe-

matically equivalent, where β is an SA-expression. The notion of mathematical equivalence is
formulated in De�nition 58 bellow by means of an equational system R, i.e. a set of equations.
Two FO-rules are mathematically equivalent if they are syntactically equal 7 modulo the system
R.

De�nition 58 (Mathematical equivalence) Let s1 and s2 be two FO-rules. Let R an equa-
tional system composed. The rules s1 and s2 are mathematically equivalent with respect to R,
written s1 ≃R s2, i� they are syntactically equal modulo R.

De�nition 59 (R-semantic conservation SO-rule) Let R be an equational system. A SO-
rule S is R-semantic conservation i� for all FO-rule s, we have that S(s) ≃R s.

7The syntactic equality between rewriting rules has always to be done modulo α-equivalence. Two rewriting
rules are α-equivalent if they are syntactically identical up to a renaming of their variables. For instance,
the rules f(x) → g(x) and f(y) → g(y), where x and y are variables, are α-equivalent. Two strategies are
α-equivalent if they are syntactically identical up to a renaming of the variables of their rewriting rules. For
instance, the strategies BottomUp(f(x) → g(x)) and BottomUp(f(y) → g(y)) are α-equivalent.
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Example 60 Let S0 be the SO-rule:

S0 :=
(
H1(u(x)) →

∫
(
du(x)

dx
)2 dx

)
⇒
(
H1(u(x)) →

∫ ∑
i

(
∂u(x)

∂xi
)2 dx

)
where 

x = Var(x, Reg(Ω, 1)),

i = Var(i, Reg(I, 1)),

xi = Indexed(x, i), and

i, I, u, x,Ω ∈ X 1

Notice that the variable i ranges from 1 to 1 in the right-hand side of S0. Let R be the equational
system:

R =
{∑

i

α = α,

Indexed (α, Index(i, Set(I, {1, . . . , 1}))) = α
}

(2.14)

The second equation of R states that an expression αi is equal to α if i ranges from 1 to 1. We
have that S0 is an R-semantic conservation, since for every FO-rule s, S0(s) is mathematically
equivalent to s modulo R.

2.4.3 Generalization of �rst-order rules by admissible parameterized
second-order strategies

Combining the notions of parametrization and mathematical equivalence, de�ned respectively
in De�nitions 56 and 58, we are able to de�ne the notion of generaliztion of FO-rules.

De�nition 61 (Generalization of a parametrized SO-rule) Let S be a parametrized SO-
rule and S ′ be a SO-rule. We say that S generalizes S ′ if there exists a mapping γ of the �rst
order variables in V(S) such that

γ(S) = S ′

Example 62 Consider the parametrized SO-rule S of Example 57 and the SO-rule S0 of Ex-
ample 60. We have that S is a generalization of S0, since for the mapping γ = {d → 1}, we
get γ(S ′) = S.

De�nition 63 (Admissible parametrized SO-rule) Let S be a parametrized SO-rule and
S ′ be an R-semantic conservation SO-rule for an equational system R. We say that S is
(S ′-R)-admissible i� S ′ is R-semantic conservation and S generalizes S ′. We shall simply say
that S is admissible if it is (S ′-R)-admissible for some R-semantic conservation strategy S ′.

Using the concepts introduced so far, we are ready to de�ne the notion of generalization
of a FO-rule. We notice that the notion of generalization of a FO-rule has not to be confused
with the one of generalization of a parametrized SO-rule given in De�nition 61.

De�nition 64 (Generalization of a FO-rule) Let s0 and s1 be FO-rules. We say that s1 is
a generalization of s0 i� there exists an admissible parametrized SO-rule S such that

s1 = S(s0).

And we say that S generalizes s0 to s1.
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Example 65 Let s0 be the FO-rule:

s0 := H1(u(x)) →
∫

(
du(x)

dx
)2dx,

where {
x = Var(x, Reg(Ω, 1)) and

u, x,Ω ∈ X 0.

Let s1 be the FO-rule :

s1 := H1(u(x)) →
∫ ∑

i

(
∂u(x)

∂xi
)2dx,

where 
x = Var(x, Reg(Ω, d)) and

u, x,Ω, d ∈ X 0, and

i ∈ F0.

We shall �nd an admissible parametrized SO-rule S ′ that generalizes s0 to s1. We start from
the semantic conservation SO-rule S0:

S0 :=
(
H1(u(x)) →

∫
(
du(x)

dx
)2 dx

)
⇒
(
H1(u(x)) →

∫ ∑
i

(
∂u(x)

∂xi
)2 dx

)
,

where


i = Var(i, Reg(I, 1)),

u, x,Ω ∈ X 1, and

I, i ∈ F0.

By replacing the constant 1 by the variable d ∈ X 0 in both x and i in the right-hand side of
S0, we get the SO-rule S ′:

S ′ :=
(
H1(u(x)) →

∫
(
du(x)

dx
)2 dx

)
⇒
(
H1(u(x)) →

∫ ∑
i

(
∂u(x)

∂xi
)2 dx

)
,

where x = Var(x, Reg(Ω, d)), i = Var(i, Reg(I, d)), u, x,Ω ∈ X 1 and I, i ∈ F0. We have that
the SO-rule S ′ is (S0−R)-admissible, where R is the equational system given in Eq 2.14. Since
S ′(s0) = s1, then s1 is a generalization of s0.

2.5 Extension of �rst-order terms by outward growths

In Section 2.4, we have established the �rst mechanism for the extension of FO-rules. There, we
have de�ned requirements for SO-rules so that they can correctly extend FO-rules. However,
we did not provide a clear process to build such SO-rules. To deal with this issue, we elaborate
a second mechanism for the extension of FO-terms (in this section) and of FO-rules (in section
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2.5. Extension of �rst-order terms by outward growths

2.6). This second mechanism is based on the notion of outward growths that, roughly speaking,
consists in the following: (i) �rstly, we need to de�ne rudimentary components, called added
terms, allowing, on one hand, to express the kind of extensions that we want to make, and,
on the other hand can be combined to build more complex components. (ii) Secondly, these
components will be inserted at certain positions of a FO-term and a FO-rule. That is, the
positions on which the extension is made.

In fact, these two extension mechanisms are equivalent in the sense that they have the same
e�ect when applied to the same term. Besides, outward growth mechanisms can be used to
construct semantic preservation as well as admissible SO-rules.

De�nition 66 Let Fadd = F0 ∪ {⊥} where ⊥/∈ F0. The set of "added terms", denoted by
T add, is de�ned by T add = T (Fadd,X 0).

Throughout this chapter, we assume that the symbol ⊥ occurs only once in an added term
in T add. The position of ⊥ in τ is denoted by q(τ). In what follows we use the arrow ' ' to
denote mappings/reductions rules, not to be confused with the rewrite rules. We mention that
the notion of added terms is close to the one of context.

2.5.1 Unit outward growths to the root and their composition

De�nition 67 (Unit outward growth to the root) The unit outward growth with an added
term τ ∈ T add, denoted by Gτ , is a mapping from T (F0,X 0) to T (F0,X 0) de�ned by:

Gτ : t τ [t]q.

The ground outward growth Gτ is called parametrized if τ includes variables from X 0.

The application of a unit outward growth Gτ to a term t to the root is depicted in Figure
?? bellow.

Figure 2.3: Schematic diagram of the application of a unit outward growth Gτ (with an added
term τ) to a term t to the root.

Example 68 Let t = h(c) be a term where c is a constant. Let τ = Indexed(⊥, i) be an added
term. Let Gτ : t τ [t]q be an outward growth with the added term τ . The application of Gτ to
t yields the term:

Gτ (t) = hi.

The terms t, τ and hi are depicted in Figure 2.4.
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Figure 2.4: Application of the unit outward growth Gτ (of added term τ) to the term t to the
root.

De�nition 69 (Composition of added terms) The composition for two added terms τ , τ ′ ∈
T add is de�ned in the usual sense by

τ ′//τ = τ ′[τ ]q(τ ′) ∈ T add

Remark 70 Notice that the composition of added terms is associative but not commutative.

Example 71 Let τ and τ ′ be the added termsτ = Indexed(⊥, i), and
τ ′ =

∑
i

(⊥)

Their composition τ ′//τ =
∑
i

(Indexed(⊥, i)) is depicted in Figure 2.5.

Figure 2.5: Composition of two added terms.

Notice that the composition τ//τ ′ = Indexed(
∑
i

(⊥), i) has no signi�cance since it does not

allow to build a sound SA-expression.

Property 72 (Composition of two unit outward growths to the root) For any τ , τ ′ ∈
T add, the composition Gτ ;Gτ ′ of two unit ground outward growths to the root is the unit ground
outward growth with added term τ ′//τ , i.e.

Gτ ;Gτ ′ = Gτ ′//τ : t (τ ′//τ)[t]q(τ ′//τ).

Since the composition of added terms is not commutative, the composition of outward
growth to the root is not commutative as well.
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2.5.2 Unit outward growths to a position and their combination

We next generalize the de�nition of unit outward growths to the root to be applied to any
position.

De�nition 73 (Unit outward growth to a position) Let Gτ be unit ground outward growth
and p be a position. The unit outward growth Gτ ,p to position p is a mapping

Gτ ,p : t t[Gτ (t|p)]p,

which is de�ned only if p ∈ Pos(t).

If there is no ambiguity, unit outward growths to a position will be simply called unit
outward growths.

The application of a unit outward growth Gτ ,p with an added term τ to a term t at the
position p is depicted in Figure 2.6.

Figure 2.6: Schematic diagram of the application of a unit outward growth Gτ ,p (with an added
term τ) to a term t at the position p.

Example 74 Let t = ∂xu(x) be a term and τ := Indexed(⊥, i) be an added term. Let p be the
position of x in t, that is, p = 2. The application of the unit outward growth Gτ ,p to t yields:

Gτ ,p(t) = t[Gτ (t|p)]p

= ∂xi
u(x).

The terms t, τ and Gτ,p(t) are depicted in Figure 2.7.

Property 75 (Composition of two unit outward growths to the same position) Let Gτ ,p

and Gτ ′,p be two unit outward growths to the same position p. Their composition, denoted by
Gτ ,p;Gτ ′,p, can be expressed as follows:

Gτ ,p;Gτ ′,p = Gτ ′//τ,p : t t[Gτ ′//τ (t|p)]p.
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Figure 2.7: Application of the unit outward growth Gτ (of added term τ) to the term t at the
position p.

Example 76 Let t =
∫
a dx be a term and p be the position of a in t. Let τ and τ ′ be the

added terms: τ = Indexed(⊥, i),
τ ′ =

∑
i

(⊥).

Let Gτ,p and Gτ ′,p be two unit outward growths to the position p. We have

τ ′//τ =
∑
i

(Indexed(⊥, i)).

Therefore

(Gτ ,p;Gτ ′,p) (t) = Gτ ′//τ,p(t)

=

∫ ∑
i

ai dx.

We de�ne next the composition of outward growths to di�erent positions.

De�nition 77 (Composition of two unit outward growths to di�erent positions) Let
Gτ ,p and Gτ ′,p′ be two unit outward growths to the position p and p′, respectively. Their compo-
sition Gτ ,p;Gτ ′,p′ is de�ned if and only if when p′ ⊑ p.

Notice that if the positions p and p′ are incomparable, i.e. p ∥ p′ then Gτ ,p;Gτ ′,p′ = Gτ ′,p′ ;Gτ ,p.
On the other hand, we can justify the condition p′ ⊑ p on the positions p and p′ in De�nition
77, i.e. p′ ≤ p or p ∥ p′, while composing unit outward growths as follows. The application
of a unit outward growth at a position p followed by an application of another unit outward
growth at a lower position p′ might lead to an undesired result since the new position at which
we would like to apply the second outward growth might change. This possible change of the
position does not happen when the two positions p and p′ are incomparable or the position p
is lower than p′. As an illustration, see Example 78 bellow.

Example 78 Let t :=
∫
(∂xu(x))

2 dx be a term. Let τ and τ ′ be the added termsτ = Indexed(⊥, i),
τ ′ =

∑
i

(⊥).
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Let Gτ ,112 and Gτ ′,1 be the outward growths to the positions 112 and 1 respectively, and associated
with the added terms τ and τ ′ respectively. The term t, the positions 1 and 112, and the added
terms τ and τ ′ are depicted in Figure 2.8.

Figure 2.8: The term t =
∫
(∂xu(x))

2 dx and the added terms τ = Indexed(⊥, i) and τ ′ =∑
i

(⊥).

Since 1 < 112, the composition Gτ ,112;Gτ ′,1 is well de�ned. The result of the application of
Gτ ,112;Gτ ′,1 to t is depicted in Figure 2.9. This is done in two steps: �rstly we apply Gτ ,112 to t,
yielding the term t1, then we apply Gτ ′,1 to t1.

However, the application of Gτ ′,1 followed by the application to t of Gτ ,112 yields an undesired
result as shown in Figure 2.10. Notice that after the application of Gτ ′,1 to t that give the term
w1, the position of w1 at which we would like to apply Gτ has changed. In other words, to obtain
the desired result, the outward growth Gτ has to be applied at the position 1112 of w1 instead of
112.

In order to be able to construct complex outward growths, we slightly generalize the notion
of composition of two unit outward growths given in De�nition 77 so that we can compose two
unit outward growths to two positions independently on their relative order. The generalized
composition of unit outward growths is called combination. Its de�nition follows.

De�nition 79 (Combination of two unit outward growths) The combination of two unit
outward growths Gτ ,p and Gτ ′,p′, denoted by Gτ ,p♢Gτ ′,p′, is de�ned as follows:

Gτ ,p♢Gτ ′,p′ =

{
Gτ ,p;Gτ ′,p′ if p ⊑ p′,

Gτ ′,p′ ;Gτ ,p otherwise.

Notice that the combination operation ♢ is associative but not commutative. However it
can be commutative if the positions to witch the outward growths are applied are distinct as
stated in the following Proposition.

Proposition 80 Let τ 1, τ 2 be two added terms and let q1, q2 be two positions. If q1 ̸= q2 then

Gτ1,q1 ♢Gτ2,q2 = Gτ2,q2 ♢Gτ1,q1 .
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Figure 2.9: The application of the composition Gτ ′,112;Gτ ′,1 to t.

2.5.3 Outward growths and their combination

De�nition 81 (Outward growth) Let τ⃗ = (τ 1, ..., τn) be a tuple of n added terms and let
q⃗ = (q1, ..., qn) be a tuple of n positions with p1 ≥ p2 ≥ . . . ≥ pn. The outward growth
Gτ⃗ ,q⃗ on the added terms τ⃗ to the positions q⃗ is the composition of the n unit outward growths
Gτ1,q1 , . . . ,Gτn,qn. That is,

Gτ⃗ ,q⃗ = Gτ1,q1 ; . . . ; Gτn,qn .

In the following we shall de�ne the operation of combination of two outward growths Gτ⃗ ,q⃗

and Gτ⃗ ′,q⃗′ , where τ⃗ = (τ 1, . . . , τn), q⃗ = (q1, . . . , qn), τ⃗
′ = (τ ′1, . . . , τ

′
m) and q⃗′ = (q′1, ..., q

′
m).

This operation generalizes the operation of combination of unit outward growths at di�erent
positions given in De�nition 77. Firstly, we need to perform some treatment on the vectors of
positions q⃗ and q⃗′ as well as on their related vectors of added terms τ⃗ and τ⃗ ′.

De�nition 82 Let τ⃗ = (τ 1, . . . , τn) and τ⃗ ′ = (τn+1, . . . , τn+m) be two tuples of added terms.
Let q⃗ = (q1, . . . , qn) and q⃗′ = (qn+1, . . . , qn+m) be two tuples of positions, where the positions
q1, . . . , qn+m are pairwise comparable, i.e. either qi ≤ qj or qj ≤ qi for all i, j ∈ {1, . . . , n+m}.
De�ne the mapping f as f(qi) = τ i, for all i ∈ {1, . . . , n+m}. We de�ne the product (τ⃗ , q⃗)⊗
(τ⃗ ′, q⃗′) as follows.

1. Firstly, sort the tuple (q1, . . . , qn+m) in the descending order. That is, let (q′1, . . . , q
′
n+m)

be such that:

i.) {q′1, . . . , q′n+m} = {q1, . . . , qn+m}, and
ii.) q′i ≤ q′j i� i < j for all i, j ∈ {1, . . . , n+m}.

2. Secondly, delete the redundant positions from (q′1, . . . , q
′
n+m). That is, let

q⃗′′ = (q′′1 , . . . , q
′′
r ) (2.15)
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2.5. Extension of �rst-order terms by outward growths

Figure 2.10: The application Gτ ,112(Gτ ′,1(t)) yields an undesired result.

be such that {q′′1 , . . . , q′′r} = {q′1, . . . , q′n+m}, and q′′i > q′′i+1 for all i ∈ {1, . . . , r − 1}. This
yields a surjective function g : {1, . . . , n+m} → {1, . . . , r} s.t. g(i) = j i� q′′i = q′j.

3. Thirdly, replace all the added terms in (f(q′1), . . . , f(q
′
n+m)) which are to the same position

by their composition. That is, let

τ⃗ ′′ = (τ ′′1, . . . , τ
′′
r) (2.16)

be such that: τ ′i = f(q′k1)// . . . //f(q
′
kd
) i� g−1(i) = {k1, . . . , kd} and k1 < k2 < . . . < kd

for all i ∈ {1, . . . , r}.

4. Finally, we let

(τ⃗ , q⃗)⊗ (τ⃗ ′, q⃗′)
def
= (τ⃗ ′′, q⃗′′)

where τ⃗ ′′ is de�ned in Eq. (2.16) and q⃗′′ is de�ned in Eq. (2.15) above.

The following Proposition is not hard to prove.

Proposition 83 The operation ⊗ is associative.

However, the operation ⊗ is not commutative in general, but it can be under commutative
under some assumptions, namely when each position of q⃗ is distinct than each position of ⨿′:

Proposition 84 Let τ⃗ and τ⃗ ′ be a two tuples of n added terms. Let q⃗ = (q1, ..., qn) and
q⃗′ = (q′1, ..., q

′
n) be two tuples of n positions with q1 ≥ q2 ≥ . . . ≥ qn and q′1 ≥ q′2 ≥ . . . ≥ q′n.

Then,

if ∀i = 1, . . . , n, qi ̸= q′i then (τ⃗ , q⃗)⊗ (τ⃗ ′, q⃗′) = (τ⃗ ′, q⃗′)⊗ (τ⃗ , q⃗)

Now we are ready to de�ne the combination of two outward growths.

De�nition 85 (Combination of two outward growths) The combination of two outward
growths Gτ⃗ ,q⃗ and Gτ⃗ ′,q⃗′ is de�ned by

Gτ⃗ ,q⃗ ♢Gτ⃗ ′,q⃗′
def
= Gτ⃗ ′′,q⃗′′ , where (τ⃗ ′′, q⃗′′) = (τ⃗ , q⃗)⊗ (τ⃗ ′, q⃗′).
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Proposition 86 The operation ♢ of combination of outward growths is associative.

Proof. The associativity of ♢ follows from the associativity of the product operation ⊗, see
Proposition 83.

The combination operation ♢ is not commutative in general since ⊗ is not commutative.
However, we can generalize the Proposition 80 and claim that the operation ♢ can be commu-
tative under some conditions:

Proposition 87 Let τ⃗ and τ⃗ ′ be a two tuples of n added terms. Let q⃗ = (q1, ..., qn) and
q⃗′ = (q′1, ..., q

′
n) be two tuples of n positions with q1 ≥ q2 ≥ . . . ≥ qn and q′1 ≥ q2 ≥ . . . ≥ q′n.

Then,

if ∀i = 1, . . . , n, qi ̸= q′i then G(τ⃗ ,q⃗)♢G(τ⃗ ′,q⃗′) = G(τ⃗ ′,q⃗′)♢G(τ⃗ ,q⃗)

Proof. The proof follows from Proposition 84.
The following Proposition relates the outward growths to the unit outward growths by

means of the operation ♢.
Proposition 88 Let τ⃗ = (τ 1, . . . , τn) a tuple of added terms and let q⃗ = (q1, . . . , qn) be a tuple
of positions where q1 ≥ . . . ≥ qn. Then,

Gτ⃗ ,q⃗ = Gτ1,q1♢ . . .♢Gτn,qn .

Proof. Immediate from the de�nition of ⊗, that is, (τ⃗ , q⃗) = (τ 1, q1)⊗ . . .⊗ (τn, qn).

Remark 89 Let τ⃗ 1, . . . , τ⃗n be a n tuples of added terms, and q⃗1, . . . , q⃗n be n tuples of positions
where |⃗τ i| = |q⃗i| for all i ∈ {1, . . . , n}. From Proposition 86 on the associativity of the operation
♢ of the combination of outward growths, it follows that there exist a tuple of added terms τ⃗
and a tuple of positions q⃗ such that

Gτ⃗ ,q⃗ = Gτ⃗1,q⃗1 ♢ . . . ♢Gτ⃗n,q⃗n .

Example 90 (Combination of outward growths) Let t be the term

t :=

∫
a∂xu(x) dx

depicted on the top left of Figure 2.11. Consider the following subterms of t with their related
positions:

t|1 = a∂xu(x),

t|11 = a,

t|121 = u(x), and

t|122 = x.

Consider the added terms τ 1, τ 11, τ 122, τ
′
1, τ

′
11 and τ ′121:

τ 1 =
∑
i

(⊥),

τ 11 = τ 122 = Indexed(⊥, i),

τ ′1 =
∑
j

(⊥), and

τ ′11 = τ ′121 = Indexed(⊥, j).
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Consider the outward growths Gτ⃗ ,p⃗ and Gτ⃗ ′,p⃗′:

Gτ⃗ ,p⃗ = Gτ122,122 ♢Gτ11,11 ♢Gτ1,1 , and

Gτ⃗ ′,p⃗′ = Gτ ′121,121
♢Gτ ′11,11

♢Gτ ′1,1
.

A straightforward application of De�nition 85 gives
τ⃗ = (τ 122, τ 11, τ 1),

p⃗ = (122, 11, 1),

τ⃗ ′ = (τ ′121, τ
′
11, τ

′
1), and

p⃗′ = (121, 11, 1).

Now we shall compute the outward growth Gτ⃗ ′′,p⃗′′:

Gτ⃗ ′′,p⃗′′ = Gτ⃗ ,p⃗ ♢Gτ⃗ ,p⃗

That is, we need to compute τ⃗ ′′ and p⃗′′ which, according to De�nition 85, are de�ned by

(τ⃗ ′′, p⃗′′) = (τ⃗ , p⃗)⊗ (τ⃗ ′, p⃗′).

Notice that 11 > 1 and both the positions 122 and 121 are incomparable with the positions 11
and 1. Besides, the positions 122 and 121 are incomparable. On the other hand, p⃗ and p⃗′ share
the positions 11 and 1. Therefore, from De�nition 82 it follows that{

p⃗′′ = (122, 121, 11, 1), and

τ⃗ ′′ = (τ 122 , τ
′
121
, τ 11//τ

′
11
, τ 1//τ

′
1
)

Notice that, from Proposition 88, it follows that the outward growth Gτ⃗ ′′,p⃗′′ can be written as
a combination of unit outward growths as follows:

Gτ⃗ ′′,p⃗′′ = Gτ122,122 ♢Gτ ′121,121
♢G(τ11//τ ′11),11

♢G(τ1//τ ′1),1
(2.17)

According to De�nition 79, the combination of unit outward growths in Eq. (2.17) can be written
as a composition of unit outward growths as follows:

Gτ⃗ ′′,p⃗′′ = Gτ122,122 ; Gτ ′121,121
; G(τ11//τ ′11),11

; G(τ1//τ ′1),1
(2.18)

Using the formulation of the outward growth Gτ⃗ ′′,p⃗′′ given in Eq. (2.18), the application of
Gτ⃗ ′′,p⃗′′ to the term t is illustrated in Figure 2.11. It yields the term:

Gτ⃗ ′′,p⃗′′(t) =

∫ ∑
i

∑
j

aij∂xi
uj(x) dx.
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2.6 Outward growths as second-order rewriting rules

We follow the extension approach established in Section 2.5. In this section we formulate the
outward growths of the previous section as well as their combination as SO-strategies. For
readability, we call them second-order outward growths.

2.6.1 Second-order outward growth

A SO-unit outward growth is a SO-order rule l ⇒ r where its right-hand side term r is the
result of the application of a FO-outward growth to l at some position, see De�nition 91 bellow.
We notice that we only deal with the SO-outward growths applied to the root since it is enough
to consider the application of a SO-outward growth (i.e. a SO-rule) to a FO-rule to the root.
In other words, the left-hand term l above is considered as a FO-rule (that possibly contains
SO-variables) and the SO-outward growth l ⇒ r will be applied to a FO-rule (to the root).
The formal de�nition of SO-unit outward growth to the root follows.

De�nition 91 (Second-order unit outward growth to the root) Let τ ∈ T add(F ,X ) be
an added term, p be a position, and l a SO-term. The SO-unit outward growth to the root Gl

τ ,p

is the SO-rewrite rule:

Gl
τ ,p

def
= l⇒ Gτ ,p(l)

SO-outward growths to the root can be de�ned similarly to SO-unit outward growths to the
root.

De�nition 92 (Second-order outward growth to the root) Let τ⃗ be a tuple of n added
terms, p⃗ be a tuple of n positions in the decreasing order, and l a SO-term. The SO-outward
growth to the root Gl

τ⃗ ,p⃗ is the SO-rule:

Gl
τ⃗ ,p⃗

def
= l⇒ Gτ⃗ ,p⃗(l)

The application of Gl
τ⃗ ,p⃗ to a SO-term is de�ned in the usual way.

We recall that the notion of the most general uni�er of a uni�cation problem E, denoted
by mgu(E), was given in De�nition 52.

2.6.2 Combination of second-order outward growths

The notion of the combination of SO-outward growths to the root can be de�ned in a natural
way by means of the combination of their related (FO-)outward growths as follows.

De�nition 93 (Combination of two SO-outward growths) Let Gl
τ⃗ ,p⃗ and Gl′

τ⃗ ′,p⃗′
be two SO-

outward growths where Var1(l) ∩ Var1(l′) = ∅. Assume that the mgu of the uni�cation problem
{l .= l′} with respect to the second-order variables is decidable. The combination Gl

τ⃗ ,p⃗ ♢Gl′

τ⃗ ′,p⃗′
is

de�ned by

Gl
τ⃗ ,p⃗ ♢Gl′

τ⃗ ′,p⃗′
def
= Gl′′

τ⃗ ′′,p⃗′′ where

{
Gτ⃗ ′′,p⃗′′ = Gτ⃗ ,p⃗ ♢Gτ⃗ ′,p⃗′ , and

l′′ = σ(l) = σ(l′), where σ = mgu({l .= l′}).
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Notice that if Var1(l)∩Var1(l′) ̸= ∅, then one can rename the SO-variables in both l and l′ so
that Var1(l)∩Var1(l′) = ∅. Notice also that from De�nition 93 it follows that the combination
of two SO-outward growth is a SO-outward growth.

Proposition 94 The combination operation ♢ of SO-outward growths is associative.

Proof. The claim follows, on the one hand, from the associativity of the composition of out-
ward growths, see Proposition 86, and on the other hand from the fact that mgu({σl,l′

.
= l′′}) =

mgu({l .= σl′,l′′}), where σl,l′ = mgu({l .= l′}) and σl′,l′′ = mgu({l′ .= l′′}).

Example 95 Let
l1 = L2(u(x)) →

∫
v2 dz,

τ 1 = Indexed(⊥, i),
p1 = Pos(v, l1),

and


l2 = L2(u′(x′)) →

∫
v′ dz′,

τ 2 =
∑

(⊥, i),
p2 = Pos(v′, l2),

where

Ω ≡ Reg(Ω, d),

x ≡ Var(x,Ω),

i ≡ Index(i, Set(I, {1, d})),
u(x) ≡ Fun(u, [x], unknown),

and u, x,Ω, d, v, z, u, x,Ω′, d′, v′, z′ are SO-variables in X 1 and i is a constant in F0. Let Gl1
τ1,p1

and Gl2
τ2,p2

be two SO-unit outward growths. A simple computation yields:
Gτ1,p1(l1) = L2(u(x)) →

∫
(vi)

2 dz,

and

Gτ2,p2(l2) = L2(u′(x′)) →
∫ ∑

i

v′ dz′.

where

vi ≡ Indexed(v, i).

Therefore we have:

Gl1
τ1,p1

def
= l1 ⇒ Gτ1,p1(l1)

=
(
L2(u(x)) →

∫
(v)2 dz

)
⇒
(
L2(u(x)) →

∫
(vi)

2 dz
)
, (2.19)

and

Gl2
τ2,p2

def
= l2 ⇒ Gτ2,p2(l2)

=
(
L2(u′(x′)) →

∫
v′ dz′

)
⇒
(
L2(u′(x′)) →

∫ ∑
i

v′ dz′
)
. (2.20)

The tree structure of Gl1
τ1,p1

(l1) and Gl2
τ2,p2

(l2) is depicted in Figure 2.12 and Figure 2.13,
respectively.
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Now we compute the combination Gl1
τ1,p1
♢Gl2

τ2,p2
, which is de�ned (see De�nition 93) by:

Gl1
τ1,p1
♢Gl2

τ2,p2

def
= Gl

τ⃗ ,p⃗ where

{
Gτ⃗ ,p⃗ = Gτ1,p1 ♢Gτ2,p2 , and

l = σ(l1) = σ(l2), where σ = mgu({l1
.
= l2}).

