
Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Unification and combination of a class of traversal strategies

made with pattern matching and fixed-points ✩

Walid Belkhir, Nicolas Ratier ∗, Duy Duc Nguyen, Michel Lenczner

FEMTO-ST Institute, Time and Frequency Department, Univ. Bourgogne Franche-Comté (UBFC), ENSMM, CNRS, 15B avenue des Montboucons,
25030 Besançon cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 May 2020
Received in revised form 14 December 2021
Accepted 14 December 2021
Available online 17 December 2021

Keywords:
Traversal strategies
Unification
Combination
Fixed-point
μ-Calculus

Motivated by an ongoing project on computer aided derivation of asymptotic models
governed by partial differential equations, we introduce a class of term transformations
that consists of traversal strategies and insertion of contexts. We define unification and
combination operations on this class which amount to merging transformations in order
to obtain more complex ones. We show that the unification and combination operations
enjoy nice algebraic properties like associativity, congruence and the existence of neutral
elements. The main part of this paper is devoted to proving that the unification and
combination operations are correct.

© 2021 Elsevier Inc. All rights reserved.

Contents

1. Introduction . 2
Organization of the paper . 4

2. Preliminaries: terms, substitution, notations, rewriting . 4
3. Position-based Tμ-strategies and their combination . 5
4. The class of Tμ-strategies . 8
5. Unification and combination of Tμ-strategies . 12

5.1. A correctness criterion for the extension of the unification and combination to Tμ-strategies 12
5.2. Sub-Tμ-strategies, memory and pre-Tμ-strategies . 13
5.3. The procedure of unification of Tμ-strategies . 15

6. Statement of the results . 18
6.1. Correctness of the unification and combination procedures . 18
6.2. Algebraic properties of the unification and combination . 19

7. Outline of the proof of the main result . 20
8. From Tμ-strategies to position-based Tμ-strategies: the definition of the mapping � . 22
9. Proof of the correctness of the unification of Tμ-strategies: the fixed-point free setting . 24

10. Properties of the unification reduction system and of Tμ-strategies . 28
10.1. Measures of Tμ-strategies: the star height and the depth of Tμ-strategies . 28

✩ This work was supported by LABEX ACTION ANR-11-LABX-0001-01 and by the European Territorial Cooperation Programme INTERREG IV project OSCAR.

* Corresponding author.
E-mail addresses: walid.belkhir54@gmail.com (W. Belkhir), nicolas.ratier@femto-st.fr (N. Ratier), nduyduc1989@gmail.com (D.D. Nguyen),

michel.lenczner@femto-st.fr (M. Lenczner).
https://doi.org/10.1016/j.jlamp.2021.100746
2352-2208/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jlamp.2021.100746
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2021.100746&domain=pdf
mailto:walid.belkhir54@gmail.com
mailto:nicolas.ratier@femto-st.fr
mailto:nduyduc1989@gmail.com
mailto:michel.lenczner@femto-st.fr
https://doi.org/10.1016/j.jlamp.2021.100746

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
10.2. Termination and confluence of the unification reduction system . 30
10.3. Iteration mapping and (generalized) unfolding of Tμ-strategies . 31
10.4. Properties of Tμ-strategies and their fixed-points . 32
10.5. The composition lemma . 33

11. Unification and unfolding . 33
11.1. The equivalence between the unification of several unfoldings of two Tμ-strategies . 34
11.2. Fixed-point tree and fixed-point sequence . 35
11.3. The relations of (C, C0)-simulation and (C, C0)-quasi-simulation . 36
11.4. Relating the structure of the unification of two Tμ-strategies with that of their unfolding . 38

12. The equivalence between the unification of two Tμ-strategies and that of their unfoldings . 41
12.1. Measures and codistance on fixed-point tree . 42
12.2. Derived tree and a lower bound for the number of jumps . 45
12.3. The unification of two Tμ-strategies is equivalent to the unification of their unfolding . 46

13. Proof of the main results . 51
13.1. The correctness of the unification and combination . 51
13.2. The algebraic properties of the unification and combination . 52

14. Conclusion and future work . 53
Declaration of competing interest . 54
Appendix: proofs of lemmas . 54

A. Proofs for Section 9 . 54
B. Proofs for Section 10 . 54
C. Proofs for Section 11 . 57
D. Proofs for Section 12 . 60

References . 63

1. Introduction

The general context of this article is the incremental design of complex models using a notion of extension. The models
we are considering are described by abstract terms and subjected to symbolic transformations. The latter are assumed to
rely on two fundamental operations: the operation of extension that transforms a reference object to a more complex one
by enriching it, and the operation of combination that merges several extensions to produce a new one that incorporates
all the characteristics and effects of those used for its generation. This process is guided by the semantics of the objects in
question, namely the way the extensions operate.

We briefly recall the background of this work. Our motivation originates in an undergoing project for the modeling and
simulation of complex systems in micro or nano-technologies, e.g. [1–3]. The systems under consideration are governed by
Partial Differential Equations (PDEs) and are too complex to be simulated by straightforward numerical methods, unless at
the time-scale of design engineering. In addition, asymptotic methods for PDEs have been an active domain of mathematics
for more than seventy years whose main goal is to derive “simpler” PDEs from those which have small parameters in their
geometry or their equations. These methods are called singular perturbation methods in physics.

They are developed in all fields where PDEs are used for modeling ranging from physics, biology, finance etc, see for
instance the review paper [4].

The use of asymptotic methods for modeling and simulation leads to reduced computation times while retaining the
essence of the models. Nevertheless, they suffer from a major drawback which limits their diffusion in the community of
engineers which is that their derivation is done on a case by case basis. In other words, for each new problem, the entire
process of deriving the model must be redone from scratch even if the new problem has many functionalities in common
with one or more problems already modeled. It follows that despite the immense number of existing models, relatively few
of them are used in general simulation software.

Our group has adopted an alternative approach by developing a software package called MEMSALab (for MEMS Array
Lab) [5] whose function is to build asymptotic models by successive extensions which intend to take into account different
characteristics such as scalar or vector forms of solutions, various a priori estimates on the solutions and the sources,
thinness or periodicity of geometries, several nested substructures, etc.

Our approach takes advantage of the modularity and the algebraic nature of asymptotic methods by following the ap-
proach presented in [6]. It is also based on the so-called combination of extensions [3] method that we are now sketching.

- First, remember that the construction of an asymptotic model operates on a PDE comprising small parameters. The
construction of an asymptotic model consists in passing to the limit to zero on the small parameters which requires several
proof steps leading to a new PDE. The latter can be implemented in generic simulation software. Among all pairs of input
PDEs and proofs of asymptotic models, the simplest one is chosen, which is the pair of reference PDE and reference proof,
from which the others can be constructed by successive complexifications. Technically, a proof is implemented by a rewriting
strategy, that is to say by a series of transformations made up of rewriting rules accompanied by strategies which specify
the way in which the rewriting rules are applied to PDEs.
2

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
- Second, the reference proof is complexified, we say that it is extended, in several ways to take into account new
functionalities giving new proofs. This is done by applying an extension to the reference proof in so far as an extension is
another kind of rewriting strategies. This results in an extended proof. Then, applying an extended proof to a complexified
PDE yields a new asymptotic model.

- Finally, to cover several new elementary functionalities, we merge several elementary extensions by an operation of
combination. The extension resulting from a combination can itself be applied to the reference proof. It follows a new proof
which applied to a complex PDE produces an asymptotic model benefiting from all the characteristics.

To illustrate the concept of combination of extensions, consider the input PDE of reference and the proof of reference
both containing the term ∂x v(x), an extension that adds an index j on the variable x of derivation and a second extension
which adds an index i on the derived function v . The application of each of these two extensions to the reference term
yields the terms ∂x vi(x) and ∂x j v(x), respectively. The combination of these two extensions would be another extension
that, when applied to the reference term, yields ∂x j vi(x).

In summary, there are three levels for PDEs, proofs and extensions. A proof can be applied to a PDE, an extension to
a proof, and extensions can be combined to produce new extensions. Therefore, combining extensions related to several
elementary features allows for building, in an incremental way, new proofs and therefore new asymptotic models.

Although the concepts of extension and combination were introduced for the first time in [1], in that earlier work the
combination of extensions was done by composition, not allowing for conflicts between extensions. A conflict between
two extensions arises when they modify the same part of a proof and when the application of one of them creates new
possibilities for the application of the other one. In that restricted framework, the combination of non conflicting extensions
simply amounts to their composition. The complete principle of the extension-combination method was introduced in [3]
where a user language was defined for specifying proofs and extensions as rewriting strategies. We also have defined the
combination on a small class of extensions. However, the question of the correctness of the combination formulas was left
open.

When defining a new class of strategies with an operation of combination, there are many difficulties to overcome. A
careful attention must be payed to the choice of the constructors out of which these strategies are built up. There are two
extreme ways to proceed. One way is to build the strategies by means of the most rudimentary constructors, as in [7]. This
makes the strategies hard to use in practice due to their huge size. But the advantage of such rudimentary constructors
is to allow one to understand the mechanisms behind the combination operation and to define it correctly. Even more, to
proceed in this way was inevitable and justifies our work [7].

The other extreme way is to rather design high level strategy constructors which are easy to use in practice. But this
makes it hard to understand the mechanisms behind the combination operation since a high level constructor hides several
rudimentary constructors. For instance, given a rule r, the translation of the high level strategy OuterMost(r) into rudi-
mentary constructors requires three rudimentary constructors since OuterMost(r) can be written as μX.(r⊕ Most(X)),
where “μ” stands for the fixed-point or the recursion constructor, “⊕” stands for the left-choice constructor, and “Most”
is the one-step constructor that accesses to all the children of a term if viewed as a tree. In this case, one has to define
the combination of two high level constructors in just one step which is usually difficult or even impossible. Furthermore,
this raises the question of the closure of such class of strategies under combination since, for instance, the combination of
two OuterMost s is not an OuterMost. In earlier attempts, we figured out that the combination of extensions based
on high-level strategies such as BottomUp or TopDown or OuterMost can not be expressed with high-level strategies,
making such a class not closed under combination. We thus understood that more rudimentary strategy constructors were
needed.

In [7] we followed the first way and introduced the large class of context embedding strategies, or CE-strategies for short,
that involves elementary and, more importantly, an explicit handling of failures which are produced when an application of
an extension fails.

We proved the correctness of the combination operation for a fragment of the class of CE-strategies. The drawback of
working with this class is that the definition of the traversal navigation strategies such as OuterMost yields a CE-strategy
whose size depends on the signature. Even worse, the size of the resulting combined CE-strategy can be exponential with
respect to the size of the two input CE-strategies. In this paper we overcome these difficulties by pursing a third way which
is in between the two extreme ways exposed above. We introduce another class of strategies, called the Tμ-strategies, which
is built up using both high level and rudimentary constructors inspired by the propositional modal μ-calculus [8,9] rather
than strategy languages as in [10]. The μ-calculus-like approach involves natural and rudimentary strategy constructors,
especially the jumping to a position and the recursion with the fixed-point operator. This makes tractable the question of
language closure for combinations. Moreover, the procedure of combination of Tμ-strategies together with their verification
is also much simplified. Although this new class of Tμ-strategies is less expressive that the class of CE-strategies of [7], the
new class remains powerful enough to be used in practice and its closure is harder to achieve since it incorporates high
level and rudimentary constructors, this makes this paper more complete than [7], since the CE-strategies of [7] can not
be used in practice because of their huge size. Besides, we define a unification and combination operations for the class of
Tμ-strategies. Roughly speaking, the unification of two Tμ-strategies amounts to construct a Tμ-strategy that captures the
effect of both insofar as they are compatible, where the compatibility of two Tμ-strategies depends on each input term and
is related to their successful application. The incompatible effects are covered by the combination. This class enjoys similar
algebraic properties as CE-strategies with respect to unification and combination, like associativity, congruence and the
3

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
existence of a neutral and an absorbing element. The main result of this paper shows that the unification and combination
operations of Tμ-strategies are correct with respect to a correctness criterion that we shall devise and that is guided by the
semantics of Tμ-strategies, Subsection 5.1.

We notice that the size of the resulting combined Tμ-strategy is polynomial with respect of the size of the two input Tμ-
strategies. The Tμ-strategies are reasonably easy to use in practice and they have been implemented and used in MEMSALab
software in the previous years within a user specification language of mathematical expressions, proofs and extensions and
their combination for asymptotic models where the first applications targeted micro and nanotechnology [1–3].

The concept of extension, sometimes called refinement in the literature, is developed in different contexts such as the
parallel and concurrent systems, for example in [11–13] the refinement is done by replacement of components with more
complex components. Combination principles are present in different areas of application, they involve different techniques
but follow the same key idea that consists of the merging of structures or algorithms motivated mainly by the incremental
design of complex systems by integration of simple and heterogeneous subsystems. For instance, the works in combination
of logics [14,15], algorithms and verification methods [16], decision procedures [17], the composition and synthesis for
service-oriented and agent-oriented computing [18,19] in which the synchronous and asynchronous product of automata
and transition systems are a form of combination, and the unification of grammars in linguistics [20–24]. However, the
integration of the two concepts of extension and combination seems to have not been addressed in the literature.

Organization of the paper

The paper is organized as follows.
Section 2 is devoted to a review of the useful concepts of rewriting theory, and to definitions and notations.
In Section 3 we introduce the position-based Tμ-strategies and their combination.
In Section 4 we introduce the larger class of Tμ-strategies together with their semantics.
In Section 5 we give the unification procedure.
In Section 6 we state the results of this paper without proof, namely the correctness of the unification and combination and
their algebraic properties.
In Section 7 we expose a detailed outline of the proof of the main result, that is, the correctness of the unification of
Tμ-strategies.
In Section 8 we construct a mapping that is needed in the formulation of the correctness criterion of the unification and
combination of Tμ-strategies.
In Section 9 we prove the correctness of the unification of the fixed-point free fragment of Tμ-strategies, that is, the Tμ-
strategies without the fixed-point constructor.
In Sections 10, 11 and 12 we develop the notions and tools as well as the intermediary results required in the proof of the
main result. This is the technical core of the paper.
In Section 13 we sum up the results of the previous three sections and prove the correctness of the unification and com-
bination for the full class of Tμ-strategies, from which we prove the important algebraic properties of the unification and
combination.
In Section 14 we give a summary, few concluding remarks and we announce future work.
To improve the readability of the paper, some proofs are given in the Appendix.

2. Preliminaries: terms, substitution, notations, rewriting

We introduce preliminary definitions and notations.

Terms, contexts Let F = ∪n≥0Fn be a set of symbols called function symbols. The arity of a symbol f in Fn is n and
is denoted ar(f). Elements of arity zero are called constants and often denoted by the letters a, b, c, etc. The set F0 of
constants is always assumed to be not empty. Given a denumerable set X of variable symbols, the set of terms T (F ,X) is
the smallest set containing X and such that f (t1, . . . , tn) is in T (F ,X) whenever ar(f) = n and ti ∈ T (F ,X) for i ∈ [1..n].
Let � /∈ X be an extra variable, the set T�(F , X) of contexts, denoted simply by T� , is made with terms with symbols in
F ∪ X ∪ {�} which always includes exactly one occurrence of �. Evidently, T�(F , X) and T (F , X) are two disjoint sets.
For a term t and a context τ , we shall write τ [t] for the term that results from the replacement of � by t in τ . We shall
write simply T (resp. T�) instead of T (F ,X) (resp. T�(F , X)). We denote by Var (t) the set of variables occurring in t .
We shall write ar(t) to mean the arity of the symbol at the root of t .

Positions, prefix-order, substitution Let t be a term in T (F ,X). The position ε is called the root position of t , and the
function or variable symbol at this position is called the root symbol of t . A position in a tree is a sequence of integers,
i.e., an element in Nω

ε = {ε} ∪ N ∪ (N × N) ∪ · · · . In particular we shall write Nε for {ε} ∪ N , such positions are called
unitary positions. Given two positions p = p1 p2 . . . pn and q = q1q2 . . .qm , the concatenation of p and q, denoted by pq, is
the position p1 p2 . . . pnq1q2 . . .qm . We notice that in the examples, when we write, for instance, the position 12, we mean
the concatenation of 1 and 2, and not the twelfth position.
4

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
The set of positions of the term t , denoted by Pos (t), is a set of positions of positive integers such that, if t ∈ X is a
variable or t ∈F0 is a constant, then Pos (t) = {ε}. If t = f (t1, ..., tn) then Pos (t) = {ε} ∪ ⋃

i=1,n {ip | p ∈Pos (ti)}.
The prefix order defined as p ≤ q iff there exists p′ such that pp′ = q, is a partial order on positions. If p′ 	= ε then we

obtain the strict order p < q. We write (p ‖ q) iff p and q are incomparable with respect to ≤. The binary relations � and
� defined by p � q iff

(
p < q or p ‖ q

)
and p � q iff

(
p ≤ q or p ‖ q

)
, are total relations on positions.

For any p ∈ Pos(t) we denote by t|p the subterm of t at position p, that is, t|ε = t , and f (t1, ..., tn)|iq = (ti)|q . For
a term t , we shall denote by δ(t) the depth of t , defined by δ(t0) = 1, if t0 ∈ X ∪ F0 is a variable or a constant, and
δ(f (t1, . . . , tn)) = 1 + max(δ(ti)), for i = 1, . . . , n. For any position p ∈ Pos (t) we denote by t [s]p the term obtained by
replacing the subterm of t at position p by s: t[s]ε = s and f (t1, ..., tn)[s]iq = f (t1, ..., ti[s]q, ..., tn).

A substitution is a mapping σ : X → T (F , X) such that σ(x) 	= x for only finitely many x’s. The finite set of variables
that σ does not map to themselves is called the domain of σ : Dom(σ) def= {x ∈X | σ(x) 	= x}. If Dom(σ) = {x1, ..., xn} then
we write σ as: σ = {x1 → σ (x1) , ..., xn → σ (xn)}.

A substitution σ : X → T (F ,X) uniquely extends to an endomorphism σ̂ : T (F , X) → T (F , X) defined by: σ̂ (x) =
σ(x) for all x ∈ Dom(σ), σ̂ (x) = x for all x /∈ Dom(σ), and σ̂ (f (t1, . . . , tn)) = f (σ̂ (t1), . . . , ̂σ(tn)) for f ∈ F . In what follows
we do not distinguish between a substitution and its extension.

For two terms t, t′ ∈ T , we say that t matches t′ , written t � t′ , iff there exists a substitution σ , such that σ(t) = t′ . It
turns out that if such a substitution exists, then it is unique. A substitution σ ′ is subsumed by a substitution σ iff σ ′(t)
matches σ(t) for any term t .

A most general unifier of the two terms t and t′ is a substitution γ such that γ (t) = γ (t′) and, for any other substitution
γ ′ satisfying γ ′(t) = γ ′(t′), we have that γ ′ is subsumed by γ . The most general unifier is unique up to a variable renaming.

The composition of functions will be denoted by “◦”. The set of all subsets of a set S will be denoted by ℘(S). For a
finite set S , we write |S| for the number of elements of S . For a finite set S of integers, the maximum (resp. minimum) of
S will be denoted by max(S) (resp. min(S)).

Lexicographic ordering A lexicographic ordering, denoted by “<”, on the Cartesian product Nn = N × . . . × N (n-times),
where n ≥ 1, is inductively defined for any (a1, . . . , an) and (b1, . . . , bn) in Nn such that (a1, . . . , an) < (b1, . . . , bn) iff either
n = 1, and in this case a1 < b1. Or n ≥ 2, and in this case either i.) a1 < b1 or ii.) a1 = b1 and (a2, . . . , an) < (b2, . . . , bn).

3. Position-based Tμ-strategies and their combination

The operation of combining Tμ-strategies requires an abstract operation of merging contexts, a concrete example of
which will be provided. The algebraic properties of the combination will be presented in the general case.

Definition 1 (Merging of contexts). Any associative binary operation

• : T� × T� → T�
is called merging of contexts.

Example 2 (Merging of contexts by composition). We give an example of the operation of merging of contexts, denoted by “•”,
as follows:

τ • τ ′ = τ [τ ′]Pos
(
τ ,�)

where Pos (t,�) is the position of � in t . This kind of merging has been introduced in [25] and implemented in MEMSALab
software. For instance, the merging of the two contexts τ1 = Index(�, i) and τ2 = Index(�, j), used for inserting indices
to mathematical variables or functions, is given by

τ1 • τ2 = τ1[τ2]1 = Index(Index(�, j), i),

where i and j are terms.

To define the position-based Tμ-strategies, we introduce two particular position-based strategies as follows. Firstly, for a
position p and a context τ , we define the jump strategy @p.τ that, when applied to a term t , it inserts τ at the position
p of t . Secondly, we define the failing strategy f that fails when applied to any term. Their precise semantics are given in
Definition 5 of the semantics of position-based Tμ-strategies.

Definition 3 (Position-based Tμ-strategies). Let p1, . . . , pn be positions in Pos and τ1, . . . , τn be contexts in T� with n ≥ 1. A
position-based Tμ-strategy is either the failing strategy f or the ordered conjunction∧

i=1,n

@pi .τi .
5

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
The set of position-based Tμ-strategies is denoted by E .

