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Abstract

This paper reports a multiscale electrostatic model of a two-dimensional Micro-Mirror
Array. It is applicable to very large arrays with several zone of electrical actuation. The
model is made with periodic solutions and four kinds of boundary layer effects at outer
boundaries, interfaces between different actuation zones and also to outer and inner edges.
This work is done in the context of the development of a symbolic calculation software based
on an extension-combination principle, so that the model derivations are constructed in such
a way as to follow a same algorithm.



1 Introduction

Micro-Mirror Arrays, abbreviated as MMAs, are devices related to Micro-Optical-Electromechanical
Systems (MOEMS) family with mirrors in their components. The size of the mirror is very small,
millimeter-sized, micro-sized, or smaller, with the principal goal being steering or monitoring light
phase or amplitude. According to the statistics in 2018 of authors in Song et al. (2018), there are
about 277 MMA designs from 49 companies and 23 academic research groups. They are widely
used in various fields such as optics, telecommunications, astronomy, biology, etc.

MMASs can be categorized according to the type of their actuators into four groups: electro-
static, electrothermal, piezoeletric, and magnetic. Another aspect of the classification is based on
the kind of mirror surface. Two groups are distinguished, the discrete and the continuous one.
In the former, the mirrors are disconnected from that of the adjacent cells, so their movements
are independent. In the latter, the mirrors in each cell are continuously linked to each other. In
other words, there is only one mirror in the structure of the devices in this group. The number of
mirrored elements in the array depends on the function of the device, can vary from one cell to
thousands and can be placed in a one or two dimensional array. These arrays can be operated by
one of the command algorithms: direct addressing, line addressing, or the line-column addressing,
see more in Braun et al. (2008), Canonica et al. (2012), Canonica (2012).

The MMA for which the model of this paper has been developped is with electrostatically
actuated tilting mono-crystalline silicon micro-mirrors called MIRA, see its top view in Figure 1.
It is actuated according the line-column addressing scheme. It has been designed with stringent
requirements such as a mirror size of 200 x 100um?, a title angle of more than 20°, a filling factor of
more than 80%, a contrast ratio of more than 1000, a wavelength bandwidth from visible to IR, an
actuation voltage lower than 100V and an operating temperature ranging from room temperature
to less than 100K. For more details see Canonica (2012), Zamkotsian et al. (2006).

Figure 1: Top view of the MIRA array with 100 x 200 cells. The zoom represents a single cell.

The direct simulation of physical phenomena in such a micromirror array is very computation-
ally expensive due to the large number of degrees of freedom, its enormous size and the existence of



several scales. The approach adopted in this paper to overcome this difficulty is to use an approxi-
mate model obtained by deploying asymptotic methods for periodic problems, see introductions to
the field through historical references as Bensoussan et al. (2011), Tartar (2009), Cioranescu and
Donato (2000) among others. Precisely, we use the unfolding method Lenczner (1997), Cioranescu
et al. (2018, 2002, 2008), Arbogast et al. (1990) and Casado-D “1az (2000) also called two-scale
convergence since it generalizes the two scale convergence introduced in Nguetseng (1989) and
developed in Allaire (1992). A preliminary work was done for a one-dimensional array in Nguyen
(2017). Here, we report results for two-dimensional arrays governed by the equations of electro-
statics. Similar results for the coupling with the system of linear elasticity are available in the
PhD thesis Trinh (2021). They are not reported here due to the paper length limitation, however
their statement and derivation follow similar principles.

We assume that the array is divided into two zones where the actuation voltage is uniform. The
electrostatic potential of the asymptotic model is periodic, with different periods, in each of these
zones. Compared to the solution of a standard periodic homogenisation problem, here the periodic
model solution corresponds to the periodic correctors only. This is due to the fact that each cell is
grounded and a potential difference governs its behaviour. As a result, the electrostatic potential
and its normal derivative are discontinuous at the interfaces between the uniform actuation zones.
In addition, they do not satisfy the boundary condition at the lateral boundaries of the array.
To get rid of these defects, boundary layer correctors are introduced at the interfaces and at the
lateral boundaries. Besides, the corrections are formulated separately on each face of the interfaces
and of the lateral boundaries, which led to the discontinuity of the sum of their contribution at
the face junctions, namely at the edges. This is why, additional boundary layer correctors are also
introduced at the edges.

Boundary layer problems in periodic homogenization problems have been much investigated,
see Bensoussan et al. (1979), Allaire and Amar (1999), Prange (2013), Gerard-Varet and Masmoudi
(2013), Griso (2014), Shen (2017), Gerard-Varet and Masmoudi (2012, 2011), Amirat et al. (2006),
Neuss et al. (2006) to cite only few. In this work, our contribution is to outer edge and internal edge
corrector models which have not been studied yet. In total, we derive five kinds of models with the
following features: periodic solution, lateral (i.e. outer) boundary layer, interface boundary layer,
internal edge boundary layer, and exterior edge boundary layer, see in Figure 2. For each kind, we
provide only one model instance for one boundary, interface or edge, the other ones being obtained
without difficulty. Due to the length of the paper, the results of our numerical implementation of
the models are not presented here. The interested reader can find them in the PhD thesis Trinh
(2021) while older ones for a one-dimensional array were reported in Nguyen et al. (2017) in an
optimization context.

Another point is that this work is carried out with the perspective of developing symbolic
computation algorithms for model building in continuation of the works Yang et al., 2014, Belkhir
et al., 2014, Nguyen et al. (2015), Belkhir et al. (2015), Belkhir et al. (2017). Thus, a particular
attention is paid to the algorithmic structure of the model proofs and here we have endeavored
to write them all following the framework of a single algorithm. Variations from this reference
algorithm can be expressed by the extension-combination method. Here, we do not expose this
aspect but it has been the subject of our work Belkhir et al. (2017) achieved for simpler models
with for the same algorithm. Notice that a complete theory of extension-combination is available
in Belkhir et al., 2019 while an extended version is submitted for publication.

It can be observed that in the above mentioned algorithm, most of the operations are done
on a very weak formulation instead on a weak formulation as it is usual. This leads to shortened
proof lengths due to the absence of need of weak convergences of derivatives.
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Figure 2: Zones where the asymptotic models are taken into account. The corresponding color
numbers indicate the models’index.

Another characteristic of our choice in designing symbolic computation algorithm is to adopt
a compromise between imposing assumptions and doing more mathematical analysis. Thus our
attention is more on developping calculations that can be algebraized than on fine mathematical
analysis deployment. Precisely, in our algorithm, we assume a priori estimates, or equivalently weak
convergences of subsequences, on the physical solutions. Thus in the following model derivations,
we adopt the same assumptions which apply to the solution as well as to the boundary layer
correctors. In addition, the boundary layer correctors and their gradients are assumed to converge
exponentially to zero at infinity. This might be proven as in e.g. Allaire and Amar (1999) or
Tartar (2009). Another characteristic of this work, which shows the interest of having models
automatically derived, is the choice to deal with a real problem whose complexity exceeds by far
the one usually treated in academic works. While the complexity of the MIRA cells is not so
high, nevertheless its handling in the framework of asymptotic methods quickly leads to having
to manage extremely heavy notations, which is quickly prohibitive for a manual treatment. In
this sense, this work provides a very interesting (indeed precious) family of models to guide the
development of a rather general symbolic computation tool.

Still in the perspective of developing systematic proofs, despite the fact that the imposed electric
voltage is assumed to be piecewise constant in the array MIRA, it is treated with the minimal
conditions necessary for the validity of the models. In particular, it can have smooth variations
inside some zones and abrupt changes at their interface. In the paper we do not discuss further the
other possible cases. The electrostatic potential of the two-scale model in a cell is then solution
to a periodic problem depending on the local actuation voltage. The latter varies continuously in
each zone and is discontinuous at their interface. This yields additional boundary layer effects that
could find applications for other devices.

As the model proofs all follow the same pattern, it would be unnecessarily long to write them
all in detail. It has been chosen to provide all details for the first models, then to focus on the
special features for the next ones.



The article is organized as follows. In Section 2 the structure of the micromirror array, the
notations and the electrosatic equations are presented. Then, a brief overview of the models
established in the paper is outlined. Finally, the algorithm used for the model derivation is detailed
after recalling the principle of two-scale transformation (or unfolding). The other sections are
dedicated to the derivation of the sub-models which once assembled constitute the whole MMA
model. Section 3 describes the behaviour of the electrostatic field far from the boundary of the
array and far from the interfaces between the different actuation zones. Section 4 establishes the
correctors near the array boundary, so as to properly take into account the boundary conditions.
Section 5 is for the correctors at the external edges. Section 6 provides corrections at the interfaces
between zones of different actuations. Finally, Section 7 is for corrections in the vicinity of the
interface edges.

2 Problem Statement

We start by providing more details on the operation of a MMA cell. Then, the electrostatic
equations are recalled in their strong, weak and very weak forms. Before starting the construction
of the models, the main results are summarised in Section 2.3 with simplified notations. The
next subsection is to describe specific scalings. Since the principle of asymptotic methods deals
with small parameters, it is necessary to distinguish the small physical dimensions of the small
parameters to be taken into account for the asymptotic analysis. This is why the whole system is
scaled to a length of the order of unity. Finally, the algorithm followed by the model constructions
is detailed. It uses operators related to two-scale transformations which may be specific to certain
problems. Here those used for the construction of the periodic model are recalled to illustrate the
algorithm.

2.1 Structure of a Cell of the MMA

The structure of one cell of MIRA is illustrated in Figure 3. It is composed of two components:
the mirror part and the electrode part. The mirror part is made with a micromirror supported
by two flexible beams. The latter are attached to a frame enabling a displacement of the mirror
when a voltage is applied. A stopper beam is situated under the frame to guarantee that a tilt
angle satisfies a given value after actuation. Two landing beams are under the tilting edge of
the micromirror to avoid the generation of a short-circuit between the mirror and the electrode
throughout the actuation. The electrode part includes the electrode base which is electrically
grounded; landing pads are where the landing beams contact; two pillars separate the mirror and
electrode parts defining an electrostatic gap. The electrostatic force applied to the mirror results
from its difference of potential with the electrode base.

2.2 Geometry and Mathematical Equations

We begin by describing the geometry of the MIRA array. It occupies the region €2 decomposed
into 2™ and "¢ where the mechanical part and the vacuum surrounding it are located. Its
width, length and thickness are respectively Ly, Lo and Ls, see Figure 5. It includes ny X ny cells
Q. of sizes l1, Iy, and 3.

Thus Q = U, , where ¢ is a multi-index belonging to Z,,,.,; = {¢ = (c1,¢2), ¢1 € 1,...,n; and
co € 1,...,n9}. Each cell ., includes the mechanical part 27¢ and the vacuum Q2%¢, see Figure 4.
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Figure 3: Overview of the components of a MIRA cell.
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Figure 4: Overview of the mechanical part made with the mirror and the electrode and the vacuum
part.



The mechanical structure consists of two parts, the mirror 7¢ = and the electrode Q¢ so that

Qe = Qpet U QFES. We also use the decomposition of the domains Q™ and 2"*¢ of the array

as the unions Q™ = U, Q7 and Q" = U2, and the same for the domains consisting of all

3 mec __ mec mec __ mec
mirrors and electrodes Q7% = U Q7" and Q72 = U0

The boundary of €2™¢ is the union I'f**¢ U I U 7, where I'])7¢ is the boundary of 2%
intersecting with this of €2, while I']'* and I'7**® are the complementary parts of the boundaries of

Qe and 1e¢. The lateral part I'];¢ does not play any role for the electrostatic models, thus it is

not discussed further. Moreover, I'7"* = U I'f%e® and I'7"* = U I'T’¢¢ where I'f’c¢ and I'T’¢¢ denote
respectively the boundary of the electrode Qf¢% and of the mirror Q77 = of the mechanical body

in a cell Q7. The boundary 992" of Qv*¢ is the union of the internal boundary I'}% and the

int
external boundary I'%¢, where I')7¢ is defined by I'7* U I and I'YSf is the union of the lateral

ext) int
boundary T and of the top boundary I';7% of the vacuum part, I'5y = I U T

Figure 5: Representation of two zones the external zone 2; and the internal zone (25 with different
actuation voltage in the MIRA array. The zoom illustrates one cell €} ;) of the array with the
mechanical structure in Qﬁef) surrounded by the vacuum in Q?ﬁ)

For the sake of simplicity but without losing generality, we consider that () is split into two
zones )7 and €25 in which the imposed voltages noted as V; and V5 are different. Hereafter, we add
the subscripts 1,2 in geometrical notations to represent to which zones they belong, for example,
Q7% and Q25%¢ is a vacuum part of €y and (2, I'{%7, and I'5%, is the internal boundary of Q7%
and 25%¢, and note that all previous geometrical notations without the subscripts 1,2 now are
understood as a union of two elements related to zones (2; and 9, e.g. T'}07 = I'790,U T990,.