On the one hand, since p1 > p2, it follows from De�nitions 85 and 82 that:{
p⃗ = (p1, p2), and

τ⃗ = (τ 1, τ 2)

On the other hand, we need to compute the substitution σ which is the mgu of the uni�cation
problem: 

u
.
= u′

x
.
= x′

v2
.
= v′

z
.
= z′

We get:

σ = {u′ 7→ u, x′ 7→ x, v′ 7→ v2, z′ 7→ z}.

Finally,

Gl1
τ1,p1
♢Gl2

τ2,p2

def
= Gl

τ⃗ ,p⃗

= Gσ(l1)
(τ1,τ2),(p1,p2)

= σ(l1)⇒ G(τ1,τ2),(p1,p2)(σ(l1))

=
(
L2(u(x)) →

∫
v2 dz

)
⇒
(
L2(u(x)) →

∫ ∑
i

(vi)
2 dz

)
.

2.7 Extension of �rst-order terms by combining outward

growths and parametrizations

In order to construct richer extensions it is natural to combine the extension tools that we have
at our disposal so far. That is, the combination of outward growths and parametrizations gives
arise to richer mechanism called generalization.

2.7.1 A motivating example

Let Ω be a d dimensional domain, u a scalar function de�ned on Ω, and u = (u1, ..., un) a vector
function de�ned on Ω. The L2 norm of u and u are respectively de�ned by:

||u||L2(Ω) =
(∫

Ω
|u|2
)1/2

,

||u||L2(Ω) =

(
n∑

i=1

∫
Ω
|ui|2

)1/2

.
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Their formulation by means of rewriting rules is given by the FO-rewriting rules s and s′,
respectively, as follows:

s := L2 (u (x)) →
(∫

Ω
|u (x) |2dx

)1/2
,

s′ := L2
(
ui (x)

)
→

(
n∑

i=1

∫
Ω
|ui (x) |2dx

)1/2

,

where 
Ω = Reg (Ω, d) ,

x = Var (x,Ω) ,

u = Fun (u, x) ,

i = Index (i, Set (I, {1, ..., n})) ,

and Ω, x, u, I, i are FO-variables in X 0 and d, n are constants in F0. By applying the notions
and techniques developed in Section 2.3, we show next how to build the FO-rules s and s′ by
means of SO-rules. For this purpose, we need the SO-rule s0 and s1 de�ned as follows:

s0 := L2
(
ui (x)

)
→

(
1∑

i=1

∫
Ω
|ui (x) |2dx

)1/2

,

s1 := L2
(
ui′ (x)

)
→

(
r∑

i′=1

∫
Ω
|ui′ (x) |2dx

)1/2

,

where {
i = Index (i, Set (I, {1, ..., 1})) ,
i′ = Index (i, Set (I, {1, ..., r})) ,

and r is a FO-variable in X 0.
We de�ne the SO-rules S0 and S1 as follows:{

S0 := s⇒ s0,

S1 := s⇒ s1.

The following claims are not hard to prove:

Fact 96 The following hold:

1. The SO-rule S0 is a semantic conservation SO-rule w.r.t the rewriting system R de�ned
in Eq (2.14) of Section 2.3.

2. S1 is a parametrized SO-rule in the sense of De�nition 56 of Section 2.3.

3. The SO-rule S1 is admissible with respect to S0.

4. The FO-rule s′ is a generalization of the FO-rule s in the sense of De�nition 61 of Section
2.3.
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Item 2 follows from the fact that

Var0(S1) = Var0(s1)− Var0(s) = {r} ≠ ∅.

Item 3 follows from the fact that

σ
(
S1
)
= S0, where σ = {r 7→ 1} .

Item 4 follows from the fact that S1 is an admissible SO-rule and that

S1(s) = s′ (modulo α-conversion)

We give next an equivalent formulation of S0 and S1 in terms of a combination of outward
growths and parametrization, where parametrization means the replacement of a FO-term by
a FO-variable. For this purpose we introduce two unit outward growths. Let τ 1 and τ 2 be the
added terms:

τ 1 = Indexed (⊥, Index (i, Set (I, {1, ..., 1}))) ,
τ 2 = Oper (Sum,⊥, Index (i, Set (I, {1, ..., 1})) , ∅) .

They are depicted in Figure 2.14.
Let p1, p2 and p3 be the positions of s de�ned by:

p1 = 22,

p2 = 32,

p3 = 32222.

Notice that p1 ∥ p2 and p1 ∥ p3 and p2 < p3. The tree structure of s and the related positions
are depicted in Figure 2.15.

We de�ne Gτ⃗ ,p⃗ as follows:

Gτ⃗ ,p⃗
def
= Gτ1,p1 ♢Gτ1,p3 ♢Gτ2,p2

= Gτ1,p1 ;Gτ1,p3 ;Gτ2,p2

= G(τ1,τ1,τ3),(p1,p3,p2)

We have that

Gτ⃗ ,p⃗(s) = s0.

Let q1, q2 and q3 be the positions in Pos (s0) de�ned by:
q1 = 22222,

q2 = 322222222,

q3 = 32322.

Notice that q1 ∥ q2 and q2 ∥ q3 and q1 ∥ q3. Let r be a FO-variable in X 0. We de�ne the
parametrization P(r⃗,q⃗) as follows

P(r⃗,q⃗)
def
= P(r,r,r),(q1,q2,q3)

def
= Pr,q1 ;Pr,q2 ;Pr,q3
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where Pr,q(t) stands for the replacement of the subterm of t at the position q (i.e. t|q) by r.
Finally we have that

(Gτ⃗ ,p⃗ ; P(r⃗,q⃗))(s) = P(r⃗,q⃗)(Gτ⃗ ,p⃗(s))

= P(r⃗,q⃗)(s0)

= s1.

The tree structure of the rules s0 and s1 are depicted in Figure 2.17 and 2.18.

Discussion. The example 2.7.1 above shows the constant symbols 1 in unit outward growths
upon the added terms τ 1 and τ 2, must be repalced by a FO-variable. Therefore, while combining
outward growths and parametrizations, one has to apply the outward growths �rst then the
parametrizations. In what follows we shall de�ne the combination of two parametrizations

Px1,q1 ♢Px2,q2

as well as the composition of outward growth with parametrization

Gτ ,p ♢Px,q

2.7.2 Unit parametrizations, parametrizations and their combination

The parametrization consists in replacing a term by a FO-variable at a given position.

De�nition 97 (Unit parametrization) Let t be a term, q a position of t and x a FO-variable
in X 0. A unit parametrization Px,q : X 0 7→ T (F0,X 0) is a mapping:

Px,q : t 7−→ t [x]q .

A composition of unit parametrizations applied to incomparable positions yields the notion
of parametrization:

De�nition 98 (Parametrization) Let q⃗ = (q1, · · · , qn) be a tuple of n ≥ 1 positions such
that qi ∥ qj for all i, j ∈ {1, . . . , n} and i ̸= j. Let x⃗ = (x1, · · · , xn) be a tuple of FO-variables
in X 0. A parametrization Px⃗,q⃗ is de�ned by

Px⃗,q⃗
def
= Px1,q1 ; . . . ;Pxn,qn .

De�nition 99 (The combination of two parametrizations) Let Px⃗,p⃗ and Py⃗,q⃗ be two parametriza-
tions, where p⃗ = (p1, · · · , qn) and q⃗ = (q1, · · · , qm) are two tuples of positions, and x⃗ =
(x1, . . . , xn) and y⃗ = (y1, . . . , ym) are two tuples of FO-variables in X 0. The combination
of Px⃗,p⃗ and Py⃗,q⃗ is de�ned if and only when

pi ∥ qj for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

as the parametrization Pz⃗,r⃗:

Px⃗,p⃗ ♢Py⃗,q⃗
def
= Pz⃗,r⃗, where

{
z⃗ = (x1, . . . , xn, y1, . . . , xm), and

r⃗ = (p1, . . . , pn, q1, . . . , qm)
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2.7.3 Unit generalizations, generalizations and their combination

The de�nition of unit generalization follows.

De�nition 100 (Unit generalization) Let q and p be two positions. Let τ be an added term
and x be a FO-variable in X 0. A unit generalization Gx,p

τ,q is de�ned by

Gx,p
τ,q =

{
Gτ ,q;Px,p if p @ q

unde�ned, otherwise

where Gτ,q is a unit outward growth (see de�nition 73) and Px,p is a unit parametrization (see
de�nition 97).

We notice that while composing an outward growth Gτ,q and a parametrization Px,p to build a
generalization Gx,p

τ,q = Gτ ,q;Px,p, it is, on the one hand more �exible to start with the application
of the outward growth �rst since this allows, among other things, to apply the parametrization
to the added term. On the hand, the condition p @ q in De�nition 100 on the positions q and p
(in which the outward growth and the parametrization are applied respectively) is natural and
ensures that a parametrization can either

i) operate on a proper subterm of t|q, i.e. in this case we have p < q, or

ii) operate on a subterm of t that does not overlap with t|q, i.e. in this case we have p ∥ q.

De�nition 101 (Generalization) Let −→q = (q1, ..., qn) and
−→p = (p1, ..., pm) be two tuples of

positions such that qi ∥ qj for all i, j ∈ {1, . . . , n} and i ̸= j, and pi ∥ pj for all i, j ∈ {1, . . . ,m}
and i ̸= j. Let −→τ = (τ 1, ..., τn) be a tuple of added terms and −→x = (x1, ..., xm) be a tuple of
FO-variables in X 0.

A generalization Gx⃗,p⃗
τ⃗ ,q⃗ is de�ned by

Gx⃗,p⃗
τ⃗ ,q⃗ =

{
Gτ⃗ ,q⃗ ; Px⃗,p⃗ if pi @ qj,∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . ,m}
unde�ned, otherwise

where Gτ⃗ ,q⃗ is an outward growth (see De�nition 81) and Px⃗,p⃗ is a parametrization (see De�nition
98).

We generalize the relation @ between positions (Item (2) of De�nition 45) to pairs of posi-
tions.

De�nition 102 Let q1, q2, p1 and p2 be positions. De�ne the binary relation @ between pairs
of positions as follows:

(q1, p1) @ (q2, p2) i� q1 ⊑ q2 and p1 @ q2 and p1 @ p2

De�nition 103 (Composition of two unit generalizations) Let Gx1,p1
τ1,q1

and Gx2,p2
τ2,q2

be two
unit generalizations. Their composition, denoted by Gx1,p1

τ1,q1
; Gx2,p2

τ2,q2
, is de�ned as follows:

(
Gx1,p1

τ1,q1
; Gx2,p2

τ2,q2

)
(t) =

{
Gx2,p2

τ2,q2
(Gx1,p1

τ1,q1
(t)) if (q1, p1) @ (q2, p2)

unde�ned, otherwise.
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We notice that the condition (q1, p1) @ (q2, p2) on the positions in De�nition 103 are natural
since:

i) q1 ⊑ q2 ensures that the composition of the outward growths Gτ1,q1 Gτ2,q2 can be done
correctly, see De�nition 77.

ii) p1 @ q2 ensures that the outward growth Gτ2,q2 can not be applied at a position bellow p1
since the subterm at p1 has been replaced by a variable by means of the parametrization
Px1,p1 .

iii) similarly, p1 @ p2 ensures that the parametrization Px2,p2 can not be applied at a posi-
tion bellow p1 since the subterm at p1 has been replaced by a variable by means of the
parametrization Px1,p1 .

Lemma 104 The composition of two unit generalizations is a generalization.

Proof. Let Gx1,p1
τ1,q1

and Gx2,p2
τ2,q2

be two unit generalizations with (q1, p1) @ (q2, p2). To prove the
Lemma it is enough to compute τ⃗ , q⃗, x⃗, p⃗ such that

Gx⃗,p⃗
τ⃗ ,q⃗ = Gx1,p1

τ1,q1
; Gx2,p2

τ2,q2

This can be achieved by considering many cases depending on the relative position of p1, p2, q1
and q2.

De�nition 105 (Combination of two unit generalizations) Let Gx1,p1
τ1,q1

and Gx2,p2
τ2,q2

be two
unit generalizations. Their combination, denoted by Gx1,p1

τ1,q1
♢Gx2,p2

τ2,q2
, is de�ned as follows:

Gx1,p1
τ1,q1
♢Gx2,p2

τ2,q2
=


Gx1,p1

τ1,q1
; Gx2,p2

τ2,q2
if (q1, p1) @ (q2, p2)

Gx2,p2
τ2,q2

; Gx1,p1
τ1,q1

if (q2, p2) @ (q1, p1)

unde�ned, otherwise.

Lemma 106 The combination of two unit generalizations is a generalization.

Proof. Follows from Lemma 106 on the composition of two unit generalizations.
In order to inductively de�ne the composition of two generalizations, we need �rst to consider

the composition of a generalization and a unit generalization. Before that we need to generalize
the relation @ between pairs of positions (De�nition 102).

De�nition 107 Let q⃗ = (q1, . . . , qn) and p⃗ = (p1, . . . , pn) be two tuples of positions. Let q and
p be two positions. De�ne the binary relation @ as follows:

(q⃗, p⃗) @ (q, p) i� qi ⊑ q and pi @ q and pi @ p, for all i = 1, . . . , n

De�nition 108 (Composition of a generalization and a unit generalization) Let Gx⃗,p⃗
τ⃗ ,q⃗

be a generalization and Gx,p
τ,q be a unit generalizations, where

τ⃗ = (τ 1, . . . , τn)

q⃗ = (q1, . . . , qn)

x⃗ = (x1, . . . , xm)

p⃗ = (p1, . . . , pn)

The composition of Gx⃗,p⃗
τ⃗ ,q⃗ and Gx,p

τ,q, denoted by Gx⃗,p⃗
τ⃗ ,q⃗ ; Gx,p

τ,q, is de�ned as follows:(
Gx⃗,p⃗

τ⃗ ,q⃗ ; G
x,p
τ,q

)
(t) =

{
Gx,p

τ,q(G
x⃗,p⃗
τ⃗ ,q⃗(t)) if (q⃗, p⃗) ⊑ (q, p)

unde�ned, otherwise.
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Similarly, once can show that the composition of a generalization and a unit generalization
is actually a generalization. Therefore, one can inductively de�ne the composition/combination
of two generalizations as well.

2.8 Application to the extension of the derivation of the

linear operator associated to the microscopic problem

to the multi-dimensional and the vector-valued setting.

In this section we apply the technique of outward growth and their combination to extend
one step of the two-scale model derivation of the stationary heat equation. More precisely,
we show how to extend the rewriting rule that corresponds to the derivation of the linear
operator associated to the microscopic problem in the reference proof to the multi-dimensional
and the vector-valued settings as well as their combination. It turns out that such combination
is nothing but the derivation of the linear operator associated to the microscopic problem of
elasticity.

The derivation of the linear operator associated to the microscopic
problem in the reference proof as a FO-rewriting rule.

Let sref be the FO-rewrite rule used in the reference proof that corresponds to the derivation
of the linear operator associated to the microscopic problem. It is de�ned as follows:

sref :=

(∫
a
∂Varphi
∂x1

∂w

∂x1
dx1 = −µ

∫
a
∂w

∂x1
dx1
)

→
(
∂Varphi
∂x1

= µ
∂θ

∂x1

)
(2.21)

where 

a = Fun(a, x, known),

Varphi = Fun(Varphi, x, unknown),
w = Fun(w, x, test),

x1 = Var(x1,Ω),

Ω = Reg(Ω, d),

θ = Fun(θ, x1, known),

and {
a, x,Varphi, w, x1,Ω, d, µ are FO-variables in X 0, and

” = ”, θ, test , known , unknown are function symbols in F0.

Notice that the equality symbol "=" in sref is considered as a function symbol in F0 of arity
two. However, we write "t1 = t2" instead of "= (t1, t2)", where t1 and t2 are two terms. The
tree structure of the rule sref is depicted in Figure 2.19, together with the positions p1, . . . , p17.
These positions will be used next to de�ne outward growths.
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The derivation of the linear operator associated to the microscopic
problem in the multi-dimensional setting as a FO-rewriting.

Let snd be the FO-rewriting rule that represents the derivation of the linear operator associated
to the microscopic problem in the multi-dimensional setting. It is the counterpart of the FO-
rewriting rule sref (de�ned in Eq. (2.21)) in the multi-dimensional setting. It is de�ned as
follows:

snd :=

∑
i,j

∫
aij
∂Varphi
∂x1j

∂w

∂x1i
dx1 = −

∑
i,j

µj

∫
aij

∂w

∂x1i
dx1

→

∂Varphi
∂x1j

=
∑
p

µp

∂θp

∂x1j


(2.22)

where 
i = Index (i, Set (I, {1, ..., d})) ,
j = Index (j, Set (J, {1, ..., d})) ,
p = Index (p, Set (P, {1, ..., d})) .

The derivation of the linear operator associated to the microscopic
problem in the vector-valued setting as a FO-rule.

Let sv be the FO-rewriting rule that represents the the derivation of the linear operator as-
sociated to the microscopic problem in the vector-valued setting. It is the counterpart of the
FO-rewriting rule sref of Eq. (2.21) in the multi-valued setting. It is de�ned as follows:

sv :=

∑
k,l

∫
akl
∂Varphi

l

∂x1
∂wk

∂x1
dx1 = −

∑
k,l

µl

∫
akl
∂wk

∂x1
dx1

→

∂Varphil
∂x1

=
∑
q

µq

∂θql

∂x1


(2.23)

Extension of the FO-rule (i.e. the derivation of the linear operator) of
the reference proof to the multi-dimensional setting by an admissible
SO-rule.

We show how to construct the FO-rule rnd needed in the multi-dimensional setting (given in
Eq. (2.22)) out of the FO-rule sref used in the reference proof (given in Eq. (2.21)) by means
of an admissible SO-rule. That is, we need to �nd an admissible SO-rule Snd such that

Snd(sref ) = snd (2.24)

Let Snd be the SO-rule:

Snd := ℓnd ⇒ rnd (2.25)

where
ℓnd :=

(∫
a
∂Varphi

∂x
∂w
∂x

dx = −µ
∫
a∂w

∂x
dx
)
→
(

∂Varphi
∂x

= µ ∂θ
∂x

)
,

and

rnd :=
(∑

i,j

∫
aij

∂Varphi
∂xj

∂w
∂xi

dx = −
∑

i,j µj

∫
aij

∂w
∂xj

dx
)
→
(

∂Varphi
∂xj

=
∑

p µp
∂θ
∂xj

)
,
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and 
Varphi = Fun(Varphi, y),
w = Fun(w, y),

θ = Fun(θ, x),

and


i = Var(i, I),

j = Var(j, I),

p = Var(p, I),

I = Reg(I, d),

and 
a,Varphi, y, w, µ, θ are SO-variables in X 1, and

i, j, d are FO-variables in X 0, and

p, I are constant symbols in F0.

The following claims can be easily checked:

i.) The SO-rule Snd (de�ned in Eq. (2.25)) is parametrized in the sense of De�nition 56 since

Var0(Snd)
def
= Var0(rnd) \ Var0(ℓnd)
= {i, j, d} ≠ ∅.

ii.) The SO-rule Snd
0 de�ned by

Snd
0 = σnd

0 (Snd), where σnd
0 = {d→ 1}

is a semantic conservation.

iii.) Therefore, Snd is admissible w.r.t Snd
0 .

iv.) The FO-rule snd is a generalization of the FO-rule sref (in the sense of De�nition 64) since
Snd is admissible and Snd(sref ) = snd.

Extension of the FO-rule (i.e. the derivation of the linear operator)
of the reference proof to the multi-dimensional setting by outward
growths.

Now we construct an outward growth Gnd which have the same e�ect of the SO-rule Snd (given
in E.q (2.25)). In other words, we show how to construct the rule snd of the multi-dimensional
setting (given in Eq. (2.22)) out of the rule sref of the reference model (given in Eq. (2.21)) by
means of an outward growth. That is, we need to construct an outward growth Gnd such that

Gnd(sref ) = snd (2.26)

The outward growth Gnd can be constructed as a combination of unit outward growth by
comparing the FO-rules sref and snd. That is, this comparison allows one to enumerate the
set of added terms needed in the construction of the unit outward growths. Let τ i, τ i, τ p, τ is, τ

j
s

and τ ps be the added terms de�ned as follows:

τ i = Indexed(⊥, i)
τ j = Indexed(⊥, j)
τ p = Indexed(⊥, p)
τ is =

∑
(⊥, i)

τ js =
∑

(⊥, j)
τ ps =

∑
(⊥, p)
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Let Gi,Gj,Gp and Gs be the outward growths de�ned as follows:

Gi def
= Gτ i,p6 ♢Gτ i,p11

= G(τ i,τ i),(p6,p11) (De�nition 85)

and

Gj def
= Gτj ,p4 ♢Gτ j ,p8 ♢Gτ j ,p13 ♢Gτj ,p17

= G(τ j ,τ j ,τ j ,τ j),(p4,p8,p13,p17) (De�nition 85)

and

Gp def
= Gτp,p15 ♢Gτp,p17

= G(τp,τp),(p6,p11) (De�nition 85)

and

Gs def
= Gτs,p14

Finally we are ready to de�ne the outward growth Gnd:

Gnd def
= Gi ♢Gj ♢Gp ♢Gs. (2.27)

Extension of the FO-rule (i.e. the derivation of the linear operator) of
the reference model to the vector-valued setting by an admissible rule.

We show how to construct the FO-rule rv (given in Eq. (2.23)) needed in the vector-valued
setting out of the FO-rule sref (given in Eq. (2.21)) used in the reference proof by means of an
admissible SO-rule. That is, we need to �nd an admissible SO-rule Sv such that

Sv(sref ) = sv (2.28)

Let Sv be the SO-rewrite rule:

Sv := ℓv ⇒ rv (2.29)

where

ℓv :=

∫
a
∂Varphi
∂x

∂w

∂x
dx = −µ

∫
a
∂w

∂x
dx→

∂Varphi
∂x

= µ
∂θ

∂x

and

rv :=
∑
k,l

∫
akl
∂Varphi

l

∂x

∂wk

∂x
dx = −

∑
k,l

µl

∫
akl
∂wk

∂x
dx→

∂Varphi
l

∂x
=
∑
q

µq

∂θql

∂x

where 

k = Var(k, I),

l = Var(l, I),

q = Var(q, I),

I = Reg(I, dv),

Varphi = Fun(Varphi, y, unknown),
w = Fun(w, y, test),

θ = Fun(θ, x, known),
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and 
a,Varphi, y, x, w, µ ∈ X 1,

k, l, dv ∈ X 0, and

I, q ∈ F0

By substitution σv
0 = {dv → 1}, we get Sv

0 = σv
0(S

v) which a semantic conservation SO-rule for
sref and Sv is admissible for Sv

0 .
The following claims can be easily checked:

i.) The SO-rule Sv (de�ned in Eq. (2.29)) is parametrized in the sense of De�nition 56 since

Var0(Sv)
def
= Var0(rv) \ Var0(ℓv)
= {k, l, dv} ̸= ∅.

ii.) The SO-rule Sv
0 de�ned by

Sv
0 = σv

0(Sv), where σv
0 = {dv → 1}

is a semantic conservation.

iii.) Therefore, Sv is admissible w.r.t Sv
0 .

iv.) The FO-rule sv is a generalization of the FO-rule sref (in the sense of De�nition 64) since
Sv is admissible and Sv(sref ) = sv.

Extension of the FO-rule (i.e. the derivation of the linear opera-
tor) of the reference proof to the vector-valued setting by SO-outward
growths.

Now we construct an outward growth Gv which have the same e�ect of the SO-rule Sv (given in
E.q (2.29)). In other words, we show how to construct the rule snd of multi-dimensional setting
(given in Eq. (2.22)) out of the rule sref of the reference model (given in Eq. (2.21)) by means
of an outward growth. That is, we need to construct an outward growth Gv such that

Gv(sref ) = sv (2.30)

Again, the outward growth Gv can be constructed as a combination of unit outward growths.
We need to enumerate the set of added terms needed in the construction of these unit outward
growths. Let τ k, τ l, τ q, τ ks , τ

l
s and τ

q
s be the added terms de�ned as follows:

τ k = Indexed(⊥, k)
τ l = Indexed(⊥, l)
τ q = Indexed(⊥, q)
τ ks =

∑
(⊥, k)

τ ls =
∑

(⊥, l)
τ qs =

∑
(⊥, q)
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2.8. Application to the extension of the derivation of the linear operator

Let Gk,Gl,Gq and Gs be the outward growths de�ned as follows:

Gk def
= Gτk,p2 ♢Gτk,p9 ♢Gτk,p5 ♢Gτk,p10

= G(τk,τk,τk,τk),(p2,p9,p5,p10) (De�nition 85)

and

Gl def
= Gτ l,p2 ♢Gτ l,p9 ♢Gτ l,p3 ♢Gτ l,p8 ♢Gτ l,p12 ♢Gτ l,p16

= G(τ l,τ l,τ l,τ l,τ l,τ l),(p2,p9,p3,p8,p12,p16) (De�nition 85)

and

Gq def
= Gτq ,p15 ♢Gτq ,p16

= G(τq ,τq),(p15,p16) (De�nition 85)

and

Gs def
= G(τks ,τ

k
s ),(p1,p7)

♢G(τ ls,τ
l
s),(p1,p7)

♢Gτqs,p14

Finally we are ready to de�ne the outward growth Gv:

Gv def
= Gk ♢Gl ♢Gq ♢Gs. (2.31)

Extension of the FO-rule (i.e. the derivation of the linear operator) of
the reference proof to the elasticity setting.

Thanks to the two outward growths Gnd and Gv, de�ned respectively in Eq. (2.27) and Eq.
(2.31), we are able to construct the FO-rewriting rule that corresponds to the derivation of the
linear operator associated to the microscopic problem of elasticity. That is, we able to construct
the counterpart of the FO-rule sref , de�ned in Eq. (2.21), for the elasticity setting. Consider
the outward growth Gel:

Gel def
= Gnd ♢Gv (2.32)

The application of Gel to sref yields the FO-rule:

Gel(sref ) =

∑
k,l,i,j

∫
aijkl

∂Varphi
l

∂xj1
∂wk

∂x1i
dx1 = −

∑
k,l,i,j

µjl

∫
aijkl

∂wk

∂xi1
dx1

→

∂Varphil
∂x1j

=
∑
q,p

µqp

∂θlqp

∂x1j
.


Example 109 Let s, s′, s′′ and s′′′ be the FO-strategies:

s := u→ du

dx

s′ := ui →
dui
dx

s′′ := ud → ∂ud

∂xdj

s′′′ := udi →
∂udi
∂xdj
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where the underlined shortcut terms have been introduced in (2.12), we repreoduce them
next:

i = Index (i, Set (I, {1, ..., di}))
j = Index (j, Set (J, {1, ..., dj}))
x = Var (x, Reg (Ω, 1))

u = Fun (u, x)

xd = Var
(
xd, Reg (Ω, dj)

)
ud = Fun

(
u, xd

)
.

Therefore the strategy s, s′, s′′ and s′′′ can be explicitly rewritten as follows:

s := u→ Oper (Deriv, u, x, ∅)
s′ := Indexed (u, i) → Oper (Deriv, Indexed (u, i) , x, ∅)
s′′ := ud → Oper

(
Deriv,ud, Indexed

(
Var (x, Reg (Ω, d)) , j

)
, ∅
)

s′′′ := Indexed
(
ud, i

)
→ Oper

(
Deriv, Indexed

(
ud, i

)
, Indexed

(
Var (x, Reg (Ω, d)) , j

)
, ∅
)

where k, d ∈ X 0. The tree structure of the strategies s, s′, s′′ and s′′′ is depicted in Figures
2.20, 2.21, 2.22 and 2.23.

In fact, the strategy s corresponds to the derivative of a scalar function de�ned on one
dimensional domain Ω, the application of s yields a scalar. The strategy s′ corresponds to the
derivative of a vector function de�ned on one dimensional domain Ω, the result of the applicatuib
of s is a vector. The strategy s′′ corresponds to the derivative of a scalar function de�ned on
muti-dimensional domain Ω, the result is a vector. Finally, the strategy s′′′ corresponds to
the derivative of a vector function de�ned on muti-dimensional domain Ω, the result of the
application of s′′′ is a matrix.

Give the -strategies S, S ′, S ′′ such that S (s) = s′, S ′ (s) = s′′ and S ′′ (s) = s′′′, in grammar
form

S : u→ Oper (Deriv, u, x, ∅)⇒ Indexed (u, i) → Oper (Deriv, Indexed (u, i) , x, ∅)

in which y, v ∈ X 1, the needed unit outward growth τ = Indexed (⊥, k) which will apply to
position p12 on the left hand-side and position p133 on the right hand-side of strategy s.