Notice that the order of positions in
∧

i=1,n @pi .τi matters. We impose that the position-based Tμ-strategies follow
some constraints regarding the positions of insertions to avoid conflicts: the order of context insertions must go up from
the leaves to the root. Formally,

Definition 4 (Well-founded position-based Tμ-strategy). Let p1, . . . , pn positions in Pos and τ1, . . . , τn be contexts in T� with
n ≥ 1. A position-based Tμ-strategy E

E =
∧

i=1,n

@pi .τi

is well-founded iff

i.) every position occurs at most once in E , i.e. pi 	= p j for all i 	= j, and
ii.) lower positions appear earlier in E , i.e. i < j if pi � p j , for all i, j ∈ [1, n].

Moreover, the position-based Tμ-strategy f is well-founded.

In all what follows we work only with the set of well-founded position-based Tμ-strategies, still denoted by E . For two
position-based Tμ-strategies E and E ′ , we shall abuse of notation and write E = E ′ to mean that they are equal up to a
permutation of their parallel positions. For a position p, we let

@p.
∧

i=1,n

@pi .τi =
∧

i=1,n

@ppi .τi .

We next define the semantics of a position-based Tμ-strategy as a function in T ∪ {F} → T ∪ {F}, with the idea that
if the application of a position-based Tμ-strategy to a term fails, the result is F . Besides, we adopt a stronger version of
failure, that is,

∧
i=1,n @pi .τi fails when each of @pi .τi fails. To formalize this notion of failure we need to introduce an

intermediary function

η : (T ∪ {F} → T ∪ {F}) → T ∪ {F} → T ∪ {F},
that stands for the fail as identity. It is defined for any function f in T ∪ {F} → T ∪ {F} and any term t ∈ T ∪ {F} by

(η(f))(t) =
{

f (t) if f (t) 	= F,

t otherwise.

The semantics of position-based Tμ-strategies follows.

Definition 5 (Semantics of position-based Tμ-strategies). The semantics of a position-based Tμ-strategy E is a function �E� in
T ∪ {F} → T ∪ {F} inductively defined by:

�f�(t)
def= F,

�E�(F)
def= F,

�@p.τ �(t)
def=

{
t[τ [t|p]]p if p ∈ Pos(t)

F otherwise,

�
∧

i=1,n

@pi .τi�(t)
def=

{((
η(�@pn.τn�)

) ◦ · · · ◦ (
η(�@p1.τ1�)

))
(t) if ∃pi ∈ {p1, . . . , pn} s.t. pi ∈ Pos(t)

F otherwise.

Two Tμ-strategies E and E ′ are said to be semantically equivalent, if and only if �E�(t) = �E ′�(t), for any term t .

Notice that two position-based Tμ-strategies are semantically equivalent iff they are equal up to a renaming of parallel
positions.

Example 6. We illustrate with an example of position-based Tμ-strategies with their application to a term in MEMSALab.
Consider the two contexts τ1 = Index(�, i) and τ2 = Index(�, j). Applying the position-based Tμ-strategy @ε.τ1 to the
term t = Var(x, �) gives the transformation of a space variable x defined on a domain � to its coordinate xi . The procedure
is given by
6

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Index

� i

Index

� j

∂

u x

∂

Index

u i

Index

x j

Fig. 1. The tree structure of the contexts τ1 = Index(�, i) and τ2 = Index(�, j), and the term ∂xu. The term ∂x j ui results from the application of the
position-based Tμ-strategy @1.τ1 ∧ @2.τ2 to ∂xu, as discussed in Example 7.

�@ε.τ1�(t) = t[τ1[t|ε]]ε = t[τ1[t]]ε = τ1[t]Pos(τ1,�) = Index (Var(x,�), i) .

Let τ = τ1 • τ2, where “•” stands for the operation of merging of contexts by composition as defined in Example 1. The
application of the position-based Tμ-strategy @ε.τ to the term t gives

�@ε.τ �(t) = τ [t]Pos(τ1[τ2],�) = Index (Index (Var (x,�) , j) , i) .

Example 7. We illustrate an application of a position-based Tμ-strategy on the derivative of a function represented by the
term t′ = ∂xu, where u is the derived function, x is the mathematical variable and ∂x the derivation operator with respect to
x. Let τ1 = Index(�, i) and τ2 = Index(�, j) be contexts. The application of the position-based Tμ-strategy @1.τ1 ∧ @2.τ2

to t′ yields the term ∂x j ui . Since the positions 1 and 2 are parallel, this Tμ-strategy is well-founded and its application to
t′ yields

�@1.τ1 ∧ @2.τ2�(t′) = (�@1.τ1� ◦ �@2.τ2�)(t′) = �@1.τ1�(�@2.τ2�(t′)) = ∂x j ui .

The tree structures of τ1, τ2, ∂xu and ∂x j ui are depicted in Fig. 1.

The unification of two position-based Tμ-strategies amounts to sort and merge their positions, and to merge their
contexts if they are inserted at the same position. To simplify the following Definition 8, when unifying position-based
Tμ-strategies E and E ′ in the general case (2), we can assume without loss of generality that each of them contains an
insertion at the root position ε, because otherwise one can add to each of them the identity insertion @ε.� that leaves
unchanged any term to which it is applied.

Definition 8 (Unification of position-based Tμ-strategies). The unification of two position-based Tμ-strategies is the binary
operation � : E × E −→ E defined as

1. (a) f � E = f.
(b) E � f = f.

2. If E = ∧
pi∈I @pi .τi ∧ @ε.τ and E ′ = ∧

q j∈ J @q j .τ
′
j ∧ @ε.τ ′ , for two partially ordered sets I and J of positions, then

E � E ′ =
∧

pi∈I∩ J

@pi .(τi • τ ′
i) ∧ R ∧ R ′ ∧ @ε.(τ • τ ′),

where

R =
∧

pi∈I\ J

@pi .τi and R ′ =
∧

q j∈ J\I

@q j .τ
′
j .

Notice that since one can reorder the positions of R ∧ R ′ , then the unification of two well-founded position-bases Tμ-
strategies can be turned into an equivalent well-founded one, i.e. into a unique (up to a permutation of parallel positions)
well-founded position-based Tμ-strategy.

Example 9. Consider position-based Tμ-strategies

E = @p1.τ1 ∧ @p2.τ2 ∧ @p3.τ3 and E ′ = @p1.τ
′
1 ∧ @q1.τ

′
2 ∧ @q2.τ

′
3,

and the sets of their positions are P = {p1, p2, p3} and P ′ = {p1, q1, q2}, respectively. Hence P ∪ P ′ = {p1, p2, p3, q1, q2} and
P ∩ P ′ = {p1}. The unification of E and E ′ is

E � E ′ = @p1.(τ
′
1 • τ1) ∧ @p2.τ2 ∧ @p3.τ3 ∧ @q1.τ

′ ∧ @q2.τ
′ .
2 3

7

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
For practical reasons, we need to introduce the combination of two position-based Tμ-strategies in the same way as
their unification apart that the combination of a position-based Tμ-strategy with the failure is the identity.

Definition 10 (Combination of two position-based Tμ-strategies). The combination of two position-based Tμ-strategies is a
binary operation � : E × E −→ E defined for any E and E ′ in E by

E � E ′ =

⎧⎪⎨⎪⎩
E � E ′ if E 	= f and E ′ 	= f

E if E 	= f and E ′ = f

E ′ if E = f.

The algebraic properties of the unification and the combination of position-based Tμ-strategies are stated in the follow-
ing Propositions 11 and 12, respectively.

Proposition 11. The set E of position-based Tμ-strategies together with the unification operation enjoy the following properties.

1. The neutral element of the unification is @ε.�,
2. The absorbing element of the unification is f,
3. The unification is associative, i.e. (E � E ′) � E ′′ = E � (E ′ � E ′′).
4. The unification of position-based Tμ-strategies is (non-)commutative if and only if the operation “•” of merging of contexts is

(non-)commutative.
5. The unification is idempotent if and only if the operation of merging of the contexts is idempotent, that is, E � E = E for any E ∈ E

iff τ • τ = τ for any contexts τ in T� .

Proposition 12. The set E of position-based Tμ-strategies together with the unification and combination operations enjoy the follow-
ing properties.

1. The neutral element of the combination is f.
2. The combination is associative, i.e. (E � E ′) � E ′′ = E � (E ′ � E ′′).
3. The combination of position-based Tμ-strategies is (non-)commutative if and only if the operation of merging of the contexts “•”

is (non-)commutative.
4. The combination is idempotent iff the operation “•” of merging of contexts is idempotent.

The proof of these propositions does not provide any difficulties since the properties of associativity, (non)-commutativity,
and idempotence of the unification and combination are inherited from their counterpart properties of the merging of
contexts.

4. The class of Tμ-strategies

As far as the unification is concerned, designing a class of strategies faces the following challenging issues: 1.) finding
the right class of extensions that is closed by combination: a less expressive class would not be closed under combination
nor useful in practice, while very expressive extensions are impossible to combine, 2.) finding the right basic constructors
of the extensions: very rudimentary constructors would make the size of the extensions very huge and non-practical, while
more general constructors are very hard to combine, 3.) combining the “while” loops, or iterations, is the most difficult
part and requires a special care, 4.) proving the correctness of the combination by taking into account the semantics of the
extensions.

We introduced the position-based Tμ-strategies to clarify the ideas behind contexts, their insertion as well as their
combination. However, position-based Tμ-strategies are not satisfactory for practical applications, since the positions are
generally not flexible, not accessible and cannot be used on a regular basis in applications. So, we enrich this framework
by supplementing position-based Tμ-strategies with navigation strategies to form a class of Tμ-strategies which is closed
under combination.

Syntax and semantics of Tμ-strategies A Tμ-strategy is composed of two parts: a navigation of the input term without
changing it, and an insertion of contexts at certain positions. The navigation part is built up using the left-choice constructor
(⊕), a conditional constructor “if-then”, a pattern-matching “u; S” with a pattern u, the Most(S) constructor that applies
S to all the children of the input term, the jump constructor @i.S to a position i as well as a conjunction of such jumps,
and the fixed-point constructor (“μ”) allowing the recursion in the definition of strategies. The resulting class is called the
class of Tμ-strategies, which stands for traversal strategies with fixed-points.

In what follows we assume that there is an enumerable set of fixed-point variables denoted by Z . Fixed-point variables
in Z will be denoted by X, Y , Z , . . .
8

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Definition 13 (Grammar of Tμ-strategies). The class of Tμ-strategies is defined by the following grammar:

S ::= f | X | @ε.τ | u; S | S ⊕ S | μX .S | @i.S | @i1.S ∧ @i2.S | Most(S) | If S Then S

where X is a fixed-point variable in Z , and τ is a context in T� , and u is a term in T , and i, i1, i2 are unitary positions in
Nε . The set of Tμ-strategies will be denoted by C . The subset of fixed-point free Tμ-strategies will be denoted by C0.

Notations We shall write “If S1&S2 Then S” instead of If S1 Then
(
If S2 Then S

)
. If a set of positions I is empty, then the

Tμ-strategy
∧

i∈I @i.Si is just the failure f.
We notice that extending the class of Tμ-strategies by allowing the position i of the jump constructor @i.S to range

over arbitrary positions in Nω
ε instead of unitary positions in Nε does not increase the expressiveness of the strategy

language. This can be achieved by turning each Tμ-strategies @p.S , where p is a position in Nω
ε into @q1. · · · .@qn.S , with

p = q1. · · · .qn and each q j is a unitary position in Nε .
The design of the class of Tμ-strategies is inspired by the μ-calculus formalism [8] since we need very rudimentary

strategy constructors. In particular the jumping into the immediate positions of the term tree is morally similar to the dia-
mond and box modalities (〈·〉 and [·]) of the propositional modal μ-calculus. And the fixed-point constructor is much finer
than the iterate operator of e.g. [10]. Besides, we incorporate the left-choice strategy constructor and a pattern matching
operation.

An occurrence of a fixed-point variable X is bound in a Tμ-strategy S if it is under the scope of a “μX”. Otherwise, it is
said free. The set of bound variables of S will be denoted by Bound(S). A Tμ-strategy is closed if all its fixed-point variables
are bound. We shall sometimes write S(X) to emphasize that the fixed-point variable X is free in S(X).

Example 14. We informally illustrate the semantics of Tμ-strategies through an example. Consider the Tμ-strategy defined
by S(X) = (u; τ) ⊕ (@1.X) and its iteration μX .S(X), where u is a term and τ is a context. When applied to a term t , the
Tμ-strategy μX .S(X) checks first whether u matches with t . If it is the case, then the context τ is inserted at the root of
t and stops, yielding the term τ [t]. Otherwise, the Tμ-strategy jumps to the position 1 of t , i.e. the left-most child of t ,
and reiterates the procedure by applying μX .S(X) to this child. If it reaches the left-most leaf of t with which u does not
match, then the Tμ-strategy μX .S(X) fails on t . For instance, the application of μX .S(X) to the term f (v, f (u, f (u, a)))

gives f (v, f (τ [u], f (u, a))), while it fails on f (v, f (f (a, u), u)).

Remark 15. Notice that a Tμ-strategy is composed of two parts: i.) a navigation part that consists of the navigation strategies
that browse the input term without changing it. These strategies are the pattern matching, the left-choice, the iteration, the
jump, the conjunction, the Most, and the “if-then”. And, ii.) an insertion part that modifies the input term and consists
of an insertion of contexts.

Definition 16 (Unfolding). For any Tμ-strategy S(X) ∈ C , and n ≥ 1, we define the unfolding of μX .S(X) which replaces the
fixed-point operator on X by n-iterations as follows

μ0 X .S(X)
def= f and μn X .S(X)

def= S(μn−1 X .S(X)).

Example 17 (Unfolding). For a pattern u ∈ T and a context τ , let

S(X) = (u;@ε.τ) ⊕ @1.X

be a Tμ-strategy. We give examples of the replacement of the fixed-point operator of μX .S(X) by n-iterations, for n =
0, 1, 2, as follows:

μ0 X .S(X) = f.

μ1 X .S(X) = S(μ0 X .S(X))

= S(f)

= (u;@ε.τ) ⊕ @1.f.

μ2 X .S(X) = S(μ1 X .S(X))

= S
(
(u;@ε.τ) ⊕ @1.f

)
= (u;@ε.τ) ⊕ @1.

(
(u;@ε.τ) ⊕ @1.f

)
.

The formal definition of the semantics of Tμ-strategies follows.
9

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Definition 18 (Semantics of Tμ-strategies). The semantics of a closed Tμ-strategy S is the function �S� : T ∪F → T ∪F , which
is defined inductively as follows.

�f�(t)
def= F .

�S�(F)
def= F .

�u; S�(t)
def=

{
�S�(t) if u � t,

F otherwise.

�@ε.τ �(t)
def= τ [t].

�S1 ⊕ S2�(t)
def=

{
�S1�(t) if �S1�(t) 	= F,

�S2�(t) otherwise.

�μX .S(X)�(t)
def= �μδ(t) X .S(X)�(t).

�If S1 Then S�(t)
def=

{
�S�(t) if �S1�(t) 	= F,

F otherwise.

�@p.S�(t)
def=

{
t[�S�(t|p)]p if �S�(t|p) 	= F and p ∈ Pos(t),

F otherwise.

�
∧

i=1,n

@pi .Si�(t)
def=

{(
η(�@pn.Sn�) ◦ · · · ◦ η(�@p1.S1�)

)
(t) if ∃i ∈ [1,n] s.t. �@pi .Si�(t) 	= F,

F otherwise.

�Most(S)�(t)
def= �

∧
i=1,ar(t)

@i.S�(t).

We shall refer to �S�(t) as the application of S to t .

Notice that when the application of
∧

i=1,n @pi .Si or of μX .S(X) fails, it does not return the input term untouched
(i.e. it does not behave as the identity), but fails as well. The reason is that we want a fine semantics that distinguishes
between the identity that operates successfully and returns the input term (e.g. @ε.�), and the failure that indicates that
the Tμ-strategy was not applied, which may launch other Tμ-strategies. Notice also that

∧
i=1,n @pi .Si fails if and only if

each @pi .Si fails, and not just one of them fails. This is important because we want to make the semantics of
∧

i compatible
with that of Most in terms of failure, that is why we expressed the latter in terms of the former, and the only reason for
that is to be able to unify

∧
i with Most, see Section 5, and remaining in the same framework of Tμ-strategies. Otherwise,

a richer semantics in terms of handling the failure requires the framework [7] in which the failures are handled explicitly
in the formalism, making it impractical.

The general definition of the semantics of the fixed-point constructor requires an unnecessary machinery involving
Knaster-Tarski fixed-point theorem [26] and complete lattices. However, due to the particular nature of Tμ-strategies, we

gave an adhoc definition of the fixed-point Tμ-strategy by �μX .S(X)�(t) def= �μδ(t) X .S(X)�(t), which is the same as that
given by the least-fixed point. The justification of the iteration of S(f) at most δ(t) times, the depth of t , is that the nav-
igation part of a Tμ-strategy does not change the input term t , see Remark 15 and Example 19. Therefore, either the
Tμ-strategy S progresses on the term t and will reach the leaves of t after at most δ(t) iterations, or S does not progress
and in this case it fails after any iteration. Examples of Tμ-strategies that do not progress are μX .X and μX .(u, X) for a
term u. Technically, we show in Corollary 70 that, for every term t , the Tμ-strategy R = μδ(t) X .S(X) is a fixed-point of
S(X) in the sense that �S(R)�(t) = �R�(t). Notice that any Tμ-strategy of the form μX .S(X, X), in which X occurs twice,
can be turned into the equivalent Tμ-strategy μX .μY .S(X, Y) in which X occurs once. This equivalence can be proved by
induction on S(X, X), and more generally it holds for any μ-calculus [8].

Example 19 (Semantics of Tμ-strategies). We give two examples of Tμ-strategies and their semantics. Let τ , τ ′ be contexts in
T� , and let f (f (b)) and g(b, b′, x) be terms in T , where b, b′ are constants, and x is a rewriting variable.

1. Consider the Tμ-strategy

S(X) = (b;@ε.τ) ⊕ @1.X .

The Tμ-strategy μX .S(X) checks whether the constant b matches with an input term t , if it does then τ is inserted at
the root of t (i.e. b) yielding τ [b], otherwise it jumps to the position 1 of t and iterates the same operation. We next
10

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
illustrate the application of μX .S(X) to f (f (b)). Since the depth of f (f (b)) is δ(f (f (b))) = 3, we need to compute
μ3 X .S(X), as we did for a similar Tμ-strategy in Example 17, thus we get:

μ3 X .S(X) = (b;@ε.τ) ⊕ @1.
(
(b;@ε.τ) ⊕ @1.

(
(b;@ε.τ) ⊕ @1.f

))
.

Hence the application of μX .S(X) to f (f (b)) yields

�μX .S(X)�
(

f (f (b))
) = �μ3 X .S(X)�

(
f (f (b))

)
= �@1.

(
(b;@ε.τ) ⊕ @1.

(
(b;@ε.τ) ⊕ @1.f

))
�
(

f (b))
)

= �(b;@ε.τ) ⊕ @1.
(
(b;@ε.τ) ⊕ @1.f

)
�(b)

= �b;@ε.τ �(b)

= �@ε.τ �(b)

= τ [b].
2. Consider the Tμ-strategy

R(Y) = g(b,b′, x); (@1.τ ∧ @2.τ ′ ∧ @3.Y
)
.

The Tμ-strategy μY .R(Y) expects a term of the form g(b, b′, t′), then it inserts τ on its first child (i.e. b), and inserts τ ′
on its second child (i.e. b′), then jumps to the third child (i.e. t′) and iterates the same operation. Hence the application
of μY .R(Y) to the term g(b, b′, g(b, b′, b)), which has depth 3, yields

�μY .R(Y)�
(

g(b,b′, g(b,b′,b))
) = �μ3Y .R(Y)�

(
g(b,b′, g(b,b′,b))

)
= �R

(
μ2Y .R(Y)

)
�
(

g(b,b′, g(b,b′,b))
)

= �g(b,b′, x);
(

@1.τ ∧ @2.τ ′ ∧ @3.
(
μ2Y .R(Y)

))
�
(

g(b,b′, g(b,b′,b))
)

= �@1.τ ∧ @2.τ ′ ∧ @3.
(
μ2Y .R(Y)

)
�
(

g(b,b′, g(b,b′,b))
)

= g
(
τ [b], τ ′[b′], η(

�μ2Y .R(Y)�(g(b,b′,b))
)︸ ︷︷ ︸

t′′

)
,

hence

t′′ = η
(
�R(μ1Y .R(Y))�(g(b,b′,b))

= η
(
�g(b,b′, x); (@1.τ ∧ @2.τ ′ ∧ @3.

(
μ1Y .R(Y)

))
�
(

g(b,b′,b)
))

= g
(
τ [b], τ ′[b′], η(

�μ1Y .R(Y)�(b)
))

= g
(
τ [b], τ ′[b′], η(

�R(μ0Y .R(Y))�(b)
))

= g
(
τ [b], τ ′[b′], η(

�R(f)�(b)
))

= g
(
τ [b], τ ′[b′], η(

�g(b,b′, x); (@1.τ ∧ @2.τ ′ ∧ @3.f
)
�(b)

))
= g(τ [b], τ ′[b′],b).