The field of electric potential ¢ in the vacuum is governed by the equation of electrostatics, see



Griffiths and Colleger (1999),

-A¢p =0 in Qv
¢ =V onlyr, (1)
Véo-n =0 onl%

where V' is the imposed voltage taking two distinct constant values V; in €2 and V5 and €25, and
n is the outward unit normal vector. The continuity of the potential and the electrostatic field at
the interface /75, of 27 and (25" are given as

inter
¢|Q1l’ac = ¢|Q12Jac and V¢|Q1lzac . nl = —VQb‘anc : 1’12,
vac

where n' and n* are the outward unit normal vectors of Q}¢ and Q5 on T35/,
Let us introduce a Hilbert space H%/patejo(Q”“C) = {v e H'(Q"), v =0 in I'0%
the norm

n! = —n?

} endowed with

1l 1,0, (@acy = VU] 22 (vacy,

rvaf,o
for all v € HII“WtC,O(QvaC)'

Then a variational problem of (1) is to find ¢ € Hllmtcy(Q”“C) = {¢p € H' ("), ¢ =V in I'}%
such that

/ VoVudr =0,
for all v € Hpvae o(2°%).

3 Assuming more regularity of the test function and applying Green’s
formula, we have a very weak formulation of the problem,

/ PN vdr = / VV,v-nds(z)+
ryae
+.

oV,v-nds(z),

Tvac

ext

(2)

for all v in H%mE’O(QWC) ={v e H*(Q"),v =0 on Y%

int

2.3 Overview of the Model

In this section, an overview of the sub-models building the full model is provided. The notations
are simplified for the sake of this presentation, moreover the reader might be aware that they are
not strictly related to the rest of the paper.

Periodic Model Let T° be the usual operator of periodic two-scale transform (or unfolding)
operator in the periodicity x1- and xo-directions and of dilation in the x3-direction. It transforms
functions defined on the physical domain Q° = Qfx]0, ¢[ into functions defined on the two-scale
domain QF x Q' where QO C R? and Q' C R? is the unit cell. A distinction is made between
areas occupied by the mechanical structure and those under vacuum, Q°F = Q=m¢h x Qv and
Qb = Qbmeeh x Qbvac - By an abuse of notation we still denote by T¢ the two-scale transform
applied to the electrical field ¢° which is defined only in the vacuum part and to the electrodes
where a voltage V¢ is imposed. Assuming that T5¢° — ¢° and 7°V° — V° when ¢ — 0, ¢ is
solution to the boundary value problem posed in Q1% with variable z'. Here and in the following
of this overview, we write Q! instead of Qv

V.,1¢" - n! is antiperiodic

\ #° is periodic

(—A,10° =0 in O
¢’ = V0 on the electrode
V.10 -n! =0 on top boundary

on the vacuum periodic boundary

on the vacuum periodic boundary.
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A first approximation of ¢° is then ¢° ~ B¢¢" where B is a smooth approximation of the adjoint
of T¢. It is valid far from the boundary of the MMA array and far from the interface between
zones with different actuation voltages.

boundary periodic
inthe x, — direction

Figure 6: Illustration of the correction zones near the boundary. (a) The red line delimits the
boundary layer area in the vicinity of the boundary x5 = 0 when only one cell is considered in the
xo-direction. (b) The red line encloses the correction area in the vicinity of the edge x3 = 29 =0
when only one cell is taken into account in the z;- and x,-directions.

Lateral Boundary Layer Model Since B5¢" is periodic it does not satisfy the same boundary
condition as ¢° on the lateral boundaries. To correct this defect, we introduce a corrector in a
vicinity of each boundary part, see such vicinity (2;; near the boundary xzo = 0 in Figure 6a. To
build the correctors, we introduce the difference ¢5, = ¢° — B°¢” together with Vi = V¢ — BV,
An operator Tj; which operates as a two-scale (or unfolding) operator in the x;-direction and as a
scaling in the x,-direction captures the correction effect near xo = 0. We assume that passing to
the limit when ¢ — 0 and when the number of cells taken into account in the direction xo tends to
infinity, 75 (¢5,) — ¢ and T (V)5) — Viy. Denoting ¢° the limit of 75 (B%¢"), ¢, is solution to the
following boundary value problem posed on 5 a domain with variable 2! which is unbounded in
the direction z} and ending at z3 = 0 at its other end.

(— Ay =0 in Q5
O = Vi on the electrodes
Vaigy -nt =0 on the top boundary
Vi -l = —ng?o -n! on the front boundary i.e. at 3 =0
@y 1s periodic in the z;-direction
Va1, - nt is anti-periodic  in the z;-direction
| Pu tends to zero when xj — oo.

The approximation that takes into account the correction near the boundary is then ¢° ~ B¢ +
By, ¢y, where By, is a regular approximation of the adjoint of the two-scale transformation 7.
Similar approximations can be built near the other lateral boundaries. This model is to be used
near the MMA boundary but far from its edges.



Exterior Edge Model Since each of these approximations is periodic in the direction parallel
to the boundary where the correction takes place, their contribution to the edges is discontinuous.
To correct for this defect at the edge 7 = x5 = 0, we introduce the external edge corrector
Gope = 0" — (B0° + Blfz,1¢zl>l + B w) and and Vi, = Ve~ (BV° + By Vi + Blfl,?%%) where the
indices 1 and 2 of B}, ¢, and Vj,; refer to the lateral boundaries o = 0 and z; = 0 respectively,
see Figure 6b. In this case, the two-scale (or unfolding) operator T¢ _ operates on a vicinity

exre

of the edge. It is degenerated in the sense that it is simply an appropriate scaling in the two

directions of periodicity. As for the boundary layer correction, we assume that 75, (65,.) — Pere

and T¢,.(VE,.) = Veze when € — 0 and the number of cells of the vicinity in both directions z; and

5 tend to infinity. Posing ¢, and ¢7; the limits of T2 (Bji y) and T (B2 %), Gope is solution

to the boundary value problem posed in the domain Q2 made with cells filling the quarter of

plane z} and z3 > 0,

(2160 = 0 in O,
Dege = Veae on the electrodes
Vo -0t =0 on the top boundary
Va1 Gope -1 = —Vﬁ% -n'  on the face ; =0
Vit Gepe -1 = —unfb; -n'  on the face x5 = 0.
( Pege tends to zero when x; or zo — 00.

The fully corrected approximation near the edge is then ¢° ~ B¢¢? + By 4 ;l + Bjo gl + B:
where B¢ _ is the adjoint of TC

exe’*

exre ¢exe

S e Similar approximations can be built near the other external

edges.

top boundary

T
|
|

\_

boundary periodic

‘\\\»“- ’ 3
b) inthe x, — direction \J > \ 1
L x3

Figure 7: View of the correction zone in the vicinity of the interface zo = Li between two zones
of different actuations. Here only one cell is taken into account in the xo-direction on both sides
of the interface. (a) The correction zone in the physical domain. (b) The periodicity cell whose
periodicity is in the x;-direction.

Interface Model At an interface between two zones with different imposed voltage the electri-
cal potential is continuous but the first approximation B¢¢° is not. Here the two scale (unfolding)
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operator T¢, is defined in a vicinity of the interface x5 = L} similarly as Tj; but symmetrically
about the interface, see Figure 7. Still using ¢;, = ¢° — B¢ and Vii = Ve — BV we assume the
convergences 17, ¢y, — ¢, and T V5 — V;;, when € — 0 and the number of cells in the direction
x5 tends to infinity on both sides to the interface. Posing ¢° the limit of 7¢ = (B ¢°), b;, is solution
to the boundary value problem posed on the domain 257 which is unbounded on both sides of the
interface.

(— A, =0 in Qg
Din, = Vm on the electrodes
V¢, n = on the top boundary
[[@:]] = H H on the interface
[Var¢,,]] -0t = val ngOH -n'  on the interface
V19, - n! is anti-periodic in the x;-direction
@, 1s periodic in the z;-direction.
L Din, tends to zero when zo — Fo0.

The approximation that takes into account the interface corrector is ¢° ~ B°¢" + BS ¢,, where
B: is a smooth approximation of the adjoint of 77, . Similar approximations can be built near the
other interfaces. They are valid near the 1nterface but far from its edges.

region 1

region 2

bin ¢°

interface

Interface 3 — %\
N
Quarter uarter

yan Iz 1

T in
Interface 2 Interface 4
Quarter 1 [Quarter

=
I /f 1
nterface

xg ¢0

Figure 8: Two-dimensional representation of the correction zone at the corner of the correction
zones of the interfaces z; = Li and x5 = L}. Only one cell is considered in the z;- and zo-directions
on both sides of the two interfaces. The correction zone is divided into four quarters separated by
their interfaces numbered from 1 to 4.
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Internal Edge Model As for the external edge model, the contributions of the correctors ¢,,
of adjacent interfaces lead to discontinuities at the edges that is not present in the full solution
¢°. But there are additional discontinuities at the four interfaces between the four quarters of the
array originating at the edge. See the illustration for the case of the internal edge at 1 = L1 and
zo = L} in Figure 8. In this case, the correctors are ¢, = ¢ — B°¢" — B, 295, — Bj,19i, and
Ve, =VeE—BVO— Bfn Vin — B, 1V1 where the indices 1 and 2 on BS,, ¢;, and Vm are related to
the interfaces zo = L} and T = L Here, the two-scale transform (or unfolding) operator 77

wme
a simple scaling. We assume that the convergences 1: o5 . — ¢,.. and TZ V°  — V. for some

me me " ne

limits when ¢ — 0 ani the number of cells taken into account in both dlrectlons z; and zo tends
to infinity. Then for ¢} and gb the limits of 7%, (B5,, 1 6;,) and 15, (BS

ine ine,l ine ine,2 ) gbine is a solution
to the following boundary value problem posed in the ({L’l, x3)-plane Q5°, made as the union of the

four infinite quarters:

;

—Dp1 P = in Q2°,
Gine = Vine on the electrodes
Va1 -0t =0 on the top boundary
[Dine]] = ¢ZL s on interface 1
v 1¢me]] n' =V,¢;, n on interface 1
[Pinel] = - on interface 2
14 1¢me]] n' =V ¢?n -n! on interface 2
[Binel] = ;5\/ on interface 3
(Va1 dinel] -0t = =V 1q§ on interface 3
[@inel] = /,% on interface 4
([Var1die]] - m —Vxl&?ni -n'  on interface 4.

\<Z5me tends to zero when z; and 9 — +o00.

The approximation that takes into account the correction near the internal edge is then ¢° ~
B¢’ + B, i+ B, @2, 4 BS, ¢ine Where BS,_is a regular approximation of the adjoint of the

two-scale transformation T:,.. Similar approximations can be built near the other internal edges.

2.4 Global Scalings

The asymptotic analysis is conducted for the small parameter € specified below but which is of
the order of the [;/L; assumed to remain in the same order of magnitude. All the geometrical
notations, normal vectors, variables, functions, etc of the physical problem are written with the
superscript e, for example one writes Q°, anq;ac, n, z¢, and ¢° instead of Q, T'% n, z, and ¢.

Then, all the geometrical data are scaled by the largest length L of the array, e.g. 25 = 2°/L
yielding the scaling of Q° into Q¢ and Q2 into Q€ with respective sizes L; = L; /L and L =1 i/ L
for i = 1,2,3. All the other geometrical notations are then decorated by a hat = to represent

scaled domains and boundaries, e.g. Qe vac, 30 are scaled regions from Qv T2 Moreover,
the derivation variables are added as subscrlpts to operators such as Laplace A, divergence div.
For instance, A, div_: are the Laplace and divergence operators with respect to the variable z°.

Now, we define the small asymptotic parameter as ¢ = max{l:/lz- =1/n;}overi € {1,2,3}. We
say that it tends to 0 with the meaning that the numbers n; and ns of cells tend to infinity. Another

12



constraint on n; and ns is that the positions and sizes of €2f and 25 in the z; and T directions

remain fixed when € — 0. Finally, to simplify the formulatlons we assume that l = L3 = ¢ for all
i =1,2,3 so the volume of a scaled cell is || = Hl = &3 and that L; = Ly = 1 so the volume

of the scaled array is [Q°] =[] L; = e. This aV01ds unnecessary complications in the calculation

writing without affecting the I;rineiple of the final models.