S (s) = s
[
τ [s|p12 ]q

]
p12

→ s
[
τ [s|p132 ]q

]
p132

= Gτ ,(p12,p132) (s)

S ′ : Fun (u, Var (x, Reg (Ω, 1))) → Oper (Deriv, Fun (u, Var (x, Reg (Ω, 1))) , Var (x, Reg (Ω, 1)) , ∅)⇒
ud → Oper

(
Deriv,ud, Indexed

(
Var (x, Reg (Ω, d)) , j

)
, ∅
)

a subsitution σ′ that can change 1 into d at positions p12222 on the left hand-side and p13222, p13322
on the right hand-side of strategy s (need a grammar for it ???), a unit outward growth τ ′1 =
Indexed

(
⊥, j

)
applies to postions p133 on the right hand-side of strategy s.

S ′ (s) = Gσ′,(p12222,p13222,p13322);Gτ ′1,p133
(s)

S ′′ can be written as a combination of S and S ′

S ′′ (s) = Gσ′,(p12222,p13222,p13322);Gτ ′1,p133
;Gτ ,(p12,p132) (s)

= S ′;S (s)
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2.9 Perspectives

We end up this Chapter with some perspectives and concluding remarks.

2.9.1 Extention mechanisms as strategies: outerward growth, parametriza-
tion and generalization as strategies

In section 2.5 (resp. section 2.7), the outward growths (resp. parameterizations and generaliza-
tion) by means of static positions. That is, one needs to specify the exact positions on which the
outward growths and the parameterizations are applied. Despite the fact that this formulation
in terms of positions is useful to understand many issues related to the composition and the
combination of the outward growths and parameterizations, it has clear drawbacks. Basically,
it is not practical since one has to enumerate the set of all positions on which he would like
to apply the extension. We illustrate another approach that consists in the formulation of the
outward growths and parametrizations in terms of strategies.

More precisely, instead of providing the set of positions on with the outward growth has to
be applied, we provide a pattern on which the outward growth has to be applied. Then, an
adequate traversal strategies, namely the InnerMost strategy, is used to explore the term and
search for the pattern. However, the formulation of the combination of outward growths and
parameterizations in terms of strategies remains an open problem. It turns out that these two
formulations are not equivalent in general, but it is possible to establish some conditions under
which the two formulations are equivalent. In what follows, u and τ are FO-terms, and x is
a FO-variable. The outward growth (resp. parametrization) formulated in terms of a strategy
will be denoted by Gτ ,u (resp. Px,u) in order to distinguish them from the usual outward growth
Gτ ,p (resp. parametrization Px,p). We shall call them pattern outward growth and pattern
parametrization, or P-outward growth and P-parametrization for short.

Ĝτ ,u
def
= u→

(
let(⊥ := u) in τ

)
(P-Outward Growth at the root)

Gτ ,u
def
= InnerMost(Ĝu,τ ) (P-Outward Growth at the inner most positions)

G⋆
τ,u

def
= BottomUp(Ĝτ ,u) ("Vectorial" P-Outward Growth from the bottom)

P̂x,u
def
= u→ x (Parametrization at the root)

Px,u
def
= InnerMost(P̂x,u) (P-Parametrization)

2.9.2 Second-order pattern matching modulo alpha-conversion and
second-order uni�cation

In De�nition 54, Section 2.3, our SO-pattern matching is not done modulo α-conversion of the
FO-order variables. That is, the SO-pattern matching algorithm considers the FO-variables as
constants, while it would be convenient to rename them. Let us illustrate this idea through an
example. Let S be the SO-rule:

S := (f(x) → f(x))⇒ (f(x) → f(x)),

where x is a FO-variable. Let s be the FO-rule:

s := f(y) → f(y),
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where y is a FO-variable. According to our de�nition 54, the application S(s) fails because
f(y) → f(y) does not match f(x) → f(x) since x and y are considered as constants. However,
this is a severe limitation since, morally, the SO-rule S tends to transform a FO-rule f(x) →
f(x) to g(x) → g(x) for any FO-variable x. Therefore, the SO-pattern matching algorithm
has to α-convert the FO-variables if necessary, e.g. by renaming y by x in s. Another problem
is that we need to give syntactic conditions so that the SO-uni�cation modulo α-conversion is
decidable, see e.g. [19]. This is necessary for the computability of the operation of combination
of SO-outward growths given in De�nition 93.

2.10 Appendix

2.10.1 Proofs of Section 2.2

Proposition 110 Let s, t, r be terms and p, q be strings. The following hold.

1. If pq ∈ Pos (s) , then s|pq = (s|p) |q.

2. If p ∈ Pos (s) and q ∈ Pos (t) , then(
s [t]p

)
|pq = t|q,(

s [t]p

)
[r]pq = s

[
t [r]q

]
p
.

3. If pq ∈ Pos (s) , then (
s [t]pq

)
|p = (s|p) [t]q ,(

s [t]pq

)
[r]p = s [r]p .

4. If p and q are parallel positions in s (i.e. p ∥ q) , then(
s [t]p

)
|q = s|q,(

s [t]p

)
[r]q =

(
s [r]q

)
[t]p .

Proof. A detailed proof can be found in [4], page 37 and 38. We reproduce here the
main arguments. In order to prove (1) , we assume that p = i1...in,then s|pq = s|i1...inq =
f (s1, ..., sn1) |i1...inq = si1 |i2...inq = f (si11, ..., si1n2) |i2...inq = ... = si1...in|q = sp|q = (s|p) |q.
In order to prove (2a) ,we know that pq ∈ Pos

(
s [t]p

)
, apply (1) , we have

(
s [t]p

)
|pq =((

s [t]p

)
|p
)
|q = t|q. In order to prove (2b) , we denote sl =

(
s [t]p

)
[r]pq and sr = s

[
t [r]q

]
p
.

From (1) (2a) , sl|pq = sr|pq = r. Therefore, we need to compare the structures of sr and sl except
positon pq, the position of r. Since the remain structures of both sr, sl are built from s and t

by changing s|p by t, we have sl = sr. In order to prove (3a) , we denote sl =
(
s [t]pq

)
|p, sr =

(s|p) [t]q , s0 = s [t]pq , we have sl = s0|p = s0p. Since s
0 = f

(
s1, ..., si1 [t]p′q , ..., sn1

)
, we have

s0i1 = s0|i1 = si1 [t]p′q . Since si1 [t]p′q = f
(
si11, ..., si1i2 [t]p′′q , ..., si1n

)
, we have s0i1i2 = s0i1 |i2 =
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si1i2 [t]p′′q . Continue the same step, we have s0p = sp [t]q = (s|p)q = sr. This result leads to
if we change the subterm s0|p actually we will chang the term (s|p) [t]q which includes t, so
that the remain structure of s0 keeps the same structure of s except position p. Now we will
prove (4a) , since p and q are parallel positions in term s, i.e. p ∥ q or there is no k such

that pk = q or qk = p, we denote sl =
(
s [t]p

)
|q, sr = s|q and s0 = s [t]p . We have ∀α ∈

Pos (s) \ {pj | j ∈ Pos (s|p)} : s0|α = s|α and from assumption q /∈ {pj | j ∈ Pos (s|p)}, so that
s0|q = s|q or sl = sr. This result leads to the fact that p and q are not in the same branch, so
that we can replace s|p or s|q �rst without changing the another position, which leads to the
property (4b).
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Figure 2.11: Application of a combination of outward growths to the term t.
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Figure 2.12: The SO-unit outward growth Gl1
τ1,p1

de�ned in Eq. (2.19).

Figure 2.13: The SO-unit outward growth Gl2
τ2,p2

de�ned in Eq. (2.20).
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Figure 2.14: The tree structure of the added terms τ 1 and τ 2.

Figure 2.15: The tree structure of the FO-rule s = L2 (u (x)) →
( ∫

Ω
|u (x) |2dx

)1/2
.

84



2.10. Appendix

Figure 2.16: The tree structure of the FO-rule s′.

Figure 2.17: The tree structure of FO-rule s0 = Gτ⃗ ,p⃗(s).
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Figure 2.18: The tree structure of the FO-rule s1 = (Gτ⃗ ,p⃗;P)(s) = P(s0).

Figure 2.19: The tree structure of the FO-rewrite rule sref de�ned in Eq. (2.21).
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Figure 2.20: The FO-strategy s := u→ du
dx
.

Figure 2.21: The FO-strategy s′ := ui →
dui

dx
.

Figure 2.22: The FO-strategy s′′ := ud → ∂ud

∂xd
j
.
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Figure 2.23: The FO-strategy s′′′ := udi →
∂ud

i

∂xd
j
.
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Chapter 3

A two-scale model derivation for a SThM

probe

Abstract. In this chapter we state the two-scale model derivation for an SThM probe developed
in the NANOHEAT project. In the derivation, the mathematic approach proposed in 1 is fol-
lowed. In the new proof, the features (i) the multi-dimensional domain, (ii) thin domain, (iii)
sub-domains with di�erent physics, (iv) vector solution and (v) multi-physics are taken into ac-
count. By taking into account these new features, mathematical rules used in the reference proof
in 1 are extended and new steps are added. Then follow the same framework, the homogenized
model for the Joule-heating thermoelasticity is derived.

3.1 Introduction

This chapter is devoted to derive a two-scale model for an SThM probe developed in the
NANOHEAT project. The derivation is presented in the perspective of its use to enrich ex-
tensions of the reference proof introduced in Chapter 1. The features to be taken into account
are: (i) the multi-dimensional domain of R3, (ii) thin domain, (iii) sub-domains with di�erent
physics, (iv) vector solution, (v) multi-physics ie the coupling between thermal e�ects, elasticity
deformations and the electric current �owing in the conductive parts. Other features are also
taken into account but they are due to technical reason and will appear later. To put this model
in our framework, we consider, in addition to the thinness of the domain, that the coe�cients
are periodic and get an homogenized model in a thin structure as in [18] [21] and [22]. We
notice that one of the di�erences with the latter references is that the asymptotic behavior
regarding the periodicity and the thinness are taken into account through a single technique,
that is the technique used in the reference proof. Moreover, we bring a simpli�cation of the
proofs by replacing in some places the two-scale convergence, based on the two-scale transform
(ie this used in the unfolding method) by the two-scale convergence of G. Nguetseng and G.
Allaire.

3.1.1 Organization of the Chapter

The chapter is organized as follows: in Section 3.2, the physical problem is stated. The rest
of the chapter has the structure of the reference proof. In the �rst part of Section 3.3, the
de�nitions and properties of two-scale transform operators are discussed. In the second part,
the weak limits of two-scale transform of �rst order derivatives of solutions are derived. The

89
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last section is focused on the derivation of the two-scale model and then of the homogenized
model.

3.2 Physical model description

The probe is designed as a thin three-layered structure and is located in a domain denoted by
Ω. See Figure 4(a) and Figure 4(b). For illustration, we notice that in the last fabrication ΩSi

the silicon (Si) supporting layer is 5 µm thin and it is covered by a 50 nm silicon dioxide (SiO2)
insulator layer ΩSiO2. Finally, a 100 nm thick platinum (Pt) track ΩPt used for both a heating
circuit and a sensing circuit is deposited. A current source is applied to one end Γε

01 of the
platinum track, and the other end Γε

02 is electrically grounded. The conductive tip is heated
through the Joule heating e�ect and the heat �ux through the tip-sample interface is measured
by the sensing circuit through the variation of the tip voltage.

The behavior of the SThM probe is governed by the thermoelasticity equation with Joule
heating. The electric resistivity of the platinum layer a�ects the Joule heating e�ect in the
probe. It varies with the temperature. We use Cε, Mε, kε and aε to denote the elasticity
coe�cient tensor, the matrix of thermal expansion coe�cients, the matrix of thermal conduc-
tivity and the matrix of electric conductivity. Obviously, Cε, Mε and kε are piecewise constant
functions and we assume that Cε, kε and aε satisfy the usual ellipticity conditions. We use
uε = (uε1, u

ε
2, u

ε
3), θ

ε and φε to denote the mechanical displacement vector, the di�erence of the
temperature to the ambient temperature and the electric potential respectively. Since the SiO2
layer is a good insulator, the electric potential φε is only de�ned in ΩPt. The Joule heating is
the only heat source of the probe.

The thermoelasticity equations with Joule heating are:
− div(σε) = fM,ε in Ω

− div qε = (∇φε)Taε∇φε in ΩPt

− div qε = 0 in ΩSi ∪ ΩSiO2

− div (aε∇φε) = 0 in ΩPt,

(3.1)

where σε = Cεs(uε)+Mεθε is the tensor of stresses, s(uε) = 1
2
(∇uε+(∇uε)T ) is the tensor

of strains, fM,ε is the body force load, qε = kε∇θε is the heat �ux, aε = (1 + λθε)−1aref,ε

is the electric conductivity, λ is the temperature coe�cient and aref is the tensor of electric
conductivity at ambient temperature. Regarding the boundary conditions, the cantilever is
clamped and with an imposed temperature on a part Γε

0 of the boundary, i.e. uε = 0 and
θε = θ0, and is mechanically free loaded and thermally insulated on the other part Γ1, i.e.
σεn = gM,ε and qεn = 0 where n denotes the outward normal vector to the boundary. Finally,
a current source jε is applied to Γ01 ie

∫
Γε
01
aε∇φεn dxε = jε, Γ02 is grounded ie φε = 0 and the

other boundaries are electrically insulated ie aε∇φεn = 0 on ∂Ω/(Γ01 ∪ Γ02).

The weak formulation is obtained by choosing test functions vM,ε, vH,ε, and vE,ε satisfying
the boundary conditions vM,ε = 0, vH,ε = 0 on Γ0 and vE,ε = 0 on Γ02. After some usual
calculation, we get the weak form of Equation (3.1) with a scaling κ0 = 1/|Ω|,

κ0
∫
Ω

(Cεs(uε) +Mεθε)s(vM,ε) dx+ κ0
∫
Ω

kε∇θε ∇vH,ε dx+ κ0
∫
ΩPt

aε∇φε ∇vE,ε dx

= κ0
∫
Ω

fM,εvM,ε dx+ κ0
∫
ΩPt

aε∇φε ∇φε vH,ε dx+ κ0jε
∫
Γ01

vE,ε dxε + κ0
∫
Γ1

gM,εvM,ε dx
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with the Dirichlet-like conditions uε = vM,ε = 0 and θε = vH,ε = 0 on Γ0, φε = vE,ε = 0 on
Γ02. We notice that the boundary condition θ0 has been taken equal to zero for simplicity, and
this is also su�cient for the current application.

In the following asymptotic analysis, the whole probe is assumed to be thin, ie its thickness
(which is in the range of a small parameter ε) is small compared to its lengths in the two
other directions and the coe�cients are assumed to be periodic with period ε, which includes
the case with constant coe�cients. Moreover, the thermal conductivity in the insulating layer
made of silicon dioxide is assumed to be in the range of ε2 when it is the range of 1 in the
other components. From the mathematical point of view, we say that this coe�cient is strongly
heterogeneous.

For the asymptotic model derivation with respect to the small parameter ε, we will assume
(without proof) some usual uniform estimates of the data and of the solution. To simplify, we
introduce the scaled L2-norm for functions de�ned over a domain A

|||v|||2A =
1

|A|

∫
A

v2 dx.

We assume that the data are uniformly bounded,

|||fM,ε
α |||2Ω and |||ε−1fM,ε

3 |||2Ω ≤ C (3.2)

|jε| ≤ C (3.3)

and that the solution uε, θε and φε satisfy the a priori estimates, inspired from [26], [15] and
[22],

|||(uεi )i∈{1,2}|||2Ω ≤ C, |||εuε3|||2Ω ≤ C, |||s(uε)|||2Ω ≤ C (3.4)

|||θε|||2Ω, |||∇θε|||2ΩPt
≤ C, |||∇θε|||2ΩSi

≤ C and |||ε∇θε|||2ΩSiO2
≤ C (3.5)

|||φε|||2ΩPt
, |||∇φε|||2ΩPt

≤ C, (3.6)

C denoting various constants independent of ε. These assumptions take the place of assumption
f ∈ L2(Ω) and assumption (1.15) for unknowns in the reference proof.

To conclude this section, we list the additional features taken into account in comparison
with those already present in the reference proof:

• it is posed in a multi-dimensional (three-dimensional) domain;

• the domain is thin;

• several subdomains (the three layers where the coe�cients are constant) are distinguished;

• the solution is comprised with several �elds uε = (uε1, u
ε
2, u

ε
3), θ

ε and φε;

• the matrix kε has strongly heterogeneous coe�cients ie kε ∼ ε2 in ΩSiO2 which implies
the uniform estimate of |||ε∇θε|||2ΩSiO2

;

• the scaled �eld εuε3 satis�es a uniform L2-estimate.
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3.3 The SThM Probe model derivation

3.3.1 Notations, De�nitions and Propositions

Notations, de�nitions and proposition of the reference proof are extended to cover the present
case and new ones are added. All domains and variables are multi-dimensional without to
be explicitely said in each case. Notice that, in the current status, the propositions are not
de�ned in an optimized manner for further extensions. They are chosen to work for the current
application.

Convention 111 (i) Latin indices and exponents: i, j, h, k, ..., take their values in the set
{1, 2, 3}, unless otherwise indicated.

(ii) Greek indices and exponents: α, β, θ, ..., take their values in the set {1, 2}, unless oth-
erwise indicated.

(iii) The repeated index summation conventions is systematically used in conjunction with
rules (i) and (ii).

Notation 112 [Kronecker delta function]

δij =

{
1 if i = j,
0 if i ̸= j

Notation 113 [Characteristic function] The characteristic function is denoted by

χ
(x)
(A) =

{
1 if x ∈ A,
0 otherwise

where x is variable and A is a set or a domain.

Notation 114 [Mean value of integral]
∮
Ω
dz = 1

|Ω|

∫
Ω
dz.

Notation 115 [Strain operator] u is a vector valued function de�ned in a domain A, x is
the coordinate variable, then the strain operator with respect to x is

sxij(u) =
1

2

(
∂xi
uj + ∂xj

ui
)
.

Property 116 [Integral rule for subdomain]Suppose A = A1 ∪A2 and A1 ∩A2 = ∅, then∫
A

dz =

∫
A1

dz +

∫
A2

dz.

Property 117 [Integral rule for subdomain] Suppose A1 ⊂ A and a(x) is a function de�ned
in A1, then the integral of a(x) is extended to A by∫

A

a dz =

∫
A1

χ
(x)
(A1)

a(x) dz.

Property 118 [Interpretation of a weak equality] For u ∈ L2(A) and for any v ∈ C∞
0 (A),

if

∫
A

u(x) v(x) dx = 0 then u = 0

in the sense of L2(A) functions.
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Property 119 [Interpretation of a periodic boundary condition] For u ∈ H1(A) and
for any v ∈ C∞

♯ (A),

if

∫
∂A

u(x) v(x) nxα(x) dx = 0 then u is xα-periodic in A,

where nxα is the α component of the outward normal vector n.

Property 120 Suppose A is a rectangle, u = (u1, u2) is a vector valued function in A, if for
α, β ∈ {1, 2} and v ∈ C∞

♯ (A),
∫
∂A
(nxαuβ + nxβ

uα)v dx = 0 then u is xα-periodic in A.

Property 121 For u a periodic function in A and for any v ∈ C∞
♯ (A), we have∫

∂A

uv(x)n∂A(x) dx = 0.

Property 122 (Linear dependency) For u a function de�ned in A and x the coordinate
variable, a is any function independent of x, if ∂xu = a, then

u(x) = xa+ ũ

where ũ is a function independent of x.

Property 123 If u(x) = xαa(x) + b is xα-periodic, then a(x) = 0.

Property 124 Suppose A is a rectangle, u = (u1, u2) is an A-periodic vector valued function
in A, if for α, β ∈ {1, 2}, ∂xαuβ + ∂xβ

uα = 0, then u is a constant in A.

Property 125 A is a domain and Γ0 is a part of its boundary with out normal vector n, u is
a scalar function de�ned in A, if for α ∈ {1, 2} and ∀v ∈ C∞ (A) so that∫

Γ0

unαv dx = 0,

then u = 0 on Γ0.

Property 126 u = (u1, u2) is a vector valued function de�ned in A, Γ0 is a part of its boundary
with out normal vector n =(0, b) for b ̸= 0, if for ∀v ∈ C∞ (A) and α, β ∈ {1, 2}, so that∫

Γ0

(uαnβ + uβnα) v dx = 0,

then u1 = 0 and u2 = 0 on Γ0.

Property 127 [Green Rule] If u, v ∈ H1(Ω) then the traces of u and v on Γ are well de�ned
and ∫

Ω

u∂xi
v dx =

∫
Γ

tr(u) tr(v) nxi
ds(x)−

∫
Ω

v∂xi
u dx.
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Property 128 (Introduction of a Kronecker symbol) For i, j ∈ {1, 2, 3}, α, β ∈ {1, 2},
then

aα +
∑

i
ai =

∑
i
ai(1 + δiα), bαβ +

∑
i,j
bij =

∑
i,j
bij(1 + δiαδjβ).

In the following, the two-scale transform related notations and properties are introduced.

Notation 129 [Physical and microscopic Domains]We consider an domain Ω =
N(ε)∪
c=1

Ω1,ε
c ⊂

R divided into N(ε) periodic cells Ω1,ε
c , of size ε > 0, indexed by c, and with center xc. The

translation and magni�cation (Ω1,ε
c − xc)/ε is called the unit cell and is denoted by Ω1. The

variables in Ω and in Ω1 are denoted by xε and x1.

The two-scale transform T is an operator mapping functions de�ned in the physical domain
Ω to functions de�ned in a two-scale domain Ω♯ × Ω1. The con�guration of Ω, Ω♯ and Ω1 in
1-dimensional and 2-dimensional case have been explaned in Chapter 1. The same principle is
applied in 3-dimensional case also. We notice that the dimension of Ω♯ is less or equal to the
dimension of Ω and the relation just depends on the con�guration of Ω.

Notation 130 (Macroscopic domain indices) We denote by I♯ the set of coordinate indices
of variables of the macroscopic domain Ω♯ and denote by I the set of coordinate indices of
variables of the physical domain Ω.

In the SThM probe model, I♯ = {1, 2} and I = {1, 2, 3}.

De�nition 131 [Two-Scale Transform] The two-scale transform T is the linear operator
de�ned by

(Tu)(xc, x
1) = u(xc + εx1) (3.7)

and then by extension T (u)(x0, x1) = u(xc + εx1) for all x0 ∈ Ω1,ε
c and each c in 1, .., N(ε).

The operator T enjoys the following properties.

Property 132 [Product Rule] For two functions u, v de�ned in Ω,

T (uv) = T (u)T (v).

Property 133 [Derivative Rule] If u and its partial derivative are de�ned in Ω then

for ∀i ∈ I, T (∂xi
u) =

1

ε
∂x1

i
T (u). (3.8)

Property 134 [Integral Rule] If a function u ∈ L1(Ω) then T (u) ∈ L1(Ω♯ × Ω1) and∮
Ω

u dx =

∮
Ω♯×Ω1

T (u) dx0dx1.
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3.3. The SThM Probe model derivation

The next two properties are corollaries of the previous ones.

Property 135 [Inner Product Rule] For two functions u, v ∈ L2(Ω),∮
Ω

u v dx =

∮
Ω♯×Ω1

T (u) T (v) dx0dx1.

Property 136 [Norm Rule] For a function u ∈ L2(Ω),

|||u|||2Ω = |||T (u)|||2Ω♯×Ω1 . (3.9)

De�nition 137 [Two-Scale Convergence] A sequence uε ∈ L2(Ω) is said to be two-scale
strongly (respect. weakly) convergent in L2(Ω♯ × Ω1) to a limit u0(x0, x1) if T (uε) is strongly
(respect. weakly) convergent towards u0 in L2(Ω♯ × Ω1).

De�nition 138 [Adjoint or Dual of T] As T is a bounded linear operator from L2(Ω) to
L2(Ω♯ × Ω1), its adjoint T ∗ is a bounded linear operator from L2(Ω♯ × Ω1) to L2(Ω) de�ned by∮

Ω

T ∗(v) u dx =

∮
Ω♯×Ω1

v T (u) dx0dx1. (3.10)

The expression of T ∗ can be detailed, it maps regular functions in Ω♯×Ω1 to piecewise-constant
functions in Ω. The next de�nition introduce an operator used as a smooth approximation of
T ∗.

De�nition 139 [Regularization of T∗] The operator B is the linear continuous operator
de�ned from L2(Ω♯ × Ω1) to L2(Ω) by

Bv = v(x,
x

ε
). (3.11)

The nullity condition of a function v(x0, x1) on the boundary ∂Ω♯ × Ω1 is transferred to the
range Bv as follows.

Property 140 [Boundary Conditions of Bv] If v ∈ C∞
Γ♯(Ω

♯; C∞(Ω1)) then Bv ∈ C∞
Γ (Ω).

Property 141 [Derivation Rule for B] If v and its partial derivatives are de�ned on Ω♯×Ω1

then

for i ∈ I, ∂xi
(Bv) = χ(I♯)(i)B(∂x0

i
v) + ε−1B(∂x1

i
v). (3.12)

The next proposition states that the operator B is actually an approximation of the operator
T ∗ for Ω1-periodic functions.
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Property 142 [Approximation between T∗ and B] If v(x0, x1) is continuous, continuously
di�erentiable in x0 and Ω1-periodic in x1 then

T ∗(v) = B(v − ε
∑

i∈I♯
x1i∂x0

i
v) + εOs(ε). (3.13)

Conversely,

B(v) = T ∗(v + ε
∑

i∈I♯
x1i∂x0

i
v) + εOs(ε). (3.14)

The next two proposition are used for the homogenized model derivation, they are extension
of Proposition 20.

Proposition 143 [The linear operator associated to the Microscopic problem H] Here
we assume a convention of summation over α from 1 to n. For any µ ∈ Rn, under ellipticity
condition on c0 there exist ζµ ∈ H1

♯ (Ω
1) solutions to the linear weak formulation∫

Ω1

c0ij
∂ζµ

∂x1j

∂w

∂x1i
dx1 = −µα

∫
Ω1

c0iα
∂w

∂x1i
dx1 for all w ∈ C∞

♯ (Ω1), (3.15)

with unique derivatives ∂ζµ

∂x1
j
. Since the mapping µ 7→ ∇x1ζµ from Rn to L2(Ω1)n is linear,

∂ζµ

∂x1j
= µα

∂ζ1α
∂x1j

, (3.16)

where ζ1α is solution to (3.15) for µα = 1 and µβ = 0 for β ̸= α,∫
Ω1

c0ij
∂ζ1α
∂x1j

∂w

∂x1i
dx1 = −

∫
Ω1

c0iα
∂w

∂x1i
dx1 for all w ∈ C∞

♯ (Ω1). (3.17)

Moreover, the relation (3.15) can be extended to any µ ∈ L2(Ω♯)n.

Proposition 144 [The linear operator associated to the Microscopic problem M]
Here we assume a convention of summation over h, k from 1 to n. Under usual ellipticity
condition of c0, for µ ∈ Rn×n, there exist ζµ ∈ H1

♯ (Ω
1)n solutions to the linear weak formulation∫

Ω1

c0ijhkS
x1

hk(ζ
µ)Sx1

ij (w) dx1 = −µhk

∫
Ω1

c0ijhkS
x1

ij (w) dx1 for all w ∈ C∞
♯ (Ω1)n, (3.18)

and Sx1

hk(ζ
µ) is unique. Since the mapping µ 7→ Sx1

hk(ζ
µ) from Rn×n to L2(Ω1)n×n is linear,

Sx1

hk(ζ
µ) = Lpqhkµpq (3.19)

where Lpqhk = Sx1

hk(ζ
1
pq) and ζ

1
pq ∈ H1(Ω1)n is the solution to (3.18) for µpq = 1,∫

Ω1

c0ijhkS
x1

hk(ζ
1
pq)S

x1

ij (w) dx1 = −
∫
Ω1

c0ijpqS
x1

ij (w) dx1 for all w ∈ C∞
♯ (Ω1)n.

Moreover, the relation (3.19) can be extended to any µ ∈ L2(Ω♯)n×n.
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Proposition 145 Suppose A is a rectangle, Γ+ and Γ− are the top and bottom surface, ΓLat

is the lateral boundary, kij for i, j ∈ {1, 2} is a constant matrix, a and b are two constants, if
a function θ ∈ H1(A) enjoys

−
∑

i ∂xi
(
∑

j(kij∂xj
θ)) = 0 in A

(
∑

j kij∂xj
θ)nxi

= 0 on ΓLat

θ = a on Γ+

θ = b on Γ−,

then θ = aθ+ + bθ−, where θ+ and θ− are solutions to
−
∑

i ∂xi
(
∑

j(kij∂xj
θ+)) = 0 in A

(
∑

j kij∂xj
θ+)nxi

= 0 on ΓLat

θ+ = 1 on Γ+

θ+ = 0 on Γ−,

(3.20)


−
∑

i ∂xi
(
∑

j(kij∂xj
θ−)) = 0 in A

(
∑

j kij∂xj
θ−)nxi

= 0 on ΓLat

θ− = 0 on Γ+

θ− = 1 on Γ−.