Summing up, we get

�μY .R(Y)�
(

g(b,b′, g(b,b′,b))
) = g

(
τ [b], τ ′[b′], g(τ [b], τ ′[b′],b)

)
.

In the following example we show how to encode the two standard traversal strategies OuterMost and InnerMost
in our formalism using the fixed-point constructor.

Example 20. In what follows we assume that S is a Tμ-strategy. We recall that, when applied to a term t , the Tμ-strategy
OuterMost(S) tries to apply S to the maximum of the sub-terms of t starting from the root of t , it stops when it is
successfully applied. And when applied to a term t , the Tμ-strategy InnerMost(S) tries to apply S to the maximum of
the sub-terms of t starting from the leaves of t , it stops when it is successfully applied. Hence,

OuterMost(S) := μX .
(

S ⊕ Most(X)
)

and InnerMost(S) := μX .
(
Most(X) ⊕ S

)
.

11

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Definition 21. Let S, S ′ be Tμ-strategies and n ≥ 1 an integer. We shall write

i) S ≡ S ′ iff �S� = �S ′�. In this case, S and S ′ are called equivalent.
ii) S ≡n S ′ iff �S�(t) = �S ′�(t) for any term t of depth δ(t) = n. In this case, S and S ′ are called n-equivalent.

Notice that “≡” is an equivalence relation and that S and S ′ are equivalent iff they are n-equivalent for any n ≥ 1.

5. Unification and combination of Tμ-strategies

The problem now is to extend the operations of unification and combination of position-based Tμ-strategies (i.e. Defi-
nitions 8 and 10) to the larger class of Tμ-strategies. These two extensions must fulfill a correctness criterion that will be
devised in Subsection 5.1. The subsequent subsections are devoted to the definition of the extension of unification (Defini-
tion 34) and the extension of the combination (Definition 35). Then we give an example of unification of Tμ-strategies and
comment it.

5.1. A correctness criterion for the extension of the unification and combination to Tμ-strategies

Since there are many ways to define an extension of the unification operation from position-based Tμ-strategies (i.e. the
class E) to Tμ-strategies (i.e. the class C), one needs a criterion that both guides the elaboration of a definition and ensures
its correctness. Such a criterion should impose a compatibility between the unification operation upon E and its extension
to the larger class C , in the sense that the former operation should stand as the basis for the latter.

For this purpose, out of a term in T and a Tμ-strategy in C , we shall construct a unique (up to a permutation of parallel
positions) position-based Tμ-strategy in E . That is, we shall define a mapping

� : T −→ C −→ E

that associates to any term t in T and any closed Tμ-strategy S in C , a position-based Tμ-strategy (�(t))(S) in E , denoted
simply by �t(S), such that the semantic equivalence is preserved in the following sense:

��t(S)�(t) = �S�(t). (1)

Since the mapping � takes into account the semantics, then the correctness criterion is nothing but the compatibility
between the unification upon E and its extension to C , i.e. for any term t , the following two operations yield the same
result:

i.) the unification of two Tμ-strategies in C , followed by the mapping of the result to E by �t , and
ii.) the mapping of each of these two Tμ-strategies to E by �t , followed by the unification of the resulting position-based

Tμ-strategies.

This natural correctness criterion will be formalized in Definition 22 for both the unification and combination. However, to
simplify the exposition we shall not define the mapping � here but in Definition 46 of Section 8, since the statement of the
main results does not require this definition. Furthermore, we shall show in Lemma 48 of Section 8 that the thus defined
� preserves the semantic equivalence in the sense of Eq. (1).

Definition 22 (Correctness criterion for the extension of � and �). An extension � : C × C −→ C of the unification � : E × E −→
E is correct, if and only if, for every term t ∈ T and for every Tμ-strategies S and R in C , we have that

�t(S � R) = �t(S)��t(R).

Similarly, an extension � : C × C −→ C of the combination � : E × E −→ E is correct, if and only if, for every term
t ∈ T and for every Tμ-strategies S and R in C , we have that

�t(S � R) = �t(S)��t(R).

That is, the following diagrams commute.

C × C C

E × E E

�

�t×�t �t

�

C × C C

E × E E

�

�t×�t �t

�

12

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
5.2. Sub-Tμ-strategies, memory and pre-Tμ-strategies

Since the unification of Tμ-strategies will be defined by induction, we need to define the notion of the set of sub-Tμ-
strategies of a given Tμ-strategy. With a slight modification allowing S(μX .S(X)) to be in the set of such sub-Tμ-strategies
of μX .S(X), we also define the set of augmented sub-Tμ-strategies.

Definition 23 (Sub-Tμ-strategies of a Tμ-strategy). Given a Tμ-strategy S , we inductively define the finite set of sub-Tμ-
strategies of S , denoted by (S), as well as the finite set of augmented sub-Tμ-strategies of S , denoted by ̃(S), which are
similar apart for the fixed-point Tμ-strategies:

(f) = {f}, ̃(f) = {f},
(X) = {X}, ̃(X) = {X},

(@ε.τ) = {@ε.τ }, ̃(@ε.τ) = {@ε.τ },
(u; S) = {u; S} ∪ (S), ̃(u; S) = {u; S} ∪ ̃(S),

(@p.S) = {@p.S} ∪ (S), ̃(@p.S) = {@p.S} ∪ ̃(S),

(S1 ⊕ S2) = {S1 ⊕ S2} ∪ (S1) ∪ (S2), ̃(S1 ⊕ S2) = {S1 ⊕ S2} ∪ ̃(S1) ∪ ̃(S2),

(
∧

i=1,n

Si) = {
∧

i=1,n

Si} ∪
⋃

i=1,n

(Si), ̃(
∧

i=1,n

Si) = {
∧

i=1,n

Si} ∪
⋃

i=1,n

̃(Si),

(
If S1 Then S

) = {If S1 Then S} ∪ (S1) ∪ (S), ̃
(
If S1 Then S

) = {If S1 Then S} ∪ ̃(S1) ∪ ̃(S),

(μX .S(X)) = {μX .S(X)} ∪ (S(X)). ̃(μX .S(X)) = {μX .S(X)} ∪ ̃(S(X)) ∪
(

S
(
μX .S(X)

))
.

A Tμ-strategy R is said to be a sub-Tμ-strategy of S if R is in (S).
Similarly, the set of all fixed-point sub-Tμ-strategies of S , denoted by μ(S), as well as the set of all augmented fixed-point

sub-Tμ-strategies of S , denoted by ̃μ(S), are defined similarly apart for the fixed-point Tμ-strategies:

μ(f) = ∅, ̃μ(f) = ∅,

μ(X) = ∅, ̃μ(X) = ∅,

μ(@ε.τ) = ∅, ̃μ(@ε.τ) = ∅,

μ(u; S) = μ(S), ̃μ(u; S) = ̃μ(S),

μ(@p.S) = μ(S), ̃μ(@p.S) = ̃μ(S),

μ(S1 ⊕ S2) = μ(S1) ∪ μ(S2), ̃μ(S1 ⊕ S2) = ̃μ(S1) ∪ ̃μ(S2),

μ(
∧

i=1,n

Si) =
⋃

i=1,n

μ(Si), ̃μ(
∧

i=1,n

Si) =
⋃

i=1,n

̃μ(Si),

μ

(
If S1 Then S

) = μ(S1) ∪ μ(S), ̃μ

(
If S1 Then S

) = ̃μ(S1) ∪ ̃μ(S),

μ(μX .S(X)) = {μX .S(X)} ∪ μ(S(X)). ̃μ(μX .S(X)) = {μX .S(X)} ∪ ̃μ(S(X)) ∪ μ(S(μX .S(X))).

Clearly, μ(S) ⊂ (S) ⊂ ̃(S) and μ(S) ⊆ ̃μ(S) and ̃μ(S) ⊆ ̃(S). Notice that if S is fixed-point free, then (S) =
̃(S) and μ(S) = ̃μ(S) = ∅. Indeed, the set of augmented sub-Tμ-strategies ̃(S) is finite and this can be easily shown
by induction on S . We illustrate the Definition 23 with the following example.

Example 24 (Of , ̃, μ and ̃μ). For a given pattern u ∈ T and a context τ , let

S(X) = (u;@ε.τ) ⊕ @1.X

be a Tμ-strategy. Hence the sets (μX .S(X)), ̃(μX .S(X)), μ(μX .S(X)) and ̃μ(μX .S(X)) are easily computed as fol-
lows:

(μX .S(X)) = {μX .S(X)} ∪ (S(X))

= {μX .S(X)} ∪ {S(X)} ∪ {(u;@ε.τ), (@ε.τ),@1.X, X}
= {μX .S(X), S(X), (u;@ε.τ), (@ε.τ),@1.X, X},

and
13

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
̃(μX .S(X)) = {μX .S(X)} ∪ ̃(S(X)) ∪
(

S
(
μX .S(X)

))
= {μX .S(X)} ∪ (S(X)) ∪

(
S
(
μX .S(X)

))
(Since S(X) is fixed-point free)

= {μX .S(X)} ∪ (S(X)) ∪ {S(μX .S(X))} ∪
(
(u;@ε.τ) ⊕ @1.μX .S(X)

)
(Definition of S(μX .S(X)))

= {μX .S(X)} ∪ (S(X)) ∪ {S(μX .S(X))} ∪ (u;@ε.τ) ∪ (@1.μX .S(X)
)

= {μX .S(X)} ∪ (S(X)) ∪ {S(μX .S(X))} ∪ (u;@ε.τ) ∪ {@1.μX .S(X)} ∪ (μX .S(X)
)

= {μX .S(X)} ∪ {S(μX .S(X))} ∪ {@1.μX .S(X)} ∪ (μX .S(X)
)

(Since (S(X)) and (u;@ε.τ) are a subset of (μX .S(X)))
= {μX .S(X)} ∪ {S(μX .S(X))} ∪ {@1.μX .S(X)} ∪ {S(X), (u;@ε.τ), (@ε.τ),@1.X, X}

(The expression of ((μX .S(X)) was computed above)
= {μX .S(X), S(μX .S(X)),@1.μX .S(X), S(X), (u;@ε.τ), (@ε.τ),@1.X, X}, and

μ(μX .S(X)) = {μX .S(X)}, and

̃μ(μX .S(X)) = {μX .S(X)}.

In the Example 24 above we have that μ(μX .S(X)) = ̃μ(μX .S(X)), but this is not true in general as shown in the
following remark.

Remark 25. The inclusion μ(R) ⊆ ̃μ(R) is strict in general, that is, there is a Tμ-strategy R such that μ(R) � ̃μ(R).
This is achieved by taking a Tμ-strategy R of the form:

R = μX .μY .S(X, Y),

and noticing that the Tμ-strategy μY .S(R, Y) is neither in μ(R) nor in (R), but in ̃μ(R) and in ̃(R).

The unification of two Tμ-strategies will be given by means of a reduction system that requires storing a piece of
information, called memory, related to the input Tμ-strategies. Roughly speaking, a memory is a set of triples where the
first and the second element of each triple is a fixed-point sub-Tμ-strategy or an augmented Tμ-strategy, and the third
element is a fixed-point variable. The idea behind the memory is that the unification of a fixed-point Tμ-strategy μX .S(X)

with a Tμ-strategy R amounts to the unification of S(μX .S(X)) with R , or more precisely, the unification of μX .S(X) with
R produces a Tμ-strategy μZ .T (Z), where Z is a fresh-fixed point variable and T (Z) is the unification of S(μX .S(X)) with
R . To ensure that this process terminates we need to store the triple (μX .S(X), R, Z) in the memory so that Z is produced
whenever μX .S(X) is unified again with R .

The formal definition of the memory follows.

Definition 26 (Memory). Given an enumerable set Z of fixed-point variables, as well as two Tμ-strategies S and R , we
define the set of all memories related to S and R with respect to Z , denoted by MZ (S, R) or simply by M(S, R), as the
following set of sets of triples:

M(S, R) = ℘
((

̃μ(S) × (̃(R) \Z) ×Z
) ∪ (

(̃(S) \Z) × ̃μ(R) ×Z
))

.

More generally, the set of all memories, denoted by M, is defined by

M =
⋃

S,R∈C
M(S, R).

An element in M(S, R) or in M is called a memory.

An example of a memory related to two Tμ-strategies follows.

Example 27 (Memory). For given patterns u, u′ ∈ T and contexts τ , τ ′ , let

S(X) = (u;@ε.τ) ⊕ @1.X and S ′(X ′) = (u′;@ε.τ ′) ⊕ @1.X ′

be Tμ-strategies. From Example 24 above we have that

̃(μX .S(X)) = {μX .S(X), S(μX .S(X)),@1.μX .S(X), S(X), (u;@ε.τ), (@ε.τ),@1.X, X}, and

̃(μX ′.S ′(X ′)) = {μX ′.S(X ′), S(μX ′.S(X ′)),@1.μX ′.S(X ′), S(X ′), (u′;@ε.τ ′), (@ε.τ ′),@1.X ′, X ′}.
14

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Given Z = {Z1, Z2, . . . , Z6}, we give an example of a memory M related to μX .S(X) and μX ′.S ′(X ′)) and Z , i.e. M ∈
MZ

(
μX .S(X), μX ′.S ′(X ′)

)
.

M = {(
μX .S(X), S ′(X ′), Z1

)
,

(
S(X),μX ′.S ′(X ′), Z2

)
,(

μX .S(X),@ε.τ ′, Z3
)
,

(
@ε.τ ,μX ′.S ′(X ′), Z4

)
,(

μX .S(X),@1.X ′, Z5
)
,

(
@1.X,μX ′.S ′(X ′), Z6

)}
.

From now on we let Z to be an enumerable set of fixed-point variables. Since the unification reduction system will
handle two Tμ-strategies together with a memory, this new object is called a Pre-Tμ-strategy and defined next.

Definition 28 (Pre-Tμ-strategies). The class of pre-Tμ-strategies is defined by the following grammar:

P ::= S | 〈S, S ′,M〉 | u; P | P ⊕ P | μX .P | @i.P ∧ @i′.P | Most(P) | If S Then P

where S, S ′ are Tμ-strategies in C , M is a memory in M, X is a fixed-point variable in Z , u is a term in T and i, i′ are
unitary positions in Nε . The set of pre-Tμ-strategies will be denoted by P .

Like in the modal μ-calculus, it is easier and convenient to work with Tμ-strategies that make progress when applied to
a term. Making progress is guaranteed by a syntactic requirement, called monotonicity, that imposes that in each fixed-point
sub-Tμ-strategy μX .S(X) there is at least a position jump or a Most from the root of S(X) to X .

Definition 29 (Monotonicity of Tμ-strategies). A Tμ-strategy T is monotonic if for any μX .S(X) ∈ μ(T), there exist Tμ-
strategies S ′(X) and S ′′(X) each of which is a sub-Tμ-strategy of S(X) such that S ′(X) is either of the form @i.S ′′(X)

where i ∈Nε \ {ε}, or of the form Most(S ′′(X)).

For instance, the Tμ-strategy μX .
(
(u; @ε.τ) ⊕ @1.X

)
(resp. μX .

(
(u; @ε.τ) ⊕ Most(X)

)
) is monotonic since there the

jump “@1” (resp. “Most”) between μX and X . While μX .
(
(u; @ε.τ) ⊕ X

)
is not monotonic.

We generalize next the condition of well-foundedness from position-based Tμ-strategies to Tμ-strategies.

Definition 30 (Well-founded Tμ-strategies.). A Tμ-strategy S is well-founded iff every position-based Tμ-strategy that is a
sub-Tμ-strategy of S is well-founded in the sense of Definition 4.

5.3. The procedure of unification of Tμ-strategies

From now on we shall abuse of language and refer to the extension of the unification operation from position-based
Tμ-strategies to Tμ-strategies, as simply the unification of Tμ-strategies. Before giving the procedure of unification of Tμ-
strategies, we need the following assumptions on the structure of Tμ-strategies.

Assumptions 31. Throughout this paper, each Tμ-strategy is well-founded, monotonic, closed, and in which each fixed-
point variable appears once, and each of their sub-Tμ-strategies which is of the form @i.S ′ or

∧
i @i.Si , is preceded by a

pattern-matching, i.e. u; @i.S ′ and u; ∧i @i.Si .

These assumptions do not exclude interesting cases, since either they exclude cases which do not make sense (e.g. a Tμ-
strategy with free fixed-point variables, or not well-founded), or they make the Tμ-strategies easier to handle in the proofs
without missing interesting cases, for instance, imposing that each fixed-point variable appears once is not a restriction
since each Tμ-strategy can be turned into a Tμ-strategy with such a property by applying the following simplification
operations which preserve the semantic equivalence (i.e. a Tμ-strategy is semantically equivalent to its simplification).

Simplifications 32. The simplification operations of Tμ-strategies consist of:

(i) renaming identical bound variables, for instance μX .S(X) ⊕ μX .R(X) can be turned into μX .S(X) ⊕ μY .R(Y), this is
known in the literature as the α-conversion, and

(ii) renaming identical occurrences of variables if they are bound to the same fixed-point operator, for instance if S(X, X) is
a Tμ-strategy in which X appears twice, then we can turn μX .S(X, X) into the equivalent Tμ-strategy μX .μY .S(X, Y),
and

(iii) removing useless μ contractors, i.e. turning μX .S into S when X does not appear in S .

We define next the procedure of unification of Tμ-strategies by means of a reduction system that operates on pre-Tμ-
strategies, in which the pattern u related to the position i in Tμ-strategy S will be denoted by Patt(S, i), or simply by Patt(i)
when S is known.
15

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Definition 33. We define the reduction system U operating on pre-Tμ-strategies and consisting of the following reduction
rules with a decreasing order of priority.

1. (a) 〈f, S,M〉 → f.
(b) 〈S, f,M〉 → f.

2. 〈@ε.τ ,@ε.τ ′,M〉 → @ε.(τ • τ ′).
3. (a) 〈(u; S), S ′,M〉 → u; 〈S, S ′,M〉.

(b) 〈S ′, (u; S),M〉 → u; 〈S ′, S,M〉.
4. (a) 〈@i.S,@i.S ′,M〉 → @i.〈S, S ′,M〉.

(b) If S = ∧
i∈I @i.Si ∧ @ε.τ and S ′ = ∧

j∈ J @ j.S ′
j ∧ @ε.τ ′ then

〈S, S ′,M〉 → If S&S ′ Then
∧

i∈I∩ J

@i.
(〈Si, S ′

i,M〉 ⊕ Si ⊕ S ′
i

) ∧ R ∧ R ′ ∧ @ε.(τ • τ ′),

where

R =
∧

i∈I\ J

@i.Si and R ′ =
∧

j∈ J\I

@ j.S ′
j .

5. (a) 〈(S1 ⊕ S2), S,M〉 → 〈S1, S,M〉 ⊕ 〈S2, S,M〉.
(b) 〈S, (S1 ⊕ S2),M〉 → 〈S, S1,M〉 ⊕ 〈S, S2,M〉.

6. (a) 〈(If S1 Then S2), S,M〉 → If S1 Then 〈S2, S,M〉.
(b) 〈S, (If S1 Then S2),M〉 → If S1 Then 〈S, S2,M〉.

7. (a) 〈Most(S),Most(S ′),M〉 → If
(
Most(S)&Most(S ′)

)
ThenMost

(〈S, S ′,M〉 ⊕ S ⊕ S ′).
(b) 〈Most(S),

∧
i∈I @i.Si,M〉 → 〈∧i∈[1,ar(u)] @i.S,

∧
i∈I @i.Si,M〉 where u = Patt(i)

(c) 〈∧i∈I @i.Si,Most(S),M〉 → 〈∧i∈I @i.Si,
∧

i∈[1,ar(u)] @i.S,M〉 where u = Patt(i)

8. (a)

〈μX .S(X)︸ ︷︷ ︸
ξ

, S ′,M〉 →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μZ .〈S(ξ), S ′,M′〉, if (ξ, S ′, ·) /∈M,

where

{
Z = fresh(ξ, S ′),
M′ =M∪ {(ξ, S ′, Z)}.

Z if (ξ, S ′, Z) ∈ M.

(b)

〈S ′,μX .S(X)︸ ︷︷ ︸
ξ

,M〉 →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μZ .〈S ′, S(ξ),M′〉, if (S ′, ξ, ·) /∈M,

where

{
Z = fresh(S ′, ξ),

M′ =M∪ {(S ′, ξ, Z)}.

Z if (S ′, ξ1, Z) ∈ M.

Explanation of the rules Notice that, by construction, for any tuple 〈S, S ′,M〉 produced by the unification reduction system
U, the memory M is redundancy free, that is, if (S1, R1, Z1) and (S1, R1, Z2) are in M, then Z1 = Z2. We comment on the
key points in Definition 33.

Pattern matching: If we omit the memory M in the rule 3a for sake of simplicity, then the unification of u; S with S ′
is naturally u; S ′′ , where S ′′ is the unification of S with S ′ , since we want that the pattern u proceeds the merging
of S and S ′ .