We now deal with the scaling for the electrostatic potential and the mechanical displacement.
In the electrostatic model part, the space scale L is reused, we set Ve =Ve /L and ¢° = ¢°/L.
Plugging these new scaled fields into the equation (1), we obtain the following equations for the

scaled potential gga ,

—~ —_—
A= = 0 i Qeew
e i7e Ce,vac

o) = Ve on I‘Z/ri (3)
V_ ¢ n® = 0 onl9”

Remark 2.1 For simplicity of notation, we hereafter remove the hat =  from all the notations,
for instance, Q°™, ¢° replaces QE™ee, resp. ¢°, and we employ the notation I' referring to the
boundary of a domain with name the domain name, for example, I'"* is the boundary of 5V,

2.5 Two-Scale Transform Operators for the Periodic Model

We recall the two-scale transform operator or unfolding operator in a domain as introduced in
Lenczner (1997), Cioranescu et al. (2018), Cioranescu et al. (2002), Cioranescu et al. (2008),
Arbogast et al. (1990), Casado-Diaz (2000). This operator is used to build the periodic solution
model. The definitions and properties of this section are adapted from Lenczner and Smith (2007).

Let us begin by introducing Q* C R? such that Q° = Q* x 0, e[ with a partition {Q#} where
Qf = [(c1 — e, ere] x[(ea —1)e, cog], ¢ = (c1, ¢2) € Ty, and x%¢ is the center of the cell QF defined
as 17¢ = (c1e — €/2, coe — £/2). Tt follows that Q5 = QF x |0, ¢[ and that x5¢ = (2%¢,&/2) where x5¢
is the center of the cell 2.

We now represent the reference cell also called the unit periodicity cell Q! residing at the
position |—1/2,1/ 2[ see Figure 9. Its boundaries of the vacuum and mechanical parts are denoted
by 9Qbvee = r;;;ac U TLrae U Tyo® and 0Qb™ee = Tg™ U T ™ UTLme. Obviously, if 2° € Q,
¢ € Ly then (2 —a® C)/e € Q1 and 0F = Uee((e1—1/2,c9—1/2,1/2) +Q'). Similarly, we also use
I'! representing any surface in ﬁ and the associated periodic surface I'* = Ueez,, ,e((c1 —1/2,¢co —
1/2,1/2) +T) in Qe.

In the following definitions and properties the pair (X¢, X') stands both for (Q¢, Q') and for
(¢, ). The same notation for operators defined on functions with variables in domains or their
boundary because they are defined by the same formulae.

Definition 2.2 The two-scale transform operator T¢ operating on functions with variable in X*

18 defined by
T () (at,2") = Z Xq? () (25 + ext),

for a.e. 2¥ € QOF and x' € X', where x 4 is the characteristic function over a set A.

Proposition 2.3 The two-scale transform operator has the following properties.

1. T¢ is a linear and continuous operator from L*(X¢) to L*(QF x X1).
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1,vac
l-‘per

1
xz\l/ 1 1,vac
X1 l-‘per

Figure 9: The reference cell Q' =] — 1/2,1/2[*> made with the mechanical part Q"™ surrounded
by vacuum in Qe

2. For p,¢ € L*(X°), T*(pyp) = T*(p)T=(1)).

3. For ¢ € L'(F)
/ pdz® = 5/ T () datda’.
e QExQ!

/ gpdwez/ T (p) datds(at).
e Qi xT1

5. For g € L*(¥), |l¢llee) = VElT® (©)ll 120 xar)-

6. For o € L'(I%), [lollrawe) = [IT°() [l 2(ixr).-

4. For p € L}(T®)

Remark 2.4 We introduce the norm ||| - |||= 72| - || to include the factor '/? of the height of
a thin domain.

Let us introduce the operator

* " —ae e € €
T ( =5 Z/ ( 4 ) dafxq: (2°) for any z° € Q (4)

operating on functions v with variables in ¢ x X' and returning a function with variables in X®.

14



Property 2.5 The operator T=* is the adjoint of T¢ in the sense

1
et = [ roudid
e QExO!

3

for all v € L*(F x QY and ¢ € L*(QF), and in the sense

/ ST () ds(a) = /Q T ddds(a),

for all v € L*(QF x T1) and ¢ € L*(T%).
We observe that T%*(¢)) is not regular, thus we introduce a smooth approximation B°.

Definition 2.6 The operator B¢ is defined on functions 1 with variables in Q x X! as

B = (P, 2 - 3,

where P(xf) = (x5, 25) and returns a function with variables in X°.

For derivable functions 1, the derivation property of By reads as
0By L0y 10y
= B° — 4+ —— 5

for all i € T = {1,2,3}, Z* = {1, 2}.
In the following, a function x' — (z') is said to be Q!-periodic in the directions z} and 3 if

it is defined in R*x] — 1 1[ and such that o (z} + ki, 23 + ks, 23) = ¥(21, 23, x) for all ky, ks € Z.

Proposition 2.7 For all ¢ in C*(QF x X)) and Q'-periodic in the directions x1 and i,

T () (z°) = B*(¢)(2°) + O(e) for all z° € X7,
where O(e) is the Landau notation for a sequence bounded by € up to a multiplicative constant.
Remark 2.8 In the following, C represent a constant that may be different from place to place.
Proposition 2.9 Let ¢ be a sequence in L?(QF) that satisfies

" ez < € and e ||| Vae ™ [[|2(09)< C,

then, there exists a function ©° in L*(QF; HY (Q)), Q- periodic in the directions x}, x5 such that,
up to the extraction of a subsequence, when € — 0

i. T¢(¢°) — ©° weakly in L2(F x QY),

ii. €T%(Vpeof) — V¥ weakly in L*(QF x Q).

Remark 2.10 One can show that T=* is a left inverse of T° namely that T°*T° = Id. Using this
remark and the fact that B¢ is an approximation of T<*, the principle of building a two-scale model
is done by the following steps. We start from a physical field ¢° solution of a problem P¢(¢°), and
look for the problem P°(¢°) verified by the limit ¢° of T°¢° when ¢ — 0. Then, the approzimation
to ¢° is B5¢". The same principle applies to all the subsequent models and will not be repeated.
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2.6 The Reference Algorithm for Model Proofs

Here we recall the symbolic computation algorithm that served as a reference proof for the con-
struction of the models reported in Belkhir et al. (2017) and based on the extension-combination
method. It is this same algorithm that drives the construction of the five models of this paper.
The operations described therein are high level, the implementation details not being explained
because they strongly depend on the special case considered as well as how the way partial differ-
ential equations are represented in a symbolic computing environment, see the two approaches in
Yang et al. (2014) and in the PhD Thesis Trinh (2021).

The starting point of the algorithm is a boundary value problem either in strong form or in
weak form. It uses the definition of a two-scale transformation T and its associated operators T=*
and B¢. These operators and their properties depend on each model.

i) Define
- a two-scale transform (or unfolding) operator 7°,
- its adjoint T°*,
- and a smooth approximation B® of T°*.
ii) Derive the very weak form of the boundary value problem with
- solution W¢,
- and test function w.
iii) Replace v by &*Bf(w) for some k € Z\{0}, and apply the rule of the derivative
of Bf(w).
iv) Replace B® by an approximation in terms of 7°*.
v) Apply the adjoint rule to replace the instances of 7°" by instances of 7° on
expressions of W°.
vi) Assuming that 7°(¥°) is bounded for an appropriate L*-norm when ¢ vanishes,
an extracted subsequence weakly converges to a limit WP.
vii) Convert the very weak form satisfied by UY into a strong form.
viii) Finally, the approximation of W® is B°W°.

The rest of the paper is devoted to the construction of the main model whose solution is periodic
in each subdomain where the applied voltage is constant and of its boundary layer correctors on
the outer boundary, on the interfaces and on their edges. For each of these cases, the construction
follows the above algorithm.

3 Periodic Model

We start with an assumption on the voltage source which expressed in terms of the weak limit of
its two-scale transform.

Assumption 3.1 T°(V¢) converges weakly to VO in L*(QF x T'°) which is continuous in QF
except at the interfaces between some subdomains that are specified in the section of boundary
layer models.

Then, we make an assumption on ¢° the solution of (3) that could be easily proved using a
priori estimates techniques. However, we skip this step since we do not take it into account in the
algorithm. The same principle is adopted for each of the following models.

16



Assumption 3.2 [|[¢°|||r2(qevacy and e|||V e ¢®||| 120z wac) are bounded uniformly with respect to €.

Proposition 3.3 If ¢° satisfies Assumptions 3.2 and 3.1, there exists ¢° € L*(QF, H'(Q1vee))
QLvec_periodic in the directions x}, x3 such that T°¢° — ¢° weakly in L*(QF x Q). Moreover
for a.e 2t € QF, ¢° is solution to

(A" =0 in Q1vae

e LI

V¢’ -n' =0 on F;O;“C

V¢’ - n! is T2 -antiperiodic
\9250 s F;e";“c—pem'odic.

Proof. Thanks to Proposition 2.9 and Assumption 3.2, we obtain the existence and the
periodicity of ¢°. The proof is completed by showing that ¢° satisfies the above equations.
Let us take w sufficiently regular in Qf x Q1% such that w = 0 on T'}"* and Vw-n' = 0 on

Tt u L2 Obviously, B*w = 0 on I';,* then we can replace v* in (2) by eB°w

6/ ¢° Ay BSwdax® = 6/ VeV, Bfw - n° ds (2°) + 8/ ¢°VB*w -n°ds(z°). (6)

From the property (5) of the derivative of B¢,

8836111_38 (Z)ia_w+ (i)giaw+l88w
oxs 0zt Xzt dat Ot Xzt € 9at 0x} €% 0xf O}

for all i € T = {1,2,3}, Z* = {1, 2}.
By a calculation, the left-hand side (I.h.s) of (6) becomes

2
e ow 2 0 0 1 .
l.h.s = S/E’mc B ( E _ﬂ_ﬁ g E @8_@1 + 6—2Agglw) dz

- / B (Apw)dat + O(e), (7)

3

where
2

9 Ow .0 dw
0 :g/ -qbaBa (Z 83: &Uﬁ) de +2/ = (Z_ﬁﬁ)

Similarly, the right-hand side (r.h.s) of (6) becomes

2
r.h.s = 8/ ZBE (8—11;> n; + %BE (Vaw) - n€] ds (z°)

ox;
znt

K3
/E vac

ext

2

ZBE <8w> n; + gBE (Vaw) - n5] ds (z).

Lhac g Phvae that B (Vaw) - n® = 0 on [0 = T2 U TS,

top per ext top lat

It is clear from V,w -n! =0 on I
then

r.h.s = /8 . VEB® (Vaw-n') ds (2°) + O(e), (8)

int
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where

Combining with (7) and (8), we can assert that

1 / ¢° B (Apw)da® = / VEB® (Vaw-n') ds(z°) + O(e).
Qs,’uac

£ re:vac

Approximating B¢ by T%* from Proposition 2.7 it follows that

1/ T (Apw)da® = / VT (Vaw-n') ds (2°) + Ofe).
Qe,vac

g revec

int

The definition of T%* yields

/Q o Te(¢°)Apw datda’ = / T=(VE)Vaw - n'dzfds (z') + O(e).
X ,vac

Ot XFl,vac

int

Passing ¢ to 0 with Proposition 2.9 we get

/ A pwdefdat = / VOV, 1w - n' dafds (xl) :
Qf xQl,vac

anl—\l,uac

int

Applying Green’s formula twice, therefore assuming sufficiently regularity of ¢°, combining with

i : : lvac _ plvac 1,vac 1vac :
conditions satisfied by w and decomposing 02 =Ty UIReuly,,™, we obtain

/ Ag1¢p"w datdat — / V16" - n'wdabds(z?)
Qf xQlvac

QFx Dy UL ;3")

+ / PV w - nt datds(z!) = / VOV 1w - n' da*ds (z).
Qf xrLtae Qf Tl

int int

Choosing w such that w = 0 on I'}2* U Fic’,;ac and V1w -n! =0 on I';%* yields

Ag ¢ =0 in Qbvee,

Next, choosing w such that w = 0 on I'};}* U Ftlézac yields

1
¢" =V on ;3"

wnt

And then, we choose w = 0 on T'}2* to find

1
V10" -nt =0on Iy

top

Finally, with the remaining term we conclude that

0 1. 1,vac : : :
Vg™ -mis )70 - antiperiodic.
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4 Lateral Boundary Layer Model

Due to the periodicity condition in the periodic model of Proposition 3.3, ¢° does not satisfy the
nominal boundary conditions on the outer lateral boundary. This leads to introduce the corrector
o5 = ¢° — B%(¢") and the corresponding voltage source v§;, = V¢ — B*(V?). We investigate the
convergence of ¢;; at the first lateral boundary. The convergence on the other boundaries can be
derived in the same way.

4.1 Geometry Notations

Let Qiloi be a subdomain of Q¢ defined as Qiloi = Ucez,,, % where Ty = {c = (c1,¢2) 11 € I,my
and ¢y € 1, }, with a € N* such that ae < L}, and where L is a positive number, see Figure
10. All other notations of subdomains, boundaries and subboundaries, let say X, gl’cf’];, are inherited
from those defined for the periodic model through the rule X,flﬁ:]z = Xj’k N Qlfﬁ. For instance,

we shall use Q7" = Qov N Q)T Ty e = TN QY. The same principle is used for the

physical domain of each model without explanation. However for each kind of domain and each
model there are special cases which are detailed.