(3.21)

Proposition 146 Suppose A is a rectangle with a boundary Γ, Γ− is the bottom surface of A,
kij for i, j ∈ {1, 2} is a constant matrix, a is a constant, if a function θ ∈ H1(A) enjoys

−
∑

i ∂xi
(
∑

j(kij∂xj
θ)) = 0 in A

(
∑

j kij∂xj
θ)nxi

= 0 on Γ− Γ−

θ = a on Γ−

then θ = a.

Proposition 147 [Solution to microscopic problem] If (λk)k=1,2,3 is xα-periodic in A and
∂xh

λk = δhαδk3, then λk = x3δk3δhα.

Proposition 148 [Zero solution for free load elasticity] Suppose A is a cubic with elas-
tic coe�cient tensor cijhk, (ui)i=1,2,3 is the displacement �led and is periodic on the lateral
directions, if for ∀ (vi)i=1,2,3 ∈ C∞

♯ (A),{ ∫
A
cijhk∂xh

uk∂xi
vj dx = 0

(ui)i=1,2,3 is xα-periodic on ∂A,

then (ui)i=1,2,3 = 0.

In the previous part, the general notations, properties and propositions have been intro-
duced. In the following, we introduce speci�c notations that are used to simplify the presenta-
tion of the SThM probe model.

Notation 149 [Domain decomposition] The domain Ω is decomposed in parts with regard
to their number of layers: Ω2 is the two-layered subdomain and Ω3 is the three-layered sub-
domain. We denote by ΩSi

2 and ΩSiO2
2 the silicon layer and the silicon dioxide layer in Ω2:

ΩSi
2 = ΩSi ∩ Ω2 and ΩSiO2

2 = ΩSiO2 ∩ Ω2. Similarly, notations ΩSi
3 and ΩSiO2

3 are de�ned by
ΩSi

3 = ΩSi ∩ Ω3 and ΩSiO2
3 = ΩSiO2 ∩ Ω3.
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Chapter 3. A two-scale model derivation for a SThM probe

Figure 3.1: Con�guration of the probe

The con�guration of the probe is shown in Figure 3.1.

Notation 150 [Two-scale domains] The subdomains Ω2 and Ω3 are partitioned in cylindri-
cal cells that intersect the x-y plane by ε×ε-squares. The cells are denoted as Ωc

2 and Ωc
3, which

after shift by xc and scaling by ε
−1 yield the scaled cells Ω1

2 and Ω
1
3. Considering the multi-layered

structures of Ω1
2 and Ω1

3, they are decomposed into Ω1
2 = Ω1

Si∪Ω1
SiO2 and Ω1

3 = Ω1
Si∪Ω1

SiO2∪Ω1
Pt.

The domains Ω♯
2 and Ω♯

3 are the projections of Ω2 and Ω3 on the x-y plane. Then the two-scale
domains corresponding to ΩSi

2 and ΩSiO2
2 are Ω♯

2 ×Ω1
Si and Ω♯

2 ×Ω1
SiO2, when those of ΩSi

3 , Ω
SiO2
3

and ΩPt are Ω
♯
3×Ω1

Si, Ω
♯
3×Ω1

SiO2 and Ω♯
3×Ω1

Pt, and those of Ω2 and Ω3 are Ω
♯
2×Ω1

2 and Ω♯
3×Ω1

3.
The projection of Γ0 and Γ02 on the x-y plane is denoted by Γ♯

0 and Γ♯
02.

Notation 151 [Volume Ratios]The volume ratios of each component of the whole probe is
denoted by: rSi2 =

∣∣ΩSi
2

∣∣ |Ω|−1, rSiO2
2 =

∣∣ΩSiO2
2

∣∣ |Ω|−1, rSi3 =
∣∣ΩSi

3

∣∣ |Ω|−1, rSiO2
3 =

∣∣ΩSiO2
3

∣∣ |Ω|−1,

rPt =
∣∣ΩPt

∣∣ |Ω|−1, r2 = |Ω2| |Ω|−1 and r3 = |Ω3| |Ω|−1.

3.3.2 Two-Scale Approximation of Derivatives

This section is aimed to compute the two-scale limits of strains and gradients of temperature
and electric potential. This is an extension of Section 1.3.2. Considering the con�guration of
the microscopic domains, the physical domain Ω is separated to the two-layered subdomain
Ω2 and the three-layered subdomain Ω3. The computation of the weak limits of the two-scale
transform of sxαβ(u

ε), ∇θε, ε∇θε and ∇φε are discussed in Ω2 and Ω3 separately because of the
di�erent con�guration of the microscopic domains. On the other hand, the derivation for each
term on Ω2 and Ω3 are very similar, so the discussion is only detailed in Ω3. In the following,
we introduce assumptions of the two-scale approximations of the �elds uε, θε and φε designed
accordingly to the a priori estimates.
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Assumption 152 [Two-scale approximation of u] There exist (u0i , u
1
i , u

2
i )i=1,3, θ

0, θ1 ∈
L2(Ω♯

3 × Ω1
3) and φ

0, φ1 ∈ L2(Ω♯
3 × Ω1

Pt) such that

for i ∈ {1, 2, 3},
∮
Ω3

εδi3uεi Bv dx−
∮
Ω♯

3×Ω1
3

u0i v dx
0dx1 = O(ε), (3.22)

for m ∈ {Si, SiO2,Pt},
∮
Ωm

3

θε Bv dx−
∮
Ω♯

3×Ω1
m

θ0 v dx0dx1 = O(ε), (3.23)

and ∮
ΩPt

φε Bv dx−
∮
Ω♯

3×Ω1
Pt

φ0 v dx0dx1 = O(ε), (3.24)

for all v ∈ C∞(Ω♯
3 × Ω1

3),

for i ∈ {1, 2, 3} :

∮
Ω3

εδi3uεi Bv dx−
∮
Ω♯

3×Ω1
3

(u0i + εu1i + ε2u2i ) v dx
0dx1 = εO(ε), (3.25)

for m ∈ {Si, SiO2,Pt},
∮
Ωm

3

θε Bv dx−
∮
Ω♯

3×Ω1
m

(θ0 + εθ1) v dx0dx1 = O(ε), (3.26)

and ∮
ΩPt

φε Bv dx−
∮
Ω♯

3×Ω1
Pt

(φ0 + εφ1) v dx0dx1 = εO(ε) (3.27)

for all v ∈ D(Ω♯
3; C∞

♯ (Ω1
3)).

In fact, θ0 and θ1 are functions depending on the microscopic layers. For example, θ0|Ω♯
3×Ω1

Pt

,

θ0|Ω♯
3×Ω1

SiO2

and θ0|Ω♯
3×Ω1

Si

are three functions, but we do not distinguish them for simplicity. The

following Proposition extends Proposition 21.

Proposition 153 [Two-scale Limit of a Derivative] If (uεα)α∈{1,2}, εu
ε
3, θ

ε and φε are se-
quences bounded as in (3.4,3.5,3.6) and satisfying (3.22-3.27), then (ũ0α)α∈{1,2}, u

0
3, u

1
3, θ

1

|Ω♯
3×Ω1

Pt∪Ω
♯
3×Ω1

Si

and φ0 are independent of x1, (u1α)α∈{1,2}, u
2
3, θ

1

|Ω♯
3×Ω1

Pt∪Ω
♯
3×Ω1

Si

and φ1 are x1α-periodic, and

for α, β ∈ {1, 2} :
∮
Ω3
(∂xαu

ε
β + ∂xβ

uεα)Bv dx−
∮
Ω♯

3×Ω1
3
ηMαβv dx

0dx1 = O(ε),

for α ∈ {1, 2} :
∮
Ω3
(∂x3u

ε
α + ∂xαu

ε
3)Bv dx−

∮
Ω♯

3×Ω1
3
ηMα3v dx

0dx1 = O(ε),∮
Ω3
∂x3u

ε
3Bv dx−

∮
Ω♯

3×Ω1
3
ηM33v dx

0dx1 = O(ε),∮
ΩPt

∂xi
θεBv dx−

∮
Ω♯

3×Ω1
Pt
ηHi v dx

0dx1 = O(ε),∮
ΩSi

3
∂xi
θεBv dx−

∮
Ω♯

3×Ω1
Si
ηHi v dx

0dx1 = O(ε),∮
ΩSiO2

ε∂xi
θεBv dx−

∮
Ω♯

3×Ω1
SiO2

ηhi v dx
0dx1 = O(ε),∮

ΩPt
∂xi
φεBv dx−

∮
Ω♯

3×Ω1
Pt
ηEi v dx

0dx1 = O(ε),

where

ηMαβ = −x13∂2x0
αx

0
β
u03 + ∂x0

β
ũ0α + ∂x0

α
ũ0β + ∂x1

β
u1α + ∂x1

α
u1β in Ω♯

3 × Ω1
3,

ηMα3 = ∂x0
α
u13 + ∂x1

α
u23 + ∂x1

3
u1α in Ω♯

3 × Ω1
3,

ηM33 = ∂x1
3
u23 in Ω♯

3 × Ω1
3,

ηHi = χ{1,2}(i)∂x0
i
θ0 + ∂x1

i
θ1 in Ω♯

3 × Ω1
Pt,

ηHi = χ{1,2}(i)∂x0
i
θ0 + ∂x1

i
θ1 in Ω♯

3 × Ω1
Si,

ηhi = ∂x1
i
θ0 in Ω♯

3 × Ω1
SiO2,

ηEi = χ{1,2}(i)∂x0
i
φ0 + ∂x1

i
φ1 in Ω♯

3 × Ω1
Pt.
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Moreover, if uε = 0, θε = 0 on Γ0, φ
ε = 0 on Γ02, then u0 = 0 and θ0 = 0 on Γ♯

0 ∩ ∂Ω0
3 and

φ0 = 0 on Γ♯
02.

The proof of Proposition 153 is decomposed into seven lemmas extending those of the
reference proof, which are proved for each set of assumptions. The new steps in the extensions
are remarked by Substep of the main steps in the reference proof.

Lemma 154 [First Block-1: Constraint of u0] (a) ∂x1
β
u0α+∂x1

α
u0β = 0, (b) u03 is independent

of x1α, (c) ∂x1
3
u0α + ∂x0

α
u03 + ∂x1

α
u13 = 0, (d) u03 is independent of x13, (e) u

1
3 is independent of x13

in Ω♯
3 ×Ω1

3 (f) θ
0 is independent of x1 in Ω♯

3 ×Ω1
Pt, (g) θ

0 is independent of x1 in Ω♯
3 ×Ω1

Si, (h)
φ0 is independent x1 in Ω♯

3 × Ω1
Pt.

Proof. a-Source term. For each α, β ∈ {1, 2}, we set the initial term

Ψ = ε

∮
Ω3

(∂xβ
uεα + ∂xαu

ε
β)Bv dx

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)). From the Cauchy-Schwartz inequality and (3.4), limε→0Ψ = 0.

We follow Step 1 - Step 5 in the proof of Lemma 22 in Chapter 1. Instead of using the
propositions in Section 1.3.1, we use their extended form posed in Section 3.3.1, and for the
assumptions for the two-scale convergence, we use (3.22).

b-Source term. For each α ∈ {1, 2}, the initial term is

Ψ = ε2
∮
Ω3

(∂x3u
ε
α + ∂xαu

ε
3)Bv dx

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)). The proof is the same as for Lemma 154(a).

c-Source term. For each α ∈ {1, 2}, the initial term is

Ψ = ε

∮
Ω3

(∂x3u
ε
α + ∂xαu

ε
3)Bv dx (3.28)

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)). From the Cauchy-Schwartz inequality and (3.4), limε→0Ψ = 0.

• Step c-1. Propositions 127 and 140 =⇒

Ψ = −ε
∮
Ω3

uεα∂x3Bv + uε3∂xαBv dx.

• Step c-2. Proposition 141 and the boundness (3.4) =⇒

Ψ =

∮
Ω3

uεαB∂x1
3
v +

1

ε
εuε3B(ε∂x0

α
v + ∂x1

α
v) dx+O(ε).

• Step c-3. Assumption (3.22) and (3.25) =⇒∮
Ω♯

3×Ω1
3

u0α∂x1
3
v + (u03 + εu13)(∂x0

α
v + ε−1∂x1

α
v) dx0dx1 = O(ε).
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• Substep c-3-1. Expand the second term∮
Ω♯

3×Ω1
3

(
u0α∂x1

3
v + u03∂x0

α
v + u03ε

−1∂x1
α
v + εu13∂x0

α
v+u13∂x1

α
v
)
dx0dx1 = O(ε).

• Step c-4. Proposition 127 and v = 0 on Ω♯
3 × ∂Ω1

3 =⇒∮
Ω♯

3×Ω1
3

(∂x1
3
u0α + ∂x0

α
u03 + ε−1∂x1

α
u03 + ε∂x0

α
u13 + ∂x1

α
u13)v dx

0dx1 = O(ε)

• Substep c-4-1. Lemma 154(b) =⇒∮
Ω♯

3×Ω1
3

(∂x1
3
u0α + ∂x0

α
u03 + ε∂x0

α
u13 + ∂x1

α
u13)v dx

0dx1 = O(ε)

Passing to the limit when ε→ 0 =⇒∮
Ω♯

3×Ω1
3

(∂x1
3
u0α + ∂x0

α
u03 + ∂x1

α
u13)v dx

0dx1 = 0

• Step c-5. Proposition 118 =⇒

∂x1
3
u0α + ∂x0

α
u03 + ∂x1

α
u13 = 0.

d-Source term. The initial term is

Ψ = ε2
∮
Ω3

∂x3u
ε
3Bv dx

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)). The proof is the same as for Lemma 154(a).

e-Source term. The initial term is

Ψ = ε

∮
Ω3

∂x3u
ε
3Bv dx

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)). The proof is the same as for Lemma 154(c).

f-Source term. The initial term is

Ψ = ε

∮
ΩPt

∂xi
θεBv dx

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
Pt
(Ω1

Pt)). The proof is the same as for Lemma 154(a).

g-Source term. The initial term is

Ψ = ε

∮
ΩSi

3

∂xi
θεBv dx

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
Si
(Ω1

Si)). The proof is the same as for Lemma 154(a).

h-Source term. The initial term is

Ψ = ε

∮
ΩPt

∂xi
φεBv dx

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
Pt
(Ω1

Pt)). The proof is the same as for Lemma 154(a).
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Lemma 155 [Second Block-1: Two-Scale Limit of the Derivative] (a) ηMαβ = ∂x0
β
u0α +

∂x0
α
u0β +∂x1

β
u1α + ∂x1

α
u1β, (b) η

M
α3 = ∂x0

α
u13 + ∂x1

3
u1α +∂x1

α
u23, (c) η

M
33 = ∂x1

3
u23 in Ω♯

3 × Ω1
3, (d)

ηHi = χ{1,2}(i)∂x0
i
θ0 + ∂x1

i
θ1 in Ω♯

3 × Ω1
Pt, (e) ηHi = χ{1,2}(i)∂x0

i
θ0 + ∂x1

i
θ1 in Ω♯

3 × Ω1
Si, (f)

ηhi = ∂x1
i
θ03 in Ω♯

3 × Ω1
SiO2 (g) ηEi = χ{1,2}(i)∂x0

i
φ0 + ∂x1

i
φ1 in Ω♯

3 × Ω1
Pt.

Proof. a-Source term. The initial term is

Ψ =

∮
Ω3

(∂xβ
uεα + ∂xαu

ε
β)Bv dx (3.29)

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)).

The steps are the same as the proof of Lemma 23 in Chapter 1 and we get the conclusion
(a).

b-Source term.

Ψ =

∮
Ω3

(∂x3u
ε
α + ∂xαu

ε
3)Bv dx (3.30)

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)).

• Step b-1. The Green formula (127), Proposition 141 and the linearity of integrals =⇒

Ψ = −
∮
Ω3

uεαε
−1B(∂x1

3
v) + εuε3ε

−1B(∂x0
α
v + ε−1∂x1

α
v) dx.

• Step b-2. Assumption 3.25 and 3.25 =⇒

Ψ =

∮
Ω♯

3×Ω1
3

(ε−1u0α + u1α)∂x1
3
v + (u03 + εu13 + ε2u23)ε

−1(∂x0
α
v + ε−1∂x1

α
v) dx0dx1 +O(ε).

• Substep b-2-1. Expand and factorizing by exponent of ε =⇒

Ψ =

∮
Ω♯

3×Ω1
3

ε−2u03∂x1
α
v dx0dx1 +

∮
Ω♯

3×Ω1
3

ε−1
(
u0α∂x1

3
v + u03∂x0

α
v + u13∂x1

α
v
)
dx0dx1

+

∮
Ω♯

3×Ω1
3

(
u1α∂x1

3
v + u13∂x0

α
v + u23∂x1

α
v
)
dx0dx1 +O(ε).

• Step b-3. The Green formula (127) and factorizing =⇒

Ψ =

∮
Ω♯

3×Ω1
3

ε−2∂x1
α
u03v dx

0dx1 +

∮
Ω♯

3×Ω1
3

ε−1
(
∂x1

3
u0α + ∂x0

α
u03 + ∂x1

α
u13

)
v dx0dx1

+

∮
Ω♯

3×Ω1
3

(
∂x0

α
u13 + ∂x1

α
u23 + ∂x1

3
u1α

)
v dx0dx1 +O(ε).

• Step b-4. Lemma 154(b) and (c), passing to the limit when ε→ 0 =⇒

Ψ =

∮
Ω♯

3×Ω1
3

(
∂x0

α
u13 + ∂x1

α
u23 + ∂x1

3
u1α

)
v dx0dx1.
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• Step b-5. Proposition 118 =⇒

ηMα3 = ∂x0
α
u13 + ∂x1

α
u23 + ∂x1

3
u1α.

c-Source term.

Ψ =

∮
Ω3

∂x3u
ε
3Bv dx

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)). We follow the steps of the proof of Lemma 23 to �nd the conclu-

sion.

d-Source term. The initial term is

Ψ =

∮
ΩPt

∂xi
θεBv dx for each i ∈ {1, 2, 3} (3.31)

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
Pt
(Ω1

Pt)). We follow the steps of the proof of Lemma 23 to �nd the

conclusion.

e-Source term. The initial term is

Ψ =

∮
ΩSi

3

∂xi
θεBv dx for each i ∈ {1, 2, 3}

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
Si
(Ω1

Si)). We follow the steps of the proof of Lemma 23 to �nd the

conclusion.

f-Source term. The initial term is

Ψ =

∮
ΩSiO2

3

ε∂xi
θεBv dx for each i ∈ {1, 2, 3}, (3.32)

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
SiO2

(Ω1
SiO2)). We follow the steps of the proof of Lemma 23 to �nd the

conclusion.

g-Source term. The initial term is

Ψ =

∮
ΩPt

∂xi
φεBv dx for each i ∈ {1, 2, 3}, (3.33)

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
Pt
(Ω1

Pt)). We follow the steps of the proof of Lemma 23 to �nd the

conclusion.

Lemma 156 [Third Block-1: Microscopic Boundary Condition] (a) u0α, (b) u
1
α, (c) u

1
3

and (d) u23 are x
1
α-periodic in Ω1

3, (e) θ
1

|Ω♯
3×Ω1

Si

is x1α-periodic in Ω1
Si, (f) θ

1

|Ω♯
3×Ω1

Pt

and (g) φ1 are

x1α-periodic in Ω1
Pt and (h) θ0 is continuous in Ω1

3.

Proof. a-Source term. The initial term is

Ψ = ε

∮
Ω3

(∂xβ
uεα + ∂xαu

ε
β)Bv dx

with v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)). From the Cauchy-Schwartz inequality and (3.4), limε→0Ψ = 0.
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Chapter 3. A two-scale model derivation for a SThM probe

• Step a-1. The Step 1 to Step 3 of the proof of Lemma 154(a)=⇒

−
∮
Ω♯

3×Ω1
3

(∂x1
β
u0α + ∂x1

α
u0β)v dx

0dx1 +
|∂Ω1

3|
|Ω1

3|

∮
Ω♯

3×Γ1
3

(∂x1
β
u0α + ∂x1

α
u0β)v dx

0dx1 = O(ε).

• Step a-2. Lemma 154 and passing to the limit when ε→ 0 =⇒∮
Ω♯

3×Γ1
3

(u0αnx1
β
+ u0βnx1

α
)v dx0dx1 = O(ε).

• Step a-3. Proposition 120 =⇒

for α ∈ {1, 2} u0α is x1α-periodic in Ω1
3.

b-Source term. In (3.30), we choose v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

♯ (Ω1
3)). The proof is the same as for

Lemma 24. In Step 3, we replace Proposition 2 by Proposition 120.

c-Source term. In (3.28), we choose v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

♯ (Ω1
3)) and vanish on the top and

bottom surface. We use Γ1,Lat
3 to denote the lateral boundary of Ω1

3.

• Step c-1. The steps 1-4 for the proof of Lemma 154(c) =⇒∮
Ω♯

3×Ω1
3

(∂x1
3
u0α + ∂x0

α
u03 + ε−1∂x1

α
u03 + ε∂x0

α
u13 + ∂x1

α
u13)v dx

0dx1

−|Γ1
3|

|Ω1
3|

∮
Ω♯

3×Γ1,Lat
3

(ε−1u03nx1
α
+u13nx1

α
)v dx0dx1 = O(ε)

• Step c-2. Lemma 154, Property 121 and passing to the limit when ε→ 0 =⇒∮
Ω♯

3×Γ1,Lat
3

u13nx1
α
v dx0dx1 = 0.

• Step c-3. Proposition 119 =⇒

for α ∈ {1, 2} u13 is Ω1
3-periodic.

d-Source term. Choose test function v ∈ C∞
∂Ω♯

3

(Ω♯
3; C∞

♯ (Ω1
3)) and let v vanish on the top

and bottom in (3.30).

• Step d-1. Steps b-1 to b-4 in Lemma 155, =⇒

Ψ =

∮
Ω♯

3×Ω1
3

(
∂x0

α
u13 + ∂x1

α
u23 + ∂x1

3
u1α

)
v dx0dx1−

∮
Ω♯

3×Γ1,Lat
3

(
nx1

α
u13 + nx1

α
u23
)
v dx0dx1+O(ε).

• Step d-2. Lemma 155, Lemma 156(c), Property 121, passing to the limit when ε → 0,
=⇒

−
∮
Ω♯

3×Γ1,Lat
3

nx1
α
u23v dx

0dx1 = 0.
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• Step d-3. Property 119 =⇒

u23 is x
1
α-periodic in Ω1

3.

The proofs of (e) (f) and (g) are the same as for the Lemma 24 in Chapter 1.

h-Source term. We choose v ∈ C∞
∂Ω♯

3

(Ω♯
3;C

∞
∂Ω1

3
(Ω1

3)), the initial term is

ε

|Ω1
Si| |Ω1

SiO2|

∮
Ω♯

3×Ω1
Pt

ηHi v dx
0dx1 +

ε

|Ω1
Pt| |Ω1

SiO2|

∮
Ω♯

3×Ω1
Si

ηHi v dx
0dx1

+
1

|Ω1
Si| |Ω1

Pt|

∮
Ω♯

3×Ω1
SiO2

ηHi v dx
0dx1

=
ε

|Ω1
Si| |Ω1

SiO2|

∮
ΩPt

∂xi
θ Bv dx0dx1 +

ε

|Ω1
Pt| |Ω1

SiO2|

∮
ΩSi

∂xi
θ Bv dx0dx1

+
1

|Ω1
Si| |Ω1

Pt|

∮
ΩSiO2

ε∂xi
θ Bv dx0dx1 +O(ε)

• Step h-1. Follow steps 1-3 of the proof for Lemma 155.

ε

|Ω1
Si| |Ω1

SiO2|

∮
Ω♯

3×Ω1
Pt

ηHi v dx
0dx1 +

ε

|Ω1
Pt| |Ω1

SiO2|

∮
Ω♯

3×Ω1
Si

ηHi v dx
0dx1

+
1

|Ω1
Si| |Ω1

Pt|

∮
Ω♯

3×Ω1
SiO2

ηhi v dx
0dx1

=
1

|Ω1
Si| |Ω1

SiO2|

∮
Ω♯

3×Ω1
Pt

∂x1
i
θ0v dx0dx1 − 1

A

∫
Ω♯

3×(Γ1
Pt∩Γ

1
SiO2)

θ0|Ω♯
3×Ω1

Pt

nx1
3
v dx0dx1

+
1

|Ω1
Pt| |Ω1

SiO2|

∮
Ω♯

3×Ω1
Si

∂x1
i
θ0v dx0dx1 − 1

A

∫
Ω♯

3×(Γ1
Si∩Γ

1
SiO2)

θ0|Ω♯
3×Ω1

Si

nx1
3
v dx0dx1

+
1

|Ω1
Si| |Ω1

Pt|

∮
Ω♯

3×Ω1
SiO2

∂x1
i
θ0 v dx0dx1 − 1

A

∫
Ω♯

3×(Γ1
Pt∩Γ

1
SiO2)

θ0|Ω♯
3×Ω1

SiO2

nx1
3
v dx0dx1

− 1

A

∫
Ω♯

3×(Γ1
Si∩Γ

1
SiO2)

θ0|Ω♯
3×Ω1

SiO2

nx1
3
v dx0dx1 +O(ε).

with A = |Ω1
Si| |Ω1

SiO2| |Ω1
Pt| |Ω

♯
3|.

• Step h-2. Lemma 154, Lemma 155, passing to the limit when ε→ 0 ⇒

1

A

∫
Ω♯

3×(Γ1
Pt∩Γ

1
SiO2)

θ0|Ω♯
3×Ω1

Pt

nx1
3
v dx0dx1 +

1

A

∫
Ω♯

3×(Γ1
Si∩Γ

1
SiO2)

θ0|Ω♯
3×Ω1

Si

nx1
3
v dx0dx1

+
1

A

∫
Ω♯

3×(Γ1
Pt∩Γ

1
SiO2)

θ0|Ω♯
3×Ω1

SiO2

nx1
3
v dx0dx1 +

1

A

∫
Ω♯

3×(Γ1
Si∩Γ

1
SiO2)

θ0|Ω♯
3×Ω1

SiO2

nx1
3
v dx0dx1 = 0.

• Step h-3. Factorizing by integration domains =⇒

1

A

∫
Ω♯

3×(Γ1
Pt∩Γ

1
SiO2)

(
θ0|Ω♯

3×Ω1
Pt

− θ0|Ω♯
3×Ω1

SiO2

)
nx1

3
v dx0dx1

+
1

A

∫
Ω♯

3×(Γ1
Si∩Γ

1
SiO2)

(
θ0|Ω♯

3×Ω1
Si

− θ0|Ω♯
3×Ω1

SiO2

)
nx1

3
v dx0dx1 = 0
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• Step h-4. Proposition 125⇒

θ0|Ω♯
3×Ω1

Pt

− θ0|Ω♯
3×Ω1

SiO2

= 0 on Γ1
Pt ∩ Γ1

SiO2 and θ
0

|Ω♯
3×Ω1

Si

− θ0|Ω♯
3×Ω1

SiO2

= 0 on Γ1
Si ∩ Γ1

SiO2.

Lemma 157 [Fourth Block-1: Macroscopic Boundary Condition] (a) u0α, (b) u
0
3, (c)

u13 (d) θ0|Ω♯
3×Ω1

Si

, (e) θ0|Ω♯
3×Ω1

Pt

vanishes on Γ♯
0 ∩ ∂Ω

♯
3 and (f) φ0 vanishes on Γ♯

02.

Proof. a-Source term. In (3.29), we choose v ∈ C∞
∂Ω♯

3−Γ♯
0

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)).

• Step a-1. The steps 1-3 of the proof for Lemma 155 and use uε = 0 on Γ0 =⇒∮
Ω♯

3×Ω1
3

ηMαβv dx
0dx1 =

∮
Ω♯

3×Ω1
3

(∂x♯
β
u0α + ∂x♯

α
u0β + ∂x1

β
u1α + ∂x1

α
u1β)v dx

0dx1

−|∂Ω♯
3|

|Ω♯
3|

∮
(Γ♯

0∩∂Ω
♯
3)×Ω1

3

(u0αnx♯
β
+ u0βnx♯

α
)v dx0dx1

+
1

ε

∮
Ω♯

3×Ω1
3

(∂x1
β
u0α + ∂x1

α
u0β)v dx

0dx1 +O(ε).

• Step a-2. Lemma 154 and lemma 155, passing to the limit when ε→ 0 =⇒∮
(Γ♯

0∩∂Ω
♯
3)×Ω1

3

(u0αnx♯
β
+ u0βnx♯

α
)v dx0dx1.

• Step a-3. Proposition 126=⇒

u0α = 0 on Γ♯
0 ∩ ∂Ω

♯
3.

b-Source term. We choose v ∈ C∞
∂Ω♯

3−Γ♯
0

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)), the initial term is

ε

∮
Ω♯

3×Ω1
3

ηMα3v dx
0dx1 = ε

∮
Ω3

(∂x3u
ε
α + ∂xαu

ε
3)Bv dx+O(ε).