Most: For the unification of two Most s (i.e. rule 7a), we first recall the semantics of this constructor. When a Tμ-
strategy Most(S) is applied to term t , the Tμ-strategy S is applied to each of its children. In particular, Most(S)

fails on t if and only if S fails on each of t ’s children. Otherwise, when Most(S) succeeds on t , then S behaves
as the identity on the children of t on which it fails, see Definition 18. While unifying two Tμ-strategies Most(S)

and Most(S ′) we need to distinguish two cases. (i) If one of these Tμ-strategies fails, then the result should fail.
This is achieved by the condition If

(
Most(S)&Most(S ′)

)
in the resulting Tμ-strategy. (ii) If both of them do not

fail when applied to a term t then we need to consider whether each of them fails or not on each child of t . In
order to explain the Most

(〈S, S ′,M〉 ⊕ S ⊕ S ′) part in the resulting unified Tμ-strategy, let ti be a child of t , and
consider the four cases:
16

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
(ii.1) if both of S and S ′ succeeds on ti , then we need to consider their unification. This explains the 〈S, S ′,M〉
part.

(ii.2) If both of them fails on ti , then their unification should fail on ti as well. But this holds since 〈S, S ′,M〉 ⊕
S ⊕ S ′ fails as well.

(ii.3) If S succeeds on ti while S ′ fails on it, then the resulting unified Tμ-strategy should apply S to ti . But this
is achieved by 〈S, S ′,M〉 ⊕ S ⊕ S ′ which is equal to S since 〈S, S ′,M〉 fails on ti .

(ii.4) If S fails on ti while S ′ succeeds on it, then this case is symmetric to the previous one.
The unification of Most(S) with a conjunction of position jumps

∧
i∈I @i.Si requires that we encode Most(S)

into a conjunction of position jumps as well.
Fixed-points: The idea behind the unification of μX .S(X) with R (i.e. rule 8a) is to unfold μX .S(X) to S(μX .S(X))

and then to unify S(μX .S(X)) with R . Indeed this process is terminating thanks to the use of memory since
we memorized that we passed through the unification of μX .S(X) with R and we generated a fresh fixed-point
variable Z , this is done by adding the tuple (μX .S(X), R, Z) to the memory. Thanks to the memory, the next time
we face the unification of μX .S(X) with R , we shall produce Z .

We shall show in Subsection 10.2 that the unification system U is terminating and confluent. This allows us to define
the unification operation in terms of the normal form with respect to U. The normal form of 〈S, S ′,∅〉 will be denoted
by NF〈S, S ′,∅〉. The definition of the unification and combination of Tμ-strategies follow. We emphasize that throughout
this paper, as far as we are dealing with the unification and combination, we assume that the two sets of the fixed-point
variables of the two input Tμ-strategies are disjoint.

Definition 34 (Unification of Tμ-strategies). The unification of Tμ-strategies is the binary operation � : C × C −→ C , defined
for any S and S ′ in C by

S � S ′ def= NF〈S, S ′,∅〉.

Notice that the unification of two Tμ-strategies yields a Tμ-strategy that captures the effect of both insofar as they are
compatible, where the compatibility of two Tμ-strategies depends on each input term and is related to their successful
application. That is, if S and S ′ can be applied successfully to a term t , then the application of their unification S � S ′ on
t succeeds as well and reproduces the effect that S and S ′ being applied simultaneously. However, the incompatible effects
are covered by the combination in the sense that if S � S ′ fails on a term t , then S or S ′ fails, and the combination returns
the non-failing one, if any. This justifies the following definition of the combination.

Definition 35 (Combination of Tμ-strategies). The combination of Tμ-strategies is the binary operation � : C × C −→ C , de-
fined for any S and S ′ in C by

S � S ′ def= (S � S ′) ⊕ S ⊕ S ′.

Example 36 (Unification of Tμ-strategies). We give an example of the unification of two fixed-point Tμ-strategies. For given
patterns u, u′ ∈ T and contexts τ , τ ′ , let

S(X) = (u;@ε.τ) ⊕ @1.X and S ′(X ′) = (u′;@ε.τ ′) ⊕ @1.X ′

ξ = μX .S(X) and ξ ′ = μX ′.S ′(X ′)

be Tμ-strategies. We compute the unification μX .S(X) � μX ′.S ′(X ′) which is the normal form of the tuple 〈μX .S(X),

μX ′.S ′(X ′), ∅〉 by applying the reduction rules of U given in Definition 33. Let

(∗) = 〈μX .S(X),μX ′.S ′(X ′),∅〉
→ μZ .〈S(ξ), ξ ′, {(ξ, ξ ′, Z)}〉 (Rule 8a)

→ μZ .μZ ′.〈S(ξ), S ′(ξ ′), {(ξ, ξ ′, Z), (S(ξ), ξ ′, Z ′)}︸ ︷︷ ︸
M

〉 (Rule 8b)

= μZ .μZ ′.〈(u;@ε.τ) ⊕ @1.ξ, S ′(ξ ′),M〉 (Def. of S(X))

→ μZ .μZ ′.
(〈u;@ε.τ , S ′(ξ ′),M〉︸ ︷︷ ︸

(I)

⊕〈@1.ξ, S ′(ξ ′),M〉︸ ︷︷ ︸
(II)

)
. (Rule 5a)

(I) → u; 〈@ε.τ , S ′(ξ ′),M〉 (Rule 3a)

= u; 〈@ε.τ , (u′;@ε.τ ′) ⊕ @1.ξ ′,M〉 (Def. of S ′(X ′))
17

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
→ u; (〈@ε.τ , u′;@ε.τ ′,M〉 ⊕ 〈@ε.τ ,@1.ξ ′,M〉) (Rule 5b)

→ u; ((u′; 〈@ε.τ ,@ε.τ ′,M〉) ⊕ 〈@ε.τ ,@1.ξ ′,M〉) (Rule 3b)

→ u; ((u′;@ε.(τ • τ ′)) ⊕ 〈@ε.τ ,@1.ξ ′,M〉) (Rule 2)

→ u; ((u′;@ε.(τ • τ ′)) ⊕ (If @1.ξ ′ Then @1.ξ ′ ∧ @ε.τ)
)
. (Rule 4b)

(II) = 〈@1.ξ, (u′;@ε.τ ′) ⊕ @1.ξ ′, M〉 (Def. of S ′(X ′))

→ 〈@1.ξ, u′;@ε.τ ′,M〉 ⊕ 〈@1.ξ,@1.ξ ′,M〉 (Rule 5b)

→ (
u′; 〈@1.ξ,@ε.τ ′,M〉) ⊕ 〈@1.ξ,@1.ξ ′,M〉 (Rule 3b)

→ (
u′; (If @1.ξ Then @1.ξ ∧ ε.τ ′)

) ⊕ 〈@1.ξ,@1.ξ ′,M〉 (Rule 4b)

= (
u′; If @1.ξ Then @1.ξ ∧ ε.τ ′) ⊕ @1.〈ξ, ξ ′,M〉 (Rule 4a)

= (
u′; If @1.ξ Then @1.ξ ∧ ε.τ ′) ⊕ @1.Z . (Rule 8a since (ξ, ξ ′, Z) ∈M)

Summing up, the unification (∗∗) of μX .S(X) and μX ′.S ′(X ′) is:

(∗∗) = μX .S(X) � μX ′.S ′(X ′)

= μZ .μZ ′.
(

u; ((u′;@ε.(τ • τ ′)) ⊕ (If @1.ξ ′ Then @1.ξ ′ ∧ @ε.τ)
)

⊕ (
u′; If @1.ξ Then @1.ξ ∧ ε.τ ′)

⊕ @1.Z

)
.

Notice that the fixed-point variable Z ′ does not appear in the resulting Tμ-strategy and therefore “μZ ′” can be removed.
The application of the resulting Tμ-strategy (∗∗) to a term t features four cases.

i.) Either both u and u′ match with t , and in this case the context τ ′ • τ is inserted at the root of t .
ii.) Or only u matches with t , and in this case τ is inserted at the position 1 of t provided the Tμ-strategy μX ′.S ′(X ′) is

applied successfully at the position 1 of t .
iii.) Or only u′ matches with t , and in this case τ ′ is inserted at the position 1 of t provided the Tμ-strategy μX .S(X) is

applied successfully at the position 1 of t .
iv.) Or both μX .S(X) and μX ′.S ′(X ′) are applied at the position 1 of t .

The unification of two Tμ-strategies in which each fixed-point variable appears once may yield a Tμ-strategy in which
a variable appears many times or does not appear at all, e.g. the Z ′ in the Example 36. An attention will be payed to
this issue since this assumption on the occurrences of fixed-point variables is not preserved by unification. However, other
assumptions listed in Assumptions 31 are preserved. Namely, it is easy to show that the unification of two well-founded
Tμ-strategies is a well-founded one. And we shall show later that the unification of two monotonic Tμ-strategies is a
monotonic one as well.

6. Statement of the results

In this section we state the main results of this paper, that is, the correctness of the procedure of unification and
combination stated in Subsection 6.1, and the algebraic properties of the unification and combination of Tμ-strategies stated
in Subsection 6.2. The proofs of these results can be found in Section 13.

6.1. Correctness of the unification and combination procedures

Theorem 37 (Correctness of the unification). The unification of Tμ-strategies is correct. That is, for every term t ∈ T and for every
Tμ-strategies S and R in C , we have that

�t(S � R) = �t(S)��t(R).

Theorem 38 (Correctness of the combination). The combination of Tμ-strategies is correct. That is, for every term t ∈ T and for every
Tμ-strategies S and R in C , we have that

�t(S � R) = �t(S)��t(R).
18

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
6.2. Algebraic properties of the unification and combination

The existence of the neutral elements and the associativity property of the unification and combination are obvious for
the sub-class of position-based Tμ-strategies but they are far from being so for the larger class of Tμ-strategies, and it
is crucial and useful to have them. Namely, a user of Tμ-strategies needs know the algebraic properties of the structure
he handles. For instance, he needs combine many Tμ-strategies, and thus needs to know if this combination is associative
and/or commutative. Besides, the properties of the neutral and absorbing elements allow one to simplify Tμ-strategies.

We notice that the neutral elements and the associativity property of the unification and combination must be under-
stood at the semantic level and not at the syntactic level since there are Tμ-strategies which are syntactically different
but semantically equivalent. For instance, the Tμ-strategies @ε.� and (x; @ε.�) and (x; @ε.�) ⊕ (y; @ε.�), where x, y are
variables, are all equivalent. More generally, the algebraic properties of the unification and combination will be formulated
in terms of equivalence classes of Tμ-strategies (with respect to the semantic equivalence relation) rather than syntactic
Tμ-strategies.

Technically speaking, since the semantic equivalence “≡” (Definition 21) is an equivalence relation, we shall use the
standard notation [S] for the equivalence class of the Tμ-strategy S , i.e. [S] = {S ′ ∈ C | S ′ ≡ S}, and the notation C/≡ for
the quotient set of C by “≡”, i.e. C/≡= {[S] | S ∈ C}. Moreover, the unification and combination of the equivalence classes
of Tμ-strategies in C/≡ can be defined in a natural way as:

[S1]� [S2] := [S1 � S2] [S1]� [S2] := [S1 � S2].
We notice that these two operations are well defined since they are a congruence by Theorems 41 and 42. The algebraic
properties of the unification of Tμ-strategies follow. In fact, the unification of Tμ-strategies inherits the properties of asso-
ciativity, (non-)commutativity and idempotence from the position-based Tμ-strategies and the merging of contexts.

Theorem 39. The quotient set C/≡ of Tμ-strategies together with the unification operation enjoy the following properties.

1. The neutral element of the unification upon C/≡ is [@ε.�].
2. The absorbing element of the unification is [f].
3. The unification of Tμ-strategies is associative, i.e. ([S1] � [S2]) � [S3] = [S1] � ([S2] � [S3]), for any S1, S2, S3 ∈ C .
4. The unification of Tμ-strategies is (non-)commutative if and only if the operation of merging of contexts “•” is (non-) commutative.
5. The unification of Tμ-strategies is idempotent if and only if the operation of merging of contexts is idempotent, that is, [S] � [S] =

[S] for any S ∈ C iff τ • τ = τ for any context τ in T� .

The algebraic properties of the combination of Tμ-strategies follow. In fact, the combination of Tμ-strategies inherits the
properties of associativity, (non-)commutativity and idempotence from the position-based Tμ-strategies and the merging of
contexts.

Theorem 40. The quotient set C/≡ of Tμ-strategies together with the combination operation enjoy the following properties.

1. The neutral element of the combination upon C/≡ is [f].
2. The combination of Tμ-strategies is associative, i.e. ([S1] � [S2]) � [S3] = [S1] � ([S2] � [S3]), for any S1, S2, S3 ∈ C .
3. The combination of Tμ-strategies is (non-)commutative if and only if the operation of merging of contexts • is (non-) commutative.
4. The combination of Tμ-strategies is idempotent if and only if the operation of merging of contexts is idempotent.

Since the mapping � : T −→ C −→ E preserves the semantic equivalence in the sense of Eq. (1), then � induces a
mapping �̇ : T −→ C/≡−→ E in a natural way by �̇t([S]) := �t(S), for any term t in T and Tμ-strategy S in C . It
turned out that, for any term t , the mapping �̇t : C/≡−→ E is a morphism from the structure (C/≡, �, �, [@ε.�], [f]) to
(E, �, �, @ε.�, f) since for any Tμ-strategies S1 and S2 in C , on the one hand,

�̇t([@ε.�]) = @ε.� and �̇t([f]) = f,

and on the other hand, it follows from Theorems 37 and 38 that

�̇t([S1]� [S2]) = �̇t([S1])� �̇t([S2]) and �̇t([S1]� [S2]) = �̇t([S1])� �̇t([S2]).
The congruence and non-degeneracy of the unification and combination are stated in the two following theorems, re-

spectively.

Theorem 41 (Congruence and non-degeneracy of the unification). The following holds.

1. The unification of Tμ-strategies is a congruence, that is, for any Tμ-strategies S1, S2, S in C , we have that:

If S1 ≡ S2 then S1 � S ≡ S2 � S and S � S1 ≡ S � S2.
19

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
2. The unification is non-degenerate, that is, for any Tμ-strategies [S] and [S ′] in C/≡, we have that

[S] � [S ′] = [f] iff [S] = [f] or [S ′] = [f].

Theorem 42 (Congruence and non-degeneracy of the combination). The following hold.

1. The combination of Tμ-strategies is a congruence, that is, for any Tμ-strategies S1, S2, S in C , we have that:

If S1 ≡ S2 then S1 � S ≡ S2 � S and S � S1 ≡ S � S2.

2. The combination is non-degenerate, that is, for any Tμ-strategies [S] and [S ′] in C/≡, we have that

[S]� [S ′] = [f] iff [S] = [f] and [S ′] = [f].

7. Outline of the proof of the main result

The most lengthy and difficult result to prove is Theorem 37 on the correctness of the unification of Tμ-strategies. The
remaining theorems are more or less a consequence of this theorem. In this section we give a relatively detailed outline of
the proof of Theorem 37 without the technical machinery which will be developed in the next sections. We shall proceed
in four steps:

Step 1. We first show that the unification of Tμ-strategies is correct in the particular setting, where the Tμ-strategies are
fixed-point free. More precisely, we shall show that the mapping � permutes with the unification (in the sense of
Theorem 37) within this particular setting. The proof is relatively easy and will be exposed in Section 9.

Step 2. Then we reduce the general setting to the fixed-point free setting by replacing the fixed-point operators by it-
erations whose number depends on the input term, Sections 10, 11 and 12. That is, we replace in the input
Tμ-strategies each fixed-point Tμ-strategy μX .S(X) with the unfolding S(S(. . . (S(f))) := μn X .S(X) whose length
is an arbitrary fixed integer n. Clearly, the unfolding of a Tμ-strategy is a fixed-point free one. The key idea is to
show that the unification of two Tμ-strategies is n-equivalent to the unification of their unfoldings. To accomplish
this, we compare the structure of the resulting two Tμ-strategies and show that they have a similar structure
(Lemma 87). We illustrate this idea of similarity of structures in a particular case through a simple example,
then we discuss the more general case. For the simple example, let M(Y), S(X) and R be three fixed-point free
Tμ-strategies where R does not contain neither a left choice ⊕ nor an If-Then. Consider, on the one hand, the
unification of M(μX .S(X)) with R , and on the other hand, the unification of the unfolding of M(μX .S(X)) with
the unfolding of R . Notice that the unfolding of R is equal to R since R is fixed-point free. The structure of the
Tμ-strategy M(μX .S(X)) � R is depicted on the left of Fig. 2, while that of the Tμ-strategy M(μn X .S(X)) � R is
on the right. That is, the unification M(μX .S(X)) � R yields a Tμ-strategy of the form T0(μZ1.T1(. . .)), whereas
the unification M(μn X .S(X)) � R yields a (fixed-point) free Tμ-strategy of the form T0(T1(. . .)).

The general case in which we unify S and R where both of them contain many fixed-point operators can
be obtained by generalizing the simple example. The general structure of the Tμ-strategy S � R is depicted
on the left of Fig. 3, while that of the Tμ-strategy that results from the unification of an unfolding of S
with an unfolding of R is on the right. The general structure of the Tμ-strategy on the left is of the form
T0(μZ1.T1(μZ2.T2(. . .μZm.Tm(Zm)))), while that on the right, is T0(T1(. . . Tm)). Besides, each Tμ-strategy T j

i
on the left is either a fixed-point variable or a fixed-point Tμ-strategy that results from the unification of two
Tμ-strategies where one of them is a fixed-point. Assume that T j

i is the normal form of 〈ξ j
i , R j

i , ·〉, where ξ j
i is a

fixed-point Tμ-strategy that is a sub-Tμ-strategy of S , while R j
i is a sub-Tμ-strategy of R . The main point is that

each T j
i is the result of the unification of an unfolding of ξ j

i with an unfolding of R j
i . Furthermore, the more we go

deeper into the right tree, i.e. j increases, the more the size of iterations in the unfoldings decreases. The formal-
ization of the notion of similarity between the unification of two Tμ-strategies and that of their unfoldings will
be done in Subsection 11.3. Proving the existence of such similarity between the unification and the unification of
unfoldings, as well as developing the properties of this similarity, namely the decrease of the size of iterations in
the unfoldings, will be done in Section 11.4.

Step 3. The third step of the proof consists of proving that the unification of two Tμ-strategies is equivalent to that of
their unfoldings by using the notion of similarity discussed before. More precisely, we shall show that, for any
n ≥ 1, the unification of two Tμ-strategies is n-equivalent to the s-unfolding of them, where s-unfolding amounts
to replace each fixed-point operator with an iteration of size n. This will be proved in Section 12, Proposition 105.
We outline next the general idea of this proof in a simple setting in which the unification S � R yields a Tμ-
strategy μZ1.T1(Z1). Thanks to the notion of similarity, we know that the unification of the s-unfolding of S
with the r-unfolding of R is of the form T1(T 1

1), where T 1
1 is the result of the unification of an s1-unfolding of

S with a s2-unfolding of R , where the s1-unfolding (resp. s2-unfolding) replaces each fixed-point operator in S
20

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
μZ1

μZ2

T0

T1

Z1

〈μX .S(X), R2, ·〉

T0

T1

T 1
1

〈μn−1 X .S(X), R2,∅〉

Fig. 2. The structure of the Tμ-strategy M(μX .S(X)) � R (left) and that of M(μn X .S(X)) � R (right), where M(Y), S(X) and R are fixed-point free, and
n ≥ 1.

μZ1

μZ2

μZ3

μZm

T0

T0
1 T0

k0

. . .

T1

T1
1 T1

k1

. . .

T2

T2
1 T2

k2

. . .

Tm

Tm
1 Tm

km

. . .

.........

T0

T 0
1 T 0

k0

. . .

T1

T 1
1 T 1

k1

. . .

T2

T 2
1 T 2

k2

. . .

Tm

T m
1 T m

km

. . .

.........

Fig. 3. The general structure of a Tμ-strategy S � R (left) and that of the Tμ-strategy that results from the unification of a full unfolding of S with a full
unfolding of R (right), where each Tμ-strategy Ti

j is either a fixed-point Tμ-strategy, or a fixed-point variable. Each T i
j is a unification of two unfoldings of

the same Tμ-strategies involved in Ti
j . Inductively, the structure of each Ti

j is again similar to the one of T i
j .

(resp. in R) with certain number of iterations that can be computed. To show that μZ1.T1(Z1) is n-equivalent to
T1(T 1

1) it suffices to show that T1(T 1
1) is a fixed-point of T1(Z1), i.e. that T1(T 1

1) is n-equivalent to T1(T1(T 1
1)). To

achieve this it is enough to show that T 1
1 is n′-equivalent to T1(T 1

1) provided that there is at least n − n′ jumps
between the root of T1(Z1) and Z1, where n′ is a constant that depends on s1 and s2. This raises two technical
problems. (i) Since T1(T 1

1) is the unification of the s-unfolding of S with the s-unfolding of R , and since T 1
1 is

the unification of the s1-unfolding of S with the s2-unfolding of R , how to relate in general the unification of two
unfoldings with the unification of two other unfoldings of the same Tμ-strategies? We shall address this problem
in Section 11.1 and show that the two resulting Tμ-strategies are equivalent up to a constant that depends on
the four unfoldings. And (ii) how to compute a lower bound on the number of such jumps? This question will be
addressed in Subsections 12.1 and 12.2. These results will be summed up in Subsection 12.3 to show the main
result of this third step (i.e. Proposition 105).