Here, there is an additional boundary I';;7" U Ty 77 at the end of the boundary layer, see
. g, vac __ E,vac g,a,vac g,a,vac
Figure 10, so that Fbl,l,eavt = Fbl,l,a U Fbl,l,tap U Fbl,l,lat'

g,avac LN
> blLtop / b
S » P

1 eavac
bl1,lat

rewvac g
blL1,lat 0

Figure 10: The physical domain (257, for the first lateral boundary model with two subdomains

the mechanical body ;7" and the vacuum part ;" with o = 1. The zoom represents the

internal subboundaries of the vacuum and the mechanical part between cells of the external zone.

We next denote the macroscopic domain by le 1 = [0, Ly[, with a partition {le,lcl}

C

i _
? le,lcl -
1
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[(c1 — 1)e,cie], 1 = 1,...,ny and denote 2% = ¢je — £/2 as the center of qucl.

The finite microscopic domain € , is built by Q) ; = UgZj (' + (0,1/2 4 &,1/2)), see Figure
11. We underline that €, ; depends on o even if this is not explicitely written in its notation. The
same remark holds true for each model and will not be repeated.

All other notations of subdomains, boundaries and subboundaries, let say X bll’,’;é, are inherited

from those defined for the periodic model through the rule X bll”kl:’é =X j g Ql%l,l with some special

. . . 1,vac 1,mech
cases. As shown in Figure 11 the subboundaries I'y" - and I/ 00 correspond to the parts of

1,vac

F;g;ac and F};e’j}“h which normal vector is collinear to z3. Moreover, the subboundary I';;°" is to

the end of the boundary layer. It results that the boundary 9% of Q%" is Ty, U, U

bl,1,per
1,vac 1,vac 1,vac .
Lyittop U hi1.0 YUl o as Figure 11 shows.

1 Fl,vac
xz bl,l,a .
Fl,mec l =
blLl,a \ ) Fl,vac
p bl,1,per
Fl,vac e
bl,1,top I,1,mec
l bl,1,per
;‘ S >
%l

)_1/2
Figure 11: The microscopic domain Q},, with two subdomains ;7 and Q,;"" with o =1 .

The infinite microscopic domain 57, is defined as Q) = limg 00 ;. Its subdomains, bound-
ary and subboundaries are deduced from those of le,l by passing to the limit on «.

Remark 4.1 We use the subscript i« = 1,2,3,4 for all geometrical notations and operators, the
superscript © for all functions to indicate which lateral boundary models they belong to, according
to the index in Figure 2. For instance, (% and €% are the first and the second physical domains,

Ty, and Ty 5 are the first and the second boundary layer two-scale transform operators, ¢y and

qﬁgl are the solutions of the first and the second lateral boundary models.
When we say "for each o”, this means "for all « € N* such that ae < L}”.

Next, we introduce the two-scale transform and its properties for the first lateral model.
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4.2 Boundary Layer Two-Scale Transform Operator

As in Section 2.5, I'! is any surface in Q! while here Thy = UeZg (T +(0,1/2+€,1/2)) C le L
and T = Ueer,, €((c1 — 1/2,¢0 = 1/2,1/2) +T) C Qiloi Then in this section the pair (X, X1)
stands both for (€29, ;) and for (T, T, ;) in the statements. For Section 5.2, we also define
T30, = limg o0 T 1.

Definition 4.2 The boundary layer two-scale transform operator Ty, operating on functions ¢
with variable in X¢ is defined as

5a(0)@h 0 = D x| (@)l + el ead ead),
C1

for a.e. xf Glel, ot e X1

We introduce the operator Ty, defined as

x5 1, 2§ x5 .
Ty (¥ Z/ﬂu ( = - (c1 — 5),—27—3) dxﬁXQﬁ (21)

bl,1cy
for all function v on le . X X! and for z° € X*.

Property 4.3 The operator Ty is the adjoint of Ty, | in the sense
1

e2

T ()da = / < (@)odatde,

4 1,00
bl 1 Q1 X001

for all ¢ € LQ(Q?)L1 x Q) and @ € L*(Qy7), and also in the sense

S emnwase) = [ Taleudsdst),

€ bi 1 il,lxrbi,al
for all v € LX(Q, x Thy1), ¢ € LA(T5%).

Definition 4.4 The operator By, is defined as:
1> x&
B () = o (P, 5 - 5,2, %)
for any function ¢ with variables in le,l x X1 where P(z°) = a5.
Proposition 4.5 For all i in 01(92171 x X1), Ql%l,l - periodic in the direction x}, then

Ty (¥) (2°) = By, (¥)(2°) + O(e).

Proposition 4.6 For each «, if a function i with variables in Qg x QF respectively in Qﬁ x 't is
continuous w.r.t. its first variable and is Q' - periodic in the direction x1, then

T§,1(BE<¢))(JJﬁ,I1) — ?71(56117371) for (xﬁ7x1) i le,l X Qzu respect. ng X Fl%l,l when e — 0,
where J(mﬁ,xl) = ((ﬁﬁ» 0), (x4, 25 — %J:ls - %>)
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Proof. By the definition of 7Tj; ; and B¢, it follows that

T (B (@, a') =Y X (aF)BE(0) (2 + eay, ey, exy)

bl,1cy
Cc1
f f,c1 1 1 1 .1 1 1 1
:ZXQQZJQ(;C )dj (I +€I1,€ZL’2),<SL’1,$2—§,$3— 5) :
C1

Applying the continuity property,

1, 1 1

- 3) v (@0 ha - St = ) + o)

o (o + eot, ead) ok, !

2_§a

where o(¢) — 0 when ¢ — 0. Next, passing € to 0, we have

(5 = (20, (ehod = 5ad - )

as expected. m

4.3 Derivation of a Lateral Boundary Model

In this section we assume without repeating it that the following assumptions are fulfilled. It
involves the remaining voltage source V5 = V¢ — BV and on the corrector ¢j, = ¢° — B#¢° and
we recall that by construction €,;% depends on a.

Assumption 4.7 1. For each a, there exist ¢,;" in L* (Qzﬁ;z,p Hl(QiZ’f’fc)) , Q;l’j’lac—periodz'c in the
direction 21, and V)™ in L? (le’l X F;l’f’ficm> such that Tg, | (85,) — ¢ weakly in L? (%,1 X Qll,l”vlac>
and Ty (Vi) — V,r® weakly in L? <le71 X Fil’jffm> when € — 0.
2. There exist ¢y, in L (le’l,Hl(QEZ’lwc)>, Qpy*“-periodic in the direction x1, and Vi in
L? (le’l X FZ?;’?;) such that Cb;iaXQ;ijffc — ¢}, weakly in L? (Qﬁbm X Qg;j’lwc> and V}J}’axﬂéiﬂac —

Vih weakly in L? (qu X FZ?fZit) when o — +00. Moreover ¢y, and its gradient exponentially

decreasing to 0 when xy — +o0.
Assumption 4.8 The limits ¢° and V° satisfy the conditions of Proposition 4.6.
Proposition 4.9 For each o, when € — 0,
Ty 0" — qbél’o‘ + ngﬁvo weakly in L* (le’l X Q;l’f}l“)

and
TiaVii = V™ 4+ VO weakly in L* (9, x T45,)

Proof. The proof is by passing ¢ to 0 in T, 10" = Ty (B*¢°)+ Ty 1 (65), Ty, Ve = Ty 1 (BVO) +
Ty 1 (Vi) and combining with Proposition 4.6 and Assumptions 4.7 and 4.8. =
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Proposition 4.10 The limit ¢y, is solution to

”

A0 =0 i 05
Sy = Vii on Uy i
Viidy -n! =0 on Tyoee
Vardy - n' N is Ty per - antiperiodic
Vogy n!l=-Ve’ n'  onTpyyee

kﬁb;z is Ty per - Deriodic.

Proof. The proof starts by finding the very weak form satisfied by the limit qbil’a and then to
pass to the limit on o — oo to find the very weak form satisfied by ¢;;. The derivation of the
corresponding strong form follows. Let us begin with « fixed and replace v° in (2) by a smooth

£,a,vac €,a,vac

. c - C1 . e €,a,vac . .
function vy, in ;7™ vanishing out of 2,7 and s.t. vy = 0 on I'; 770 This yields

/ O Agevp, da® = / VEV v, - n° ds (2F) + / ¢°V vy -0 ds (2°).
QS vac s e-vac

[e;ovac
bl,1 bl,1,int bl,1l,ext

Taking a function w in C(Q2, | x Q%) Qél’j’lac - periodic in the direction ] satisfying w = 0

1,vac 1,vac 1 1,vac 1,vac 1,vac 1,vac

on Iy, UTyT, and Vaw -nt = 0 on Ty U Dy U DS U We observe that
€ _ £,a,vac . c .

By, (w) = 0 on T95, then replacing vj; by By, (w), we get

/ ¢°Aye By 4 (w) da® = / VeV e By 1 (w) - n° ds (2°) + ¢°Ve By 1 (w) - n® ds () .
Q7

£,a,vac £,a,vac
Fbl,l,int Fbl,l,eact

A direct computation shows that

O0Bp w - ow 10w
e By <qu(@)@ + ga—%l) ,
0 OBjw _p (0w 20 0w 10w
ox: Oxs U X\ ot gzt T TN dzl €20z} oxl )’

for i € T ={1,2,3} and with Z¥ = {1}. Then, the l.h.s of (9) becomes
9 ow 20 ow 1
l.h. == EBE e <4 0 ow _A d _
) /Qifi’““ ’ <8xﬂ o7t Tz o Ot = wlw) !
1
- 2 ¢° B (Apw) dz® 4 O(e), 10)

2
£ £,a,vac
le,l

where

0 Ow 2 0 Ow
_ ER(— 2V daf + 2 *B° [ — — | dz°.
O(e) /Qil,al,w ¢ (ﬁxﬂ axﬂ) v 3 /inal’wc ¢ (6517ti 8:1:}) )

The r.h.s of (9) becomes

1
r.h.s = /Fw’m Ve {Bs (%) ni + EBE (Vaw) - ns} ds (z)

bl,1,int
0 1
—l—/ ¢° {BE (a—u;) ni + —B° (Vw) -ng} ds (z°).
Do et t €

23



. €,a,vac g,q,vac __ E,q,vac £,a,vac £,a,vac .. . ol
Decomposing Iy 0y into Iy oy = Ty U Ly, UL e and combining with Veiw -n® =0

1,vac 1,vac 1,vac lvac _ - & s €,a,vac
on Fbl,l,per U Pbl,lﬂfOp U Fbl,l,O U Fbl,l,a y1€ldS B (lew) n- = 0 on Fbl,l,ext’ thel’l

1
rh.s = g/ VEB® (Vaw-n') ds(2f) + O(e), (11)
Ts,e-vac

bl,1,int

where

From (10) and (11),
1

1
= "By p (Apw) da® = E/ VB, (Vxlw . nl) ds (%) + O(e), (12)
Qiifxl,'uac Fe,a,vac

bl,1,int
replacing By, ; by Ty using Proposition 4.5, Equality (12) becomes
1

2
£ £,a,vac
le,l

1
o Ty (Apw)da® = g/ VT (Vxlw . nl) ds () + O(e),
L it

By the definition of 7j", we have

/ T (¢°) Apwdatda’ = / T (VE)Vaw - n' datds (2) + O(e).
le’lxgl,a,vac Qbhlxrl,a,vac

bl,1 bl,1,int

Passing ¢ to 0, combined with Proposition 4.9,

/ﬁ ) (P + (@)Axlwdxﬁda:l = / (V™ + ‘%)Vx1w -n'dzfds(2!),  (13)
Qf, | Xl

le L XFl,vac
>

bl,1 bl,1,int

for each a.
Now we pass to the limit in . Equation (13) still holds if w is taken on the form of 7,v, where
(Ta)acao, 400 18 @ family of smooth truncation functions with compact support in le L X Qe

2/0f 0,vac e} 50,0acC 270t o0,vac
such that 7,v — v for all v € H <le1’1 x Qi ), andv el (lel,l X Q) MV HZ (g < Q™)
. o0,vac . o . . . o0,vac T o0,vac oco,vac 30,vac
is (7~ periodic in the direction xy, v =0on I'yy 5, Vav-nt =0on Iy UL UL
as well as |v], [V1v], and |A,1v| exponentially decrease to 0 when z3 — +o00. Thus,

( ;l’a—i—gbo)xﬂél’j}lacAfCl (TOC/U )dl‘ﬁdml = / <%}’a+‘7—6)xﬂél‘vfcv$l (Ta/U)nl dIﬁdS(ZL‘l)