• Step b-1. The steps 1-4 of the proof for Lemma 154 and uε = 0 on Γ0 =⇒

ε

∮
Ω♯

3×Ω1
3

ηMα3v dx
0dx1 =

∮
Ω♯

3×Ω1
3

(∂x1
3
u0α + ∂x0

α
u03 + ε−1∂x1

α
u03 + ε∂x0

α
u13 + ∂x1

α
u13)v dx

0dx1

−|∂Ω♯
3|

|Ω♯
3|

∮
(Γ♯

0∩∂Ω
♯
3)×Ω1

3

(u03nx0
α
+ εu13nx0

α
)v dx0dx1 +O(ε)

• Step b-2. Lemma 154, passing to the limit when ε→ 0 =⇒∮
(Γ♯

0∩∂Ω
♯
3)×Ω1

3

u03nx0
α
v dx0dx1 = 0.
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• Step b-3. Proposition 125 =⇒

u03 = 0 on Γ♯
0 ∩ ∂Ω

♯
3.

c-Source term. We choose v ∈ C∞
∂Ω♯

3−Γ♯
0

(Ω♯
3; C∞

∂Ω1
3
(Ω1

3)), the initial term is∮
Ω♯

3×Ω1
3

ηMα3v dx
0dx1 =

∮
Ω3

(∂x3u
ε
α + ∂xαu

ε
3)Bv dx+O(ε).

• Step c-1. The steps 1-3 of the proof for Lemma 155, =⇒∮
Ω♯

3×Ω1
3

ηMα3v dx
0dx1 =

∮
Ω♯

3×Ω1
3

ε−2∂x1
α
u03v dx

0dx1

+

∮
Ω♯

3×Ω1
3

ε−1
(
∂x1

3
u0α + ∂x0

α
u03 + ∂x1

α
u13

)
v dx0dx1

+

∮
Ω♯

3×Ω1
3

(
∂x0

α
u13 + ∂x1

α
u23 + ∂x1

3
u1α

)
v dx0dx1

−|∂Ω♯
3|

|Ω♯
3|

∮
(Γ♯

0∩∂Ω
♯
3)×Ω1

3

(ε−1u03nx0
α
+ u13nx0

α
)v dx0dx1 +O(ε)

• Step c-2. Lemma 154, Lemma 155, Lemma 157(b), passing to the limit when ε→ 0 =⇒∮
(Γ♯

0∩∂Ω
♯
3)×Ω1

3

u13nx0
α
v dx0dx1 = 0.

• Step c-3. Proposition 125 =⇒

u13 = 0 on Γ♯
0 ∩ ∂Ω

♯
3.

d-Source term. We choose v ∈ C∞
∂Ω♯

3−Γ♯
0

(Ω♯
3; C∞

∂Ω1
Si
(Ω1

Si)), the initial term is∮
Ω♯

3×Ω1
Si

ηHi v dx
0dx1 =

∮
ΩSi

3

∂xi
θεBv dx+O(ε).

Follow steps 1-4 in the proof for Lemma 25 in Chapter 1, we get the conclusion.

e-Source term. We choose v ∈ C∞
∂Ω♯

3−Γ♯
0

(Ω♯
3; C∞

∂Ω1
Pt
(Ω1

Pt)) the initial term is∮
Ω♯

3×Ω1
Si

ηHi v dx
0dx1 =

∮
ΩPt

3

∂xi
θεBv dx+O(ε).

Follow steps 1-4 in the proof for Lemma 25 in Chapter [?], we get the conclusion.

f-Source term. We choose v ∈ C∞
∂Ω♯

3−Γ♯
02

(Ω♯
3; C∞

∂Ω1
Pt
(Ω1

Pt)) the initial term is∮
Ω♯

3×Ω1
Pt

ηEi v dx
0dx1 =

∮
ΩPt

∂xi
φεBv dx+O(ε).

Follow steps 1-4 in the proof for Lemma 25 in Chapter 1, we get the conclusion.
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Lemma 158 [Constraint Reduction] (a) u0α is independent of x1α, (b) u
1
3 is independent of

x1α, (c) u
0
α = −x13∂x0

α
u03 + ũ0α(x

0).

Proof. a-Source term. Lemma 154(a) ∂x1
α
u0β + ∂x1

β
u0α = 0 and Lemma 156(b) u0α is

x1α-periodic in Ω1
3.

• Step a-1. Proposition 124 =⇒

∂x1
β
u0α = 0 for ∀α, β ∈ {1, 2}.

b-Source term. Lemma 154(c) ∂x1
3
u0α + ∂x0

α
u03 + ∂x1

α
u13 = 0.

• Step b-1. Equivalent transformation =⇒

∂x1
α
u13 = −

(
∂x1

3
u0α + ∂x0

α
u03

)
.

• Step b-2. Lemma 154, Lemma 158(a), Proposition 122 =⇒

u13 = −x1α
(
∂x1

3
u0α + ∂x0

α
u03

)
+ ũ13(x

0)

• Step b-3. Property 123 =⇒
∂x1

3
u0α + ∂x0

α
u03 = 0

and u13 independent of x
1
α.

c-Source term. ∂x1
3
u0α + ∂x0

α
u03 = 0

• Step c-1. Equivalent transformation =⇒

∂x1
3
u0α = −∂x0

α
u03.

• Step c-2. Lemma 154, Proposition 122, Lemma 158(a) =⇒

u0α = −x13∂x0
α
u03 + ũ0α(x

0).

The proofs of Proposition 153 is complete. In the following, according to another assump-
tions of two-scale convergence of the solutions on the two-layered subdomain, a similar propo-
sition is stated for the two-scale limits of strains and gradient of temperature.

Assumption 159 [Two-scale approximation of u] There exist (u0i , u
1
i , u

2
i )i=1,3, θ

0, θ1 ∈
L2(Ω♯

2 × Ω1
2) such that

for i ∈ {1, 2, 3} :

∮
Ω2

εδi3uεi Bv dx−
∮
Ω♯

2×Ω1
2

u0i v dx
0dx1 = O(ε)

for m ∈ {Si, SiO2} :

∮
Ωm

2

θε Bv dx−
∮
Ω♯

2×Ω1
m

θ0 v dx0dx1 = O(ε)
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for all v ∈ C∞(Ω♯
2 × Ω1

2),

for i ∈ {1, 2, 3} :

∮
Ω2

εδi3uεi Bv dx−
∮
Ω♯

2×Ω1
2

(u0i + εu1i + ε2u2i ) v dx
0dx1 = O(ε)

for m ∈ {Si, SiO2} :

∮
Ωm

2

θε Bv dx−
∮
Ω♯

2×Ω1
m

(θ0 + εθ1) v dx0dx1 = O(ε)

for all v ∈ D(Ω♯
2; C∞

♯ (Ω1
2)).

Proposition 160 [Two-scale Limit of a Derivative] If (uεα)α∈{1,2}, εu
ε
3, θ

ε and φε are
sequences bounded as in (3.4,3.5,3.6) and satisfying (3.22-3.27), then (ũ0α)α∈{1,2}, u

0
3, u

1
3 and

θ1|Ω♯
2×Ω1

Si

are independent of x1, (u1α)α∈{1,2}, u
2
3 and θ1|Ω♯

2×Ω1
Si

are x1α-periodic, and

for α, β ∈ {1, 2} :
∮
Ω2
(∂xαu

ε
β + ∂xβ

uεα)Bv dx−
∮
Ω♯

2×Ω1
2
ηMαβv dx

0dx1 = O(ε),

for α ∈ {1, 2} :
∮
Ω2
(∂x3u

ε
α + ∂xαu

ε
3)Bv dx−

∮
Ω♯

2×Ω1
2
ηMα3v dx

0dx1 = O(ε),∮
Ω2
∂x3u

ε
3Bv dx−

∮
Ω♯

2×Ω1
2
ηM33v dx

0dx1 = O(ε),∮
ΩSi

2
∂xi
θεBv dx−

∮
Ω♯

2×Ω1
Si
ηHi v dx

0dx1 = O(ε),∮
ΩSiO2

2
ε∂xi

θεBv dx−
∮
Ω♯

2×Ω1
SiO2

ηhi v dx
0dx1 = O(ε),

where

ηMαβ = −x13∂2x0
αx

0
β
u03 + ∂x0

β
ũ0α + ∂x0

α
ũ0β + ∂x1

β
u1α + ∂x1

α
u1β in Ω♯

2 × Ω1
2,

ηMα3 = ∂x0
α
u13 + ∂x1

α
u23 + ∂x1

3
u1α in Ω♯

2 × Ω1
2,

ηM33 = ∂x1
3
u23 in Ω♯

2 × Ω1
2,

ηHi = χ{1,2}(i)∂x0
i
θ0 + ∂x1

i
θ1 in Ω♯

2 × Ω1
Si,

ηhi = ∂x1
i
θ0 in Ω♯

2 × Ω1
SiO2.

Moreover, if uε = 0, θε = 0 on Γ0, then u0 = 0 and θ0 = 0 on Γ♯
0 ∩ ∂Ω0

2.

The proof of this proposition is the same as the proof for Proposition 153. The next
proposition shows that u0 and θ0 are continuous on the interface ∂Ω♯

2 ∩ ∂Ω
♯
3.

Proposition 161 The weak limit u0 and θ0 are continuous on ∂Ω♯
2 ∩ ∂Ω

♯
3.

Lemma 162 [Continuity of u0 and θ0] (a) (u0α)α∈{1,2}, (b) u03, (c) u13 and (d) θ0|Ω1
Si

are

continuous on ∂Ω♯
2 ∩ ∂Ω

♯
3.

Proof. For convenience of the presentation, we denote by Γ♯
23 the intersection of ∂Ω♯

2 and
∂Ω♯

3.
a-Source term. Choose v2 ∈ C∞

∂Ω♯
2−Γ♯

23

(Ω♯
2; C∞

Γ1
2
(Ω1

2)), v
3 ∈ C∞

∂Ω♯
3−Γ♯

23

(Ω♯
3; C∞

Γ1
3
(Ω1

3)), the initial

term is

1

|Ω♯
3|

∮
Ω♯

2×Ω1
2

ηMαβv
2 dx0dx1 +

1

|Ω♯
2|

∮
Ω♯

3×Ω1
3

ηMαβv dx
0dx1

=
1

|Ω♯
3|

∮
Ω2

(∂xαu
ε
β + ∂xβ

uεα)v
2 dx0dx1 +

1

|Ω♯
2|

∮
Ω3

(∂xαu
ε
β + ∂xβ

uεα)v
3 dx0dx1.
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• Step a-1. Follow the Step 1 - Step 4 of the proof of Lemma 155 =⇒

1

|Ω♯
3|

∮
Ω♯

2×Ω1
2

ηMαβv
2 dx0dx1 +

1

|Ω♯
2|

∮
Ω♯

3×Ω1
3

ηMαβv
3 dx0dx1

=
1

|Ω♯
3|

∮
Ω♯

2×Ω1
2

(∂x0
α
u0β + ∂x0

β
u0α + ∂x1

α
u1β + ∂x1

β
u1α)v

2 dx0dx1

− 1

|Ω♯
3||Ω

♯
2||Ω1

2|

∫
Γ♯
23×Ω1

2

(
nx0

α
u0β + nx0

β
u0α

)
v2 dx0dx1

+
1

|Ω♯
2|

∮
Ω♯

3×Ω1
3

(∂x0
α
u0β + ∂x0

β
u0α + ∂x1

α
u1β + ∂x1

β
u1α)v

3 dx0dx1

− 1

|Ω♯
2||Ω

♯
3||Ω1

3|

∫
Γ♯
23×Ω1

3

(
nx0

α
u0β + nx0

β
u0α

)
v3 dx0dx1

• Step a-2. Lemma 155 =⇒

1

|Ω♯
3||Ω

♯
2||Ω1

2|

∫
Γ♯
23×Ω1

2

(
nx0

α
u0β + nx0

β
u0α

)
v2 dx0dx1

+
1

|Ω♯
2||Ω

♯
3||Ω1

3|

∫
Γ♯
23×Ω1

3

(
nx0

α
u0β + nx0

β
u0α

)
v3 dx0dx1 = 0.

• Step a-3. Let v2 ∈ C∞
∂Ω♯

2−Γ♯
23

(Ω♯
2), v

3 ∈ C∞
∂Ω♯

3−Γ♯
23

(Ω♯
3) and v

2 = v3 = v on Γ♯
23, factoring

=⇒ ∫
Γ♯
23

(
nx0

α
(u0

β|Ω♯
2

− u0
β|Ω♯

3

) + nx0
β
(u0

α|Ω♯
2

− u0
α|Ω♯

3

)
)
v dx0 = 0.

• Step a-4. Proposition 126 =⇒

for ∀α, β ∈ {1, 2}, u0
β|Ω♯

2

− u0
β|Ω♯

3

= 0 and u0
α|Ω♯

2

− u0
α|Ω♯

3

= 0 on Γ♯
23.

b-Source term. Choose v2 ∈ C∞
∂Ω♯

2−Γ♯
23

(Ω♯
2; C∞

Γ1
2
(Ω1

2)), v
3 ∈ C∞

∂Ω♯
3−Γ♯

23

(Ω♯
3; C∞

Γ1
3
(Ω1

3)), for each

α ∈ {1, 2}, the initial term is

Ψ = ε
1

|Ω♯
3|

∮
Ω2

(∂x3u
ε
α + ∂xαu

ε
3)Bv

2 dx+ε
1

|Ω♯
2|

∮
Ω3

(∂x3u
ε
α + ∂xαu

ε
3)Bv

3 dx,

From the Cauchy-Schwartz inequality and (3.4), limε→0Ψ = 0.

• Step b-1. Follow the Step c-1 to Step c-4 in Lemma 154(c) =⇒

1

|Ω♯
3|

∮
Ω♯

2×Ω1
2

(∂x1
3
u0α + ∂x0

α
u03 + ∂x1

α
u13)v

2 dx0dx1 − 1

|Ω♯
3||Ω

♯
2||Ω1

2|

∫
Γ♯
23×Ω1

2

nx0
α
u03v

2 dx0dx1

+
1

|Ω♯
2|

∮
Ω♯

3×Ω1
3

(∂x1
3
u0α + ∂x0

α
u03 + ∂x1

α
u13)v

3 dx0dx1− 1

|Ω♯
2||Ω

♯
3||Ω1

3|

∫
Γ♯
23×Ω1

2

nx0
α
u03v

3 dx0dx1 = 0

• Step b-2. Lemma 154(c) =⇒

− 1

|Ω♯
3||Ω

♯
2||Ω1

2|

∫
Γ♯
23×Ω1

2

nx0
α
u03v

2 dx0dx1− 1

|Ω♯
2||Ω

♯
3||Ω1

3|

∫
Γ♯
23×Ω1

3

nx0
α
u03v

3 dx0dx1 = 0.
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• Step b-3. Let v2 ∈ C∞
∂Ω♯

2−Γ♯
23

(Ω♯
2), v

3 ∈ C∞
∂Ω♯

3−Γ♯
23

(Ω♯
3) and v

2 = v3 = v on Γ♯
23, factoring

=⇒ ∫
Γ♯
23

nx0
α
(u0

3|Ω♯
2

− u0
3|Ω♯

3

)v dx0 = 0.

• Step b-4. Proposition 125 =⇒

u0
3|Ω♯

2

− u0
3|Ω♯

3

= 0 on Γ♯
23.

c-Source term. Choose v2 ∈ C∞
∂Ω♯

2−Γ♯
23

(Ω♯
2; C∞

Γ1
2
(Ω1

2)), v
3 ∈ C∞

∂Ω♯
3−Γ♯

23

(Ω♯
3; C∞

Γ1
3
(Ω1

3)), for each

α ∈ {1, 2}, the initial term is

Ψ =
1

|Ω♯
3|

∮
Ω2

(∂x3u
ε
α + ∂xαu

ε
3)Bv

2 dx+
1

|Ω♯
2|

∮
Ω3

(∂x3u
ε
α + ∂xαu

ε
3)Bv

3 dx.

• Step c-1. Follow the Step b-1 to Step b-4 155 =⇒

1

|Ω♯
3|

∮
Ω♯

2×Ω1
2

ηMα3 v
2 dx0dx1 +

1

|Ω♯
2|

∮
Ω♯

3×Ω1
3

ηMα3 v
3 dx0dx1

=
1

|Ω♯
3|

∮
Ω♯

2×Ω1
2

(
∂x0

α
u13 + ∂x1

α
u23 + ∂x1

3
u1α

)
v2 dx0dx1 − 1

|Ω♯
3||Ω

♯
2||Ω1

2|

∫
Γ♯
23×Ω1

2

nx0
α
u13v

2 dx0dx1

+
1

|Ω♯
2|

∮
Ω♯

3×Ω1
3

(
∂x0

α
u13 + ∂x1

α
u23 + ∂x1

3
u1α

)
v3 dx0dx1 − 1

|Ω♯
2||Ω

♯
3||Ω1

3|

∫
Γ♯
23×Ω1

3

nx0
α
u13v

3 dx0dx1

• Step c-2. Lemma 155(b) =⇒

− 1

|Ω♯
3||Ω

♯
2||Ω1

2|

∫
Γ♯
23×Ω1

2

nx0
α
u13v

2 dx0dx1− 1

|Ω♯
2||Ω

♯
3||Ω1

3|

∫
Γ♯
23×Ω1

3

nx0
α
u13v

3 dx0dx1 = 0.

• Step c-3. Let v2 ∈ C∞
∂Ω♯

2−Γ♯
23

(Ω♯
2), v

3 ∈ C∞
∂Ω♯

3−Γ♯
23

(Ω♯
3) and v

2 = v3 = v on Γ♯
23, factoring

=⇒ ∫
Γ♯
23

nx0
α
(u1

3|Ω♯
2

− u1
3|Ω♯

3

)v dx0 = 0.

• Step c-4. Proposition 125 =⇒

u1
3|Ω♯

2

− u1
3|Ω♯

3

= 0 on Γ♯
23.

d-Source term. Choose v2 ∈ C∞
∂Ω♯

2−Γ♯
23

(Ω♯
2; C∞

∂Ω1
Si
(Ω1

Si)), v
3 ∈ C∞

∂Ω♯
3−Γ♯

23

(Ω♯
3; C∞

∂Ω1
Si
(Ω1

Si)), the

initial term is

Ψ =
1

|Ω♯
3|

∮
ΩSi

2

∂xi
θεBv dx+

1

|Ω♯
2|

∮
ΩSi

3

∂xi
θεBv dx for each i ∈ {1, 2, 3}.
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• Step d-1. Follow the Step 1 to Step 4 in the proof of Lemma155 =⇒
1

|Ω♯
3|

∮
Ω♯

2×Ω1
Si

ηHi v dx0dx1 +
1

|Ω♯
2|

∮
Ω♯

3×Ω1
Si

ηHi v dx0dx1

=
1

|Ω♯
3|

∮
Ω♯

2×Ω1
Si

(
χ{1,2}(i)∂x0

i
θ0 + ∂x1

i
θ1
)
v dx0dx1

+
1

|Ω♯
2|

∮
Ω♯

3×Ω1
Si

(
χ{1,2}(i)∂x0

i
θ0 + ∂x1

i
θ1
)
v dx0dx1

− 1

|Ω♯
3||Ω

♯
2||Ω1

Si|

∫
Γ♯
23×Ω1

Si

χ{1,2}(i)nx0
i
θ0|Ω♯

2×Ω1
Si

v dx0dx1

− 1

|Ω♯
2||Ω

♯
3||Ω1

Si|

∫
Γ♯
23×Ω1

Si

χ{1,2}(i)nx0
i
θ0|Ω♯

3×Ω1
Si

v dx0dx1

• Step d-2. Lemma 155(e) =⇒

− 1

|Ω♯
3||Ω

♯
2||Ω1

Si|

∫
Γ♯
23×Ω1

Si

χ{1,2}(i)nx0
i
θ0|Ω♯

2×Ω1
Si

v dx0dx1

− 1

|Ω♯
2||Ω

♯
3||Ω1

Si|

∫
Γ♯
23×Ω1

Si

χ{1,2}(i)nx0
i
θ0|Ω♯

3×Ω1
Si

v dx0dx1 = 0.

• Step d-3. Let v2 ∈ C∞
∂Ω♯

2−Γ♯
23

(Ω♯
2), v

3 ∈ C∞
∂Ω♯

3−Γ♯
23

(Ω♯
3) and v

2 = v3 = v on Γ♯
23, factoring

=⇒ ∫
Γ♯
23

χ{1,2}(i)nx0
i
(θ0|Ω♯

2×Ω1
Si

− θ0|Ω♯
3×Ω1

Si

)v dx0 = 0.

• Step d-4. Proposition 125 =⇒

θ0|Ω♯
2×Ω1

Si

− θ0|Ω♯
3×Ω1

Si

= 0 on Γ♯
23.

3.3.3 Homogenized Model Derivation

In the begining of this section, we introduce some assumptions used during the model derivation.
They are assumptions for the boundness and regularity of the solutions, the scaling of the
coe�cients and the force loads.

Assumption 163 [Boundness of the Solution] The solutions uε, θε and φε, force load f ε

and current source jε of (3.1) satis�es the boundness (3.4)-(3.6) and (3.2)-(3.3).

Assumption 164 [Strong convergence of two-scale transform of solutions] We assume
that φε and θε are regular enough so that their two-scale transformations T (φε) and T (θε)
strongly converge to the regular function φ0(x0, x1) and θ0(x0, x1) in (3.24) and (3.23).

Assumption 165 [Scaling for the coe�cients and source] We assume that for the scaled
functions Cijhk, kij, a

ref
ij , fi and j, the coe�cients and the forced satisfy the following scaling

Cε
ijhk = Cijhk, f

ε
α = fα, f

ε
3 = εf3 in Ω

kεij = kij in ΩPt ∪ ΩSi

kεij = ε2kij in ΩSiO2

aref,εij = arefij , jε = j in ΩPt.

112



3.3. The SThM Probe model derivation

For some functions C0
ijhk(x

1), k0ij(x
1), a0ij(x

1) and f 0
i (x

♯, x1), the two-scale transform of the
scaled functions are

T (Cijhk) = C0
ijhk(x

1), T (kij) = k0ij(x
1), T (arefij ) = a0ij(x

1), T (fi) = fM,0
i and T (j) = j0.

For convenience of the presentation of the following proposition, we introduce some notations
for the homogenized coe�cients.

Notation 166 [Homogenized coe�cients and force loads]

• Electric conductivity:

aHij =

∮
Ω1

Pt

a0ij(δjβ + ∂x1
j
ξ1,Ptβ )(δiα + ∂x1

i
ξ1,Ptα ) dx1

where ξ1,Ptα is the solution to (3.15) for c0iα = a0iα.

• Coe�cient for elastic tensor: For a, b ∈ {D,S}, p′,q′,p,q ∈ {1, 2} and d ∈ {2, 3}

CH,ab
p′q′pq = χ(Ω♯

d)
(x0)

∮
Ω1

d

C0
ijhkL̃

d,a

p′q′hkL̃
d,b

pqijdx
1,

where L̃
d,a

p′q′hk and L̃
d,b

pqij are de�ned in Proposition 144.

• Thermal expansion coe�cient: For a, b ∈ {D,S}, p,q ∈ {1, 2}, m ∈ {Si,Pt} and
d ∈ {2, 3}

M2,b
pq =

∮
Ω1

2

(
C0

ijhkL
2,θSi
hk +Mij

)
L̃
2,b

pqijdx
1, M3,b,m

pq =

∮
Ω1

3

(
C0

ijhkL
3,θm
hk +Qm

ij

)
L̃
3,b

pqijdx
1,

where

QSi
ij =


Mij in Ω1

Si

Mijθ
− in Ω1

SiO2

0 in Ω1
Pt,

and QPt
ij =


0 in Ω1

Si

Mijθ
+ in Ω1

SiO2

Mij in Ω1
Pt,

θ− and θ+ are solutions of Equation (3.20) and Equation (3.21).

• Thermal conductivity:

k2,Siαβ = k3,Siαβ =

∮
Ω1

Si

k0ij(δjβ + ∂x1
j
ζ1,Siβ )(δiα + ∂x1

i
ζ1,Siα ) dx1, kSiO2,±

3 =

∮
Γ1,±
SiO2

k03j∂x1
j
θ± dx1

k3,Ptαβ =

∮
Ω1

Pt

k0ij(δjβ + ∂x1
j
ζ1,Ptβ )(δiα + ∂x1

i
ζ1,Ptα ) dx1

where ζ1,Siβ , ζ1,Ptβ are solutions to (3.15) with c0iα = k0iα, Γ
1,±
SiO2 are the top/bottom surface

of Ω1
SiO2.

• Force load:

q0α = χ(Ω♯
d)
(x0)

∮
Ω1

d

x13f
M,0
α dx1, f 0

3 = χ(Ω♯
d)
(x0)

∮
Ω1

d

fM,0
3 dx1 for d ∈ {2, 3}.

113



Chapter 3. A two-scale model derivation for a SThM probe

Property 167 [Equation Separation] Weak formula (3.2) is equivalent to
κ0
∫
Ω
(Cεs(uε) +Mεθε)s(vM,ε) dx = κ0

∫
Ω
fM,εvM,ε dxε + κ0

∫
Γ1
gM,εvM,ε dx (a)

κ0
∫
Ω
kε∇θε ∇vH,ε dxε = κ0

∫
ΩPt

aε∇φε∇φε vH,ε dx (b)

κ0
∫
ΩPt

aε∇φε ∇vE,ε dx = κ0jε
∫
Γ01

vE,ε dx (c)
(3.34)

The following proposition states the homogenized model for the SThM probe. Its proof is
separated into three lemmas.

Proposition 168 [Homogenized Model]
(a) The limit φ0 and θ0 are solutions of the coupled problems (a.1) and (a.2) as following:
(a.1) ∮

Ω♯
3

aHαβ

1 + λθ0
∂x0

β
φ0∂x0

α
vE,0 dx0 dx0 =

|Γ01|
|ΩPt|

∮
Γ♯
01

j0vE,0 dx0,

for all vE,0 ∈ C∞
Γ♯
02

(Ω♯
3).

(a.2)

rPt
∮
Ω♯

3

k3,Ptαβ ∂x0
β
θ0|Ω♯

3×Ω1
Pt

∂x0
α
vH,0
3 dx0 + rSiO2

3

∮
Ω♯

3

θ0|Ω♯
3×Ω1

Pt

(

∮
Ω1

Pt

kSiO2,+

3 dx1) vH,0
3 dx0

= rPt
∮
Ω♯

3

(

∮
Ω1

Pt

a0ij

1 + λθ0|Ω♯
3×Ω1

Pt

(δjβ + ∂x1
j
ξ1,Ptβ )(δiα + ∂x1

i
ξ1,Ptα ) dx1) ∂x0

β
φ0φ0∂x0

α
vH,0
3α dx0

for all vH,0
3 ∈ C∞

∂Ω♯
3

(Ω♯
3).

(b) The limit θ0 is solution to the weak formulation

rSi2

∮
Ω♯

2

k2,Siαβ ∂x0
β
θ0|Ω♯

2×Ω1
Si

∂x0
α
vH,0
2 dx0 = 0

for all vH,0
2 ∈ C∞

Γ♯
0∩∂Ω

♯
2

(Ω♯
2).

(c) θ0|Ω♯
3×Ω1

Si

is the solution to

rSi3

∫
Ω♯

3

k3,Siαβ ∂x0
β
θ0|Ω♯

3×Ω1
Si

∂x0
α
vH,0
3 dx0 − rSiO2

3

∮
Ω♯

3

θ0|Ω♯
3×Ω1

Si

(

∮
Ω1

Pt

kSiO2,−

3 dx1) vH,0
3 dx0 = 0

for all vH,0
3 ∈ C∞

Γ♯
0∩∂Ω

♯
3

(Ω♯
3).

(d) The limit (u0i )i=1,2,3 and u
1
3 satisfy u

0
α = −x13∂x0

α
u03+ ũ

0
α, ∇x1u03 = 0 and ∇x1u13 = 0, they

are solutions to the weak formulation∫
Ω♯

2

(
CH,DD

p′q′pq D
x0

p′q′(u
0
3) + CH,SD

p′q′pqS
x0

p′q′(ũ
0) +M2,D

pq θ0|Ω♯
2×Ω1

Si

)
·Dx0

pq (v
0
3) dx

0

+

∫
Ω♯

2

(
CH,SD

p′q′pqD
x0

p′q′(u
0
3) + CH,SS

p′q′pqS
x0

p′q′(ũ
0) +M2,S

pq θ
0

|Ω♯
2×Ω1

Si

)
· Sx0

pq (ṽ
0) dx0

+

∫
Ω♯

3

(
CH,DD

p′q′pq D
x0

p′q′(u
0
3) + CH,SD

p′q′pqS
x0

p′q′(ũ
0) +M3,D,Pt

pq θ0|Ω♯
3×Ω1

Pt

+M3,D,Si
pq θ0|Ω♯

3×Ω1
Si

)
·Dx0

pq (v
0
3) dx

0

+

∫
Ω♯

3

(
CH,SD

p′q′pqD
x0

p′q′(u
0
3) + CH,SS

p′q′pqS
x0

p′q′(ũ
0) +M3,S,Pt

pq θ0|Ω♯
3×Ω1

Pt

+M3,S,Si
pq θ0|Ω♯

3×Ω1
Si

)
· Sx0

pq (ṽ
0) dx0

=

∫
Ω♯

−q0α∂x0
α
v03 + f 0

3 v
0
3 + f 0

αṽ
0
α dx

0.

for all ṽ0 ∈ H1

Γ♯
0

(Ω♯)2, v03 ∈ H1(Ω♯).
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Lemma 169 [Fifth Block: Two-Scale Model] (a) The couples (φ0, φ1) and (θ0, θ1) are
solutions to the coupled two-scale weak formulations (a.1) and (a.2) as following

(a.1) The (φ0, φ1) solves∮
Ω♯

3×Ω1
Pt

(1 + αθ0)−1a0ij

(
χ{1,2}(j)∂x0

j
φ0 + ∂x1

j
φ1
)(

χ{1,2}(i)∂x0
i
vE,0 + ∂x1

i
vE,1

)
dx0dx1

=
|Γ01|
|ΩPt|

∮
Γ♯
01×Γ1

01

j0vE,0 dx0dx1 (3.35)

for any (vE,i)i=0,1 ∈ C∞
∂Ω♯

3

(Ω♯
3, C

∞
♯ (Ω1

Pt)) with condition ∂x1
i
vE,0 = 0.