Step 4. Since an unfolding of a Tμ-strategy is a fixed-point free one, we shall rely on Proposition 105 together with the
correctness of the unification and combination for the fixed-point free setting outlined in Step 1, to prove the cor-
rectness of the unification and combination in the general setting. The proof turns to be relatively straightforward
and will be exposed in Subsection 13.1.
21

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
8. From Tμ-strategies to position-based Tμ-strategies: the definition of the mapping �

In this section we define the mapping � announced in Section 5, then state and prove its properties. Before doing this,
we need to define the tree depth of a Tμ-strategy that corresponds to the usual notion of depth of such a Tμ-strategy
after removing all the back-edges. We warn the reader that we shall use the same notation δ used for the depth of terms
introduced in the preliminaries section 2.

Definition 43 (Tree depth of a Tμ-strategy). The tree depth of a Tμ-strategy is the depth of its underlying tree after we have
ignored the fixed-point constructors of this Tμ-strategy. That is, it is the function δ : C −→N defined inductively as follows:

δ(f) = 0

δ(X) = 0

δ(@ε.τ) = 1

δ(u; S) = 1 + δ(S)

δ(@p.S) = 1 + δ(S)

δ(S1 ⊕ S2) = 1 + max{δ(S1), δ(Sn)}
δ(

∧
i=1,n

Si) = 1 + max{δ(S1), . . . , δ(Sn)}

δ
(
If S1 Then S

) = 1 + max{δ(S1), δ(S)}
δ(μX .S(X)) = δ(S(X)).

It is useful to normalize Tμ-strategies which are almost position-based Tμ-strategies, i.e. they involve position jumps
and conjunctions, by concatenation of their nested positions and by removing the failures. For instance, turning @i.@ j.S
into @i j.S , and turning @i.S ∧ @ j.f into @i.S . The definition of the normalization follows.

Definition 44 (Normalization). The normalization is the function θ that turns any Tμ-strategy built up with just position
jumps and conjunctions to a position-based Tμ-strategy as follows for any set of positions J :

θ(@i.τ) = @i.τ

θ(@i.@ j.S) = θ(@i j.S)

θ
(∧

j∈ J

@ j.S j
) = θ

(∧
j∈ J\{i}

@ j.S j
)

if Si = f

θ
(∧

j∈ J

@ j.S j
) =

∧
j∈ J

θ(@ j.S j)

θ
(
@i.

(∧
j∈ J

@ j.S j
)) =

∧
j∈ J

θ(@i j.S j).

Example 45 (Normalization). Let τ , τ ′ and τ ′′ be contexts in T� . Let S be the following Tμ-strategy:

S = @1.
(
@2.τ ∧ @3.(@4.τ ′ ∧ @5.τ ′′)

)
.

Then its normalization yields:

θ(S) = @12.τ ∧ @134.τ ′ ∧ @135.τ ′′.

Guided by the semantics of Tμ-strategies, we next define the mapping �.

Definition 46 (The mapping �). We define the mapping

� : T −→ C −→ E

that associates to any term t in T and any closed Tμ-strategy S in C a position-based Tμ-strategy �t(S) in E by

1. �t(f) = f.
22

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
2. �t(@ε.τ) = @ε.τ .

3. �t(S ⊕ S ′) =
{

�t(S) if �t(S) 	= f,

�t(S ′) otherwise.

4. �t(μX .S(X)) = �t
(
μδ(t) X .S(X)

)
.

5. �t(u; S) =
{

�t(S) if u � t,

f otherwise.

6. �t
(
If S ′ Then S

) =
{

�t(S) if �t(S ′) 	= f,

f otherwise.

7. �t
(∧

i=1,n @pi .Si
) = θ

(∧
i=1,n @pi .�t|pi

(Si)
)
.

8. �t(Most(S)) = �t
(∧

i=1,ar(t) @i.S
)
.

Example 47. If we consider the two Tμ-strategies S(X) and R(Y) defined in Example 19 by

S(X) = (b;@ε.τ) ⊕ @1.X,

R(Y) = μY .
(

g(b,b′, x); (@1.τ ∧ @2.τ ′ ∧ @3.Y
))

,

together with the two terms t = f (f (b)) and t′ = g(b, b′, g(b, b′, b)), then

�t(μX .S(X)) = @11.τ ,

�t′(μY .R(Y)) = @1.τ ∧ @2.τ ′ ∧ @31.τ ∧ @32.τ ′.

Lemma 48. The mapping � preserves the semantic equivalence in the sense that, for any term t in T and any Tμ-strategy S in C , we
have that

��t(S)�(t) = �S�(t).

The proof of this Lemma does not provide any difficulties since the definition of � is close to the definition of the
semantics of Tμ-strategies. The previous Lemma can be restated in terms of explicit properties as follows.

Lemma 49. The mapping � satisfies the following properties for any terms t, u, and for any closed Tμ-strategies S, S ′, R, R ′, E ′ , where
E ′ is built using only jumps and failures, and for any position-based Tμ-strategy E:

1. (a) �t(E) = E.
(b) �t(�t(S)) = �t(S).

2. �t(u; S) = �t(u; �t(S)).
3. �t(S ⊕ S ′) = �t(�t(S) ⊕ �t(S ′)).
4. (a) �t(If S ′ Then S) = �t(If �t(S ′) Then S).

(b) �t(If S ′ Then S) = �t(If S ′ Then�t(S)).
(c) �t(If S ′ Then S) = �t(If R ′ Then S) if �t(S ′) = �t(R ′).
(d) �t(If E ′ Then S) = �t(If θ(E ′) Then�t(S)).

5. (a) �t(S ∧ R) = �t
(

S ∧ R ′) if �t(R) = �t(R ′), whenever S, R, R ′ are a conjunction of jumps.
(b) �t(S ∧ R) = �t(S) if �t(R) = f, whenever S, R are a conjunction of jumps.

It turns out that the mapping � (Definition 46) preserves the semantics of Tμ-strategies in the following sense.

Lemma 50. The mapping � enjoys the following properties.

i.) For any position-based Tμ-strategies E, E ′ in E , we have that E = E ′ iff �t(E) = �t(E ′) for any term t.
ii.) For any Tμ-strategies S, S ′ in C , we have that S ≡ S ′ iff �t(S) = �t(S ′) for any term t.

iii.) For any Tμ-strategies S, S ′ in C , we have that S ≡n S ′ iff �t(S) = �t(S ′) for any term t of depth δ(t) = n.

Proof. We only prove Item ii.), the other items follow immediately from the definition of �. On the one hand, from the
definition of ≡ we have that

S ≡ S ′ iff �S�(t) = �S ′�(t), ∀t ∈ T .

However, it follows from Lemma 48 that
23

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
�S�(t) = ��t(S)�(t) and �S ′�(t) = ��t(S ′)�(t).

Therefore,

��t(S)�(t) = ��t(S ′)�(t), ∀t ∈ T .

Since, both �t(S) and �t(S ′) are position-based Tμ-strategies, it follows from Item i.) of this Lemma that �t(S) =
�t(S ′). �

We show in the following lemma that the mapping � can be pushed over the Tμ-strategy constructors.

Lemma 51. The mapping � satisfies the following properties for any closed Tμ-strategies S, S ′ and any position-based Tμ-strategy E
and any terms t, u:

1. (a) �t
(
u; (�t(S) � E

)) = �t(u; S) � E.

(b) �t
(
u; (E ��t(S)

)) = �t
(

E ��t(u; S)
)
.

2. (a) �t
(
(�t(S) ⊕ �t(S ′)) � E

) = �t(S ⊕ S ′) � E.

(b) E ��t
(
�t(S) ⊕ �t(S ′)

) = E ��t(S ⊕ S ′).
3. (a) �t

(
If S ′ Then (�t(S)� E)

) = �t
(
If S ′ Then �t(S)

)
� E.

(b) �t
(
If S ′ Then (E ��t(S))

) = E ��t(If S ′ Then �t(S)).

Proof. We only prove the cases 1a and 2a and 3a since the proof of the cases 1b and 2b and 3b is similar.

1. (a) We distinguish two cases depending on whether u matches with t or not. If u matches with t then the left-hand
side of the equation is

�t
(
u; (�t(S)� E

)) = �t(�t(S)� E) (Def. 46 of �)

= �t(S)� E, (since �t(S)� E is a position-based Tμ-strategy, Item 1a of Lemma 49)

and the right-hand side of the equation is �t(u; S) � E = �t(S) � E by the Definition of �, which is equal to the
left-hand side. If u does not match with t then, the left-hand side of the equation is f by the definition of �; and
the right-hand side is �t(u; S) � E = f � E = f.

2. (a) We distinguish two cases depending on whether �t(S) = f or not. If �t(S) = f then the left-hand side of the
equation is

�t
(
(�t(S) ⊕ �t(S ′))� E

) = �t
(
(f⊕ �t(S ′))� E

)
= �t

(
�t(S ′)� E

)
= �t(S ′)� E, (since �t(S ′)� E is position-based, Item 1a of Lemma 49)

and the right-hand side of the equation is �t(S ⊕ S ′) � E = �t(S ′) � E by the definition of �, which is equal to the
left-hand side. If �t(S) 	= f, then left-hand side of the equation is �t

(
(�t(S) ⊕ �t(S ′)) � E

) = �t
(
�t(S) � E

)
by the

definition of � on the left-choice, which is equal to �t(S) � E , since �t(S) � E is position-based. For the right-hand
side, we have �t(S ⊕ S ′) = �t(S) by the definition of �, thus we get the desired result.

3. We distinguish two cases depending on whether �t(S ′) = f or not. If �t(S ′) = f then the left-hand side of the equation
is �t

(
If S ′ Then (�t(S)� E)

) = f by the definition of �, and the right-hand side is �t
(
If S ′ Then�t(S)

)
� E = f � E =

f. If �t(S ′) 	= f then left-hand side of the equation is �t
(
If S ′ Then (�t(S)� E)

) = �t(�t(S) � E) which is equal to
�t(S) � E since �t(S) � E is a position-based Tμ-strategy, by the Item 1a of Lemma 49. And the right-hand side is
�t

(
If S ′ Then�t(S)

)
� E = �t(�t(S)) � E which is equal to �t(S) � E by the same item. �

9. Proof of the correctness of the unification of Tμ-strategies: the fixed-point free setting

In this section we prove the correctness of the unification procedure in the case where the two input Tμ-strategies are
fixed-point free (Proposition 55). This is an important step since we shall reduce in the next three sections 10, 11, 12 the
general setting into the fixed-point free one.

We notice that, in the fixed-point free setting, the memory involved in the unification system U remains empty and
does not play any role since the only rules that modify the contexts are the fixed-point ones. Obviously, such rules are
not applied since the input Tμ-strategies are fixed-point free. Besides, in this setting, the proof of the termination and the
confluence of U is trivial. Indeed, U terminates since each rule transforms a left-hand side Tμ-strategy into its immediate
sub-Tμ-strategies.

We need a simple set theoretic fact.
24

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Fact 52. Let I ′, J ′, J ′′ be sets. Then, (I ′ ∩ J ′′) ∪ (I ′ \ (J ′ ∪ J ′′)) = I ′ \ J ′ .

Since the definition of the mapping � involves the normalization of positions (function θ in Item 7 of Definition 46), we
need to show that this normalization does not disturb the unification in the following sense.

Lemma 53. Let S = ∧
i∈I @i.Si and R = ∧

j∈ J @ j.R j be two Tμ-strategies where each Si and Ri is either the failure f or the insertion
@ε.τi , for a context τi in T� . Then,

�t
(

S � R
) = �t

(
θ(S)� θ(R)

)
. (2)

Proof. Assume that

S =
∧
i∈I ′

@i.Si ∧
∧
i∈I ′′

@i.f and R =
∧
j∈ J ′

@ j.R j ∧
∧
j∈ J ′′

@ j.f,

where Si ∈ T� for any i ∈ I ′ , and R j ∈ T� for any j ∈ J ′ , and I ′ ∩ I ′′ = ∅ and J ′ ∩ J ′′ = ∅. Therefore,

θ(S) =
∧
i∈I ′

@i.Si and θ(R) =
∧
j∈ J ′

@ j.R j .

Consider the Tμ-strategy �̃:

�̃ =
∧

i∈I ′∩ J ′
@i.(Si � Ri ⊕ Si ⊕ Ri) ∧

∧
i∈I ′\ J ′

@i.Si ∧
∧

i∈ J ′\I ′
@i.Ri .

By computing the Tμ-strategies θ(S) � θ(R) and S � R involved in the right-hand side and the left-hand side of Eq. (2)
respectively, we get:

�t(θ(S)� θ(R)) = �t(If θ(S)&θ(R) Then �̃) (Item 4b of Def. 33 of �)

= �t(If S&R Then �̃) (Item 4d of Lemma 49)

= �t(If S&R Then�t(�̃)), (Item 4b of Lemma 49)

and

�t
(

S � R
) = �t

(
If S&R Then�

)
(Item 4b of Def. 33 of �)

= �t(If S&R Then�t(�)), (Item 4b of Lemma 49)

where � is the Tμ-strategy

� =
∧

i∈I ′∩ J ′
@i.(Si � Ri ⊕ Si ⊕ Ri) ∧

∧
i∈I ′∩ J ′′

@i.(Si � f⊕ Si ⊕ f) ∧
∧

i∈I ′′∩ J ′
@i.(f� Ri ⊕ f⊕ Ri)∧

∧
i∈I ′′∩ J ′′

@i.f∧
∧

i∈I ′\(J ′∪ J ′′)
@i.Si ∧

∧
i∈I ′′\(J ′∪ J ′′)

@i.f∧
∧

i∈ J ′\(I ′∪I ′′)
@i.Ri ∧

∧
i∈ J ′′\(I ′∪I ′′)

@i.f. (Item 4b Def. 33 of �)

Hence to prove Eq. (2) we need to show that �t(�̃) = �t(�). It follows that �t(�) can be written as

�t(�) = �t

(∧
i∈I ′∩ J ′

@i.(Si � Ri ⊕ Si ⊕ Ri) ∧
∧

i∈I ′∩ J ′′
@i.Si ∧

∧
i∈I ′′∩ J ′

@i.Ri ∧
∧

i∈I ′′∩ J ′′
@i.f∧

∧
i∈I ′\(J ′∪ J ′′)

@i.Si ∧
∧

i∈I ′′\(J ′∪ J ′′)
@i.f∧

∧
i∈ J ′\(I ′∪I ′′)

@i.Ri ∧
∧

i∈ J ′′\(I ′∪I ′′)
@i.f

)
(since �t(Si � f⊕ Si ⊕ f) = �t(Si) and �t(f� Ri ⊕ f⊕ Ri) = �t(Ri), by Item 5a of Lemma 49)

= �t

(∧
i∈I ′∩ J ′

@i.(Si � Ri ⊕ Si ⊕ Ri) ∧
∧

i∈I ′∩ J ′′
@i.Si ∧

∧
i∈I ′\(J ′∪ J ′′)

@i.Si ∧
∧

i∈ J ′\(I ′∪I ′′)
@i.Ri ∧

∧
i∈I ′′∩ J ′

@i.Ri

)
(since �t(@i.f) = f, by Item 5b of Lemma 49)

= �t

(∧
i∈I ′∩ J ′

@i.(Si � Ri ⊕ Si ⊕ Ri) ∧
∧

i∈I ′\ J ′
@i.Si ∧

∧
i∈ J ′\I ′

@i.Ri

)
(since (I ′ ∩ J ′′) � (I ′ \ (J ′ ∪ J ′′)) = I ′ \ J ′ and (J ′ ∩ I ′′) � (J ′ \ (I ′ ∪ I ′′)) = J ′ \ I ′, by Fact 52)

= �t(�̃). � (Def. of �̃)
25

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Notation 54. Throughout this paper the set of fixed-point free Tμ-strategies will be denoted by C0.

Now we are ready to show the main result of this section, that is, that the unification of fixed-point free Tμ-strategies
is correct.

Proposition 55. For every term t ∈ T and for every fixed-point free Tμ-strategies S and R in C0 , we have that

�t(S � R) = �t(S)��t(R). (3)

Or, equivalently, the following diagram commutes.

C0 × C0 C0

E × E E

�

�t×�t �t

�

Proof. The proof is by structural induction on S and R , which amounts to consider δ(S) the depth of S , and δ(R) the depth
of R .

Base case. If (δ(S), δ(R)) = (0, 0) then S = f or S = @ε.τ , and R = f or R = @ε.τ ′ . In this case the proof is trivial since
�t(S) = S and �t(R) = R .

Induction step. We assume that the claim holds for some S ′ and R ′ and we shall show it for any S and R such that either
i.) S ′ is an immediate sub-Tμ-strategy of S and R ′ = R , or ii.) R ′ is an immediate sub-Tμ-strategy of R and S ′ = S ,
or iii.) S ′ is an immediate sub-Tμ-strategy of S , and R ′ is an immediate sub-Tμ-strategy of R .
1. If S = u; S ′ and R is arbitrary then

�t(S � R) = �t((u; S ′)� R)

= �t
(
u; (S ′ � R)

)
(Item 3a of Def. 33 of �)

= �t
(
u;�t(S ′ � R)

)
(Item 2 of Lemma 49)

= �t
(
u; (�t(S ′)��t(R)

))
(Ind. hypothesis since S ′ is an immediate sub Tμ-strategy of S , and R = R ′)

= �t(u; S ′)��t(R) (Item 1a of Lemma 51)

= �t(S)��t(R). (Def. of S)

2. If S = S ′ ⊕ S ′′ and R is arbitrary then

�t(S � R) = �t((S ′ ⊕ S ′′)� R)

= �t
(
(S ′ � R) ⊕ (S ′′ � R)

)
(Item 5a of Def. 33 of �)

= �t
(
�t(S ′ � R) ⊕ �t(S ′′ � R)

)
(Item 3 of Lemma 49)

= �t
((

�t(S ′)��t(R)
) ⊕ (

�t(S ′′)��t(R)
))

(Ind. hypothesis)

= �t
((

�t(S ′) ⊕ �t(S ′′)
)
��t(R)

)
(Def. of �)

= �t(S ′ ⊕ S ′′)��t(R) (Item 2a of Lemma 51)

= �t(S)��t(R). (Def. of S)

3. If S = If S ′ Then S ′′ and R is arbitrary then

�t(S � R) = �t((If S ′ Then S ′′)� R)

= �t(If S ′ Then (S ′′ � R)) (Item 6a Def. 33 of �)

= �t
(
If S ′ Then�t((S ′′ � R))

)
(Item 4b of Lemma 49)

= �t
(
If S ′ Then

(
�t(S ′′)��t(R)

))
(Ind. hypothesis)

= �t
(
If S ′ Then�t(S ′′)

)
��t(R) (Item 3a of Lemma 51)

= �t
(
If S ′ Then S ′′)��t(R) (Item 4b of Lemma 49)

= �t(S)��t(R). (Def. of S)
26

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
4. If S = ∧
i∈I @i.Si and R = ∧

j∈ J @ j.R j then let

M1 =
∧

i∈I\ J

@i.Si and M2 =
∧

j∈ J\I

@ j.R j,

M�
1 =

∧
i∈I\ J

@i.�t|i (Si) and M�
2 =

∧
j∈ J\I

@ j.�t| j (R j).

The left-hand side of Eq. (3) can be written as

LH.3 = �t(S � R)

= �t
(
If S&R Then

∧
i∈I∩ J

@i.(Si � Ri ⊕ Si ⊕ Ri) ∧ M1 ∧ M2
)

(Item 4b of Def. 33 of �)

= �t

(
If S&R Then�t

(∧
i∈I∩ J

@i.(Si � Ri ⊕ Si ⊕ Ri) ∧ M1 ∧ M2
))

(Item 4b of Lemma 49)

= �t

(
If S&R Then θ

(∧
i∈I∩ J

@i.�t|i (Si � Ri ⊕ Si ⊕ Ri) ∧ M�
1 ∧ M�

2

))
(Item 7 of Def. 46 of �t(

∧
(·)))

= �t

(
If S&R Then

∧
i∈I∩ J

@i.�t|i (Si � Ri ⊕ Si ⊕ Ri) ∧ M�
1 ∧ M�

2

)
(Item 4d of Lemma 49)

= �t

(
If S&R Then

∧
i∈I∩ J

@i.
(
�t|i (Si)��t|i (Ri) ⊕ �t|i (Si) ⊕ �t|i (Ri)

) ∧ M�
1 ∧ M�

2

)
(Ind. hyp.)