Qﬁ oosvac

oco,vac
Q b1,1 % b1, int

bl,1 % 11

Then, passing a to 400, by Assumption 4.7, we get

/n (¢ + Q;))Amw dzfda! = / (Vi + ‘%)wa -n'dzfds(z1).
Qo Xy

¢ vac
bl,1 le,1XFZZ1U,?;t
To carry out the interpretation of this very weak formulation, we consider that v is vanishing out
. . . 1 . .
of a bounded domain which is taken as le L X le’vlac to avoid new notations. Then

/Qﬁ Ql,vac

1,1 X80 1

(¢ + QZD)AIW dzfda! = / (Vii + ‘%)wa -n!drfds(xt),

t 1,vac
Q1,1 %50 1, ime

24



1,vac 1,vac 1,vac 1,vac
for each a. Applying Green’s formula twice, decomposing 92,7 as I'y;5 5 U Ty U0 U

1L,vac 1,vac : sps . _ : 1,vac 0 _ 170 1,vac
Lyi1o U Fbl 1o Using the conditions satisfied by v and Axub =0in Q- ¢ =VPon Iy,

V0 =0 on Fbl’vlafop, V¢ - n'is TH% _antiperiodic resulting from Proposition 3.3,
Agi gy datdat + / ¢y Vv -0t dzfds(zh)

bl,1,per
\/g;jj Ql vac Fl vac

4
bl,1 % 11 Q1 X4 1 e

- / Voi¢y, - ntodafds(at) + /
Qﬁle > (Fl ,vac Fl vac ) Qﬁ Fl vac

bl,1,t0p YL bi,1,per 1,1 %1 b1,1,0

= /’j . Vi Vv - n' datfds (z') .
le 1><1—\ vac

bl,1,int

Vi (qb;l + Qf;0> -n'vda’ds(z')

. _ 1,vac 1,vac 1,vac 1 _ 1,vac .
Posing v =0on 'y g ULy, ULy e and Vv -nt =0on Iy, vields

# 1,vac
b1,1 X201

/ Ay (¢ vdafdat =0
Q

and then
Apigy =0 in Q4"

o 1,vac 1,vac 1,vac
Next, for v =0 on I'y; g ULy ULy

1,vac
bl,1,int

/ (¢bl %z) 21U n' dxﬁd3($1> =0,
in Xy

then
1 _ y,1 1,vac
Py = Vi on Fbl,l,int‘

o 1,vac 1,vac
Forvo=0on Ty, UL, ..

/ V¢, - ntodatds(at) =0,
Q

1,vac
b1,1 % 811, top

then
Vaidy -n' =0on Iy4%
=1 Ppi =Vo bl,1,top*

1
For v = 0 on I[';;%%

bl,1,per
. -
/ ml (bel + ¢0> . nl'U dxﬁds(xl) = O7
1,
le,l Xrblvlag
then B
1 1 _ 0 1 1,vac
Ve, -n =—-V,¢ -non sz,l,o-
Last, we get
1 e
Vaigy -n'is i er - antiperiodic.

Since these equations hold true for any « then they hold in the infinite domain and the proof is
complete. m
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5 Exterior Edge Model

We assume that all lateral boundary models are already derived and identified by the index ¢ =
1,2,3,4 of the lateral boundaries, see Figure 2. We consider the contributions of two lateral
boundary models corresponding to the indices i = 1 and ¢ = 2 at the first exterior edge. Obviously,
the sum of contributions is not continuous at this edge, and then it leads to propose an edge
corrector to overcome this problem. We introduce terms ¢;,, = ¢° — (Baqﬁo + BIfU(b;l + B§l72¢zl)

exe
and ve,, = Ve — (BV' + B vy, + Bj,V;3), where we recall that ¢” is the solution to the periodic
model while ¢;; and ¢;, are the solutions of the first and second lateral boundary problems near
the first exterior edge, By, and Bj, are the smooth approximation operators of the first and

second adjoint boundary layer two-scale transform operator Ty and Ty , and vy, and Vj7 are
the weak limits of v,;* and v;;* when a — oo which themselves are the weak limits of T} ; (v§;) in

2 # 1,vac £ €\ : 2 # 1,a,vac
L (le,l X Fbl,l,int)’ resp. of Tbl,Q(Ubl) in L (sz,z X Fbl,Z,int .

5.1 Geometry Notations

Let Q2% 1 = Ucer,,., Q22 be a subdomain of Q° where Zegey := {¢ = (c1,¢2) : c1,¢2 € 1, } with ae <

min{ L}, L1}, see Figure 12. The manner to construct its subdomains, boundary and subboundaries

. . . . . g,,vac  __ E,a,vac £,a,vac £,a,vac
follows this of the periodic model. Here the special case is I'c; 1 crr = Ueve1a U lere 1.top YU Do 1 gat
where T2

_ €,
ere 1o are to the ends xy or xy = ae of the boundary layer (2. ;.

rasvac
exe,1,a

paemec e
exela

pasmec .
exe,1,a

raevac
exe,1,top

N rws,mu\&‘J 1= <l /
»exe,l,lat \ —

>

N\ e paevac
= —— g exe,l,lat

Figure 12: The first exterior edge physical domain Qg | including two subdomains Qg and
Qoo™ with o = 1. The zoom illustrates their boundaries.
We introduce the finite microscopic domain Q,,, defined by Q.. = U?’;io(Ql +(E+1/2,n+

1,vac Fl,vac

1/2,1/2)), see Figure 13. Here the periodic boundaries are replaced by I';;" 1, T'oyo o located

1 1
vt tothe ends z} or 23 = a. Thus 9O =

to the first and second lateral boundaries and by I'.}.. 7 ,, evel =

Fl,vac U Fl,vac U Pl,fuac U Fl,vac U Fl,vac

exe,l,int exe,l,top exe,1,bl1 exe,1,bl2 exe,l,a"
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Fl,vac
exe,1,a

Fl,mec
exe,1,bl2

l—.l,vac 1,vac
exe,1,bl2 1-‘exe,l,bll
0
. . . . . ae . : ag,vac ag,mec
Figure 13: The first exterior edge physical domain g7, ; with two subdomains 2,2 and €., ;"

1
exe,l

o0

cve1 and its related sets are defined as the limits of €

The infinite microscopic domain 2
and related when « tends to infinity.

5.2 Exterior Edge Boundary Layer Two-Scale Operator

We still consider any surface I in QF, T}, | = U Lo(Q + (€4 1/2,n +1/2,1/2)) C QL. and
Ioreq = Ueetpene((cr — 1/2,¢0 — 1/2,1/2) + T1) € Qg ;. Then in this section the pair (X<, X1)
stands both for ( z’;;l,Qimeyl) and for ( if;l,l"iml).

We introduce the dilation operator T, ; for the first exterior edge model.

Definition 5.1 For any «, the operator T, | operating on any function @ with variable in Q0 |
1s defined by

Teer(p)(z') = p(ext) forzt € QL ;.

Here the operator T*, , = (T, ;) ! ie.

exre,1 — exe,l

Teea () (2%) = (—).

3

Property 5.2 The operator T;;, | is the adjoint of T, in the sense

ere,

1 £ € €
3 @Texe,l(d}) dz® = / Teze,l((p)dj d.’L‘l,
g Q5@ Ol

exe,l exe,l
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forall o € L*(Q0 1), € L*(Q,.1), and in the sense

exe,l

1

52 reo

exe,l

T, (1) ds(a®) = / T= () ds(a),

T

exe,l

forall o € LA 1), v € L*(Th,.1)-

exe,l

In this edge case, the operator T¢;, | and its approximation B¢, are identical. However both

will be used in the model proof to follow the algorithm of Section 2.6.

Proposition 5.3 Let B, By, By, be the smooth approzimation operators of the adjoints of T¢,
Ty1s Ty o respectively.

1. For each «, if a function ¢ with variables in Qq x QY respectively in Q% x Tt is continuous
w.r.t. its first variable and is Q' - periodic in the directions x1,x then

Ttper (BoY) (') — () for z' in Qleq respect. in Tl when e — 0,
where P(z') = (0, 2" — 1/2).
2. If a function v with variables in qu X U7y, respectively in qu X I'pry, 18 continuous w.r.t.

its first variable in qu and is Q7 - periodic in the direction x} then

Tper(Byath)(a') — () for z* in Q] respect. in '} when ¢ — 0,

exe,l’ ere,1’

where P(z') = (0, (x} — 1/2, 2}, x1)).
3. If a function ¢ with variables in ng X (2p7o, respectively in ng X I'pro, 18 continuous w.r.t.

its first variable in ng and is 7y - periodic in the direction xj then

Ttper(Byot)(z') — (') for z' € O} respect. in '} when ¢ — 0,

exe,l’ ere,1’

where &(ml) = (0, (z], 3 — 1/2,2})).

5.3 Derivation of an Exterior Edge Model

Let us recall that ¢7,, = ¢°— (B¢ + B; b+ Bgl,nggl) and V5, = Ve—(BV° 4+ By Vi + B5 ,Vii).

In this section we assume that the following assumptions are satisfied.

Assumption 5.4 1. For each «, there exist - in L*(QL°%) and VLo in LA(D0YC ) such

exe exe,l ere exe,l,int
5 e 1, . 2 1,vac c e 1,a . 2 1,vac
that Teze,l( eze) - ¢eze wea’kly in L (Qexe,l) and Texe,l(‘/exe) - Vvexe wea’kly in L (Feme,l,int>
when € — 0.

2. Assume that there exist ¢, ., in H'(QS0C) with ¢! . and its gradient converging exponen-

exe exe,l exe
tially fast to zero when x} 4+ x5 — oo, and V. in L*(T)1,,) such that the extensions by

exre

2610 Prt X poac — boye weakly in L2(Q001) and Vi xgreae — VL, weakly in L*(T20r1%0)
exe,l

ere,l T exe exe,l,int
exe,l
when o — +00.

The following proposition results from using Proposition 5.3.
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Assumption 5.5 The limits ¢°, VO satisfy the assumption of Proposition 5.3.1 and similarly, gbél,
Vb and ¢3,, Vi3 satisfy Proposition 5.5.2 and 5.5.3.

Proposition 5.6 When ¢ — 0,
Teexe,l(qss) - ¢i7x0:3 + gbo + Qs;l + ¢§l

weakly in L*(QL°%) and

exe,l
(V) = VI + VO Vil + V2

exe

TE

exe,l

weakly in LQ(FL”“C ), where gﬁNO(ml) = ¢°(0,2' —1/2), g;(xl) = éy(0, (2} — 1/2, 2}, 1)) and

exe,l,int

op(x') = ¢3(0, (2}, 23 — 1/2,21)) and with similar expressions for the voltage sources.

Proposition 5.7 The limit ¢' _ satisfies

ExTE

’ 1 o . oo, vac
Aflgbexe - 0 m Qere,l
gbexf = ‘/e%z:e on Fz;::(ll,cint

1 oo,vac
< vwléeme ‘nt = Qv on Fexe,l,top
Vitdege -0t = —Vugy -n'  on | D

1 1 _ 1 1 o0,vac
\ v$1¢6xe ‘ns = _v$1¢bl ‘n on 1ﬂe:z:e,l,bl2‘

Proof. The outline of the proof runs as the previous ones. Firstly, we take a fixed a and
replace v° by a smooth function v,, in (2) s.t. v<,, is defined in Q201 vE,, =0 on [T 1% . and

exe exe exe,l1 7 Yexe exe,l,int an
. N
vanishes out of Q" |, then

/s P A, dat = /5 VeV el - n°ds (z°) + / ¢°Vevs,, - n°ds (z°).
QS xvac e ovac

e esvac

exe,l exe,l,int exe,l,ext

After that, we substitute v2,, by e ' BZ,, , (w) where w is in C*°(Q5"), w = 0 on T2 UTL

exe exe,l exe,l exe,l,int exe,l,a
1 1,vac 1,vac 1,vac 1,vac
and Vzlw ‘n- =0 on Fewe,l,top U Feace,l,a U Feme,l,bll U Fexe,l,le‘ Hence?
1 1
€ € e __ € € € €

~ ¢ AIEBexe,l(w) dzt = - vV VIEB@er(w) ‘n°ds ([L’ )

€ Jagie < I
1 V.. B¢ cd €

+- (b x° exel(w)‘n 8($ )

£ e esvac ’

exe,l,ext

We check at once that,

OBLenw 1. ow 0 0BG w1 o ow
T = - a it A -
xs g el \ Oxl oxs Ot g2 el \ 9xl ozl )’

for all i = 1,2, 3, and if follows that B, _, (V,w)-n® =0 on ['221%  then

exe,l exe,l,ext’

1 1
(3 E')E é g ‘ JE E))E
3 QS exe,l ( Ilw) dx 2 exe,l
IS Qs,aﬂiac £ Fs,a,vac

(Vaw-n') ds(z).

exe,l,int
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Approximating B¢, by 1:F ; and combining with the definition of T:*

ere,l exe, exe,l

/Ql,m Tefxe,1(¢a)Azlw da' = / Teeze,l(Va)Vx1w -n'ds (ml) .