(a.2) The couple (θ0, θ1) solves

rSi2

∮
Ω♯

2×Ω1
Si

k0ij

(
χ{1,2}(j)∂x0

j
θ0 + ∂x1

j
θ1
)(

χ{1,2}(i)∂x0
i
vH,0
2 + ∂x1

i
vH,1
2

)
dx0dx1

+ rSiO2
2

∮
Ω♯

2×Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
vH,0
2 dx0dx1

+ rSi3

∮
Ω♯

3×Ω1
Si

k0ij

(
χ{1,2}(j)∂x0

j
θ0 + ∂x1

j
θ1
)(

χ{1,2}(i)∂x0
i
vH,0
3 + ∂x1

i
vH,1
3

)
dx0dx1

+ rPt
∮
Ω♯

3×Ω1
Pt

k0ij

(
χ{1,2}(j)∂x0

j
θ0 + ∂x1

j
θ1
)(

χ{1,2}(i)∂x0
i
vH,0
3 + ∂x1

i
vH,1
3

)
dx0dx1

+ rSiO2
3

∮
Ω♯

3×Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
vH,0
3 dx0dx1

= −rPt
∮
Ω♯

3×Ω1
Pt

a0ij

1 + λθ0
φ0
(
χ{1,2}(j)∂x0

j
φ0 + ∂x1

j
φ1
)(

χ{1,2}(i)∂x0
i
vH,0
3 + ∂x1

i
vH,1
3

)
dx0dx1

(3.36)

for any (vH,i
2 )i=0,1 ∈ C∞

∂Ω♯
2

(Ω♯
2, C

∞
♯ (Ω1

2)) and (v
H,i
3 )i=0,1 ∈ C∞

∂Ω♯
3

(Ω♯
3, C

∞
♯ (Ω1

3)) with condition ∂x1
i
vH,0
2 =

0 in Ω♯
2 × Ω1

Si and ∂x1
i
vH,0
3 = 0 in Ω♯

3 × Ω1
Si ∪ Ω♯

3 × Ω1
Pt.

(b) (ũ0α)α∈{1,2}, u
0
3, u

1
3 and ς1 = (u11, u

1
2, u

2
3) are solutions to the two-scale weak formulation

∑
d rd

∮
Ω♯

d×Ω1
d

(
C0

ijhk

(
−x13Dx0

hk(u
0
3) + Sx0

hk(ũ
0) +Kx0

hk(u
1) + sx

1

hk(ς
1)
)
+Mijθ

0
)
·(

−x13Dx0

ij (v
d,0
3 ) + Sx0

ij (ṽ
d,0) +Kx0

ij (v
d,1) + sx

1

ij (w
d,1)
)
dx0dx1

=
∑

d rd
∮
Ω♯

d×Ω1
d
fM,0
α

(
−x13∂x0

α
vd,03 + ṽd,0α

)
+ fM,0

3 vd,03 dx0dx1

(3.37)

for any ṽd,0α , vd,03 , vd,13 ∈ C∞(Ω♯
d), w

d,1 = (vd,11 , vd,12 , vd,23 ) ∈ C∞(Ω♯
d; C∞

♯ (Ω1
d))

3 for d ∈ {2, 3}, where
Dx0

ij , S
x0

ij and Kx0

ij are operators de�ned by: for ∀u ∈ H2(Ω♯
d), v ∈H1(Ω♯

d)
2 and w ∈ H1(Ω♯

d),

Dx0

ij (u) = χ
(i)
{1,2}χ

(j)
{1,2}∂

2
x0
i x

0
j
u, Sx0

ij (v) = χ
(i)
{1,2}χ

(j)
{1,2}s

x0

ij (ũ), (3.38)

Kx0

ij (w) = δi3χ
(j)
{1,2}∂x0

j
w + δj3χ

(i)
{1,2}∂x0

i
w.

Proof. a.1-Source term. Equation (3.34)-(c). We choose test functions vE,0 ∈ C∞
∂Ω♯

3

(Ω♯
3),

v1 ∈ C∞
∂Ω♯

3

(Ω♯
3, C

∞
♯ (Ω1

Pt)).
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Chapter 3. A two-scale model derivation for a SThM probe

• Step a.1-1 Posing vE,ε = B(vE,0 + εvE,1) in (3.34)-(c), Assumption 165 and Proposition
140 =⇒ Bv ∈ C∞

∂ΩPt
(ΩPt) and

κ0
∫
ΩPt

(1 + λθε)−1arefij ∂xj
φε∂xi

B(vE,0 + εvE,1) dx = κ0
∫
Γ01

jεB(vE,0 + εvE,1) dx.

• Substep a.1-1-1 Equivalent transformation κ0
∫
A
dz = κ0 |A|

∮
A
dz, =⇒∮

ΩPt

(1 + λθε)−1arefij ∂xj
φε∂xi

B(vE,0 + εvE,1) dx =
|Γ01|
|ΩPt|

∮
Γ01

jεB(vE,0 + εvE,1) dx.

• Step a.1-2 Propositions 141 =⇒∮
ΩPt

(1+λθε)−1arefij ∂xj
φεB

(
χ{1,2}(i)∂x0

i
vE,0 + ∂x1

i
vE,1

)
dx =

|Γ01|
|ΩPt|

∮
Γ01

jεB(vE,0) dx+O(ε).

Proposition 142 =⇒∮
ΩPt

(1+λθε)−1aref,εij ∂xj
φεT ∗

(
χ{1,2}(i)∂x0

i
vE,0 + ∂x1

i
vE,1

)
dx =

|Γ01|
|ΩPt|

∮
Γ01

jεT ∗(vE,0) dx+O(ε).

• Step a.1-3 De�nition 138 and Proposition 132 =⇒∮
Ω♯

3×Ω1
Pt

T ((1 + λθε)−1)T (arefij )T (∂xj
φε)
(
χ{1,2}(i)∂x0

i
vE,0 + ∂x1

i
vE,1

)
dx0dx1 (3.39)

=
|Γ01|
|ΩPt|

∮
Γ♯
01×Γ1

01

T (jε) vE,0 dx0dx1 +O(ε).

The boundary Γ1
01 is one face of Ω

1
Pt with the same out normal vector as Γ♯

01.

• Step a.1-4 Assumption 165 and Proposition 153, passing to the limit when ε→ 0 =⇒∮
Ω♯

3×Ω1
Pt

(1 + λθ0)−1a0ij

(
χ{1,2}(j)∂x0

j
φ0 + ∂x1

j
φ1
)(

χ{1,2}(i)∂x0
i
vE,0 + ∂x1

i
vE,1

)
dx0dx1

=
|Γ01|
|ΩPt|

∮
Γ♯
01×Γ1

01

j0vE,0 dx0dx1

which is the expected result.

a.2-Source term. Equation (3.34)-(b).

• Step a.2-1 Property 116 =⇒

κ0
∫
ΩSi

2

kεij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩSiO2

2

kεij∂xj
θε∂xi

vH,ε dx

+κ0
∫
ΩSi

3

kεij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩSiO2

3

kεij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩPt

kεij∂xj
θε∂xi

vH,ε dx

= κ0
∫
ΩPt

aεij∂xj
φε∂xi

φε vH,ε dx
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3.3. The SThM Probe model derivation

• Substep a.2-1-1 Proposition 127 on the right side =⇒

κ0
∫
ΩSi

2

kεij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩSiO2

2

kεij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩSi

3

kεij∂xj
θε∂xi

vH,ε dx

+κ0
∫
ΩSiO2

3

kεij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩPt

kεij∂xj
θε∂xi

vH,ε dx

= −κ0
∫
ΩPt

∂xi

(
aεij∂xj

φε
)
φε vH,ε dx− κ0

∫
ΩPt

aεij∂xj
φεφε ∂xi

vH,ε dx

+κ0
∫
∂ΩPt

aεijφ
ε∂xi

φεnxj
vH,εdx

• Substep a.2-1-2 Applying Equation (3.1) =⇒

κ0
∫
ΩSi

2

kεij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩSiO2

2

kεij∂xj
θε∂xi

vH,ε dx

+κ0
∫
ΩSi

3

kεij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩSiO2

3

kεij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩPt

kεij∂xj
θε∂xi

vH,ε dx

= −κ0
∫
ΩPt

aεij∂xj
φεφε ∂xi

vH,ε dx

• Substep a.2-1-3 Assumption 165 =⇒

κ0
∫
ΩSi

2

kij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩSiO2

2

ε2kij∂xj
θε∂xi

vH,ε dx

+κ0
∫
ΩSi

3

kij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩPt

kij∂xj
θε∂xi

vH,ε dx+ κ0
∫
ΩSiO2

3

ε2kij∂xj
θε∂xi

vH,ε dx

= −κ0
∫
ΩPt

(1 + λθε)−1arefij ∂xj
φεφε ∂xi

vH,ε dx

• Substep a.2-1-4 Choose test functions vH,0
2 ∈ C∞

∂Ω♯
2

(Ω♯
2, C

∞(Ω1
SiO2)), v

H,1
2 ∈ C∞

∂Ω♯
2

(Ω♯
2, C

∞
♯ (Ω1

2)),

vH,0
3 ∈ C∞

∂Ω♯
3

(Ω♯
3, C

∞(Ω1
SiO2)), v

H,1
3 ∈ C∞

∂Ω♯
3

(Ω♯
3, C

∞
♯ (Ω1

3)) and pose vH,ε = B(vH,0
2 + εvH,1

2 ) in

Ω2, vH,ε = B(vH,0
3 + εvH,1

3 ) in Ω3, Proposition 140 =⇒

B(vH,0
2 ) ∈ C∞

∂Ω2
(Ω2), B(vH,0

3 ) ∈ C∞
∂Ω3

(Ω3)

and

κ0
∫
ΩSi

2

kij∂xj
θε∂xi

B(vH,0
2 + εvH,1

2 ) dx+ κ0
∫
ΩSiO2

2

ε2kij∂xj
θε∂xi

B(vH,0
2 + εvH,1

2 ) dx

+κ0
∫
ΩSi

3

kij∂xj
θε∂xi

B(vH,0
3 + εvH,1

3 ) dx+ κ0
∫
ΩPt

kij∂xj
θε∂xi

B(vH,0
3 + εvH,1

3 ) dx

+κ0
∫
ΩSiO2

3

ε2kij∂xj
θε∂xi

B(vH,0
3 + εvH,1

3 ) dx

= −κ0
∫
ΩPt

(1 + λθε)−1arefij ∂xj
φεφε∂xi

B(vH,0
3 + εvH,1

3 ) dx
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• Substep a.2-1-3 Equivalent transformation κ0
∫
A
dz = κ0 |A|

∮
A
dz, =⇒

rSi2

∮
ΩSi

2

kij∂xj
θε∂xi

B(vH,0
2 + εvH,1

2 ) dx+ rSiO2
2

∮
ΩSiO2

2

ε2kij∂xj
θε∂xi

B(vH,0
2 + εvH,1

2 ) dx

+rSi3

∮
ΩSi

3

kij∂xj
θε∂xi

B(vH,0
3 + εvH,1

3 ) dx+ rPt
∮
ΩPt

kij∂xj
θε∂xi

B(vH,0
3 + εvH,1

3 ) dx

+rSiO2
3

∮
ΩSiO2

3

ε2kij∂xj
θε∂xi

B(vH,0
3 + εvH,1

3 ) dx

= −rPt
∮
ΩPt

(1 + λθε)−1arefij ∂xj
φεφε∂xi

B(vH,0
3 + εvH,1

3 ) dx

• Step a.2-2 Propositions 141 =⇒

rSi2

∮
ΩSi

2

kij∂xj
θεB

(
χ
(i)
{1,2}∂x0

i
vH,0
2 + ∂x1

i
vH,1
2

)
dx+ rSiO2

2

∮
ΩSiO2

2

kij(ε∂xj
θε)B

(
∂x1

i
vH,0
2

)
dx

+rSi3

∮
ΩSi

3

kij∂xj
θεB

(
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx

+rPt
∮
ΩPt

kij∂xj
θεB

(
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx+ rSiO2

3

∮
ΩSiO2

3

kij(ε∂xj
θε)B

(
∂x1

i
vH,0
3

)
dx

= −rPt
∮
ΩPt

(1 + λθε)−1arefij ∂xj
φεφεB

(
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx+O(ε)

Proposition 142 =⇒

rSi2

∮
ΩSi

2

kij∂xj
θεT ∗

(
χ
(i)
{1,2}∂x0

i
vH,0
2 + ∂x1

i
vH,1
2

)
dx+ rSiO2

2

∮
ΩSiO2

2

kij(ε∂xj
θε)T ∗

(
∂x1

i
vH,0
2

)
dx

+rSi3

∮
ΩSi

3

kij∂xj
θεT ∗

(
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx

+rPt
∮
ΩPt

kij∂xj
θεT ∗

(
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx+ rSiO2

3

∮
ΩSiO2

3

kij(ε∂xj
θε)T ∗

(
∂x1

i
vH,0
3

)
dx

= −rPt
∮
ΩPt

(1 + λθε)−1arefij ∂xj
φεφεT ∗

(
χ{1,2}(i)∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx+O(ε).
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• Step a.2-3 De�nition 138 and Proposition 132 =⇒

rSi2

∮
Ω♯

2×Ω1
Si

T (kij)T
(
∂xj

θε
) (
χ
(i)
{1,2}∂x0

i
vH,0
2 + ∂x1

i
vH,1
2

)
dx0dx1

+rSiO2
2

∮
Ω♯

2×Ω1
SiO2

T (kij)T (ε∂xj
θε)
(
∂x1

i
vH,0
2

)
dx0dx1

+rSi3

∮
Ω♯

3×Ω1
Si

T (kij)T
(
∂xj

θε
) (
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx0dx1

+rPt
∮
Ω♯

3×Ω1
Pt

T (kij)T
(
∂xj

θε
) (
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx0dx1

+rSiO2
3

∮
Ω♯

3×Ω1
SiO2

T (kij)T (ε∂xj
θε)
(
∂x1

i
vH,0
3

)
dx0dx1

= −rPt
∮
Ω♯

3×Ω1
Pt

T (
1

1 + λθε
)T
(
arefij

)
T (φε)T

(
∂xj

φε
) (
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx0dx1

+O(ε).

• Step a.2-4 Assumption 165, Assumption 164, Proposition 153 and Proposition 160,
passing to the limit when ε→ 0 =⇒

rSi2

∮
Ω♯

2×Ω1
Si

k0ij

(
χ
(j)
{1,2}∂x0

j
θ0 + ∂x1

j
θ1
)(

χ
(i)
{1,2}∂x0

i
vH,0
2 + ∂x1

i
vH,1
2

)
dx0dx1

+ rSiO2
2

∮
Ω♯

2×Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
vH,0
2 dx0dx1

+ rSi3

∮
Ω♯

3×Ω1
Si

k0ij

(
χ
(j)
{1,2}∂x0

j
θ0 + ∂x1

j
θ1
)(

χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx0dx1

+ rPt
∮
Ω♯

3×Ω1
Pt

k0ij

(
χ
(j)
{1,2}∂x0

j
θ0 + ∂x1

j
θ1
)(

χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx0dx1

+ rSiO2
3

∮
Ω♯

3×Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
vH,0
3 dx0dx1

= −rPt
∮
Ω♯

3×Ω1
Pt

a0ij

1 + λθ0
φ0
(
χ
(j)
{1,2}∂x0

j
φ0 + ∂x1

j
φ1
)(

χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x1

i
vH,1
3

)
dx0dx1

which is expected.

b-Source term Equation (3.34)-(a).

• Step b-1. Property 116 =⇒

κ0
∫
Ω2

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)sxij(v
M,ε) dx+ κ0

∫
Ω3

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)sxij(v
M,ε) dx

= κ0
∫
Ω2

fM,ε
i vM,ε

i dx+ κ0
∫
Ω3

fM,ε
i vM,ε

i dx

119
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• Substep b-1-1 Assumption 165 =⇒

κ0
∫
Ω2

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)sxij(v
M,ε) dx+ κ0

∫
Ω3

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)sxij(v
M,ε) dx

= κ0
∫
Ω2

fM,ε
α vM,ε

α dx+ κ0
∫
Ω2

εfM,ε
3 vM,ε

3 dx+ κ0
∫
Ω3

fM,ε
α vM,ε

α dx+ κ0
∫
Ω3

εfM,ε
3 vM,ε

3 dx

• Step b-2 For d ∈ {2, 3}, we choose test functions ṽd,0α , vd,03 , vd,13 ∈ C∞(Ω♯
d), (v

d,0
α )α∈{1,2} =

−x13∂x0
α
vd,03 + ṽd,0α , (vd,1α )α∈{1,2} ∈ C∞(Ω♯

d; C∞
♯ (Ω1

d)), so that

vM,ε
α = B(vd,0α + εvd,1α ), εvM,ε

3 = B(vd,03 + εvd,13 + ε2vd,23 ) in Ωd.

We denote by wd,1 = (vd,11 , vd,12 , vd,23 ), use notation (3.38), we have

sxij(v
M,ε) = B

(
−x13Dx0

ij (v
d,0
3 ) + Sx0

ij (ṽ
d,0) +Kx0

ij (v
d,1) + sx

1

ij (w
d,1)
)

in Ωd

=⇒ ∑
d

κ0
∫
Ωd

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)B
(
−x13Dx0

ij (v
d,0
3 ) + Sx0

ij (ṽ
d,0) +Kx0

ij (v
d,1)
)
dx

+
∑
d

κ0
∫
Ωd

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)B
(
sx

1

ij (w
d,1)
)
dx

=
∑
d

κ0
∫
Ωd

fM,ε
α B

(
−x13∂x0

α
vd,03 + ṽd,0α

)
+ fM,ε

3 B
(
vd,03

)
dx

• Substep b-2-1 Equivalent transformation κ0
∫
A
dz = κ0 |A|

∮
A
dz =⇒∑

d

rd

∮
Ωd

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)B
(
−x13Dx0

ij (v
d,0
3 ) + Sx0

ij (ṽ
d,0) +Kx0

ij (v
d,1)
)
dx

+
∑
d

rd

∮
Ωd

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)B
(
sx

1

ij (w
d,1)
)
dx

=
∑
d

rd

∮
Ωd

fM,ε
α B

(
−x13∂x0

α
v2,03 + ṽ2,0α

)
+ fM,ε

3 B
(
vd,03

)
dx

• Step b-2-2. Proposition 142 =⇒∑
d

rd

∮
Ωd

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)T ∗
(
−x13Dx0

ij (v
d,0
3 ) + Sx0

ij (ṽ
d,0) +Kx0

ij (v
d,1)
)
dx

+
∑
d

rd

∮
Ωd

(Cε
ijhks

x
hk(u

ε) +M ε
ijθ

ε)T ∗
(
sx

1

ij (w
d,1)
)
dx

=
∑
d

rd

∮
Ωd

fM,ε
α T ∗

(
−x13∂x0

α
vd,03 + ṽd,0α

)
+ fM,ε

3 T ∗
(
vd,03

)
dx

• Step b-3 De�nition 138 and Proposition 132 =⇒∑
d

rd

∮
Ω♯

d×Ω1
d

(
T (Cε

ijhk)T (sxhk(u
ε) + T (M ε

ij)T (θε)
) (

−x13Dx0

ij (v
d,0
3 ) + Sx0

ij (ṽ
d,0) +Kx0

ij (v
d,1)
)
dx0dx1

+
∑
d

rd

∮
Ω♯

d×Ω1
d

(
T (Cε

ijhk)T (sxhk(u
ε) + T (M ε

ij)T (θε)
)
sx

1

ij (w
d,1) dx0dx1

=
∑
d

rd

∮
Ω♯

d×Ω1
d

T
(
fM,ε
α

) (
−x13∂x0

α
vd,03 + ṽd,0α

)
+ T

(
fM,ε
3

)
vd,03 dx0dx1
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• Step c-4 Denoting by ς1 = (u11, u
1
2, u

2
3), Assumption 165, Proposition 153, Proposition

160 and Property 165 =⇒∑
d rd

∮
Ω♯

d×Ω1
d

(
C0

ijhk

(
−x13Dx0

hk(u
0
3) + Sx0

hk(ũ
0) +Kx0

hk(u
1) + sx

1

hk(ς
1)
)
+Mijθ

0
)
·(

−x13Dx0

ij (v
d,0
3 ) + Sx0

ij (ṽ
d,0) +Kx0

ij (v
d,1) + sx

1

ij (w
d,1)
)
dx0dx1

=
∑

d rd
∮
Ω♯

d×Ω1
d
fM,0
α

(
−x13∂x0

α
vd,03 + ṽd,0α

)
+ fM,0

3 vd,03 dx0dx1

Lemma 170 [Sixth Block: Microscopic Problem:E]
(a) φ1 is solution to (3.15) with µα = ∂x0

α
φ0, c0ij = a0ij and Ω1 = Ω1

Pt, then

∂x1
j
φ1 =

2∑
α=1

∂x0
α
φ0∂x1

j
ξ1,Ptα .

(b) θ1 is solution to (3.15) with µα = ∂x♯
α
θ0, c0ij = k0

ij|Ω♯
2×Ω1

Si

and Ω1 = Ω1
Si, then

∂x1
j
θ1 =

2∑
α=1

∂x0
α
θ0∂x1

j
ζ1,Siα in Ω♯

2 × Ω1
Si.

(c) θ1 is solution to (3.15) with µα = ∂x0
α
θ0, c0ij = k0

ij|Ω♯
3×Ω1

Si

and Ω1 = Ω1
Si, then

∂x1
j
θ1 =

2∑
α=1

∂x0
α
θ0∂x1

j
ζ1,Siα in Ω♯

3 × Ω1
Si.

(d) θ1 is solution to (3.15) with µα = ∂x0
α
θ0, c0ij = k0

ij|Ω♯
3×Ω1

Pt

and Ω1 = Ω1
Pt, then

∂x1
j
θ1 =

2∑
α=1

∂x0
α
θ0∂x1

j
ζ1,Ptα in Ω♯

3 × Ω1
Pt.

(e) −
∑

i,j ∂x1
j
(k0ij∂x1

i
θ0|Ω♯

2×Ω1
SiO2

) = 0 and θ0|Ω♯
2×Ω1

SiO2

= θ0|Ω♯
2×Ω1

Si

.

(f) −
∑

i,j ∂x1
j
(k0ij∂x1

i
θ0|Ω♯

3×Ω1
SiO2

) = 0 and θ0|Ω♯
3×Ω1

SiO2

= θ0|Ω♯
3×Ω1

Si

θ− + θ0|Ω♯
3×Ω1

Pt

θ+, where θ+ and

θ− are solutions of Equation (3.20) and Equation (3.21).
(g) Let ς1 = ς1,D + ς1,S + ς1,K + ς1,θ, then ς1,D, ς1,S, ς1,K and ς1,θ are solutions to Equation

(3.18) for µhk = Dx0

hk(u
0
3), µhk = Sx0

hk(ũ
0), µhk = Kx0

hk(u
1) and for c0ijhk =Mijδihδjk and µhk = 1.

We have
sx

1

hk(ς
1,D) =

∑
p′q′ L

2,D
p′q′hk(D

x0

p′q′(u
0
3))

sx
1

hk(ς
1,S) =

∑
p′q′ L

2,S
p′q′hk(S

x0

p′q′(ũ
0))

sx
1

hk(ς
1,K) =

∑
α δhαδk3∂x0

α
u13

sx
1

hk(ς
1,θ) = L2,θSi

hk (θ0|Ω♯
2×Ω1

Si

)

in Ω1
2.

(h) Let ς1 = ς1,D+ς1,S+ς1,K+ς1,θSi+ς1,θPt, then ς1,D, ς1,S, ς1,K ς1,θSi and ς1,θPtare solutions
to Equation (3.18) for µhk = Dx0

hk, µhk = Sx0

hk(ũ
0), µhk = Kx0

hk(u
1), for c0ijhk = QSi

ijδihδjk and
µhk = 1, and for c0ijhk = QPt

ij δihδjk and µhk = 1 respectively, where

QSi
ij =


Mij in Ω1

Si

Mijθ
− in Ω1

SiO2

0 in Ω1
Pt,

and QPt
ij =


0 in Ω1

Si

Mijθ
+ in Ω1

SiO2

Mij in Ω1
Pt,
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and θ− and θ+ are solutions to (3.21) and (3.20). We have

sx
1

hk(ς
1,D) =

∑
p′q′ L

2,D
p′q′hk(D

x0

p′q′(u
0
3))

sx
1

hk(ς
1,S) =

∑
p′q′ L

2,S
p′q′hk(S

x0

p′q′(ũ
0))

sx
1

hk(ς
1,K) =

∑
α δhαδk3∂x0

α
u13

sx
1

hk(ς
1,θSi) = L3,θSi

hk (θ0|Ω♯
3×Ω1

Si

)

sx
1

hk(ς
1,θPt) = L3,θPt

hk (θ0|Ω♯
3×Ω1

Pt

)

in Ω1
3.

Proof. a-Source term. We choose vE,0 = 0 and vE,1(x♯, x1) = w(x1)ψ(x♯) in (3.35) with
ψ ∈ C∞(Ω♯

3) and w
1 ∈ C∞

♯ (Ω1
Pt).

• Step a-1 Proposition 1, Lemma 154, and the linearity of the integral =⇒

(1 + λθ0)−1

∮
Ω1

Pt

a0ij∂x1
j
φ1∂x1

i
vE,1 dx0dx1 = −(1 + λθ0)−1∂x0

α
φ0

∮
Ω1

Pt

a0iα∂x1
i
vE,1 dx0dx1

(3.40)

• Step a-1-1 Equivalent transformation =⇒∮
Ω1

Pt

a0ij∂x1
j
φ1∂x1

i
vE,1 dx0dx1 = −∂x0

α
φ0

∮
Ω1

Pt

a0iα∂x1
i
vE,1 dx0dx1

• Step a-2 Proposition 143 with µα = ∂x0
α
φ0 =⇒

∂x1
j
φ1 =

2∑
α=1

∂x0
α
φ0∂x1

j
ξ1,Ptα

as announced.

b-Source term We choose vH,0
2 = 0, vH,0

3 = 0, vH,1
3 = 0 and vH,1

2 (x0, x1) = w(x1)ψ(x0) in
(3.36) with ψ ∈ C∞(Ω♯

2) and w
1 ∈ C∞

♯ (Ω1
Si), the proof is the same as for Step a-1 to Step a-2.

c-Source term We choose vH,0
2 = 0, vH,1

2 = 0, vH,0
3 = 0, vH,1

3 = w(x1)ψ(x0) in Ω♯
3 × Ω1

Pt

with ψ ∈ C∞(Ω♯
3), w

1 ∈ C∞
♯ (Ω1

Pt) and v
H,1
3 = 0 Ω♯

3 × (Ω1
Si ∪ Ω1

SiO2) in (3.36), then the proof is
the same as for Step a-1 to Step a-2.

d-Source term. We choose vH,0
2 = 0, vH,1

2 = 0, vH,0
3 = 0, vH,1

3 = w(x1)ψ(x0) in Ω♯
3 × Ω1

Si

with ψ ∈ C∞(Ω♯
3) and w

1 ∈ C∞
♯ (Ω1

Si) and v
H,1
3 = 0 in Ω♯

3× (Ω1
Pt∪Ω1

SiO2) in (3.36), then the proof
is the same as for Step a-1 to Step a-2.

e-Source term. We denote by Γ1,±
SiO2 and Γ1,Lat

SiO2 the top/bottom and lateral boundary
of Ω1

SiO2. We choose vH,0
3 = 0, vH,0

2 = w(x1)ψ(x0) in Ω♯
2 × Ω1

SiO2 with ψ ∈ C∞(Ω♯
2), w ∈

C∞
Γ1,Lat
SiO2 ∪Γ1,+

SiO2

(Ω1
SiO2) in (3.36) =⇒∫

Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
w1 dx0dx1 = 0.
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• Step e-1. Lemma 156-(g) and Proposition 146 =⇒

θ0|Ω♯
2×Ω1

SiO2

= θ0|Ω♯
2×Ω1

Si

.

f-Source term. We choose vH,0
2 = 0, vH,0

3 = w(x1)ψ(x0) in Ω♯
3 × Ω1

SiO2 with ψ ∈ C∞(Ω♯
3),

w ∈ C∞
Γ1,Lat
SiO2

(Ω1
SiO2) in (3.36) =⇒∫

Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
w1 dx0dx1 = 0.