= �t

(∧
i∈I

@i.
(
�t|i (Si)

)
�

∧
j∈ J

@i.
(
�t|i (Ri)

))
(Item 4b of Def. 33 of �)

= �t

(
θ
(∧

i∈I

@i.
(
�t|i (Si)

)
� θ

(∧
j∈ J

@i.
(
�t|i (Ri)

))))
(Lemma 53)

= �t

(
�t

(∧
i∈I

@i.Si

)
��t

(∧
j∈ J

@ j.R j

))
(Item 7 of Def. 46 of �t(

∧ ·))

= �t

(∧
i∈I

@i.Si

)
��t

(∧
j∈ J

@ j.R j

)
(Lemma 49)

= �t(S)��t(R). (Def. of S and R)

5. If S = Most(S ′) and R = Most(R ′) then assume that t is neither a constant nor a rewriting variable, i.e. δ(t) ≥ 2,
the case when δ(t) = 1 being trivial since both sides of the equation are equal to f. In this case we rewrite
Most(·) as

∧
i(·) and we apply Item 4 of this proof. Let

S� =
∧

i=1,ar(t)

@i.S ′ and R� =
∧

i=1,ar(t)

@i.R ′,

and notice that �t(S�) = �t(S) and �t(R�) = �t(R). Hence

�t(S � R) = �t
(
Most(S ′)� Most(R ′)

)
= �t

(
If (S&R) Then

(
Most

(
(S ′ � R ′) ⊕ S ′ ⊕ R ′))) (Def. 33 of �)

= �t
(
If (S&R Then�t

(
Most

(
(S ′ � R ′) ⊕ S ′ ⊕ R ′))) (Item 4b of Lemma 49)

= �t
(
If (S�&R�) Then�t

(
Most

(
(S ′ � R ′) ⊕ S ′ ⊕ R ′))) (Item 4c of Lemma 49)

= �t

(
If (S�&R�) Then�t

(∧
i=1,ar(t)

@i.
(
(S ′ � R ′) ⊕ S ′ ⊕ R ′)))

(Item 8 of Def. 46 of �t(Most(·)))

= �t

(
If (S�&R�) Then

∧
@i.

(
(S ′ � R ′) ⊕ S ′ ⊕ R ′)) (Item 4d of Lemma 49)
i=1,ar(t)

27

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
= �t

(∧
i=1,ar(t)

@i.S ′ �
∧

i=1,ar(t)

@i.R ′)
(Item 4b of Def. 33 of � in which I = J = {1, . . . ,ar(t)})

= �t

(∧
i=1,ar(t)

@i.S ′)��t

(∧
i=1,ar(t)

@i.R ′) (Item 4 of this proof)

= �t
(
Most(S ′)

)
��t

(
Most(R ′)

)
(Item 8 of Def. 46 of �t(Most(·)))

= �t(S)��t(R). � (Def. of S and R)

10. Properties of the unification reduction system and of Tμ-strategies

This section, together with the next two sections 11 and 12, is devoted to developing the ingredients required in the
proof of the main result of this paper regarding the correctness of the unification of Tμ-strategies in the general setting,
in which the Tμ-strategies contain fixed-point operators. In this section we introduce definitions and show preliminary
results which will be used in the next two sections. In Subsection 10.1 we define some measures on the structure of Tμ-
strategies, namely the number of nested fixed-point operators of a Tμ-strategy and its size. In Subsection 10.2 we show
the termination and the confluence of the unification reduction system. Un Subsection 10.3 we introduce the operation
of unfolding which turns all fixed-point operators of a Tμ-strategy into iterations of arbitrary fixed size. In Subsection
10.4 we show some useful properties related to Tμ-strategies, namely the semantic equivalence of two Tμ-strategies when
applied to terms of a certain depth, as well as a condition under which a Tμ-strategy is equivalent to a fixed-point one.
In Subsection 10.5 we show a key Lemma, called composition lemma, that expresses the unification of two Tμ-strategies in
terms of their sub-Tμ-strategies.

10.1. Measures of Tμ-strategies: the star height and the depth of Tμ-strategies

Taking into account that the structure of a Tμ-strategy is no longer a tree but a tree with back-edges that may contain
cycles, we slightly modify the standard measure of the depth of trees in order to capture both the number of nested loops,
caused by the nested application of the fixed-point constructor μ, and the distance from the root of the tree to the leaves.
Many proofs will be done by induction on this measure.

We adapt the definition of the star height [27,28] that measures the depth of Kleen operator � in regular languages to
Tμ-strategies in order to capture the number of the nested fixed-point constructor.

Definition 56 (Star height of a Tμ-strategy). The star height of a Tμ-strategy is the function h : C −→N defined inductively as
follows:

h(S) =

⎧⎪⎨⎪⎩
0 if S is fixed-point free

max
{

h(S ′(X1, . . . , Xn)),h(R1), . . . ,h(Rn)
}

if S = S ′(R1, . . . , Rn),n ≥ 1

1 + h(S ′) if S = μX .S ′.

Example 57 (Star height). If S(X) and R(Y) are fixed-point free Tμ-strategies with distinct free fixed-point variables, then

h(S(X)) = h(R(Y)) = 0.

We compute the star height of the Tμ-strategies μX .S(X) ⊕μY .R(Y) and μX .μY .(S(X) ⊕ R(Y)) and μX .
(

S(X) ⊕μY .R(Y)
)
.

Since the two fixed-point operators in μX .S(X) ⊕ μY .R(Y) are not nested, we have that:

h
(
μX .S(X) ⊕ μY .R(Y)

) = max
{

h(μX .S(X)),h(μY .R(Y))
}

= max
{

1 + h(S(X)),1 + h(R(Y))
}

= 1.

However, since the two fixed-point operators in μX .μY .(S(X) ⊕ R(Y)) are nested, we have that:

h
(
μX .μY .(S(X) ⊕ R(Y))

) = 1 + h
(
μY .(S(X) ⊕ R(Y))

)
= 1 + 1 + h

(
S(X) ⊕ R(Y)

)
= 2.

And similarly, the two fixed-point operators in μX .
(

S(X) ⊕ μY .R(Y)
)

are nested, thus we get:

h
(
μX .

(
S(X) ⊕ μY .R(Y)

)) = 2.
28

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
We combine the star height and the tree depth, defined in Definition 43, to obtain the desired measure that takes into
account both the number of the nested fixed-point constructors and the size of a Tμ-strategy.

Definition 58 (Depth of a Tμ-strategy). The depth of a Tμ-strategy S is the function � : C −→N ×N defined by

�(S) = (h(S), δ(S)).

Notice that if a Tμ-strategy S is fixed-point free, i.e. it does not contain the fixed-point constructor μ, then its depth
�(S) = (0, n), for some n ∈N .

The following fact shows that the depth of a fixed-point Tμ-strategy is strictly greater than the depth of its unfolding.

Fact 59. Let μX .S(X) be a Tμ-strategy where X is free in S(X). Then for any integer n ≥ 0 we have

�(μn X .S(X)) < �(μX .S(X)).

Proof. The case when n = 0 is trivial since �(μ0 X .S(X)) = �(f) = (0, 0). We show next that h(μX .S(X)) = 1 +
h(μn X .S(X)) for any n ≥ 1. It follows from the definition of the star height that h(μn X .S(X)) = h

(
S(S(. . . (S(f))))

) =
max{h(S(X)), h(S(f))} = h(S(f)) = h(S(X)). On the other hand, by the definition of the star height h(μX .S(X)) = 1 +
h(S(X)). And it follows from the lexicographic order that �(μn X .S(X)) < �(μX .S(X)). �

We next define the number of jumps (i.e. Tμ-strategies which are position jumps of the form @i.S or Most s) that
lie between the root of a Tμ-strategy to a free fixed-point variable. The idea is that by meeting jumps, the Tμ-strategy
makes progress. In particular, if at least one jump lies between any fixed-point constructor μX and the occurrence of X in
a Tμ-strategy S , then S is monotonic. Besides, we can compare the semantics of two Tμ-strategies M(S) and M(R) thanks
to number of jumps between the root of M(X) and X .

Definition 60. Let S(X) be a Tμ-strategy where the fixed-point variable X is free and appears once. The number of jumps
between the root of S(X) and X , denoted by �X (S(X)), is inductively defined as follows:

�X (X) = 0

�X (u; S ′(X)) = �X (S ′(X))

�X (S1(X) ⊕ S2) = �X (S1(X))

�X (S1 ⊕ S2(X)) = �X (S2(X))

�X
(
If S ′′ Then S ′(X)

) = �X (S ′(X))

�X
(
If S ′′(X) Then S ′) = �X (S ′′(X))

�X (μY .S ′(X, Y)) = �X (S ′(X, Y))

�X
(
(

∧
i=1,m

@i.Si) ∧ @ j.S ′(X)
) = 1 + �X (S ′(X))

�X (Most(S ′(X)) = 1 + �X (S ′(X)).

Example 61. Let u, u′ be patterns in T , and let S ′ be a fixed-point free Tμ-strategy. Let S(X) be the following Tμ-strategy:

S(X) = u;@1.
(
Most(u′;@2.X) ⊕ S ′).

There are three jumps between the root of S(X) and X , which are @1.(·) and Most(·) and @2.(·). That is,

�X (S(X)) = �X
(
u;@1.

(
Most(u′;@2.X) ⊕ S ′))

= �X
(
@1.

(
Most(u′;@2.X) ⊕ S ′))

= 1 + �X
(
Most(u′;@2.X) ⊕ S ′)

= 1 + �X
(
Most(u′;@2.X)

)
= 2 + �X

(
u′;@2.X

)
= 2 + �X

(
@2.X

)
= 3 + �X

(
X
)

= 3.
29

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Notice that if S is monotonic, then for every sub-Tμ-strategy μX .S ′(X) of S , we have that �X (S ′(X)) ≥ 1.

10.2. Termination and confluence of the unification reduction system

To show the termination of the reduction system U we need to define a measure on the tuples that strictly decreases
with each derivation rule. Notice that all the reduction rules strictly decrease the size of one or both of the left-hand
side Tμ-strategies except the fixed-point rules (8a) and (8b) which can replace μX .S(X) with S(μX .S(X)) that is larger
than μX .S(X). However, these fixed-point rules increase the size of the memory because the right-hand side memory is
augmented with (μX .S(X), R, ·). Since the size of any memory related to two fixed Tμ-strategies is bounded, to ensure the
termination of U, we need to define a measure that couples the difference between such bound and the size of the memory
with the size of the Tμ-strategies.

Definition 62. Let S and R be Tμ-strategies, and let M be a memory in M(S, R). We pose

�(S, R,M) := |μ(S)| · |(R)| + |(S)| · |μ(R)| − |M|
and define the measure (�(S, R, M), �(S), �(R)).

Proposition 63. The unification reduction system U enjoys the following properties.

1. The reduction system U is terminating and confluent.
2. The normal form of a pre-Tμ-strategy with respect to U is a Tμ-strategy in C (i.e. the normal form does not contain tuples).

Proof. 1. The termination is guaranteed by the fact that each reduction rule strictly decreases the measure
(�(S, R, M), �(S), �(R)) with respect to the lexicographic order. The confluence is guaranteed by the priority order
imposed on the reduction rules.

2. Each rule either advances in the Tμ-strategy of the tuple of the left-hand side part of this rule, or reduces the left-hand
side part into a Tμ-strategy. �

We show next in Lemma 64 a useful property of the unification of monotonic Tμ-strategies: if the same fixed-point
Tμ-strategy appears twice in a derivation with respect to the unification reduction system U, then this derivation produces
a jump. Indeed this is a direct consequence of monotonicity.

Lemma 64. Let μX .S(X), R and R ′ be Tμ-strategies. Let T (Z) be a pre-Tμ-strategy. Let M, M′ ∈ M be memories. If there is a series
of derivations of one of the following forms:

〈μX .S(X), R,M〉 �−→ T (〈μX .S(X), R ′,M′〉)
or

〈R,μX .S(X),M〉 �−→ T (〈R ′,μX .S(X),M′〉)
or

〈μX .S(X), R,M〉 �−→ T (μX .S(X))

or

〈R,μX .S(X),M〉 �−→ T (μX .S(X))

in U, then there is at least one jump between the root of T (Z) and Z . That is,

�Z (T (Z)) ≥ 1.

Proof. We only consider the first derivation since the other ones can be obtained by the same arguments. Recall that
μX .S(X) is monotonic by the general Assumption 31, that is, between μX .S(X) and X there is a position jump or Most(·).
This implies that, there exist Tμ-strategies S̃ and R̃ , a memory M̃, a tuple T̃ (Z̃), and a series of derivations

〈μX .S(X), R,M〉 �−→ T̃ (〈 S̃, R̃,M̃〉) �−→ T (〈μX .S(X), R ′,M′〉)
in U where S̃ is either of the form S̃ = ∧

i @i.S ′
i or S̃ = Most(S ′′). This implies that one of the rules (4a), (4b), (7a), (7b),

(7c) is applied in the derivation from T̃ (〈 S̃, R̃,M̃〉) to T (〈μX .S(X), R ′,M′〉). Each of which produces a position jump or
Most(·). �
30

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
An immediate consequence of the previous Lemma 64 is the following Corollary.

Corollary 65. The unification of two monotonic Tμ-strategies is a monotonic Tμ-strategy.

10.3. Iteration mapping and (generalized) unfolding of Tμ-strategies

We next generalize the notion of unfolding of Tμ-strategies to allow the replacement of each fixed-point constructor of
a Tμ-strategy by an iteration of arbitrary fixed size. The resulting Tμ-strategy is obviously fixed-point free.

Definition 66 (Iteration mapping, unfolding of a Tμ-strategy). Let S be a Tμ-strategy with bound fixed-point variables
X1, . . . , Xr and let s : {X1, . . . , Xr} → N be a mapping, called hereafter iteration mapping. The unfolding of S with respect
to s, denoted by ρs(S), consists of replacing each fixed-point constructor by a certain number of iterations given by s. It is
inductively defined as follows:

ρs(f) = f

ρs(X) = X

ρs(@ε.τ) = @ε.τ

ρs(u; S) = u;ρs(S)

ρs(@p.S) = @p.ρs(S)

ρs(S1 ⊕ S2) = ρs(S1) ⊕ ρs(S2)

ρs(
∧

i=1,m

Si) =
∧

i=1,m

ρs(Si)

ρs(If S1 Then S2) = Ifρs(S1)Thenρs(S2)

ρs(μX .S(X)) = μs(X) X .ρs(S(X)).

For two iteration mappings s and s′ defined on the same domain, we shall write s ≥ s′ to mean that s(X) ≥ s′(X) for any X
in the domain. We shall write also s > s′ to mean that s ≥ s′ and there exists X in the domain such that s(X) > s′(X).

Notice that, for a Tμ-strategy S and an iteration mapping s, if S is fixed-point free then ρs(S) = S .

Example 67 (Unfolding of a Tμ-strategy). Let S(X) and R(X) be fixed-point free Tμ-strategies. Let

T (X) = S(X) ⊕ μY .R(Y)

be a Tμ-strategy. Consider the iteration mapping s defined by:

s = {X → 2, Y → 3}.
Then the unfolding of the Tμ-strategy μX .T (X) with respect to s is defined as follows:

ρs(μX .T (X)) = μ2 X .ρs(T (X))

= μ2 X .ρs
(

S(X) ⊕ μY .R(Y)
)

= μ2 X .
(
ρs(S(X)) ⊕ ρs

(
μY .R(Y)

))
= μ2 X .

(
S(X) ⊕ ρs

(
μY .R(Y)

))
(Since S(X) is fixed-point free)

= μ2 X .
(

S(X) ⊕ μ3Y .ρs(R(Y))
)

= μ2 X .
(

S(X) ⊕ μ3Y .R(Y)
)
. (Since S(X) is fixed-point free)

Further computations involve the replacement of each fixed-point operator by an iteration, given in Definition 16, as follows.
Let T ′(X) be the Tμ-strategy:

T ′(X) = S(X) ⊕ μ3Y .R(Y),

hence,
31

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
μ2 X .
(

S(X) ⊕ μ3Y .R(Y)
) = μ2 X .T ′(X)

= T ′(μ1 X .T ′(X)
)

= T ′(T ′(f)
)

(Def. 16)

= S
(
T ′(f)

) ⊕ μ3Y .R(Y) (Def. of T ′(X))

= S
(

S(f) ⊕ μ3Y .R(Y)
) ⊕ μ3Y .R(Y) (Def. of T ′(X))

= S
(

S(f) ⊕ R(R(R(f)))
) ⊕ R(R(R(f))).

10.4. Properties of Tμ-strategies and their fixed-points

We give fundamental properties of Tμ-strategies regarding their semantics and fixed-points. Namely the properties re-
lated, on the one hand, to the composition of Tμ-strategies in the sense of a Tμ-strategy being a sub-Tμ-strategy of another
one (Lemma 68), and on the other hand, a sufficient condition under which a Tμ-strategy is equivalent to a fixed-point one
(i.e. Corollary 70). Finally, we study the equivalence between a Tμ-strategy and its unfolding (Lemma 71).

Lemma 68. Let S(X), R and R ′ be Tμ-strategies where the fixed-point variable X appears once in S(X), and let n′, n′′ ≥ 1.

1. If R ≡n′ R ′ and n′′ = �X (S(X)) then S(R) ≡n′+n′′ S(R ′).
2. If R ≡n′ R ′ and n′′ ≤ n′ then S(R) ≡n′′ S(R ′).
3. For any fixed-point free Tμ-strategy S̃(X1, . . . , Xk), and Tμ-strategies S1, . . . , Sk with k ≥ 1, we have that

S̃(S1, . . . , Sk) ≡m S̃(f, . . . , f) where m = min
{
�Xi (S̃(X1, . . . , Xk)) | Si 	= f, i = 1, . . . ,k

}
. (4)

Proof. The proof of the two first items can be easily done by a straightforward induction on S(X) and does not provide
any difficulties. The proof of the third item can be easily done by a straightforward induction on S̃(X1, . . . , Xk) since it is a
generalization of the first item. �

Notice that Eq. (4) holds as well if we omit the condition Si 	= f, i.e.

S̃(S1, . . . , Sk) ≡m S̃(f, . . . , f) where m = min
{
�Xi (S̃(X1, . . . , Xk)) | i = 1, . . . ,k

}
(5)

because

min
{
�Xi (S̃(X1, . . . , Xk)) | i = 1, . . . ,k

} ≤ min
{
�Xi (S̃(X1, . . . , Xk)) | Si 	= f, i = 1, . . . ,k

}
.

Indeed, Eq. (4) is more refined than Eq. (5) but we shall sometimes use the latter one.
From Item 2 of Lemma 68 it follows that one has to keep in mind that the notion of n-equivalence between Tμ-strategies

can be equivalently restated as follows: two Tμ-strategies are n-equivalent if they give the same result when applied to any
term t of depth δ(t) ≤ n and not just of depth δ(t) = n as initially defined in Definition 21.

Corollary 69. Let T (X) and R be Tμ-strategies. For any term t of depth δ(t) = n and any positive integer n′ ≥ 1, if we denote by
T (n)(R) the n-times iteration Tμ-strategy T (T (. . . (R))), then we have that

�μn+n′
X .T (X))�(t) = �μn X .T (X)�(t) = �T (n)(R)�(t). (6)

The following Corollary is a crucial one. It guarantees that to show that two Tμ-strategies μX .T (X) and R are n-
equivalent, it is enough to show that R is a fixed-point of T (X) in the sense that T (R) and R are n-equivalent.

Corollary 70. Let T (X) and R be Tμ-strategies. For any n ≥ 1, we have that

if T (R) ≡n R then μX .T (X) ≡n R.

Proof. Let t be a term of depth n. If �T (R)�(t) = �R�(t) then clearly �T (n)(R)�(t) = �R�(t). On the other hand, it follows
from the second equality of Eq. (6) of Corollary 69 that �μn X .T (X)�(t) = �T (n)(R)�(t). Hence �μn X .T (X)�(t) = �R�(t). But
�μn X .T (X)�(t) = �μX .T (X)�(t) holds by Definition 18 of the semantics of Tμ-strategies. �

We show in the following Lemma 71 that a Tμ-strategy is m-equivalent to its unfolding, where m is the minimal
number of iterations in the unfolding. To achieve this, we need a technical property (i.e. Eq. (8)) that will be used later on
in other proofs.
32

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Lemma 71. Let S be a Tμ-strategy with (bound) fixed-point variables X1, . . . , Xs and let s : {X1, . . . , Xs} →N be an iteration map-
ping.

(i) If S is a fixed-point Tμ-strategy, say μX .S ′(X) with X ∈ {X1, . . . , Xs}, then there exists a fixed-point free Tμ-strategy
S̃(X1, . . . , Xm) with m ≥ 1, and Tμ-strategies S1, . . . , Sm−1, Sm(X) such that for any n ≥ 1,

μn X .S ′(X) = S̃
(

S1, . . . , Sm−1, Sm
(
μn−1 X .S ′(X)

))
(7)

ρs(μX .S ′(X)) = S̃
(
ρs(S1), . . . , ρs(Sm−1),ρs′

(
Sm(μX .S ′(X))

))
(8)

where s′ is the iteration mapping defined on {X1, . . . , Xs} by s′(X) = s(X) − 1 and s′(X ′) = s(X ′) for X ′ 	= X.
(ii) If m = min{s(X1), . . . , s(Xs)}, then S ≡m ρs(S).