Fl,vac

exe,l exe,l,int

Passing € to 0, by Proposition 5.6, it follows that

/Q (e + O+ oyt ) Apwdat = /F (VA 4+ VO + V4 V2)V,aw - ntds (21).
exe,l,int

. . . . . 1,vac
We now replace w by 7,0, where 7, is a smooth truncation function with compact support in €2,

and v € C®(Q )N H2(Q2) satisfying v = 0 on T2 Voiv-n' =0on [L2%, UTHY™ U

exe,l ere,1 exe,l,int> exe,l,top exe,1,bl1

1 . .
Lot wia V)5 [Varv] and [Agiv| converge exponentially fast to zero when xj + x5 — 00,740 — v in

H?(Q2"1) when o — oo. We obtain

exe,l

| Gk g A (o) e’ = [ (VAT oy Varraven ds (01).

exe,l exe,l,int

Passing a to +o00, by Assumption 5.4, we get

/Qoo,m(@xe + % + ¢;l + qbgl)Amlv dz! = /meac (VL + Vo 4 ‘A/I} + @)vmw nlds (xl) _

exe,l exe,l,int

1,vac

ere1 fOT @ given «,

Now, we choose v vanishing out of 2
/Q oo (Pege + 0"+ Gy + Fp)Aprvdat = /F (Ve A VOV V)V, m'ds (o).
exe,l exe,l,int

Applying Green’s formula twice and decomposing 9Q5"% = T T LY UFl’wibllUFifgibl2U

exe,l exe,l,int exe,l,top ere,

Fig’gia, combining with conditions satisfied by v, the results from Proposition 3.3 and Proposition
~ > — o Lo T N -~
41()é$1¢0 = Aivl/?_llil = Azl (bgl =01in Qezve(?(l:? ¢0~: V/(_)\Lgbll)l - ‘/1'7%7 ¢§l - ‘/b% on Pea;:i}zzt? V/vfﬂlgbo ‘n! =
1, 1,
Vardy -0 =Vady -n' =0on T, V(6" +¢y)-n' =0on T, Vi (6 + ¢5) ' =0

1,vac
on I' 0 g, We deduce that

[ Aaehedst = [ Vool wivdsta)
Ql,vac

Fl,vac

exe,l exe,l,top

[ Varlhetd) ntodsta) = [ Valéh,+ o) nivdste)
Fl,vac

Fl,vac
exe,1,bll exe,1,bl2

+ / oL Vv -n'ds(zh) = / V> Vv -n'ds(zh).
Fl,vac Fl,vac

exe,l,int exe,l,int

The rest of the proof runs as the previous proofs. =

6 Interface Model

As the asymptotic voltage source V° may exhibit a discontinuity at the interface between two
zones, the solution ¢° in Proposition 3.3 inherit of this lack of regularity. This section introduces
an interface corrector to deal with this problem starting from the terms ¢f, = ¢ — B*(¢°) and
vy, = Ve — B5(VY).
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6.1 Geometry Notations

Let €77 be a subdomain of Q° defined as Q") = Ueez,, ,Q%, where Zy,; = {c = (c1,¢2) :

cp =i, hand e € ip—a,ist+a, 2 < 0,57 < ni} and o € ZT, see Figure 14. The domain

) - 3 ) & 3 ) + 1
Q5% is decomposed by two subdomains Q5% and Q5% written as Q5% for short, which are

subdomains of Q5 and 5. The interface T';% . . between Q5% and Q5% is a subboundary of

I - The complementary part of the boundary of ano‘li is ano‘li = 8ana1i NI e All the
Fa,a,vac:l: -

other notations are then derived from Q5% , Q%5 T and T%, ., with the exceptions T5%"*% =

in,1y “%in,1 » *in,l i
Fa,a,vac:t U Fe,a,vacﬂ: U Fa,a,vac:l:

in,l,« in,l,top in,l,lat

I"Era > N b
lintexf ><°

ae+

Figure 14: The first interface physical domain €57 with two nonoverlapping subdomains Q577 and

Q7 each domain Q9 is assembled by two parts the vacuum part €57 ““* and the mechanical
part Qe 1", with o = 1.

Y

The macroscopic domain 2, ; = [L1, L?) is built as the partition {an,m = [c1e, (e1 + 1)5)}
i

in,lcy”

c1=t1,51—1
with 7y, 71 s.t. LI =416, L3 = jie, and b = ce + €/2 is the center of
tn1 as in Figure 15 is the union of two subdomains 911:[ 1
and Q) , st Qb7 = U, _15(Q" + (0,+(n — 1/2),1/2)), with interface I'}, | ;- The notation
system built for the physical domain is transposed to the microscopic domain.

For all regular function v defined in j, ;, we denote v* and v~ the restriction of v in Qzlrj , and
Qi

1
in, 19 ;

The bounded microscopic domain 2

and [[v]] = v* — v~ the jump of v at the interface T}, | i err-
The infinite microscopic domain €277 ; and its boundaries are defined as the limit over « of
and of its boundaries.

1
in,l

6.2 Interface Boundary Layer Two-Scale Transform Operator
We again consider any surface I' in QF, '}, | = Uyery -3 U5 (T + (0,0(n — 1/2),1/2)) C Qs

and I';Y = Ucer,,  €((c1 —1/2,¢,—1/2,1/2)4+T") € Q7. In this section the pair (X¢, X') stands

n, in,l*
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""" 1vac—
l-‘in,l,per

l-l,mec+
in1,per

1,+
in,1’
1,mect .
in,l o 11

Figure 15: The first interface microscopic domain Q%ml with two nonoverlapping subdomains €2
1,vact
in,l

each of them also involves two parts, the vacuum part 2 and the mechanical part (2

the case of a = 1.

both for (Q;, Q1

in,17 = %in,l

aof Q) and of T}y = U, 15 (T + (0, +(n — 1/2),1/2)).

,

) and for (I';", T}, ;). In Section 7.2 we also use Q‘;‘ﬁ and Ff;’il the limits over

Let us introduce the interface boundary layer two-scale transform 77 ;.

Definition 6.1 The interface boundary layer two-scale transform T5, | operating on functions ¢
with variables in X¢ is defined by

Tra(@)ah2') =) xgr  (af)p(ah + exy, L + ey, ex3),
C1

in,lcy

fora.e. 2t € QF | at € X1 LY =iy and iy € Z7.

in,l’

Let us introduce the operator T:*, defined by

in,l

. 6 1 xf —gher g — L1 gt 6
@)@ =25 [ o (2 BT BB By, ),
c1 ]

9 9

in,lcy

for all functions 1 with variables in QEM x X' and all 2° € X°.

Property 6.2 The operator T;Y, is the adjoint of Tf, | in the sense

1

= ©Tir (Y)da® = / T;, 1 (p)¢daida’,
€ Qi}i‘l an@XQ

1
in,l
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for all ¢ € LX(QF i1 X ), @ € L2

1), and in the sense

1
S e = | o Tl

g

fOT' all?/’ € L2< in,l X le) 2 S L2<F504>

in,l

Definition 6.3 The operator B;, ; is defined by
g 1 x5 a5
B () = v (). D - 12,5,
for any function ¢ with variables in an,l x X' and all 2° € X¢, where P(z°) = x5.

Proposition 6.4 For every ¢ in C’l(QEM x X1 and Q}

in1 - periodic in the directions xi and z3,
then for all x¢ € X°©,

T2 () (2%) = By 1 () (27) + O(e).

Proposition 6.5 If1 is a function with variables in (25 UQL) x Q1 respectively in (4 UQL) x T,

is Q' - periodic in the directions x}, xd and is continuous w.r.t. its first variable in a vicinity of

the interface,
T‘zgn 1(B6(¢>)(xﬁ7$1) — ;&(ZEKIl) fOT (l‘ﬁ7ml) in an,l X Qzln,l respect. in an,l X 1—‘zln,l when e — 0’
where J(xﬁ,xl) = ((a#, Ly), (a1, 25 — 5,25 — 3)).

Proof. By the definitions of 77, ; and B¢, we obtain

T (B (¥ ZXQW (@B (W) (@b + eal, Lj + ex}, ex))

1 1
B Z ”L 1C1 ((:Eﬁ’c1 + 81’%7 L% + 5.27%), (l’i, iL‘% - 57-17%, — 5)) .

By the continuity property,

1 1 1
o (b sol, L e (ot e - g0d = 3)) = (@ L) ahad = 30t = ) + ol

for #* in each Qf, | .

Passing ¢ to 0, then

Toa(B0) = 0 (L) (el = 5ad = 30).
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6.3 Derivation of an Interface Model

Let us recall the expressions of the remaining voltage source V5 = V¢ — B¢(V?) and the corrector
o5, = ¢° — B*(¢°). Now we assume that the following assumptions are satisfied.

Assumption 6.6 1. For each «, there exist ¢1* € L2(QF | HY(QL"%)), Q1 - periodic in the

in,1» in,l n,1
direction xi and V;} € L2(Q§m1 X Flln”‘fcmt) such that Tj, | (o) — qb};f‘l weakly in LZ(Q%1 X
Qi) and T, 1 (Vi) = Vi weakly in L3(, X T35,)-
2. There exist ¢; € LQ(ngl,Hl(Qﬁf“C)), Q1 - periodic in the direction x1 and V;), €
LZ(Q%1 x Lo i) such that the extensions by zero ¢3T’Laxﬂl;ﬁc — @i, weakly in Lz(ng1 X
Qo) and VZ»}Z’O‘XQ%U? — Vib weakly in L*(9,, x Loiing)- Moreover ¢, and it gradient

exponentially decrease to 0 when |zl| — +o00.
Assumption 6.7 The limits ¢° and V° satisfy the condition of Proposition 6.5.

Proposition 6.8 When ¢ — 0 then

TE ((6°) — 63 + qgo weakly in LQ(ngl X Q0

in,l n,1
and .
Te (V) = Vo™ + VO weakly in L* (%, x T30,
where Y(at, ') = o ((2t, LY), (a}, a5 — L, 23 — 1)),

Proposition 6.9 The limit ¢;}L s a solution to

(—2,16), =0 in Q57"
Bin = Vin on 5, Vit
Vg, -nt =0 on To %,
Vi, -n' is T3 er - antiperiodic
([Vadl]] -0t == |[Vad|| -0l onT3is,,
[[ot]] = - [|¢°]] on oy
| &4 is Iy per - DeTiOdiC.

Proof. Only some key steps are detailed. We replace v by a smooth function v, in (2), where

e . €,a,vac e _ £,a,vac . £,a,vac
v, 1s defined in Q7 5™, vf, =0 on I'; 0, and vanishes out of ;7

/ O°Agev;, daf = / VeV evp, - ds (2°) + / ¢°V s, -0 ds (2°) .
QSravac reoesvac reoesvac

in,l in,l,int in,l,ext

Then, we substitute v, by Bf, ;(w), where w is in C”(ngl x Q1) Q1 - periodic in the

in,l in,l in,l
. . 1 .1 . l,vact 1,vact 1 _ 1,vac,+ l,vact 1l,vact
directions zy, x5, w =0 on I, 10, UL, 5" and Vaw - nt =0on Iy UL 00 UL 0, we
get

[ B ) = [ VLB () ds @) [ VB ) ds (o).
Qf;;x,vac Fs?,a,’uac

e a,vac
in,l,int in,l,ext
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As for the other cases,

0B;, jw ow 10w
L L — Ne— -
83716 in,l (XZ!i (2) axﬁ + c ale) )
0 9Bhw _ (i)ia_w+ (i)giﬁw i 10 ow
or: Oz ™! XTA Bt ot AT\ g ort 20zl ozl )’

for all i € Z = {1,2, 3} where Z# = {1}.