• Step f-1. Lemma 156-(g) and Proposition 145 =⇒

θ0|Ω♯
2×Ω1

SiO2

= θ0|Ω♯
3×Ω1

Pt

θ+ + θ0|Ω♯
3×Ω1

Si

θ−.

• Step f-2. Lemma 127 =⇒

−
∫
Ω1

SiO2

∂x1
i
(k0ij∂x1

j
θ0)w1 dx0dx1 = 0.

• Step f-3. Lemma 118 =⇒

−∂x1
i
(k0ij∂x1

j
θ0) = 0 in Ω♯

3 × Ω1
SiO2.

g-Source term. Let w2,1 = ψ2(x0)ω2(x1) with ψ2(x0) ∈ C∞
♯ (Ω♯

2)
3×3, ω2(x1) ∈ C∞

♯ (Ω1
2)

3,
and let other test functions equal to 0 in (3.37) =⇒

r2

∮
Ω1

2

(
C0

ijhk

(
−x13Dx0

hk(u
0
3) + Sx0

hk(ũ
0) +Kx0

hk(u
1) + sx

1

hk(ς
1)
)
+Mijθ

0
)
Sx1

ij (ω
2) dx1 = 0.

• Step g-1 Equivalent transformation =⇒∫
Ω1

2

C0
ijhks

x1

hk(ς
1)Sx1

ij (ω
2) dx1 =

∫
Ω1

2

x13C
0
ijhkD

x0

hk(u
0
3)S

x1

ij (ω
2) dx1 −

∫
Ω1

2

C0
ijhkS

x0

hk(ũ
0)Sx1

ij (ω
2) dx1

−
∫
Ω1

2

C0
ijhkK

x0

hk(u
1)Sx1

ij (ω
2) dx1 −

∫
Ω1

2

Mijθ
0Sx1

ij (ω
2) dx1.

• Step g-2 Let ς1 = ς1,D + ς1,S + ς1,K + ς1,θ and separate equation =⇒{ ∫
Ω1

2
C0

ijhks
x1

hk(ς
1,D)Sx1

ij (ω
2) dx1 =

∫
Ω1

2
x13C

0
ijhkD

x0

hk(u
0
3)S

x1

ij (ω
2) dx1

ς1,D is x1α-periodic in Ω1
2,{ ∫

Ω1
2
C0

ijhks
x1

hk(ς
1,S)Sx1

ij (ω
2) dx1 = −

∫
Ω1

2
C0

ijhkS
x0

hk(ũ
0)Sx1

ij (ω
2) dx1

ς1,S is x1α-periodic in Ω1
2,{ ∫

Ω1
2
C0

ijhks
x1

hk(ς
1,K)Sx1

ij (ω
2) dx1 = −

∫
Ω1

2
C0

ijhkK
x0

hk(u
1)Sx1

ij (ω
2) dx1

ς1,K is x1α-periodic in Ω1
2,

and { ∫
Ω1

2
C0

ijhks
x1

hk(ς
1,θ)Sx1

ij (ω
2) dx1 = −

∫
Ω1

2
Mijθ

0Sx1

ij (ω
2) dx1

ς1,θ is x1α-periodic in Ω1
2.

(3.41)
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• Substep g-2-1. Proposition 116 Equation (3.41) =⇒∫
Ω1

2

C0
ijhks

x1

hk(ς
1,θ)Sx1

ij (ω
2) dx1 = −

∫
Ω1

Si

Mijθ
0

|Ω♯
2×Ω1

Si

Sx1

ij (ω
2) dx1

−
∫
Ω1

SiO2

Mijθ
0

|Ω♯
2×Ω1

SiO2

Sx1

ij (ω
2) dx1

• Substep g-2-2. Lemma 170-(e) =⇒∫
Ω1

2

C0
ijhks

x1

hk(ς
1,θ)Sx1

ij (ω
2) dx1 = −

∫
Ω1

Si

Mijθ
0

|Ω♯
2×Ω1

Si

Sx1

ij (ω
2) dx1

−
∫
Ω1

SiO2

Mijθ
0

|Ω♯
2×Ω1

Si

Sx1

ij (ω
2) dx1

• Substep g-2-3. Proposition 117 =⇒∫
Ω1

2

C0
ijhks

x1

hk(ς
1,θ)Sx1

ij (ω
2) dx1 = −

∫
Ω1

2

Mijθ
0

|Ω♯
2×Ω1

Si

Sx1

ij (ω
2) dx1

• Step g-3 Lemma 154, Proposition 144 =⇒

sx
1

hk(ς
1,D) =

∑
p′q′ L

2,D
p′q′hk(D

x0

p′q′(u
0
3))

sx
1

hk(ς
1,S) =

∑
p′q′ L

2,S
p′q′hk(S

x0

p′q′(ũ
0))

sx
1

hk(ς
1,K) =

∑
p′q′ L

2,K
p′q′hk(K

x0

p′q′(u
1))

sx
1

hk(ς
1,θ) = L2,θSi

hk (θ0|Ω♯
2×Ω1

Si

)

in Ω1
2.

h-Source term. Let w3,1 = ψ3(x0)ω3(x1) with ψ2(x0) ∈ C∞
♯ (Ω♯

3)
3×3, ω3(x1) ∈ C∞

♯ (Ω1
2)

3,
and let other test functions equal to 0 in (3.37) =⇒

r3

∮
Ω1

3

(
C0

ijhk

(
−x13Dx0

hk(u
0
3) + Sx0

hk(ũ
0) +Kx0

hk(u
1) + sx

1

hk(ς
1)
)
+Mijθ

0
)
Sx1

ij (ω
3) dx1 = 0.

The proofs of the linear relation for sx
1

hk(ς
1,D), sx

1

hk(ς
1,S) and sx

1

hk(ς
1,K) are the same as in the

proof of (g). We detailed the linear relation for sx
1

hk(ς
1,θ) in the following.

We start from the (3.41) and use the same notations for the steps.

• Step h-2 { ∫
Ω1

3
C0

ijhks
x1

hk(ς
1,θ)Sx1

ij (ω
3) dx1 = −

∫
Ω1

3
Mijθ

0Sx1

ij (ω
3) dx1

ς1,θ is x1α-periodic in Ω1
3.

• Substep h-2-1. Proposition 116 Equation (3.41) =⇒∫
Ω1

3

C0
ijhks

x1

hk(ς
1,θ)Sx1

ij (ω
3) dx1 = −

∫
Ω1

Si

Mijθ
0

|Ω♯
3×Ω1

Si

Sx1

ij (ω
3) dx1

−
∫
Ω1

SiO2

Mijθ
0

|Ω♯
3×Ω1

SiO2

Sx1

ij (ω
3) dx1

−
∫
Ω1

Pt

Mijθ
0

|Ω♯
3×Ω1

Pt

Sx1

ij (ω
3) dx1
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• Substep h-2-2. Lemma 170-(f) =⇒∫
Ω1

3

C0
ijhks

x1

hk(ς
1,θ)Sx1

ij (ω
3) dx1 = −

∫
Ω1

Si

Mijθ
0

|Ω♯
3×Ω1

Si

Sx1

ij (ω
2) dx1

−
∫
Ω1

SiO2

Mijθ
0

|Ω♯
3×Ω1

Si

θ−Sx1

ij (ω
2) dx1

−
∫
Ω1

SiO2

Mijθ
0

|Ω♯
3×Ω1

Pt

θ+Sx1

ij (ω
3) dx1

−
∫
Ω1

Pt

Mijθ
0

|Ω♯
3×Ω1

Pt

Sx1

ij (ω
3) dx1

• Substep h-2-3. Proposition 117 =⇒∫
Ω1

3

C0
ijhks

x1

hk(ς
1,θ)Sx1

ij (ω
3) dx1 = −

∫
Ω1

3

QSi
ijθ

0

|Ω♯
3×Ω1

Si

Sx1

ij (ω
3) dx1−

∫
Ω1

3

QPt
ij θ

0

|Ω♯
3×Ω1

Pt

Sx1

ij (ω
3) dx1

with

QSi
ij =


Mij in Ω1

Si

Mijθ
− in Ω1

SiO2

0 in Ω1
Pt

and QPt
ij =


0 in Ω1

Si

Mijθ
+ in Ω1

SiO2

Mij in Ω1
Pt.

• Substep h-2-3-1. Let ς1,θ = ς1,θSi + ς1,θPt and separate equation =⇒{ ∫
Ω1

3
C0

ijhks
x1

hk(ς
1,θSi)Sx1

ij (ω
3) dx1 = −

∫
Ω1

3
QSi

ijθ
0

|Ω♯
3×Ω1

Si

Sx1

ij (ω
3) dx1∫

Ω1
3
C0

ijhks
x1

hk(ς
1,θPt)Sx1

ij (ω
3) dx1 = −

∫
Ω1

3
QPt

ij θ
0

|Ω♯
3×Ω1

Si

Sx1

ij (ω
3) dx1

• Step h-3 Lemma 154, Proposition 144 =⇒

sx
1

hk(ς
1,θSi) = L3,θSi

hk (θ0|Ω♯
3×Ω1

Si

) and sx
1

hk(ς
1,θPt) = L3,θPt

hk (θ0|Ω♯
3×Ω1

Pt

) in Ω1
3.

Lemma 171 Lα3hk = −δhαδk3 and sx
1

hk(ς
1,K) =

∑
α δhαδk3∂x0

α
u13

Proof. Source term∫
Ω1

c0ijhkS
x1

hk(ζ
pq,1)Sx1

ij (w) dx1 = −
∫
Ω1

c0ijpqS
x1

ij (w) dx1 for all w ∈ C∞
♯ (Ω1)n.

• Step 1. Equivalent transformation =⇒∫
Ω1

c0ijhk∂x1
h
ζpq,1k ∂x1

i
wj dx

1 = −
∫
Ω1

c0ijpq∂x1
i
wj dx

1.

• Step 2. Choose p = α, q = 3 =⇒∫
Ω1

c0ijhk∂x1
h
ζα3,1k ∂x1

i
wj dx

1 = −
∫
Ω1

c0ijα3∂x1
i
wj dx

1.
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• Step 3. Proposition 128 and factoring =⇒∫
Ω1

c0ijhk

(
∂x1

h
ζα3,1k + δhαδk3

)
∂x1

i
wj dx

1 = 0.

• Step 4. Let (τ i)i=1,2,3 to be the solution of ∂x1
h
τ k = δhαδk3, factoring =⇒∫

Ω1

c0ijhk∂x1
h

(
ζα3,1k + τ k

)
∂x1

i
wj dx

1 = 0.

• Step 5. Proposition 147 and Proposition 148 =⇒

λk = x13δhαδk3 and ζ
α3,1
k + τ k = 0.

• Step 6. Equivalent transformation =⇒

ζα3,1k = −x13δhαδk3.

• Step 7. Proposition 144 =⇒

Lα3hk = −δhαδk3 and sx
1

hk(ς
1,K) = −

∑
α

δhαδk3∂x0
α
u13

Lemma 172 [Seventh Block: Macroscopic Problem]
(a) φ0 and θ0|Ω♯

3×Ω1
Pt

are solutions to the coupled weak equations:

(a.1) ∮
Ω♯

3

aHαβ

1 + λθ0
∂x0

β
φ0∂x0

α
vE,0 dx0 =

|Γ01|
|ΩPt|

∮
Γ♯
01

j0vE,0 dx0,

(a.2)

rPt
∮
Ω♯

3

k3,Ptαβ ∂x0
β
θ0|Ω♯

3×Ω1
Pt

∂x0
α
vH,0
3 dx0 + rSiO2

3

∮
Ω♯

3

θ0|Ω♯
3×Ω1

Pt

(

∮
Ω1

SiO2

kSiO2,+

3 dx1) vH,0
3 dx0

= rPt
∮
Ω♯

3

a0ij

1 + λθ0|Ω♯
3×Ω1

Pt

(

∮
Ω1

Pt

(δjβ + ∂x1
j
ξ1,Ptβ )(δiα + ∂x1

i
ξ1,Ptα ) dx1) ∂x0

β
φ0φ0∂x0

α
vH,0
3 dx0

(b) θ0|Ω♯
2×Ω1

Si

is the solution to

rSi2

∮
Ω♯

2

k2,Siαβ ∂x0
β
θ0|Ω♯

2×Ω1
Si

∂x0
α
vH,0
2 dx0 = 0

(c) θ0|Ω♯
3×Ω1

Si

is the solution to

rSi3

∫
Ω♯

3

k3,Siαβ ∂x0
β
θ0|Ω♯

3×Ω1
Si

∂x0
α
vH,0
3 dx0 − rSiO2

3

∮
Ω♯

3

θ0|Ω♯
3×Ω1

Si

(

∮
Ω1

SiO2

kSiO2,−

3 dx1) vH,0
3 dx0 = 0
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(d) (ũα)α=1,2 and u03 are the solutions to∫
Ω♯

2

(
CH,DD

p′q′pq D
x0

p′q′(u
0
3) + CH,SD

p′q′pqS
x0

p′q′(ũ
0) +M2,D

pq θ0|Ω♯
2×Ω1

Si

)
·Dx0

pq (v
0
3) dx

0

+

∫
Ω♯

2

(
CH,SD

p′q′pqD
x0

p′q′(u
0
3) + CH,SS

p′q′pqS
x0

p′q′(ũ
0) +M2,S

pq θ
0

|Ω♯
2×Ω1

Si

)
· Sx0

pq (ṽ
0) dx0

+

∫
Ω♯

3

(
CH,DD

p′q′pq D
x0

p′q′(u
0
3) + CH,SD

p′q′pqS
x0

p′q′(ũ
0) +M3,D,Pt

pq θ0|Ω♯
3×Ω1

Pt

+M3,D,Si
pq θ0|Ω♯

3×Ω1
Si

)
·Dx0

pq (v
0
3) dx

0

+

∫
Ω♯

3

(
CH,SD

p′q′pqD
x0

p′q′(u
0
3) + CH,SS

p′q′pqS
x0

p′q′(ũ
0) +M3,S,Pt

pq θ0|Ω♯
3×Ω1

Pt

+M3,S,Si
pq θ0|Ω♯

3×Ω1
Si

)
· Sx0

pq (ṽ
0) dx0

=

∫
Ω♯

−q0α∂x0
α
v03 + f 0

3 v
0
3 + f 0

αṽ
0
α dx

0,

Proof. a.1-Source term. We choose vE,0 ∈ C∞
∂Ω♯

3

(Ω♯
3) and v

E,1 = ∂x0
α
vE,0θ1,Ptα ∈ C∞(Ω♯

3, C
∞
♯ (Ω1

Pt))

in (3.35).

• Step a.1-1 Lemma 170 =⇒∮
Ω♯

3×Ω1
Pt

a0ij

1 + λθ0

(
χ
(j)
{1,2}∂x0

j
φ0 + ∂x0

β
φ0∂x1

j
ξ1,Ptβ

)(
χ
(i)
{1,2}∂x0

i
vE,0 + ∂x0

α
vE,0∂x1

i
ξ1,Ptα

)
dx0dx1

(3.42)

=
|Γ01|
|ΩPt|

∮
Γ♯
01×Γ1

01

j0vE,0dx0dx1

• Step a.1-2 Proposition 128∮
Ω♯

3×Ω1
Pt

a0ij

1 + λθ0
(δjβ+∂x1

j
ξ1,Ptβ )(δiα+∂x1

i
ξ1,Ptα )∂x0

α
φ0∂x0

β
vE,0 dx0dx1 =

|Γ01|
|ΩPt|

∮
Γ♯
01×Γ1

01

j0vE,0 dx0dx1

• Step a.1-3 Factoring and de�nitions (166) =⇒∮
Ω♯

3

aHαβ

1 + λθ0
∂x0

β
φ0∂x0

α
vE,0 dx0dx1 dx0 =

|Γ01|
|ΩPt|

∮
Γ♯
01

j0vE,0 dx0dx1,

with aHαβ =
∮
Ω1

Pt
a0ij(δjβ + ∂x1

j
ξ1,Ptβ )(δiα + ∂x1

i
ξ1,Ptα ) dx1.

a.2-Source term. Choose vH,0
2 = 0, vH,1

2 = 0, vH,0
3 ∈ C∞

∂Ω♯
3

(Ω♯
3; C∞

Γ1,Lat
SiO2

(Ω1
SiO2)) and v

H,1
3 =

∂x0
α
vH,0
3α ζ

1,Pt
α in Ω♯

3 × Ω1
Pt in (3.36), where Γ1,Lat

SiO2 is the lateral boundary of Ω1
SiO2.

• Step a.2-1. Lemma 170(f) =⇒

rPt
∮
Ω♯

3×Ω1
Pt

k0ij

(
χ
(j)
{1,2}∂x0

j
θ0 + ∂x0

β
θ0∂x1

j
ζ1,Ptβ

)(
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x0

α
vH,0
3 ∂x1

i
ζ1,Ptα

)
dx0dx1

+rSiO2
3

∮
Ω♯

3×Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
vH,0 dx0dx1

= −rPt
∮
Ω♯

3×Ω1
Pt

a0ijφ
0

1 + λθ0

(
χ
(j)
{1,2}∂x0

j
φ0 + ∂x0

β
φ0∂x1

j
ζ1,Ptβ

)(
χ
(i)
{1,2}∂x0

i
vH,0
3 + ∂x0

α
vH,0
3 ∂x1

i
ζ1,Ptα

)
dx0dx1
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• Step a.2-2. Proposition 128 =⇒

rPt
∮
Ω♯

3×Ω1
Pt

k0ij(δjβ + ∂x1
j
ζ1,Ptβ )(δiα + ∂x1

i
ζ1,Ptα )∂x0

α
θ0∂x0

β
vH,0
3 dx0dx1

+rSiO2
3

∮
Ω♯

3×Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
vH,0
3 dx0dx1

= rPt
∮
Ω♯

3×Ω1
Pt

a0ijφ
0

1 + λθ0
(δjβ + ∂x1

j
ξ1,Ptβ )(δiα + ∂x1

i
ξ1,Ptα )∂x0

β
φ0∂x0

α
vH,0
3α dx0dx1

• Substep a.2-2-1. Lemma 127 =⇒

rPt
∮
Ω♯

3×Ω1
Pt

k0ij(δjβ + ∂x1
j
ζ1,Ptβ )(δiα + ∂x1

i
ζ1,Ptα )∂x0

α
θ0∂x0

β
vH,0
3 dx0dx1

−rSiO2
2

∮
Ω♯

2×Ω1
SiO2

∂x1
i

(
k0ij∂x1

j
θ0
)
vH,0
3 dx0dx1 + rSiO2

3

∮
Ω♯

3×Γ1,±
SiO2

k0ij∂x1
j
θ0nx1

3
vH,0
3 dx0dx1

= rPt
∮
Ω♯

3×Ω1
Pt

a0ij

1 + λθ0
(δjβ + ∂x1

j
ξ1,Ptβ )(δiα + ∂x1

i
ξ1,Ptα )∂x0

β
φ0φ0∂x0

α
vH,0
3α dx0dx1

• Substep a.2-2-2. Lemma 170(f) =⇒

rPt
∮
Ω♯

3×Ω1
Pt

k0ij(δjβ + ∂x1
j
ζ1,Ptβ )(δiα + ∂x1

i
ζ1,Ptα )∂x0

β
θ0∂x0

α
vH,0
3 dx0dx1

+rSiO2
3

∮
Ω♯

3×Γ1,+
SiO2

θ0|Ω♯
3×Ω1

Pt

k03j∂x1
j
θ+vH,0

3 dx0dx1

= rPt
∮
Ω♯

3×Ω1
Pt

a0ijφ
0

1 + λθ0|Ω♯
3×Ω1

Pt

(δjβ + ∂x1
j
ξ1,Ptβ )(δiα + ∂x1

i
ξ1,Ptα )∂x0

β
φ0∂x0

α
vH,0
3α dx0dx1

• Step a.2-3. Choose vH,0
3 ∈ C∞

∂Ω♯
3

(Ω♯
3) and factoring =⇒

rPt
∮
Ω♯

3

k3,Ptαβ ∂x0
β
θ0|Ω♯

3×Ω1
Pt

∂x0
α
vH,0
3 dx0 + rSiO2

3

∮
Ω♯

3

θ0|Ω♯
3×Ω1

Pt

kSiO2,+

3 vH,0
3 dx0

= rPt
∮
Ω♯

3×Ω1
Pt

a0ij

1 + λθ0|Ω♯
3×Ω1

Pt

(δjβ + ∂x1
j
ξ1,Ptβ )(δiα + ∂x1

i
ξ1,Ptα )∂x0

β
φ0φ0∂x0

α
vH,0
3α dx0dx1

with

k3,Ptαβ =

∮
Ω1

Pt

k0ij(δjβ + ∂x1
j
ζ1,Ptβ )(δiα + ∂x1

i
ζ1,Ptα ) dx1 and kSiO2,+

3 =

∮
Γ1,+
SiO2

k03j∂x1
j
θ+ dx1.

b-Source term. Choose vH,0
3 = 0, vH,1

3 = 0, vH,0
2 ∈ C∞

∂Ω♯
2

(Ω♯
2; C∞

Γ1,Lat
SiO2

(Ω1
SiO2)) and vH,1

2 =

∂x0
α
vH,0
2 ζ1,Siα in Ω♯

2 × Ω1
Si in (3.36), where Γ1,Lat

SiO2 is the lateral boundary of Ω1
SiO2.
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• Step b-1 Lemma 170 =⇒

rSi2

∮
Ω♯

2×Ω1
Si

k0ij

(
χ{1,2}(j)∂x0

j
θ0 + ∂x0

β
θ0∂x1

j
ζ1,Siβ

)(
χ{1,2}(i)∂x0

i
vH,0
2 + ∂x0

α
vH,0
2 ∂x1

i
ζ1,Siα

)
dx0dx1

+rSiO2
2

∮
Ω♯

2×Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
vH,0
2 dx0dx1 = 0

• Step b-2. Proposition 128 =⇒

rSi2

∮
Ω♯

2×Ω1
Si

k0ij(δjβ + ∂x1
j
ζ1,Siβ )(δiα + ∂x1

i
ζ1,Siα )∂x0

α
θ0∂x0

β
vH,0
2 dx0dx1

+rSiO2
2

∮
Ω♯

2×Ω1
SiO2

k0ij∂x1
j
θ0∂x1

i
vH,0
2 dx0dx1 = 0

• Substep b-2-1. Lemma 127 =⇒

rSi2

∮
Ω♯

2×Ω1
Si

k0ij(δjβ + ∂x1
j
ζ1,Siβ )(δiα + ∂x1

i
ζ1,Siα )∂x0

α
θ0∂x0

β
vH,0
2 dx0dx1

−rSiO2
2

∮
Ω♯

2×Ω1
SiO2

∂x1
i

(
k0ij∂x1

j
θ0
)
vH,0
2 dx0dx1

+rSiO2
2

∮
Ω♯

2×Γ1,±
SiO2

nx1
3

(
k03j∂x1

j
θ0
)
vH,0
2 dx0dx1 = 0

• Substep b-2-2. Lemma 170(e) =⇒

rSi2

∮
Ω♯

2×Ω1
Si

k0ij(δjβ + ∂x1
j
ζ1,Siβ )(δiα + ∂x1

i
ζ1,Siα )∂x0

α
θ0∂x0

β
vH,0
2 dx0dx1 = 0

• Step b-3. Choose vH,0
2 ∈ C∞

∂Ω♯
2

(Ω♯
2) and factoring =⇒

rSi2

∮
Ω♯

2

k2,Siαβ ∂x0
β
θ0|Ω♯

2×Ω1
Si

∂x0
α
vH,0
2 dx0 = 0

with

k2,Siαβ =

∮
Ω1

Si

k0ij(δjβ + ∂x1
j
ζ1,Siβ )(δiα + ∂x1

i
ζ1,Siα ) dx1.

c-Source term. Choose vH,0
2 = 0, vH,1

2 = 0, vH,0
3 ∈ C∞

∂Ω♯
3

(Ω♯
3; C∞

Γ1,Lat
SiO2

(Ω1
SiO2)) and vH,1

3 =

∂x0
α
vH,0
3 ζ1,Siα in Ω♯

3 × Ω1
Si in (3.36). Follow the same steps as the proof for (c), we get the

conclusion

rSi3

∫
Ω♯

3

k3,Siαβ ∂x0
β
θ0|Ω♯

3×Ω1
Si

∂x0
α
vH,0
3 dx0 − rSiO2

3

∮
Ω♯

3

θ0|Ω♯
3×Ω1

Si

kSiO2,−

3 vH,0
3 dx0dx1 = 0

with

k3,Siαβ =

∮
Ω1

Si

k0ij(δjβ + ∂x1
j
ζ1,Siβ )(δiα + ∂x1

i
ζ1,Siα ) dx1 and kSiO2,−

3 =

∮
Γ1,−
SiO2

k03j∂x1
j
θ− dx1.

129



Chapter 3. A two-scale model derivation for a SThM probe

d-Source term. We choose ṽ0α, v
0
3, v

1
3 ∈ C∞(Ω♯), for d ∈ {2, 3}, let
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• Step d-1. Lemma 170, Proposition 128 and Lemma 171 =⇒
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• Step d-2. Lemma 170(e) and (f), factoring and de�nitions 166 =⇒∫
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for a, b ∈ {D,S} and m ∈ {Si,Pt} the homogenized coe�cients are de�ned by CH,ab
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homogenized force loads are q0α = χ(Ω♯
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3.4 Appendix I: The Reference Proof

This chapter follows the same reference proof as introduced in chapter 1 Section 1.3 with
some modi�cations corresponding to the new approach. In the previous approach, the weak
expansion of two-scale transform i.e T (uε) = u0+εu1 is applied. The di�culty of this approach
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is that εu1 is non-periodic. In this approach, Assumption (152) which allows a periodic εu1 is
applied. This reduces much of the proof.

Only di�erent proof steps between this approach and the previous one is discussed here.

Assumption 173 [Two-scale approximation of u] There exist u0, u1 ∈ L2(Ω♯ ×Ω1) such
that

κ0
∫
Ω

uε Bv dx− κ1
∫
Ω♯×Ω1

u0 v dx0dx1 = O(ε) for all v ∈ C∞(Ω♯ × Ω1) (3.43)

and κ0
∫
Ω

uε Bv dx− κ1
∫
Ω♯×Ω1

(u0 + εu1)v dx0dx1 = εO(ε) for all v ∈ D(Ω♯; C∞
♯ (Ω1)).

(3.44)

In this assumption, we can prove that u1 is periodic.

Proposition 174 [Two-scale Limit of a Derivative] If uε is a sequence bounded as in
(1.15) and satisfying (3.44), then u0 is independent of x1 and

κ0
∫
Ω

∂xu
εBv dx− κ1

∫
Ω♯×Ω1

ηv dx0dx1 = O(ε) for all v ∈ C∞(Ω♯ × Ω1)

where

η =
∂u0

∂x♯
+
∂u1

∂x1
. (3.45)

Moreover, if uε = 0 on Γ then u0 = 0 on Γ♯.

The proof is split into four Lemmas.

Lemma 175 [First Block: Constraint on u0] u0 is independent of x1.

The proof is the same as for that of Lemma 22. In step 2, instead of using operator T ∗, we
use two-scale approximation (3.43) directly. The other part of the proof keeps the same.

Lemma 176 [Second Block: Two-Scale Limit of the Derivative] η = ∂u0

∂x♯ +
∂u1

∂x1 .

Proof. This proof starts from the source term

Ψ = κ0
∫
Ω

duε

dx
Bvdx (3.46)

with v ∈ C∞
Γ♯(Ω

♯; C∞
Γ1(Ω1)).

• Step 1. Green formula (1.12), Proposition 16 and the linearity of integrals =⇒

Ψ = −κ0
∫
Ω

uεB(
∂v

∂x♯
) dx− κ0

ε

∫
Ω

uεB(
∂v

∂x1
) dx+O(ε).

• Step 2. Assumption (3.43) in the �rst term and (3.44) in the second one =⇒

Ψ = −κ1
∫
Ω♯×Ω1

u0
∂v

∂x♯
dx0dx1−κ

1

ε

∫
Ω♯×Ω1

u0
∂v

∂x1
dx0dx1−κ1

∫
Ω♯×Ω1

u1
∂v

∂x1
dx0dx1+O(ε).
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• The following steps are the same as Step 4 to Step 6 of proof of Lemma 3.46, we get

η =
∂u0

∂x♯
+
∂u1

∂x1
.

Lemma 177 [Third Block: Microscopic Boundary Condition] u1 is Ω1-periodic.

Proof. Source term. In (3.46), we choose v ∈ C∞
Γ♯(Ω

♯; C∞
♯ (Ω1)).