Remark 72. Let S be a Tμ-strategy with (bound) fixed-point variables X1, . . . , Xs and let s1, s2 : {X1, . . . , Xs} → N be iter-
ation mappings where s1 ≥ s2. Let m1 = min{s1(Xi) | i = 1, . . . , s}, m2 = min{s2(Xi) | i = 1, . . . , s} and m = min(m1, m2).
Then it follows from Item (ii) of Lemma 71 that ρs1 (S) ≡m ρs2 (S) since S ≡m1 ρs1(S) and S ≡m2 ρs2 (S). Besides, it follows
from the proof of this item that ρs1 (S) and ρs2 (S) can be written as

ρs1(S) = T (T1, . . . , Tm)

ρs2(S) = T (f, . . . , f).

10.5. The composition lemma

In the following key Lemma 73 we shall formulate how the unification of two given Tμ-strategies behaves with respect
to their sub-Tμ-strategies. This Lemma is very useful and will be heavily used throughout this paper, namely when it comes
to make a structural induction on the given Tμ-strategies. More precisely, we shall show, under some assumptions, that the
unification of a Tμ-strategy S ′(ξ1, . . . , ξk) with a Tμ-strategy R ′(ζ1, . . . , ζl) yields a Tμ-strategy T (T1, . . . , Tm) where each
Ti is either the unification of some ξ j with a sub-Tμ-strategy of R ′(ζ1, . . . , ζl), or the unification of some sub-Tμ-strategy
of S ′(ξ1, . . . , ξk) with a ζ j .

Lemma 73 (Composition Lemma). Let S and R be Tμ-strategies. Assume that there are fixed-point free Tμ-strategies S ′(X1, . . . , Xk)

and R ′(Y1, . . . , Yl), where k ≥ 1 and l ≥ 1, and Tμ-strategies ξ1, . . . , ξk where ξi ∈ (S), and Tμ-strategies ζ1, . . . , ζl where ζi ∈
(R), such that S and R can be written as:

S = S ′(ξ1, . . . , ξk) R = R ′(ζ1, . . . , ζl).

Then, there is a fixed-point free Tμ-strategy T (Z1, . . . , Zm) and Tμ-strategies T1, . . . , Tm, where m ≥ 1, such that

S � R = T (T1, . . . , Tm)

where for any i = 1, . . . , m, there is an alternative between the two following choices.

(a) There are j ∈ {1, . . . ,k}, a Tμ-strategy Ri(Y 1, . . . , Y l′) that is a sub-Tμ-strategy of R ′(Y1, . . . , Yl) with l′ ≤ l, and a set of Tμ-

strategies {ζ 1, . . . , ζ l′ } ⊆ {ζ1, . . . , ζl} such that

Ti = ξ j � Ri(ζ 1, . . . , ζ l′) or Ti = ξ j. (9)

(b) There are j ∈ {1, . . . , l}, a Tμ-strategy Si(X1, . . . , Xk′
) that is a sub-Tμ-strategy of S ′(X1, . . . , Xk) with k′ ≤ l, and a set of Tμ-

strategies {ξ1, . . . , ξk′ } ⊆ {ξ1, . . . , ξk} such that

Ti = Si(ξ1, . . . , ξk′
)� ζ j or Ti = ζ j . (10)

11. Unification and unfolding

In this section we show two independent results which will a crucial ingredient for the next section 12 in which the
main theorems will be proved. The first result, shown in Subsection 11.1, establishes a semantic equivalence between the
unification of unfoldings of two Tμ-strategies, say ρs(S) � ρr(R), and the unification of other unfoldings of the same Tμ-
strategies, say ρs′ (S) � ρr′(R). The second result, shown in Subsection 11.4, relates the structure of the unification of two
Tμ-strategies, say S � R , with that of their unfoldings, say ρs(S) � ρr(R), according to a relation of similarity that will be
formalized in Subsection 11.3. In Subsection 11.2 we introduce some notions, namely the underlying structure of the set of
fixed-point sub-Tμ-strategies of a given Tμ-strategy. In Subsection 11.3 we introduce two relations of similarity, a strong
and a weak one, between a Tμ-strategy and a fixed-point free one.
33

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
11.1. The equivalence between the unification of several unfoldings of two Tμ-strategies

The purpose of this section is to relate two kinds of fixed-point free Tμ-strategies: the Tμ-strategy that results from
the unification of an unfolding of two Tμ-strategies, and the Tμ-strategy that results from the unification of a different
unfolding of the same two Tμ-strategies. The purpose is to show that these two resulting Tμ-strategies are equivalent for
any term of a certain depth that depends on the unfoldings. Given four iteration mappings s, s′, r, r′ where s and s (resp. r
and r′) are defined on the same domain, we shall devise a measure between two the pairs (s, r) and (s′, r′), called codistance
and denoted by D�

(
(s, r), (s′, r′)

)
, and show that the Tμ-strategies ρs(S) � ρr(R) and ρs′ (S) � ρr′ (R) are equivalent for any

term of depth at most D�
(
(s, r), (s′, r′)

)
. The definition of this measure will be given in Definition 74. We shall compare in

Lemma 76 the fixed-point free Tμ-strategy ρs(S) � ρr(R) with the (fixed-point free) Tμ-strategy ρs′ (S) � ρr′ (R), namely
when s ≥ s′ and r ≥ r′ , by showing that Tμ-strategy ρs(S) � ρr(R) and Tμ-strategy ρs′ (S) � ρr′ (R) have the same structure
except that the former Tμ-strategy is deeper than the latter. The equivalence is the main result of this section and will be
proved in Corollary 77.

To illustrate the idea and justify the name of the codistance between two pairs of iteration mappings, we first consider
the codistance between two iteration mappings with the same domain. Let s, s′ and s′′ be iteration mappings and assume

s = {X1 → 100, X2 → 100, X3 → 5} (11)

s′ = {X1 → 100, X2 → 60, X3 → 5} (12)

s′′ = {X1 → 100, X2 → 60, X3 → 4}. (13)

It is clear that for any Tμ-strategy S with bound variables X1, X2, X3 that the (fixed-point free) Tμ-strategies ρs(S) and
ρs′ (S) are equivalent for any t of depth at most 60. This number corresponds to the minimal s′(Xi) such that s′(Xi) 	= s(Xi),
for i = 1, . . . , 3. For the same reason, ρs(S) and ρs′′ (S) are equivalent for any term of depth at most 4. Obviously, ρs(S)

is equivalent with itself for any term, and this will be taken into account in the definition of codistance 74 by saying that
the codistance between an iteration mapping and itself is infinity. Besides, the more two iterations mappings are far from
each other, the less is their codistance, which justifies the name of codistance. This idea of codistance between two iteration
mappings can be adapted as well to measure the codistance between two pairs of iteration mappings as follows.

Definition 74 (Codistance between pairs of iteration mappings). Let s, s′ : {X1, . . . , Xs} → N and r, r′ : {Y1, . . . , Yr} → N be
iteration mappings such that s ≥ s′ and r ≥ r′ . We define the codistance between s and s′ by:

d�(s, s′) =
{

min{s′(Xi) | s′(Xi) 	= s(Xi) for i = 1, . . . , s} if s > s′

∞ if s = s′.

We define the codistance between the pairs (s, r) and (s′, r′) by:

D�
(
(s, r), (s′, r′)

) = min{d�(s, s′),d�(r, r′)}.

Example 75. We only give an example of the codistance d� since the computation of D� is straightforward. If we consider
the iteration mappings s, s′, s′′ defined above by Eqs. (11), (12), (13) respectively, then

d�(s, s) = d�(s′, s′) = d�(s′′, s′′) = ∞,

d�(s, s′) = 60,

d�(s, s′′) = 4.

In the following Lemma 76 (which makes use of Lemma 71) and Corollary 77 we use the following definitions: let S and
R be Tμ-strategies with bound fixed-point variables X1, . . . , Xs and Y1, . . . , Yr , respectively. Let s1, s2 : {X1, . . . , Xs} → N
and r1, r2 : {Y1, . . . , Yr} →N be iteration mappings where s1 ≥ s2 and r1 ≥ r2.

Lemma 76. There exist fixed-point free Tμ-strategies T1, . . . , Tm, T (Z1, . . . , Zm), where each Zi is a free fixed-point variable and
m ≥ 1, such that ρs1(S) � ρr1 (R) and ρs2 (S) � ρr2 (R) can be written as

ρs1(S)� ρr1(R) = T (T1, . . . , Tm)

ρs2(S)� ρr2(R) = T (f, . . . , f).

The following Corollary 77 follows from Lemma 76, it confirms that the definition of codistance between two pairs of
iteration mappings is the right one since it provides an upper bound for the depth of terms on which the Tμ-strategies
ρs(S) � ρr(R) and ρs′ (S) � ρr′(R) are equivalent. It is easy to construct examples where this bound is reached.
34

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Corollary 77. We have that

ρs1(S)� ρr1(R) ≡D�((s1,r1),(s2,r2)) ρs2(S)� ρr2(R). (14)

Proof. It follows from Lemma 76 that there exist fixed-point free Tμ-strategies T1, . . . , Tm, T (Z1, . . . , Zm), where each Zi is
a fixed-point variable and m ≥ 1, such that ρs1 (S) � ρr1 (R) and ρs2 (S) � ρr2 (R) can be written as

ρs1(S)� ρr1(R) = T (T1, . . . , Tm)

ρs2(S)� ρr2(R) = T (f, . . . , f).

From Item (3) of Lemma 68, it follows that to prove Eq. (14) it suffices to show that

min
{
�Zi

(
T (Z1, . . . , Zm)

) | Ti 	= f, i = 1, . . . ,m
} ≥ D�((s1, r1), (s2, r2)). (15)

Assume that D�((s1, r1), (s2, r2)) = d�(s1, s2) with s1 > s2. Assume that there exists v ∈ {1, . . . , s} such that
min{s2(X j) | j = 1, . . . , s} = s2(Xv). Let μXv .S v(Xv) be the fixed-point Tμ-strategy related to Xv . From the monotonicity
property it follows that the shortest path in terms of number of jumps from the root of T (Z1, . . . , Zm) to some Zi , say Z w

with w ∈ {1, . . . ,m}, μXv .S v (Xv) unfolded s2(Xv) times giving arise to at least s2(Xv) positions. If s1(Xv) > s2(Xv) then
in this first case we have by the definition of d� that d�(s1, s2) = s2(Xv) and we are done. If s1(Xv) = s2(Xv) then in this
case T w = f and we pick another v ′ ∈ {1, . . . , s} \ {v} such that min

{
s2(X j) | j ∈ {1, . . . , s} \ {v}} = s2(Xv ′). If such v ′ does

not exist then this means that Ti = f for any i ∈ {1, . . . ,m} thus ρs1 (S) � ρr1 (R) and ρs2 (S) � ρr2 (R) are equivalent in the
strong sense. Otherwise, we reiterate the same reasoning of the first case with v ′ instead of v . �
11.2. Fixed-point tree and fixed-point sequence

This Subsection is first devoted to the definitions of two notions related to the tree-like structure underlying the set of all
fixed-point sub-Tμ-strategies of a given Tμ-strategy, Definition 78. Roughly speaking, if we look at all fixed-point sub-Tμ-
strategies of a given Tμ-strategy, they form a tree in the sense that there is an arrow from a fixed-point Tμ-strategy S1 to
a fixed-point Tμ-strategy S2 if S2 is a sub-Tμ-strategy of S1 together with further conditions.

Definition 78 (Fixed-point tree and fixed-point sequence of a Tμ-strategy). Let S be a strategy in which each fixed-point variable
appears once.

i) The fixed-point tree of S , denoted by T(S) or simply T, is the pair (μ(S), �), where � is a binary relation over μ(S)

defined as follows: S1 � S2 iff S2 is a sub-Tμ-strategy of S1 with S1 	= S2, and there is no Tμ-strategy S ′ in μ(S)

such that S ′ 	= S1, S ′ 	= S2, S2 is a sub-Tμ-strategy of S ′ , and S ′ is a sub-Tμ-strategy of S1.
ii) A sequence S1, . . . , Sm in the tree T(S), where m ≥ 1, is a set of Tμ-strategies where each Si is in μ(S) such that either

m = 1 or m ≥ 2 and in this case Si � Si+1, for i = 1, . . . , m − 1. Such a sequence will be denoted by S1 � . . . � Sm .
iii) A sequence S1 � . . . � Sm in T(S) is left-maximal (resp. right-maximal) if there is no S ′ ∈ μ(S) such that S ′ 	= S1 (resp.

S ′ 	= Sm) and S ′ � S1 (resp. Sm � S ′). A sequence is maximal if it is both left-maximal and right-maximal. In such case
S1 is called a root, while Sm is called a leaf.

iv) A fixed-point tree T is connected if it has just one root.

Notice that if a fixed-point tree is not connected then it is composed of many fixed-point sub-trees each of which is
connected.

Example 79. Let M1(Y), S1(X1), M2(Z , Z ′) and S3(X3) be fixed-point free Tμ-strategies. Consider the Tμ-strategy

H = μZ .
(
M1

(
μX1.S1(X1)

) ⊕ μX2.M2
(

Z , X2,μX3.S3(X3)
))

.

The set of fixed-point sub-Tμ-strategies is

μ(H) = {H,μX1.S1(X1),μX2.M2(Z , X2,μX3.S3(X3)),μX3.S3(X3))}
and the fixed-point tree T(H) = (μ(H), �) comes with the two maximal sequences

H � μX1.S1(X1)

H � μX2.M2(Z , X2,μX3.S3(X3)) � μX3.S3(X3)

Indeed, H is the root of T(H) while μX1.S1(X1) and μX3.S3(X3) are leaves. However if we take H ′ = μX4.S4(X4) then the
tree T(H ⊕ H ′) is no longer connected since it has two roots: H and H ′ .
35

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Table 1
Inference rules for (C, C0)-simulations.

S ′ = R ′
S ′ R R ′ S ′, R ′ ∈ C0

Si R Ri

S ′(S1, . . . , Sm)R S ′(R1, . . . , Rm)
S ′(X1, . . . , Xm) ∈ C0

μX .S ′(X)Rf

S(μX .S ′(X))R R ′

μX .S ′(X)R R ′

11.3. The relations of (C, C0)-simulation and (C, C0)-quasi-simulation

In Section 7 we informally outlined the proof of the main result of this paper. Namely, we described how to relate the
structure of the Tμ-strategy that results from the unification of two Tμ-strategies to the structure of the (fixed-point free)
Tμ-strategy that results from the unification of their related unfolding, and we illustrated the idea in Fig. 2 for a simple
case, and in Fig. 3 for the general case. Now we formalize this idea that relates a Tμ-strategy in C to a fixed-point free one
in C0 in terms of (C, C0)-simulation defined next.

Definition 80 ((C, C0)-simulation). For any Tμ-strategy S in C and any fixed-point free Tμ-strategy R in C0, a (C, C0)-
simulation is a binary relation R between the sets of augmented sub-Tμ-strategies of S and of sub-Tμ-strategies of R ,
i.e.

R ⊆ ̃(S) × (R),

inductively defined from S R R that fulfills the inference rules of Table 1.

Notice that if there is a (C, C0)-simulation between two Tμ-strategies, then it is unique, i.e. if S R 1 R and S R 2 R , for two
(C, C0)-simulations R 1 and R 2, then R 1 = R 2.

Example 81. Let S(X) be a fixed-point free Tμ-strategy. Then, for any n ≥ 0, there is a (C, C0)-simulation between μX .S(X)

and μn X .S(X), since μn X .S(X) is nothing but the n-times iteration S(S(. . . S(f))).

The following claims are not hard to prove.

Remark 82. For any Tμ-strategy S with bound fixed-variables X1, . . . , Xs with s ≥ 0, any iteration mapping s : {X1, . . . , Xs} →
N , and any Tμ-strategy M(Y), the following holds.

1. There is a (C, C0)-simulation between S and ρs(S).
2. If there is a (C, C0)-simulation R between S and S ′ , then there is a (C, C0)-simulation R′ between M(S) and M(S ′) for

any fixed-point free Tμ-strategy M(Y). That is, the following diagram commutes.

C C

C0 C0

M(·)

R R ′
M(·)

3. If there is a (C, C0)-simulation R between S and S ′ and if S̃ results from S by Simplifications (32), denoted hereby O,
that transform a Tμ-strategy into an equivalent Tμ-strategy in which each fixed-point variable occurs once, then there
is a (C, C0)-simulation R̃ between S̃ and S ′ as well. That is, the following diagram commutes.

C C

C0

O

R
R̃

We next define a weaker relation of (C, C0)-simulation by relaxing the constraint imposed by the fixed-point rule that
unravels μX .S(X) into S(μX .S(X)). The motivation is that in the upcoming proofs, rather than proving the existence of
a (C, C0)-simulation, it is much easier and less cumbersome to proceed in two steps by firstly constructing the weaker
relation and then strengthening it by deducing its properties.
36

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Table 2
Inference rules for (C, C0)-quasi-simulation.

S ′ = R ′
S ′ S R ′ S ′, R ′ ∈ C0

Si S Ri

S ′(S1, . . . , Sm)S S ′(R1, . . . , Rm)
S ′(X1, . . . , Xm) ∈ C0

μX .S ′(X)Sf

S ′(X)S R ′

μX .S ′(X)S R ′ X S R ′ X ∈Z

Definition 83 ((C, C0)-quasi-simulation). For any Tμ-strategy S in C and any fixed-point free Tμ-strategy R in C0, a (C, C0)-
quasi-simulation is a binary relation S between sub-Tμ-strategies of S and of R , i.e.

S ⊆ (S) × (R),

inductively defined from S S R that fulfills the inference rules of Table 2 which are the same as the inference rules of
Table 1 apart for the fixed-point rule which is replaced by new two rules.

Notice that (C, C0)-quasi-simulation is strictly weaker than the (C, C0)-simulation in the sense that if there is a (C, C0)-
simulation between S and R then there is a (C, C0)-quasi-simulation between S and R as well, while the opposite does
not hold in general. This is due to the fact that the (C, C0)-simulation imposes that μX .S(X) and X must correspond to
the “same” Tμ-strategy in R , while the (C, C0)-quasi-simulation does not impose that. For instance, there is a (C, C0)-quasi-
simulation between μX .S(X) and S(S ′) whatever maybe S ′ since X S S ′ , while it is not the case that there is in general
a (C, C0)-simulation between μX .S(X) and S(S ′) unless further constraints are imposed on S ′ . Hence Remark 82 holds for
(C, C0)-quasi-simulations as well.

A (C, C0)-quasi-simulation S between S and R induces two mappings, the first one that maps each fixed-point Tμ-
strategy of S to a sub-Tμ-strategy of R , and the second one that maps each bound variable of S to a sub-Tμ-strategy of R
as well.

Definition 84. For any (C, C0)-quasi-simulation relation S between S and R , with S ∈ C and R ∈ C0, define the mappings

φμ : μ(S) ∪ Bound(S) → (R) and φ
μ
ν : Bound(S) → (R)

as:

• φμ(S ′), for any S ′ , being the unique R ′ ∈ (R) such that S ′ S R ′ , and
• φ

μ
ν (X), for any X , being φμ(μX .T (X)) where μX .T (X) is the (unique) fixed-point Tμ-strategy related to X .

Besides, the mapping φμ
ν extends uniquely to an endomorphism φ̂μ

ν : C → C defined for any Tμ-strategy by:

φ̂
μ
ν

(
T (T1, . . . , Tm)

) = T
(
φ̂

μ
ν (T1), . . . , φ̂

μ
ν (Tm)

)
and φ̂

μ
ν (Z) = φ

μ
ν (Z).

Notice that it follows from Definition 80 that any (C, C0)-simulation from S to R is not defined for the bound fixed-point
variables of S since any fixed-point sub-Tμ-strategy μX .S ′(X) of S is unraveled to S ′(μX .S ′(X)) and hence X is never
reached.

Example 85 (The mappings φμ and φμ
ν). Let S(X) and M(Y) be fixed-point free Tμ-strategies. Then there is a (C, C0)-

simulation R and a (C, C0)-quasi-simulation S between M(μX .S(X)) and M(μ3 X .S(X)) and we have that:

R = {(
μX .S(X),μ3 X .S(X)

)
,
(
μX .S(X),μ2 X .S(X)

)
,
(
μX .S(X),μ1 X .S(X)

)
,
(
μX .S(X), f

)}
S = {(

μX .S(X),μ3 X .S(X)
)
,
(

X,μ2 X .S(X)
)}

And therefore,

φμ(μX .S(X)) = μ3 X .S(X) = S(S(S(f)))

φμ(X) = μ2 X .S(X) = S(S(f))

φ
μ
ν (X) = φμ(μX .S(X)) = μ3 X .S(X)
37

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Remark 86. Notice that if T (Z1, . . . , Zm) is a fixed-point free Tμ-strategy in which Z1, . . . , Zm are free fixed-point variables,
and if T1 . . . Tm are Tμ-strategies where each of Ti is either fixed-point Tμ-strategy or a fixed-point variable, then it follows
from Definition 84 together with Definition 83 of (C, C0)-quasi-simulations that

φμ

(
μZ .T (T1, . . . , Tm)

) = T
(
φμ(T1), . . . , φμ(Tm)

)
.