We check that Bj, | (Vaw) -n® =0 on I';'05 and a calculation reveals that

1 1

£ 13 3 3 €
- ¢°Bj, 1 (Apw) da® = ~ VEB;, 1
£ QF o, vac £ e ovac

in,l in,l,int

e a aw - 2 e e a aw €
06 = [ B () 2 B ()

in,l

£ e 3w c .
_\/BQ;I”,LDt,vac ¢ Bin71 <@) nl ds(ﬂj )

Thanks to Proposition 6.4, we have

(Vaw-n') ds(2°) + O(e),

where

1 1
— T (Apw)da® = = / VETer (Vaw - n') ds (2°) + O(e). (14)
e Jagopee e Jroe
By the definition of T}, it follows that
/ T:,  (60°) Apw dafda! = / T:, (V) Vaw- n'dztds (') + O(e).
an@ X Qzlnmlw ’ an,l X an%l,)zancz 7

Passing € to 0, combined with Proposition 6.8, we obtain

/m Q! IO ) datds! = / (Va® + VOV, - nt dafds ().
n,1% ’

Qf, xree

in,l in in,l,int

for each a.
It follows that the above equality still holds if w is taken on the form of 7,v, where 7, is a
smooth truncation function with compact support ng X QU and v € COO(an,1 x Q27N

in,l in,1
2 f ©0,0acC o0,vac . P . . 1 .1 - oo,vact 1 _
H2(S%,, 1 x Q07%), Q1™ - periodic in the directions @1, 23, v = 0 on I'7755, Vv nt =0 on
- - :
o e Ula e > vl [Vaiv], and [Aziv]  exponentially decrease to 0 when |z3] — +o0o, and
: 2(0f oo,vac . .
ToU — v in H2(§2, ; x Q771%) when a tends to infinity. Then

/m o vac((b}ﬁa + ¢O)XQ};L”?CAIIUJ dzfde! = /
n,1 X ’ ’

#t oco,vac
Q1 X int

(V™ + VO)xqoee Vo - m dads(a).

in,l

Passing a to +o00, by Assumption 4.7 , we get

/Q]i Qoovac

'Ln,1>< in,l

(¢z1n + g))A$1fU dxﬁdxl = / (‘/;’}'L + ‘%)Xﬂll;:TCVxIU ° nl dxﬁds(l‘l)

# co,vac
Qi 1% it
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1,vac

Now, we choose v vanishing out of €2, ; x ;77

for a given «,

/ﬁ (o1, + Q;O)Axw defdat = / (Vi + ‘%)Vfcw -n!dzfds(at).
Q»nJXQl”UaC

t 1,vac
Qm,lxl“

in,l in,l,int

Applying Green’s formula twice, then

1l,vact
in,l

~+
S s e
+ Qin,IXQ

~ 4
— Z /ﬁ o Vo (o +¢° ) -n'fodatds(zh)
T Joi, ool

in,l

~+
(¢j +¢° )Varv-n'* dafds(z")

~+
= E /n N (viE 4+ VO ) Vv - n'* datds (') .
Qf, rlve

1,vac
in,l

1 . . . 1 1 1
Luvac with their boundaries 9Q1ve* = plvact jpleaet

in,1 n,1 in,lint in,1,top

~+
1,vac,+= 1,vact 1,vac s . I 0 _ . 1,vact
Pbl:i:l,per Ulmta UL interts cOmbining with the results of Proposition 3.3, A;1¢9” =0 in {

Decomposing 2 into two parts 2

in,l
0 A'(/)i l,vact Oi 1+ 1lvact N(]:t 1+ 1,vac,+
o7 =VY on Dy Vo -n® =0on Iy Vg -n'= is Iy 7 - antiperiodic, and
from the conditions satisfied by v it remains

Z/u 1 iAz1(gb§f)vdxﬁdxl
+ S, 1 X0 e

in,l

- E / Vo0t - n'* o dafds(z!)
T Qﬁ X(Fl,uaci UFl,vuc;t )

in,l in,1l,top in,1l,per

~4 -
B /Qu 1 {vﬂ?l <¢11: +¢’ ) =V (ﬁbzln_ + ¢° )} -n'ty dxﬁds(xl)
in,lXF'ﬂvaC

in,l,interf

GV v - n'E datfds ()
1l,vact
in,l,int

~ + ~ —
[ (6t )= (0 ) | Vo st
Qin lxrl,vac

in,l,interf

_ 1+ 1+ 3.4 1
—g / . j[vmvxw'n dafds (2').
n Qﬁ wlvac

in,l in,l,int

+ J,  xI

The rest of proof runs as the previous proofs. m

7 Internal Edge Model

We assume that all interface models are yet built with the index ¢ = 1,2, 3,4 as in Figure 2. We
consider the contributions of two interface models i = 1 and 7 = 2 at the first internal edge zone,
see Figure 16. Since the sum of contributions is not continuous at this edge, we introduce an
internal edge corrector to overcome the lack of continuity. Here, the corrector and the remaining
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2
< 2— & 2+ g 40+
Bin,z in in,2%in B ¢
_6
interf
FglnelmterfS N
/
2 5003
Q{s,a, Q-' 7
ine,1 ine1 /w Bm 1 m
N &
o o
ine,1,interf,2 QE il QE.‘ZA' Fi‘ne,l,il‘ltel‘f,zt B
ine,1 ine, in,1 m
EQ rse .
£ Q ine,1,interf,1
X5 ine,1 B€¢0—

Xy

Figure 16: Description of the geometry of the internal edge problem. The green and maroon colors
represent the zones of the first and the second interface models. The red region is the zone of the
first internal edge model made with four subregions. The electrostatic potential has a different
approximation in each of these subregions.

voltage source are

£ o € 1+
¢ine_¢ - B ¢ an2 in XQS"“{“C2_(Bm1 +an2 in )XQSO”I’“CS_anl in XQE"”{”C‘l
V€ — Ve - BEVO - in QVZ_XQ%(xﬂl)ac,Z - ( zn 1V1+ + Bln 2V2+)XQ?’°‘”{“C'3 - B
ine, ine,

ine in,l

Vin Xoggeed,

where ¢° is the solution of the periodic model, (bli and gb?i are the solutions of the first and
second interface models in the interface zones near the first internal edge zone, Bj, | and B, , are
the smooth approxunatlon operators of the first and second adjoint interface two- scale operators

Tgry and T, , Vit and Vo™ are the weak limits of V; O‘iXQi,mi in L2(Q§n1 X Ffﬁfi;f) and of

Vii’o‘ixgg,md in L2(QF PR gifi:) when « tends to +oo, V5 and V2 are the weak limits of

e (Vi) in L? (Qjj L X len”fift) and of T}, ,(V,) in L? (Qﬁ o x T ”‘wi) when ¢ tends to 0. The

in,2,int
£,Q,0aC,1

domains €27 71" is introduced in the next section.
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Figure 17: The first internal edge €% ; in the physical domain with o = 1.

ine,l

7.1 Geometry Notations

The whole internal edge boundary layer domain € |, which subscript ine, 1 refers to the first
internal edge, is a subdomain of Qf U Q5 defined as Q7| = Ueez,,. Q5. Here Zj,, is a set of

multi-indices ¢ = (¢1,¢) ¢4 € 13 — i3 +  — 1, and ¢5 € iy — a, iy + a — 1, iy, i3 being such that

inwé) is the first internal edge cell, see Figure 17.
The domain Q7 is decomposed into four nonoverlapping subdomains Q‘fn‘;’l = UCGI;-MJQ‘;
with the multi-index sets Z?

ine,l

Lines = { C1,02) 11 €41 —a,ip — 1, ¢ Giz—a,iQ—l}a

(
Tinen = {(c1,0

(

(

1
¢ €@ —ayip—1, ¢ €lg,ip+a— 1},

) :
)
)
)

Tien = { C1,C) i C1 €El1,01 +a—1, co € 19,10 + 0 — 1},
Ime,1 = { C1,C) L €t,11 +a—1, ¢ €19 — g — 1}.
We observe that Q7% is a subdomain of Q5 for i = 1,2,4 and of Qf for i = 3. For the
sake of concision, interface numbering is with indices modulo 4, e.g. 5 plays the role of 1 and
. . €,Q,1 e,a,i+1 - g,x s
50 on. Precisely, theE interface between (277 and 207" is notaed Lot interfi+1 8f0r 1 =1,2,3
& & N 3 3 FIe- P &
and Fine,l,interf,S or 1—‘i'ne,l,interf,l for i = 4. The whole interface is Fine,l,interf - Ui=1Fine,1,interf,i‘ The
g,a,val,i g,aval,i - g,a,val,i g,aval,i £,x £,
boundary aQine,l of Qine,l is decomposed as Fine,l,mtUFine,l,eztUFme,L interf,iUFine,l, interf,i+1- All
the other notations for subdomains, boundaries and subboudaries are derived from these definitions
. . £,0,VAC,% __ TE,0,VAc,t £,0,aC,1
with the exceptions I';70y oy = Ty 0, U0 o7
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[.omec. ine 1 1,mec,3
ine,1a ine,1,a plvac g Fine,l,a
2 \4 ine,1,interf,3

pLmec rivac
Fl,vac,3 ine,1,interf,4
ine,1,top

ine,1,a

terf,4 rlvacs
ine,1,top
Fl,vac,l 9111’14(3 1
ine,1,top 1,mec l—-l,mec 4 ~1d
y ol

1,mec,2
1—‘ine,l,oc

1,vac
ine,1,interf,2
1,mec,1
ine,1,a

rl,vac
ine,1,interf,1

Figure 18: The first internal edge €}, in the microscopic domain with a = 1.

The finite microscopic domain €}, | = 21:192;;71 is also parametrized by «, with
Qz{r’zt,l - U{,nzO,a—l(Ql + (_g - 1/27 /. 1/27 1/2))7
Dipes = Ugyetat(2' + (=€ = 1/2,1+ 1/2,1/2)),
Q}ﬁ?;,l = U{,n:O,afl(Ql + (§ + 1/27 n + 1/27 1/2))7
Qilvii,l - U{,n:O,afl(Ql + (6 + 1/2a /i 1/27 1/2))7

see Figure 18.

The notation system built for the physical domain is transposed to the microscopic domain
without the need to detail it. The infinite microscopic domain 257, ; is defined as the limit of Q}ne’l
when « tends to infinity.

Finally, for all regular function v defined in Q}, |, we denote v’ the restriction of v to ;'

[[v]] stands for a jump of v at the interface defined by the following formula

, and

1_ .4 1,
v v at I"L’ne,l,interf,l

17
HUH — Ul B U2 at Finq:,llc,interfﬂ

3 .2 1,vac
00—t at Iy et s

3 4 1,vac
vt = at Fine,l,irlterf,él‘

7.2 Internal Edge Boundary Layer Two-Scale Operator
We consider any surface I in QF, T} | = Userr -y U5 (T + (0,0(n — 1/2),1/2)) C Q. and

ine,l
5% = Ueer,, e((cr — 1/2,¢0 — 1/2,1/2) + T1) € Q7). Then in this section the pair (X X')

in,1 in,l*
stands both for (Q5",Q,,.,) and for (I, T}, ;). Now we introduce the dilation operator Tj,,

at the first internal edge.
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n

Definition 7.1 The operator Ty, , operating on functions ¢ with variable in X is defined by
Then(p) (@) = (et + Ly, ey + Ly, ex;)

for ' € X1 where L} = i1e and L} = ise for some iy, iy € Z7.

)7 tie.

Here the operator 75" | = (15

ine,l — ine,1l

€ 1 € 1 €

TE L (0) (2°) = ¢ ( Bl ) .

9 9 9

*

Property 7.2 The operator T;, | is the adjoint of Tf,. , in the sense

my

1 ES £ 154
L[ ore ) de = / To () dat,
9 Q5 QL

ine,1 ine,l

forally € L*(Q,.,), ¢ € L*(Q,1) and in the sense

ine,l

1
82 ree

ine,l

for all ¢ € Lz(F}ne’l), o e L5 )).

ine,l

oTEr 1 () ds(z) = / TE . () ds(a),

Fl

ine,l

€

tne.1 are identical however

In this internal edge case, the operator T;, ; and its approximation B

both will be used to follow the algorithm of Section 2.6.

Proposition 7.3 Let B, B , and B

in,l in,2
€%
Tiry, then

be the smooth approximation operators of T, T;:¥) and

1. If a function ¢ with variables in (2 UH) x QL respectively in (4 UQL) x T, is continuous
w.r.t. its first variable and is Q' - periodic in the directions xi,x} then

1

ine,

TE

wne,l

where (a") = (L}, LY, 2 — 1/2)).

(B*p)(z') — 171(551) for 2 in aneyl, respect. in T’

1 when € — 0,

Loy

1, 1S continuous

2. If a function = with variables in ngl x Q59 respectively in an’l X

in,l’
w.r.t. its first variable and is Q5°% - periodic in the direction x} then

Toen (B0 ) (') — oF(a') for z'in Q2 respect. in TL  NQY3

in,l ine,1’ ine,l ine,1’
e e =\( ol o 1 14 ol 14
and 7jine,l(Bin,l )((L’ ) - 1/} ($ ) f07” T € Qine,l’ respect. m Fine,l N Qine,l?

when € — 0, where QF(.IJ) = (L, (z} — 1/2, 2, 23)).

3. If a function ¢* with variables in an,z X Qf;f;, respectively in an,z X F;’gfg, continuous w.r.t.

its first variable and is Qfﬁg - periodic in the direction x} then

1,3 . 1,3
Eie,l(Bfn,2w+)(xl> - er(:El) fOT’ xl € Qz’ne,h TespeCt' m Igne,l N Qine,h
— o 12 . 1,2
and ﬂie,l(Bfn,Z )($1> — 2/} (xl) fOT’ xl S Qine,h respect. m I"}ne,l N Qine,l?

when € — 0, where QF(ZLJ) = (LY, (x}, 2h — 1/2,23)).
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7.3 Derivation of an Internal Edge Model

The following assumptions are supposed to be fulfilled in the next propositions.