• Step 1. The steps 1-3 of the second block =⇒

κ1
∫
Ω♯×Ω1

ηv dx0dx1 − κ1
∫
Ω♯×Ω1

∂u0

∂x♯
v dx0dx1 − κ1

ε

∫
Ω♯×Ω1

∂u0

∂x1
v dx0dx1

−κ1
∫
Ω♯×Ω1

∂u1

∂x1
v dx0dx1 − κ1

∫
Ω♯×Γ1

u1v nΓ1 dx0dx1 +O(ε).

• Step 2. Lemma 175, and passing to the limit when ε→ 0 and Lemma 176 =⇒∫
Ω♯×Γ1

u1v nΓ1 dx0ds(x1) = O(ε). (3.47)

• Step 3. Proposition 2 =⇒
u1 is Ω1-periodic. (3.48)

Lemma 178 [Fourth Block: Macroscopic Boundary Condition] u0 vanishes on Γ♯.

Proof. Source term. In (3.46), we choose v ∈ C∞(Ω♯; C∞
Γ1(Ω1)),

• Step 1. The steps 1-3 of the second block and uε = 0 on Γ =⇒

κ1
∫
Ω♯×Ω1

η v dx0dx1 = κ1
∫
Ω♯×Ω1

∂u0

∂x♯
v dx0dx1 +

κ1

ε

∫
Ω♯×Ω1

∂u0

∂x1
v dx0dx1

+κ1
∫
Ω♯×Ω1

∂u1

∂x1
v dx0dx1 − κ1

∫
Γ♯×Ω1

u0vnx♯ ds(x♯)dx1 +O(ε).

• Step 2. Lemma 175, passing to the limit when ε→ 0, and using Lemma 176 =⇒

κ1
∫
Γ♯×Ω1

u0vnx♯ ds(x♯)dx1 = 0.

• Step 3. Proposition 1 =⇒
u0 = 0 on Γ♯.
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Chapter 4

Optimization for the SThM probe

Abstract. In this chapter we introduce an optimization tool and discuss its application to
the optimization of SThM probe developed in the NANOHEAT project. This tool combines the
house-made optimization software package SIMBAD with COMSOL-MATLAB simulation. The
parametrization of the probe and the simulation conditions are given �rst. Then the contribution
of each parameters are analyzed independently and some in�uential ones are selected. In this
step, the optimization principles which could be used in the similar design are summarized.
Next, the optimization of parameters for the identi�ed tradeo�s are implemented and the results
are shown by the pareto front plot.

4.1 Introduction

This chapter is devoted to design an optimization tool for the application of the model from
MEMSLab. Since this part of work is supported by the NANOHEAT project, this tool is
applied for the optimization of the SThM probe developed in this project. This tool is a
combination of the house made optimization software package SIMBAD and the COMSOL-
MATLAB simulation. The application of this tool for the optimization of the SThM probe
contributes in two aspects. The �rst one is the general optimization principle for the design
and the second one is obtaining an optimal design which improved much the performance than
the original design. The �rst contribution comes from the general analysis for each parameter
and the second one comes from the trade-o� optimization for the in�uential parameters.

4.1.1 Organization of the Chapter

This chapter is organized as follows: In Section 4.2, the optimization problem for the SThM
probe is described. It includes the description of the probe structure, the physical functioning
of each component, critical phenomena should be considered in the design and the design goal
of the probe. In addition, the limitation of the optimization without using a specialised tool
is illustrated. In Section 4.3, the parametrization of the SThM probe has been done but only
the �gure and values are reported. In Section 4.4, a single simulation used in the optimization
loop and some useful features are discussed. In Section 4.5, The house-made software package
Simbad is brie�y illustrated. Then in Section 4.6.1, the discussion of the in�uences of each
parameter is detailed and design rules are summarized. In the Section 4.6.2, trade-o�s of some
in�uential parameters are found by SIMBAD and an optimal design is reported.
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4.2 Statement of the design problem

The SThM probes used in NANOHEAT project, see [43], as shown in Figure 4.1, are designed
as three-layered structures. A thick Silicon cantilever is at the bottom layer to support the
whole structure and a SiO2 layer is deposited on it to serve as an electric insulator layer. A
thin Platinum trail consisting of four legs and a sharp tip is deposited on the top layer. The
internal two legs are used to form a heating circuit and the external ones are for tip voltage
sensing. The piezo-resistive sensor which is used to measure the tip displacement under a force
is embedded in the silicon layer, covered by the SiO2 layer and located at the bottom of the
middle part.

(a) Samples of the SThM probe (b) Tip

Figure 4.1: Samples of SThM probes

Two critical phenomena are considered in the design. They are bimetallic due to the dif-
ferences of the thermal expansion coe�cients in each layer and dependence of the tip-sample
interface resistance on the contact pressure, see [36][40] and [54].

In view of the application, the following design objectives should be achieved. First, a
�exible cantilever is needed to prevent the damage of the the fragile tip when the tip-sample
contact force exceeds some limit. Second, the tip displacement caused by the bimetallic e�ect
should be reduced. Third, a high e�cient resistive tip is needed. Last, the piezo-resistive sensor
should be sensitive to the tip displacement at least for the photographic measurement. These
design goals are characterized by some features in the simulation which will be introduced later.

Some e�orts has been tried for optimization of this probe by trial and error method. As
shown in Figure 4.1(a), a lot of samples are designed and fabricated, then the best one will
be selected according to their experimental performances. It is time consuming and expensive.
In addition, they could not understand the main optimization rules which might be useful
for future works. On the other hand, the objective features could be predicted by numerical
simulations which is much faster and cheaper than experiments. The simulation could be used
by optimization software packages to �nd the design rules.

We observe that each sample in Figure 4.1(a) contains a Platinum trail, a small tip, see
Figure 4.1(b), some gaps near the tip and some gaps at the bottom. So instead of studying
these samples one by one, we introduce a parametrization which more or less can covers all
these samples and the analysis is done for this abstract probe.
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4.3 Parametrization of the probe

The parametrization of the geometry is the �rst step for optimization. It includes the param-
eterized diagram, the initial values and limits of each parameter and the geometry constraints
between them. In this part, the discussion of the complex constraints are not reported.

The parameterized �gure of the probe is shown in Figure 4.2(a) and the detailed �gure of the
tip is shown in Figure 4.2(b). The red dotted line shows the watching points in the heater and
these points are indexed increasingly from bottom to the top An additional parametrization of
the tip is done for studying the in�uence of a non-regular shaped tip. Its graphical expression
is shown in Figure 4.2(c). The initial values and limitations of parameters is reported in Table
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Figure 4.2: Parametrization of the �rst probe design

4.1. The parameters SiTh, SiO2Th, PtTh and PiezoTh correspond to the silicon, SiO2 and
Platinum layer thicknesses and the piezoresistive sensor thickness.

4.4 Simulation

This section is focused on the implementation of the simulation which is used in the optimiza-
tion. First we describe the boundary conditions. Then we explain the COMSOL-MATLAB
modules used in the simulation and objective features that are used in the optimization pre-
sented in the following section. The simulation is written in a COMSOL-MATLAB script so
that to be combined with SIMBAD. This work takes a long time and we close this section by
illustrating the di�culties met during its development.

The simulation is done for the left-half part of the probe thanks to its symmetry property.
A symmetric boundary condition is thus imposed on the symmetric axis. The probe is clamped
at its bottom where a 300K room temperature is imposed.

Two COMSOL modules are applied independently to extract the needed objective features.
Joule-heating thermoelasticity module is the �rst one used to simulate the Joule-heating and
the bimetallic e�ects. An electric source is imposed on the inner leg of the metal trail and
the right end of the tip is grounded. Six objective features are extracted from this module:
the maximum absolute value W of displacements generated by bimetallic e�ect; the maximum
temperature T of the tip; the heat �ux Flux crossing the interface between the heater and the
trail; the di�erence Td between the mean temperature in the tip and that in the heater; the
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Name L H1 r1 H2 r2 r3 H d2 d1 Wcb
Initial 203 407 103 125 71.5 11.5 555 3 3 10
Limit - - - - - - - - - 2~10

Name Wu hf Whb Wg1 d3 Wg2 WJb HJn WJn Hsb
Initial 5.87 9.4 20 5 9 150 30 80 5 30
Limit 2~5.87 2~14 2~20 2.5~10 - 128~160 15~75 30~80 5~30 -

Name Ws HsT HTb HTn WTn WTb HtT Htb Wtb Wtn
Initial 10 21 8.5 24 4 16 5 8.5 4 1.5
Limit - 10~21 - - 4~14 16~21 - - 4~8 -

Name Htn Wtg Twh1 Hh1 L51 h51 L17 h17 Htip SiTh
Initial 8.5 4.57 1.91 1.91 28.5 62.27 31.08 72.5 0.04 5
Limit - 2~4.57 0.1~1.91 1~1.91 - - - - - 3~5

Name SiO2Th PtTh WGP WP HGP HP PiezoTh Twh2
Initial 0.2 0.1 11.25 2.5 22.5 1.7 1.5 1.91
Limit 0.2~0.5 0.05~0.15 - - - - - 0.1~1.91

Table 4.1: Initial value and limit of parameters

voltage drop SV on the sensing leg when a −5µW heat �ux load is imposed to the tip; the heat
distribution in heater is another objective feature, it can only be expressed through a graph.

The second module is a solid mechanic which are used twice with two di�erent loads to
extract two objective features: the maximum absolute value D of displacements for a 1µN
force imposed to the tip; the mean value S of Von-Mises stress in the piezo-resistive sensor for
an imposed 1µm tip displacement. Feature D indirectly expresses the probe sti�ness.

An simulation is done with the parameters in Table 4.1 for a 0.5V voltage source. The curve
in Figure 4.3(b) shows the temperature along the watching points introduced in Section 4.3. It
decreases to the end of the tip. This phenomenon is made more visible in Figure 4.3(c) where
the temperature variations are represented by color and also by deformation of the volume.
Figure 4.3(d) shows the current density distribution, it provides a good explanation for this
phenomenon. Because of the low current density in the upper end of the tip, that part can not
be self-heated. The singularity of the current density at the corner comes from the property
of Laplace equation which governs the electric equation. The other objective features in this
simulation are D = 0.5248µm, W = −0.09915µm, T = 45.76K, SV = 23µV , S = 2.13MPa,
Flux = 11.65W/m2, Td = 0.4863K. It takes 130 seconds and 6000 elements are used.

Work History

This report is simple but the process was di�cult. This work has been started with the 3.5a
version of COMSOL that o�ers poor possibilities of script programming. The scrip was not
established until the adopting of COMSOL 4.2b. It accelerates signi�cantly the work because
the standard MATLAB functions can be used. This makes the programming easier and clearer.
However, we found bugs that block the process of the work. Precisely, the system cannot scale
the equations correctly when the non-standard geometry unit is used and the meshing function
cannot work for some small geometries. We derived the scaled equations expressed in µm unit
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(a) Global heat distribution
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Figure 4.3: Temperature and current density distribution of the probe

and identi�ed the limits of each small parameters which allows meshing. We �xed all these bugs
when the more powerful version of COMSOL 4.3b appeared. In this version, equation scaling
problem is solved and the meshing function is much improved. So a robust script including
material property setting, equation setting, meshing and objective feature extraction is created.
This rendered the scaled equation no more necessary.

4.5 Simbad

The software package SIMBAD provides a generic simulation-based design tool for investigating
the behaviour of complex modeled systems. A MATLAB link has been set between COMSOL
and SIMBAD so that COMSOL models may be used as an input for a design under SIMBAD.
It includes the de�nition of the optimization problem including initial value of parameters,
parameter relative ranges, objective features, constraints for geometry and objective features.
It serves to transmit current parameters between the two software packages. Finally, the results
are visualized and reported.The following driver functions are available:

• Design sensitivity and e�ects analysis

Used to quantify the impact of design variable modi�cations on the design objective of
interest. This general allows the design space to be reduced to the subset of in�uential
variables.
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• Mono-objective performance optimization

Used to minimize a scalar function of the design objectives while satisfying design con-
straints.

• Multi-objective performance optimization

Used to obtain an approximation of the Pareto front for the di�erent design objectives. This
provides the analyst with a useful indicator for weighing the trade-o�s between the objectives
of interest.

• Reliability analysis under aleatory uncertainty

Used to evaluate system reliability for one or more failure criteria with random uncertainty
a set of design variables.

• Model validation and uncertainty quanti�cation

Used to quantify the impact of both aleatory and epistemic (lack of knowledge) uncertainties
in the design variables and system environment on the design objectives and constraints.

• Info-gap robustness of design decisions to lack of knowledge

Used to investigate the impact of lack of knowledge in design variables on system perfor-
mance.

Three toolboxes were used is this work. The design sensitivity and e�ects analysis toolbox is
used to quantify the impact of design variable modi�cations on the design objective of interest.
This allows the design space to be reduced to the subset of in�uential variables. Then, the
multi-objective performance optimization toolbox is used to obtain an approximation of the
Pareto front for the di�erent design objectives. This provides the analyst with a useful indicator
for weighting the trade-o�s between the objectives of interest. Finally, the model validation
and uncertainty quanti�cation is used to quantify the impact of both aleatory and epistemic
(lack of knowledge) uncertainties in the design variables and system environment on the design
objectives and constraints.

4.6 Optimization

This subsection discusses a multi-objective optimization for the SThM probe introduced in
Section 4.2. The varying of some parameters may improve some design properties but worsen
the others. For example, the increase of the silicon layer thickness reduces the bimetallic e�ect
but increases. In this case, the optimization requires a trade-o� between the two requirements.
To the contrary, an optimization of other parameters could be obtained directly from the clear
understanding of their contributions.

This subsection contains two parts. The �rst one is dedicated to study each parameter
and to identify those whose optimization requires tradeo�s. The second one focuses on the
optimization of parameters for the identi�ed tradeo�s. A set of solutions are reported in the
pareto plot which facilitates the selection of optimal designs.
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4.6.1 Analysis by subset of parameters

The in�uence of each parameter is analyzed separately, but the analyses are presented for
small groups to make the presentation easy. Precisely, the variables are grouped into heater
dimensions, T-shaped and tip-gap dimensions, layer thicknesses, trail widths and cantilever
dimensions. They are marked by blue, green and red letters in Figure 4.2(b), and by red and
pink letters in Figure 4.2(a).

To make the result presentation easier, a special kind of chart, see Figure 4.4 as an example,
is used. For a parameter v with initial value v0 and varies in [av0, bv0], then the current variable
vn of v at level n is computed by vn = (a+ n

10
(b− a))v0, for an objective feature w corresponds

to v with w0 and wn correspond to v0 and vn, the x-axis represents the values of n and the
y-axis represents the ratio wn/w0 corresponding to the variation of the objective feature.

Optimization for heater dimension The shape of the heater a�ects the tip temperature
and sensing voltage directly. It a�ects also the bimetallic e�ect through the heat distribution
in metal trail. First, we discuss the in�uence of a polyline shaped heater, see Figure 4.2(c), on
the tip temperature and on the sensing voltage. This shows that the straight heater yields a
higher sensing voltage and a higher tip temperature. It also exhibits their linear relation. So
in the following, the subsequent results are only for straight shaped heater.

(a) (b)

Figure 4.4: Sensitivity analysis for varying tip width

In Figure 4.4, the platinum layer is heated by a 0.5V voltage source and the sensing voltage
is measured for a 10µW heat �ux load to the tip. The increase of width of any heater segment
yields decrease of both tip temperature and sensing voltage. We conclude that a straight heater
with a small width allows a better performance for these two features. In addition, the voltage-
temperature curve of each sample shown in Figure 4.5 exhibits the linear relation between them.

In the following, we discuss the heat distribution in the straight shaped heater for several
values of parameters shown in Figure 4.2(c). In Figure 4.6,

we use the kind of chart as in Figure 4.3(b). It shows the concentration of the heat distri-
bution in the straight heater. The e�ects of the width Thw2 of the tip, the height Hf and the
width Wu of the bottom part of the heater are discussed.

In Figure 4.6(a), the blue line with solid circles marks the curve of the highest temperature
concentration. It corresponds to the minimal allowable value of Twh2. Figure 4.6(b) reports
the in�uence of Hf where Twh2 is �xed to its minimum and a 0.2V heating voltage is imposed.
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Figure 4.5: Sensing Voltage VS tip temperature
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Figure 4.6: Heat distribution in the heater for a voltage source

The reduce of the heating voltage is to keep the tip temperature in a reasonable range. The
di�erences of curvatures between each curves are small which means that Hf is unin�uential to
the heat distribution. But we still mark the curve of the highest temperature concentration in
Figure 4.6(b) by a bold pink line where Hf equal to 8.885µm. At last, we study the in�uence
of Wu where both of Twh2 and Hf are �xed. The best curve is marked by bold red circled
line in Figure 4.6(c) corresponding to the upper limit of Wu.

The heat distributions in the straight heater for current sources are shown in Figure 4.7.
Figure 4.7(a) shows the temperature distribution for a 8mA current source, and Figure 4.7(b)
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Figure 4.7: Heat distribution in the heater for a current source

and 4.7(c) show it for a 2.6mA current source. The conclusion is same as for the voltage source
that Hf is unin�uential, the optimal value of Twh2 and Wu should be taken their minimal
allowable value and maximal allowable value.
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4.6. Optimization

The optimization of the parameters in this group does no require any tradeo�s between the
objective features. In conclusion, the optimal heater should have a wide bottom and a sharp
tip.

Optimization for layer thickness We discuss the optimization of thicknesses. Six objective
features D, W , T , S, Flux and Td are considered. Figure 4.8 shows the in�uences of the layer
thicknesses on these objective features.

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Sensitivity of objective features to Layer thicknesses

Figure 4.8(d) and Figure 4.8(e) show that T and Flux increase with the SiO2 layer thickness.
The increase of the Platinum layer thickness causes the reduction of the electric resistance and
so increases the heating power in the case of a voltage source. The thickness of the SiO2
layer determines the thermal resistance between platinum layer and silicon layer. The SiO2
layer blocks the propagation of the heat from the platinum layer to the silicon layer. When it
becomes thicker, the temperature as well as the heat �ux in the platinum layer increase.

The in�ection point of the green curve in Figure 4.8(b) corresponds to the thermal bending
tendency change. This change is discussed in the following.

Figure 4.9(a) shows the variation of tip displacement with the SiO2 layer thickness when
the Platinum layer thickness is �xed to 100nm and the tip temperature is �xed to 350K. The
temperature is controlled by the heating voltage. The SiO2 layer thickness varies from 0.2µm
to 0.5µm. Two colored and deformed volumes are used to detail the displacements when the
probe is equipped with a 0.2µm and a 0.5µm SiO2 layer, see Figure 4.9(b) and Figure 4.9(c).

In Figure 4.9(a), the tip displacement W starts from a negative value until to be positive
when the SiO2 layer thickness varies from 0.2µm to 0.5µm. The zero displacement happens
when SiO2Thick reaches 0.3˜0.35µm which corresponds to the in�ection point in Figure 4.8(b)
as explained in the following.

As shown in Figure 4.9(c), the deformation of the left of the two cantilever legs are upward,
but the deformation of the cantilever under the T-shaped gap is downward. This comes from
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Figure 4.9: Tip displacements for di�erent SiO2 layer thickness

the heat distribution. On the other hand, this dented shape under the T-shaped gap causes the
upward displacement of the tip. A thick SiO2 layer increases the dented shape and so increases
the tip displacement. To keep the probe smooth during its application, the SiO2 layer should
be taken as thin as possible.

Since the in�uences of the SiO2 layer and silicon layer are not related to the kind of electric
source, the discussion for the current source is only focused on the platinum layer. Figure 4.10
shows the in�uence of the Platinum layer on the tip temperature and on the tip displacement.

(a) (b)

Figure 4.10: In�uence of Pt layer thickness for current source

The increase of the platinum thickness increases the tip displacement and decreases the tip
temperature at the same time. So its optimization does not require the trade-o� between these
two features.

In conclusion, the thicknesses of the silicon layer and the SiO2 layer should be taken their
to lower limit to keep the probe �exible and �at. For a voltage source, the platinum layer
thickness could be used to optimize the tip displacement, but in the case of a current source,
the platinum layer should be taken as thin as possible.

Optimization for cantilever dimensions The optimizations of the middle leg and of the
two gaps around the legs of the cantilever are discussed. Figure 4.11 exhibits the in�uences of
the parameters in this group.

It shows that the parameters in this group in�uence mainly the probe sti�ness. Figure
4.11(a) shows that a wide middle leg and a narrow gap around it yields a sti� cantilever.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Sensitivity of objective features to the cantilever dimension

The pink curves in Figure 4.11(a) and in Figure 4.11(b) show that the increase of WJn only
decreases the tip displacement.

In conclusion, the middle leg of the cantilever should have a uniform width, the optimizations
of WJb and Wg2 require the trade-o� between the tip displacement and the tip de�ection.

Optimization for tip gap and T-shaped gap dimensions The in�uences of the tip
gap and the T-shaped gap are discussed. In fact, these two gaps are in�uential to the tip
temperature for the original design. In that design, the probe is equipped with a wide tip and
a large area of the cantilever is heated, see Figure 4.3. But when the tip becomes sharp, their
contribution becomes little. Figure 4.12 shows the in�uences of the tip gap when a probe is
equipped with a 100nm wide tip.

The heat and the heat �ux magnitude distribution of the probe is shown in Figure 4.13.
It is clear that the temperature elevation is restricted in a little vicinity of the tip and very

little heat �ux goes through the tip gap. The discussion of the T-shaped gap is the same.
We conclude that these two gaps are not useful for the probe with a sharp tip.

Optimization for Trail dimensions The optimization of widths of the sensing trail and
the heating trail are discussed. Since they in�uence mainly the tip temperature and the tip
displacement, Figure 4.14 only reports their in�uences on these two features.

It shows that the increase of the sensing trail width does not increase the tip temperature
but only increases the tip displacement, the increase of the heating circuit width increases both
of them.

The same analysis is done for the current source and Figure 4.15 reports the result.
The in�uence of the sensing circuit is the same but the in�uence of the heating circuit is

di�erent. Both of the tip temperature and the tip displacement decreases as the increase of the
heating circuit width.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Sensitivity of objective features to Layer thicknesses

This yields the conclusion that the sensing trail should be as narrow as possible and the
optimization of the heating trail width requires a trade-o�.

4.6.2 Trade-o� optimization

In this section, we �nd tradeo�s between di�erent objective features for parametersWJb,Wg2,
Whb and PtThick which are identi�ed in the previous section and a pre-optimized geometry
is used. The tip width is �xed to 100nm and the heater bottom width is �xed to 5.87µm, the
sensing trail is �xed to 2µm, the width of the middle leg is set to be uniform, the silicon layer
thickness is �xed to 3.5µm and the SiO2 thickness is �xed to 0.2µm. In the optimization, a
0.2V voltage source is imposed to the heating circuit.

The optimization is implemented by SIMBAD together with COMSOL-MATLAB simula-
tion. It takes about 19 hours and 522 samples are computed. In the graphical representation,
see Figure 4.16, only four sensitive ones are selected because of the limitation of graphical
representation method. In Figure 4.16, each point corresponds to a sample, their position
is determined by their tip de�ection, tip displacement and tip temperature, and the color is
determined by their sensor stresses.

We compare the performances of the optimal design and the original one under the condition
that they have the same tip temperature. So a 0.24V voltage source is imposed to the optimal
design to obtain the same tip temperature as the original one. Table 4.2 reports the comparison.

Table 4.2 shows that the optimal probe is more �exible, the heat distribution around the
tip is more concentrated, the bimetallic e�ect is much reduced and the sensing voltage is much
increased. The cantilever �exibility comes from the thin silicon layer and the wide gap around
the middle leg. The drawback is then the lower stress in the piezo-resistive sensor, but this
could be remedied by applying signal ampli�er in the stress measuring circuit. The concentrated
heat distribution around the tip and the higher sensing voltage are due to the sharp tip. The
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(a) Heat distribution (b) Heat �ux distribution

Figure 4.13: Heat and Heat �ux distribution around the optimized tip

(a) (b)

Figure 4.14: Sensitivity of objective features to the track dimension

sharp tip together with the narrower sensing trail and the heating trail signi�cantly reduce
the bimetallic e�ect. This section is closed by Table 4.3 which reports the parameters of the
selected optimal design.

In the end of this section, we summarize optimization rules obtained before.

• A straight line shaped heater maximizes the tip temperature and the sensing voltage.

• The heater with a wide bottom and a sharp tip concentrates the heat distribution and
reduces the bimetallic e�ects.

• The sensing track should be taken as narrow as possible to reduce the bimetallic e�ect.

• The T-shaped gap and the tip-gap are not useful when the tip is sharp.

• The increase of the heating trail width decreases the electric resistance, so it increases
the temperature for a voltage source but decreases the temperature for a current source.
By anyway, its optimization needs trade-o� between the tip temperature and the tip
displacement.

• The middle leg should be designed with a uniform width and its optimization requires
the trade-o� between the probe sti�ness and the bimetallic e�ect.

• The width of the gap around the middle leg is in�uential to the probe sti�ness and to
the bimetallic e�ect, the trade-o� between these two features should be considered in its
optimization.
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(a) (b)

Figure 4.15: Sensitivity analysis of track dimension for current source
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Figure 4.16: Pareto plot for four objective optimization

• The silicon layer should be taken as thin as possible to have a �exible cantilever. The
SiO2 layer causes the dented shape and it forces the upper part of the probe to bend
upward. To keep the probe �at during its application, the SiO2 layer should be thin.
The increase of the platinum thickness decreases the electric resistance, so it increases
the temperature for a voltage source but increases the temperature of a current source.
This could be used to optimize the bimetallic e�ect.

• The sensor stress is only sensitive to the thickness of the silicon layer.

4.7 Conclusion

The connection between SIMBAD and COMSOL-MATLAB has been established and a com-
plete optimization loop has been tested. In addition, the COMSOL-MATLAB script based
programming has been studied and the experience could be used in other problems. Through
the detailed discussion regarding the in�uences of each variable, the parameters needing trade-
o�s have been identi�ed and optimization rule for the others have been established. Finally,
the pareto plot of samples for tradeo�s features has been presented.

146



4.7. Conclusion

Feature Original design Optimal design Relative change
D 0.5248µm 2.26µm +330.64%
W -99.15nm 4.66nm -95.30%
T 45.76K 45.09K -1.46%
S 2.13MPa 1.26MPa -40.85%
Flux 11.65W/m2 1.54W/m2 -86.78%
Tdi� 0.48K 34.82K 7154%
SV 23µV 125µV 443%

Table 4.2: Report of one optimal design

Name L H1 r1 H2 r2 r3 H d2 d1 Wcb
Value 203 407 103 125 71.5 11.5 555 3 3 2

Name Wu hf Whb Wg1 d3 Wg2 WJb HJn WJn Hsb
Value 5.87 9.93 11.65 5 9 164.7 16.45 80 5 30

Name Ws Twh1 L51 h51 L17 h17 Htip SiTh SiO2Th PtTh
Value 10 1.91 28.5 62.27 31.08 72.5 0.1 3.5 0.2 0.0853

Name WGP WP HGP HP PiezoTh Twh2
Value 11.25 2.5 22.5 1.7 1.5 0.1

Table 4.3: Parameters of the selected sample
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A methodology for the kernel of an asymptotic model derivation software package MEM-
SALab has been proposed. Three aspects are included:

First, an approach called "by extension-combination" for the asymptotic model derivation
has been proposed. The method that to construct a complex model derivation by extending
and combining elementary model derivations has been �rstly used in the asymptotic method.
Each of them covers a speci�c feature comparing with the reference model derivation. Then
a theoretical framework which relies on a combination of the asymptotic method with term
rewriting techniques for the computer-aided asymptotic model derivation has been proposed.
FO-rules and strategies for symbolic derivation of the reference model have been designed and
their extensions and combinations are implemented by SO-rules and strategies. For �uent
combination of extensions, each position of nodes in the three structure of FO-rule is sorted
and SO-rules are formulated as a combination of unit outward growths each of which is a
composition of a R-semantic conservation SO-rule and an Admissible parameterized SO-rule
and is applied at one node only at speci�c positions in the tree structure of a FO-rule. Then
the application of unit outward growths are sorted in the same order as for the positions where
they are applied.

Second, an homogenization model of the electrothermoelastic equation de�ned in a multi-
layered thin domain has been derived. The derivation follows the reference proof by using
extended mathematical rules and some extended steps. This prepares the design of related
extensions for its inclusion in MEMSALab. New features ie multi-dimension, thin-domain,
sub-domains with di�erent physics, vector valued solutions and multi-physics are taken into
account.

Last, an optimization tool which is a combination of a house-made optimization software
package SIMBAD and COMSOL-MATLAB simulation has been developed. As an example,
it has been applied for optimization of a SThM probe used in the NANOHEAT project. The
general optimization principles for the similar SThM probe designs have been summarized and
a set of optimal designs corresponding to di�erent compromise of objective features have be
obtained.

In fact, only the skeleton of the kernel of MEMSALab has been established in this thesis,
there is still a long way to go to make the kernel complete. In the following, we list some works
need to do in a very near future:

• Rewrite the rewriting strategies of the reference proof in a term rewriting language Caml.

• Implement algorithms for outward growth in Caml.

• Include the homogenization model derived in Chapter 3 in MEMSALab.
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