Assumption 7.4 We assume that
1. For each o, there exist ¢y in H'(Q;0F)
weakly in L*(Q0%) and T5,, 1 (v5,.) — ve

ine,l ine ine

Lo - 1, 1,
and Uince! m L2(Finlg,llc,int) such that infme,l(gb?ne) - gbinae

weakly in LT}, ).

ine,l,int

2. There exist ¢,

. n Hl(Qoo,vaC)’ le

ine.1 ine and its gradient converge exponentially fast to zero when
|zt| + |2d| = +oo, and v} . in LA(T5200 ) such that ¢};L’ZXQ;,MIC — ¢ weakly in L?(Q55:70)

ine ine,l,int ine,l

weakly in L*(To 15 ).

ine,l,int

1

ine

1,
and v, Xqlvae =V

Assumption 7.5 The limits ¢°, V° satisfy the assumption of Proposition 7.3.1. Similarly, ¢\,
Vi and o7, V2 satisfy the assumption of Proposition 7.5.2 and 7.5.83.

Proposition 7.6 When € — 0,

e € La | 70, 2 L ,
1—11'71671( ) — ¢ine + ¢ + ¢inXQf};11)ealc72UQ;hzalc,3 _|_ ¢7LNXQ;’;GIC’5UQLUQC’4

ine,1

weakly in L*(Q°%) and

ine,l
Trea(VE) = Vil + VO + VinXalpee2ugheaes + VipXgrwes jgivacs
weakly in LT ), where (%) = (L1, 13),2' — 1/2), b (a") = 6L(L}, (o} — 1/2,28,2})),
and @2, (x") = ¢2 (L1, (2}, 23 — 1/2,23)) and with similar expressions for the voltage sources.

Proposition 7.7 The limit ¢;

ine

18 a solution to

41

D1, =0 in Q500"
Pine = Vine on Lot int
V.ol ni— on T,
[[qbilne}} - ¢zln_ - on F?ﬁg,}icmterﬁl
([Varohe] -n' = Vol -mt on TN,
Mehdl =i on T s
[Vardhe]] -0t = Vool -0t on T30 .
(bl == 0 on T s
[[VI1¢11716:|] /_\1/: _vxl ¢zl7j nl on F?wjiicinterﬁ?)
[oh] = =05 on T
. [[vdflqbzlne}] nl = _vft ¢127—Li_ nl on F?:L)gjicmterﬁ&



Proof. The main idea of the proof is the same as for the other models. Firstly, we replace v°

in (2) by a smooth function vj,, defined in Q7707 and vanishing out of €777, then

£ g g g g g g £ g g g
/ O°Agevy, dat = / VEV 5, - n°ds (2°) —|—/ ¢°Vev5,, - n°ds (2°) .
QS avac e a.vac

e osvac

ine,l ine,l,int ine,l,ext
; € -1 e fa ] oo (()lvac —
After that, we substitute v;,. by e B;,, (w) where w is in C*°(€.,"]) such that w = 0 on
1,vac 1,vac 1 1,vac 1,vac
Fine,l,int U Fine,l,oz and v$1w ‘n° =0on Fine,l,top U Fine,l,oﬂ hence
! GACBE (w)det = = VeV, B, (w) - nf ds (z°)
2 Dine 1 \W) AT = o= Dipe 1 (W s(x
ISl Qs,a,vac £ Fs,a,vac
ine,l ine,l,int
1
€ € € £
+- ¢V e Bi oy (w) - ds (2°) .
£ e osvac
ine,l,ext
Obviously,
€ >
8Bine,1w . 1B8 ow and 0 aBine,lw . 1 c 0 Ow
——=-B, .| == — == | ===
0xs e "ot \ Oz} Oxs  Oxt g2 et \ Ozt ozl )’
. I e _ g,a,vac
for all i = 1,2,3, and Bj,,,(Vaw) -0 = 0 on Iy 0770, Thus,
l ¢£5 (A )da_l € RE (V 1)d(a)
3 ine,1 mlfUJ r = 2 ine,1 wlw n S\T .
£ Qs,a,vac I Fs,a,’uac
ine,l ine,l,int
: 5 €% : % e
Replacing B;,.; by T3, ; , then transposing T35, | to T, 1, we have

/ et (09)Apwda! = / rer(V)Vaw-n'ds ().
Q},vac ’ )

F},vac

ine,l ine,l,int

. lyvac | 4 1,vac,i lvac | 4 1,vac,i .
Decomposing ;07 = U;_, Q00" and Ty 0T = Ui Tl the above equality becomes

4 4 .
Sl [ T At =T, [TV a n s (o)
i;ze,l7 i;Le,l,yint

Passing ¢ to 0, and combining with Proposition 7.6, gives
Lh.s = / o ((pg;gvl + ¢O*) Apwdz' + / o (gbi;;j? + ¢ + gb;;) Apwda!
Qe Qinen’

La3d | 0+ |, 1+ | .2+ 1
(ot ™ ol 0F ) Apwdat +
Ql,vac,J Ql,vac,4
ine,l ine,l

((bi,’fé’él + gfbaj + gfb}nj) Ajwdzt

and
r.h.s = / (VZ;:1 + W) V. iw-n'ds (:1:1) + / (V-l’a’2 + VO 4 ‘Zf;) Vw-n' ds (xl)
Fl,vac,l

1,vac,2 e
ine,1 1—‘ine,l
La3 | 1704 1 1A 124 1 1
+ / (V + VOV + VJ) Vaw-n'ds (z')
i
Lad | 170- , 1/1— 1 1
+/ <Vme + Vo +Vm>Vx1w-n ds (z').
l—q,'uac,él

ine,l
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It follows that these above equalities still hold if w is taken on the form of 7,v, where v &€

00 [/ ()O0,vac 2 /(yoo,vac o oo,vac o oo,vac 1 oo,vac
C (Qine,l )N H (Qine,l ), v =0 on Fine,l,int? v =0on Fine,l,int and V,iv- no =0 on Fine,l,top 5
|v], |Vav], and |Agiv| exponentially decrease to 0 when |z1|+ |z3| — +00, and 7, is a smooth

truncation function with compact support Qzlniaf . Then

Lh.s= / <¢;f;1 + ¢O*) Xetvoe g1 Tov ! + /
ng,vac,l ne,

La2 | 00— |, .2— 1
<¢'me + ¢ —'I— ¢m ) XQ},vachl TQU d.ﬁE
Q'oo,vac,2 ine,l

ine,l ine,l

Lad | 0+ | 1+ | 42+ 1
+ / . ((bzne + ¢ + (bzn + ¢7,n ) XQLvachxlTa'U dZC
Qoo vac, ine,

ine,l

Lad | ,0— |, - 1
+ / ) <¢zn€ + ¢ + QS”L ) XﬂyvachxlTarU dI 5
Qoo-vac, ine,

ine,l

and

1,a,1 T 70—
r.h.s = / <me + VO—) Xqlwae Va1 T - n'ds (a:l)
Foo,vac,l ine,1

ine,l
L2 | 170 4 1/2—
+ <Vmea + Vo4 V2 ) Xqvae Vi Tou -n' ds (1)
Foo,uac,Q ine,1
ine,1

Le3 | 1700 1 1A+ 1 12+ 1 1
+/‘ (V™ + VI8 4 ViF 4 V2 X Va7 - dis (a7)
s e

Lad | Y/0- , 1/1-
+ (Vm: + VO + VL ) XqtoaeVaTav -0t ds (z') .
Foo,vac,4 ine,l
ine,1

Passing « to +o00, by Assumption 7.4,

Lh.s :/ (@t +0") Avaat + / (@2 + 0" + ) Agvdz!
ng,vac, Q?@UGC,

ine,l

[ (ol ) At [
Qoo:vac,

Qoo,va,c,4
ine,l ine,l

ine,1

(0hit + 6" + 6l ) Aprvda,
and

ine

r.h.s = / <V;:wl + \76:> Vav-n'ds (z') + / <V1’2 FVO- 4+ ‘Z{‘) Vav-n' ds(z')
F(?o,vac,l F(_)O,Uac,2

ine,l ine,l

+

o (VA2 V4 VIT 1) Do s (o)
l—\c?o,'uac,B

ine,l

+/ <Vz}f + V0 4 V,;f) Vav-n' ds(z').
oot

1,vac

inea for a given a,

Now, we choose v vanishing out of {2

L.h.s = / ( e ¢°—) Agvdzt + / (qb,ﬁ + " + 95, ) Agrvdz!
Ql,vac,l Q’},vac,Q

ine,l ne,1

13 | 0+ , 1+ , 2+ 1
+ / ( ine + Qb + ¢m + ¢zn ) Azwdx + /
QLUaC,S 91,1)0415,4

(ki + 0% + 0l ) Apvda

ine,1
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that we note
=T, + 15+ T5 + Ty,

and

r.h.s = / <V“1161 + Vo= ) Vav-n'ds (z) + /
Fl vac,1

ine,l T,

(VJLS FVO- 4+ V2o ) Vav-n' ds(z')
1,vac,2

ine,l

+ / <Vz;3 VO 4+ VlJr + V2+> Vav-n'ds (z')
Fl vac,3

ine,1

+/ <VJL§+V0 + V- > Vav-n'ds (z').
plvacd

ine,1

Applying Green’s formula twice to each term T; yields,

= /Ql vac,1 <¢me ¢ ) mlvdwl

ine,l

ine, 1 ine, 1

o

1ne 1

/1 9 zne + ¢O_ + ¢zn ) CClU dxl
Q vac,

ine,l

[ 2m4~w+¢m)vdx—+/‘l (94246 + % ) Vo - nt2ds(a)
Q vac, 89 ,vac,

ine,l ine,l

/ 9 UVCEI (bme + ¢0* + (bm ) 1’2d8($1),
Ql vac,

ine,l

/1 . ¢me+¢°++¢> + o3 > Agivdz!

ine,l

/1 L Aa cbme+¢“++¢3$+¢?7f)vdxl+/
Q’U(ZC

ine,l 9

(62 + 6™ + 0l + 62 ) Varw - n'3ds(a)
Ql vac,3

ine,l

/ vV 1 <¢me + ¢O+ + ¢ + %) -n"3ds(at),
an vac,3

ine,l
and

T4 = / 4 (¢zne + gbOi + (bzn ) 2tV dxl
Ql vac,

ine,l

- /Q A (et e el a4 /

1,vac,4
ine,l 897,77,5 1

- / _— vV 1 (gf)}i +¢" + ¢Zln_) -n'ds(at).
BQ vac,

ine,l

(6t + 6" + 0L, ) Varv-n'ds(a!)
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Decomposing each 90 = phvact yplveci | jplvaci jplvac yrkvae fori =1,2,3,4

ine,l ine,l,int ine,l,top ine,l,a ine,l,interf,i ine,l,interf,i41
and combining with the conditions satisfied by v, with the results from Proposition 3.3 and with

Proposition 6.9 it follows that A" = 0in Q1% Al = 0in Q%3 Aigl~ = 0in QLU

e ine,1” ine,l in ine,l
Apgpt =0in Q%" Apgl, = 0in Q07 Vae® -nl = 0 on T2, Vadhl -n! =0 on
Linetops Var®in -0' =0 on Dpit Vit -n' = 0 on Tphi Vg - nt = 0 on Ty
"+ 0| = [[Vord + Varoh |- n1® = 0on D5 g | |7 + 00| = [[Vrd* + V||
n'? =0 on Fllnzaf intert 3> thUs we get

4 4
1. 1 Z 1, 1 1
Z /(;1 vac,t Azl (QSinze) v dx B /I:l vac,i Uvml qbinze ‘n ZdS(ZE )
i=1 7 ine1 im1 JTae

ine,l

+ /
I~.1,vac

ine,l,interf,1

+ /
F%,vac

ine,1,interf,2

+ /
F;,vac

ine,l,interf,3

+ /
F?,vac

ine,l,interf,4

4 4
+ Z/F qbil;fevxw -nbds(zt) = Z/r Vi:l’évggw -n™ds(x!)
i=1 i=1

1,vac,i 1,vac,i

ine,l,int ine,l,int

ine,l,top

¢1,1 B ¢1,4 B ;F) V.ov-n — -Vzl(gbl’l B ¢1,4) B vgjl%_ ' nl,lds(xl)

ine ine ine ine

I 11 12 "] ,
Vev - — o | V(g — ¢5l) — Vg | -nbds(z!)

(
(6l — ol — o
(
(

O = b+ 05 ) Vv 0 — v [V (052 — 0l2) + Vol | -nds(a)

Vav-n? — o [Va(eh? — ¢by 4 V12| - nlds(z!)

ine

The rest of the proof runs similarly as the proofs of the previous models. m
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