11.4. Relating the structure of the unification of two Tμ-strategies with that of their unfolding

The purpose of this section is to relate the structure of the unification of two Tμ-strategies with that of their unfolding as
illustrated in Section 7 in Fig. 2 for a simple case, and in Fig. 3 for the general case. More precisely, we show in the following
Lemma 87 that the unification commutes with the unfolding in the following sense: there is a (C, C0)-quasi-simulation
between the Tμ-strategy that results from the unification of two Tμ-strategies and the fixed-point free Tμ-strategy that
results from the unification of their related unfolding.

We illustrate with a simple unification example how this (C, C0)-quasi-simulation is constructed, and thus how the two
structures in Fig. 2 are obtained. Let M(Y), S(X) and R be fixed-point Tμ-strategies, and consider, on one hand, the unifica-
tion of M(μX .S(X)) with R , and on the other hand, the unification of the unfolding of M(μX .S(X)) with the unfolding of
R , which is R , since R is fixed-point free. We explain how these two unifications are related. During the unification process
that starts from 〈M(μX .S(X)), R,∅〉 on one side, and from 〈M(μn X .S(X)), R,∅〉, where n ≥ 1, on the other, we distinguish
many cases.

(I) As far as we have 〈M ′(μn X .S(X)), R ′,∅〉 on one side, and 〈M ′(μX .S(X)), R ′,∅〉 on the other, where M ′ (resp. R ′) is a
sub-Tμ-strategy of M (resp. R), the constructed Tμ-strategy is the same on both sides, it is T0 in Fig. 2.

(II) If the derivation reaches a fixed-point Tμ-strategy, that is, it reaches 〈μX .S(X), R ′′, ∅〉 on the left side, and 〈μn X .S(X),

R ′′, ∅〉 on the right one, where R ′′ is a sub-Tμ-strategy of R , then the left derivation produces μZ1.〈S(μX .S(X)), R ′′, ·〉
and continues from 〈S(μX .S(X)), R ′′, ·〉, while the right one continues from 〈S(μn−1 X .S(X)), R ′′,∅〉. This goes back to
case (I), in which we take M ′(·) = S(·), and in which the left derivation will produce μZ1.T1(. . .), while the right one
will produce T1(. . .). During the generation of T1(. . .) two cases can happen:
(a) If the left derivation reaches 〈μX .S(X), R ′′, ·〉, then the right derivation reaches 〈μn−1 X .S(X), R ′′,∅〉. The left deriva-

tion continues and produces the fixed-point Z1 generated at the end of case (II), while the right derivation produces
the Tμ-strategy T 1

1 depicted on the right of Fig. 2.
(b) If the left derivation reaches 〈μX .S(X), R2, ·〉 with R2 	= R ′′ , then the right derivation reaches 〈μn−1 X .S(X), R2,∅〉.

Thus the left derivation produces the fixed-point Tμ-strategy μZ2.〈S(μX .S(X)), R2, ·〉 and continues from
〈S(μX .S(X)), R2, ·〉 (see left of Fig. 2), while the right derivation continues from 〈μn−1 X .S(X), R2,∅〉, see right
of Fig. 2. This goes back to case (I).

In the following Lemma 87 we construct a (C, C0)-quasi-simulation between the unification of any two Tμ-strategies
and the unification of their any unfolding.

Lemma 87. Let S and R be Tμ-strategies with bound fixed-point variables Bound(S) = {X1, . . . , Xs} and Bound(R) = {Y1, . . . , Yr}.
Let M ∈ M(S, R) be a memory with respect to S and R. Let s : {X1, . . . , Xs} → N and r : {X1, . . . , Xr} → N be iteration mappings.
There is a (C, C0)-quasi-simulation S between NF(〈S, R,M〉) and NF(〈ρs(S),ρr(R),∅〉). In particular, the following diagram
commutes.

C × C C

C0 × C0 C0

�

ρs(·)×ρr(·) S

�

It turned out that the (C, C0)-quasi-simulation of 87 is actually a (C, C0)-simulation, but we can not prove it now in
this section, because it requires the further developments of the next section 12, and there we shall be ready to prove it in
Corollary 98.

Now we can state and prove in Lemma 88 useful properties of the (C, C0)-quasi-simulation constructed in the proof of
the previous Lemma 87. Roughly speaking, we need to distinguish in the resulting Tμ-strategy S � R between two kinds of
fixed-point Tμ-strategies:

(i.) a fixed-point Tμ-strategy μZ .T (Z), where Z is fresh, that is generated by the fixed-point rules (8a) and (8b) of the
unification reduction system given in Definition 33, and

(ii.) a fixed-point Tμ-strategy μX ′.S ′(X ′) that is a sub-Tμ-strategy of S or R .

In the first case, the fixed-point Tμ-strategy μZ .T (Z) is related by the (C, C0)-quasi-simulation to the unification of an
iteration (over a fixed-point Tμ-strategy) with a Tμ-strategy, or symmetrically, to the unification of a Tμ-strategy with an
38

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746

n}.
iteration (over a fixed-point Tμ-strategy). However, in the second case, the fixed-point Tμ-strategy μX .S(X) is related by
the (C, C0)-quasi-simulation to its unfolding. Formally,

Lemma 88. Let S and R be Tμ-strategies with bound fixed-point variables Bound(S) = {X1, . . . , Xs} and Bound(R) = {Y1, . . . , Yr}.
Let s : {X1, . . . , Xs} → N and r : {Y1, . . . , Yr} → N be iteration mappings. The (C, C0)-quasi-simulation S between S � R and
ρs(S) � ρr(R) constructed in the proof of Lemma 87 has the following property.

For any sub-Tμ-strategy T in S � R that is either a fixed-point or a bound variable, i.e.

T ∈ μ(S � R) ∪ Bound(S � R),

there exist Tμ-strategies μX ′.S ′(X ′) and R ′ , iteration mappings s′ : {X1, . . . , Xs} →N and r′ : {Y1, . . . , Yr} →N and a memory M′
such that one of the four following case holds:

(a)

T = NF
(〈μX ′.S ′(X ′), R ′,M′〉) and TS

(
ρs′(μX ′.S ′(X ′))� ρr′(R ′)

)
and in this case μX ′.S ′(X ′) ∈ ̃μ(S) and R ′ ∈ ̃(R).

(b)

T = NF
(〈R ′,μX ′.S ′(X ′),M′〉) and TS

(
ρr′(R ′)� ρs′(μX ′.S ′(X ′))

)
and in this case R ′ ∈ ̃μ(S) and μX ′.S ′(X ′) ∈ ̃(R).

(c)

T = μX ′.S ′(X ′) and TSρs′(μX ′.S ′(X ′))

with μX ′.S ′(X ′) ∈ ̃μ(S) and X ′ ∈ {X1, . . . , Xs}.

(d)

T = μX ′.S ′(X ′) and TSρr′(μX ′.S ′(X ′))

with μX ′.S ′(X ′) ∈ ̃μ(R) and X ′ ∈ {Y1, . . . , Yr}.

Proof. Item (a) follows immediately from the case (3) of the proof of Lemma 87 since any fixed-point Tμ-strategy μZ .T (Z)

and any fixed-point variable Z in the resulting Tμ-strategy S � R results from the unification of a fixed-point Tμ-strategy
with an arbitrary Tμ-strategy such that μZ .T (Z) and Z is related by the (C, C0)-quasi-simulation S to a unification of two
Tμ-strategies where the left one is an iteration over a fixed-point Tμ-strategy (i.e. ρ(μX .S ′(X), s)).

Item (b) follows from the symmetric case of case (3) of the proof of Lemma 87 which we omitted and in which any fixed-
point Tμ-strategy μZ .T (Z) and any fixed-point variable Z in the resulting Tμ-strategy S � R results from the unification
of an arbitrary Tμ-strategy with a fixed-point Tμ-strategy such that μZ .T (Z) and Z would be related by the (C, C0)-quasi-
simulation S to a unification of two Tμ-strategies where the right one is an iteration over a fixed-point Tμ-strategy.

Items (c) and (d) follow from the case (3) of the proof of Lemma (87) together with the explicit computations made in
the composition Lemma 73, with properties (9) and (10), in which we take one of the ξ1, . . . , ξk or one of the ζ1, . . . , ζl as
fixed-point Tμ-strategy, and by taking one of the T1, . . . , Tm as a fixed-point Tμ-strategy that is either ξi or ζ j , for some
i ∈ {1, . . . ,k} and some j ∈ {1, . . . , l}. �

In the following example we illustrate the cases (a) and (c) of Lemma 88, we omit the cases (b) and (d) since they are
respectively symmetrical to the two former ones.

Example 89. Let ξ1, ξ2, ξ3, R1, R2, R3 be Tμ-strategies such that R1, R2, R3 are fixed-point free, and ξ1, ξ2, ξ3 are fixed-point
Tμ-strategies of the form

ξ1 = μX1.S1(X1), ξ2 = μX2.S2(X2), ξ3 = μX3.S3(X3),

where ξ3 is a sub-Tμ-strategy of ξ2 which is a sub-Tμ-strategy of ξ1. Consider the following iteration mappings in which
n ≥ 1:

s1 = {X1 → n, X2 → n, X3 → n}, s2 = {X1 → n − 1, X2 → n, X3 → n}, s3 = {X1 → n − 1, X2 → n − 1, X3 →
Since R1, R2, R3 are fixed-point free, then they are equal to their unfoldings. We next consider the two unifications ξ1 � R1

and ρs1 (ξ1) � R1 that result respectively from the following two derivations, in which we omit the explicit expression of
the Tμ-strategies T1 and of T2, where M2 and M3 are memories:
39

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
〈ξ1, R1,∅〉 �−→ μZ1.T1(ξ1, 〈ξ2, R2,M2〉) �−→ μZ1.T1
(
ξ1,μZ2.T2(〈ξ3, R3,M3〉

)
, (16)

〈ρs1(ξ1), R1,∅〉 �−→ T1
(
ρs2(ξ1), 〈ρs2(ξ2), R2,∅〉) �−→ T1

(
ρs2(ξ1), T2(〈ρs3(ξ3), R3,∅〉). (17)

If we assume, for the sake of simplicity, that the normal form of 〈ξ3, R3,M3〉 in the derivation (16) produces just one
fixed-point Tμ-strategy, then the set of fixed-point sub-Tμ-strategies of ξ1 � R1 is:

μ(ξ1 � R1) = {ξ1,NF(〈ξ1, R1,∅〉)︸ ︷︷ ︸
T1

,NF(〈ξ2, R2,M2〉)︸ ︷︷ ︸
T2

,NF(〈ξ3, R3,M3〉)︸ ︷︷ ︸
T3

}.

Recall that, from Definition 34 of unification, we have

NF(〈ρs2(ξ2), R2,∅〉) = ρs2(ξ2)� R2 and NF(〈ρs3(ξ3), R3,∅〉) = ρs3(ξ3)� R3.

Therefore, the cases (a) and (c) of Lemma 88 are as follows:

T1 S (ρs1(ξ1)� R1) and T2 S (ρs2(ξ2)� R2) and T3 S (ρs3(ξ3)� R3) (Case (a) of Lemma 88)

ξ1 Sρs2(ξ1). (Case (c) of Lemma 88)

We recall that a Tμ-strategy that results from a unification S � R may contain useless fixed-point constructor of the form
μZ .T where Z does not appear in T , or it may contain a fixed-point variable that appears many times. We noticed in Item 3
of Remark 82 that Simplifications (32) preserve the relation of (C, C0)-simulation and therefore the (C, C0)-quasi-simulation.
Hence we can assume from now on that the Tμ-strategies that result from the unification follow Assumptions 31. It is
simpler for later development, to lift the properties of the relation (C, C0)-quasi-simulation of Lemma 88 to its induced
mapping φμ . This will be done in Lemma 90 together with a simple and useful property on the image by φμ of fixed-points
Tμ-strategies in S � R . Roughly speaking, this property states that if T and T′ are fixed-point Tμ-strategies in S � R where
T′ is an immediate sub-Tμ-strategy of T, then the number of iterations over a certain fixed-point Tμ-strategy decreases by
one from φμ(T) to φμ(T′).

Lemma 90. Let S and R be Tμ-strategies with bound fixed-point variables Bound(S) = {X1, . . . , Xs} and Bound(R) = {Y1, . . . , Yr}.
Let s : {X1, . . . , Xs} → N and r : {X1, . . . , Xr} → N be iteration mappings. Let φμ be the mapping induced by the (C, C0)-quasi-
simulation S between S� R and ρs(S) �ρr(R) constructed in the proof of Lemma 87. The mapping φμ enjoys the following properties.

1. For any fixed-point Tμ-strategy T in S � R, there exist Tμ-strategies μX ′.S ′(X ′) and R ′ , mappings s′ : {X1, . . . , Xs} → N and
r′ : {Y1, . . . , Yr} →N , and a memory M′ such that one of the four following cases holds.
(a) T =NF

(〈μX ′.S ′(X), R ′,M′〉) and φμ(T) = (
ρs′ (μX ′.S ′(X ′)) � ρr′ (R ′)

)
.

(b) T =NF
(〈R ′,μX ′.S ′(X ′),M′〉) and φμ(T) = (

ρr′ (R ′) � ρs′ (μX ′.S ′(X ′))
)
.

(c) T = μX ′.S ′(X ′), with X ′ ∈ {X1, . . . , Xs} and μX ′.S ′(X ′) ∈ μ(S), and φμ(T) = ρs′ (μX ′.S ′(X ′)).
(d) T = μX ′.S ′(X ′), with X ′ ∈ {Y1, . . . , Ys} and μX ′.S ′(X ′) ∈ μ(R), and φμ(T) = ρr′ (μX ′.S ′(X ′)).

2. For any fixed-point sequence

T1 � · · · � Tm

in T(S � R) with m ≥ 1 and for any i = 1, . . . , m, there are iteration mappings si : {X1, . . . , Xs} →N and ri : {Y1, . . . , Yr} →N ,
such that one of the following two cases holds:
(a) There is a Tμ-strategy Si(Xi) ∈ (S) with Xi ∈ {X1, . . . , Xs}, and a Tμ-strategy Ri ∈ (R) such that

φμ(Ti) = ρsi (μXi .Si(Xi))� ρri (Ri),

and for i = 1, . . . , m − 1 and for any X ∈ {X1, . . . , Xs} and any Y ∈ {Y1, . . . , Yr}, we have that

si+1(X) =
{

si(X), if X 	= Xi

si(Xi) − 1, if X = Xi and ri+1(Y) = ri(Y) (18)

(b) There is a Tμ-strategy Si ∈ (S), and a Tμ-strategy Ri(Y i) ∈ (R) with Y i ∈ {Y1, . . . , Yr}, such that

φμ(Ti) = ρsi (Si)� ρri (μY i .Ri(Y i)),

and for i = 1, . . . , m − 1 and for any X ∈ {X1, . . . , Xs} and any Y ∈ {Y1, . . . , Yr}, we have that

si+1(X) = si(X) and ri+1(Y) =
{

ri(Y), if Y 	= Y i

ri(Y i) − 1, if Y = Y i (19)
40

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Example 91. We consider the two unifications ξ1 � R1 and ρs1 (ξ1) � R1 of Example 89, as well as their related derivations
(16) and (17).

1. The cases (1a) and (1c) of Lemma 90 correspond to the following equalities:

φμ(T1) = (ρs1(ξ1)� R1) and φμ(T2) = (ρs2(ξ2)� R2) and φμ(T3) = (ρs3(ξ3)� R3)

(Case (1a) of Lemma 90)

φμ(ξ1) = ρs2(ξ1). (Case (1c) of Lemma 90)

2. Notice that from the derivation (16) of Example 89, we have that T3 is a (fixed-point) sub-Tμ-strategy of T2, which is
a (fixed-point) sub-Tμ-strategy of T1. Thus we have the fixed-point sequence

T1 � T2 � T3

in T(ξ1 � R1). Recall that the iteration mappings s1, s2 and s3 were defined in Example 89 as:

s1 = {X1 → n, X2 → n, X3 → n}, s2 = {X1 → n − 1, X2 → n, X3 → n},
s3 = {X1 → n − 1, X2 → n − 1, X3 → n}.

Therefore, Eq. (18) of the case (2a) of Lemma 90 expresses s2 in terms of s1, as well as s3 in terms of s2 as follows:

s2(X) =
{

s1(X), if X 	= X1

s1(X1) − 1, if X = X1
and s3(X) =

{
s2(X), if X 	= X2

s2(X2) − 1, if X = X2,

where X ∈ {X1, X2, X3}.

12. The equivalence between the unification of two Tμ-strategies and that of their unfoldings

This is the most technical section in which we develop the last ingredient required in the proof of the main result of
this paper. The purpose of this section is to show that the unification of two Tμ-strategies is equivalent to the unification
of their unfolding for any term of depth at most a certain bound that depends on the two unfoldings, i.e. Proposition 105.
More precisely, we shall prove that for any two iteration mappings s and r with s(Xi) = r(Y j) = n, the Tμ-strategies S � R
and ρs(S) � ρr(R) are equivalent for any term of depth at most n, where Xi (resp. Y j) are the bound variables of S (resp.
R).

To achieve this we need, on the one hand, the main result of Subsection 11.4 that ensures the existence of a (C, C0)-
quasi-simulation between S � R and ρs(S) � ρr(R) (Lemma 87), together with the properties of this relation (Lemma 90).
Indeed such results guarantee that S � R and ρs(S) � ρr(R) have almost the same structure and should be equivalent.
However, on the other hand, the structure of S � R differs from that of ρs(S) � ρr(R) when it comes to certain sub-Tμ-
strategies. Therefore, to complete the proof we need to show that any such sub-Tμ-strategy of S � R is equivalent to its
related sub-Tμ-strategy of ρs(S) � ρr(R) with respect to any term of a certain depth that depends on the position of such
distinct sub-Tμ-strategy in S � R , or equivalently in ρs(S) � ρr(R).

To illustrate the idea, we consider the simplest case where S � R = μZ .T (Z) such that T (Z) is fixed-point free. Let
E = ρs(S) � ρr(R). Therefore, thanks to the (C, C0)-quasi-simulation and its properties, we know that E = T (E′), where
E′ = ρs′ (S) � ρr′ (R), for iteration mappings s′ and r′ . Hence to show that μZ .T (Z) is n-equivalent to E, it suffices to show
that E is a fixed-point of T (Z), i.e. that T (E) ≡n E. But since E = T (E′), we need to show that T (E) is n-equivalent to T (E′).
To achieve this, it suffices to show that E is n′-equivalent to E′ for some n′ provided that the number of jumps between the
root of T (Z) and Z is at least n − n′ . That is, ρs(S) � ρr(R) and ρs′ (S) � ρr′(R) are n′-equivalent where n′ depends on the
iteration mappings s, r, s′ and r′ . It turns out that in this simple case, n′ is nothing but the codistance D�((s, r), (s′, r′)), and
n − D�((s, r), (s′, r′)) is a lower bound for the number of jumps between the root of T (Z) and Z .

However, for the general case where S � R contains many nested fixed-point Tμ-strategies, say

S � R = μZ1.T1(μZ2.T2(· · ·μZm.Tm(Zm)))

which yields the fixed-point sequence S = μZ1.T1(Z1) � · · · � μZm.Tm(Zm), many difficulties arise. Namely, the codistance
D� is no longer an exact lower bound to the number of jumps, say between the root of Ti(Zi) and μZ j .T j(Z j), where
1 ≤ i < j ≤ m. However the same technique remains: to prove that T (E) ≡n T (E′) it is enough to show that E ≡n′ E′ , for
some n′ , provided that the number of jumps from the root of T (E) to E is at least n − n′ . Besides, the same principle
remains: the more we go deeper in the sequence S, the more the iterations in the related Tμ-strategies of S (i.e. that result
in ρs(S) � ρr(R) and have the form ρsi (Si) � ρri (Ri) for i = 1, . . . , m) decrease, and the more we get more jumps from the
root of T1(Z1) to μZm.Tm(Zm).

Having said that, we need to supplement the codistance D� with further measures that will be introduced in Subsec-
tion 12.1 together with their properties. In Subsection 12.2 we shall show that these measures provide enough information
41

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
to compute an adequate lower bound for the number of jumps. More precisely, these measures will allow us to extract a
subsequence from the fixed-point sequence S, called the derivative sequence, with the property that there is at least one
jump between any two successive Tμ-strategies in this Subsequence. Summing up these results we shall show in Subsec-
tion 12.3 that the unification of two Tμ-strategies, say S � R , is n-equivalent to the unification of their unfolding, i.e. say
ρs(S) � ρr(R), where the iteration mappings s and r associate to each fixed-point variable the constant n. We shall make
use of the main result of Subsection 11.1 that allows to compare the equivalence of the unification of an unfolding of two
Tμ-strategies with the unification of another unfolding of the same two Tμ-strategies.

12.1. Measures and codistance on fixed-point tree

We define next the number of occurrences of a Tμ-strategy in a sequence of tuples.

Definition 92. Let S and R be Tμ-strategies. Let S be a sequence of tuples

S = 〈S1, R1,M1〉, . . . , 〈Sm, Rm,Mm〉
with m ≥ 1, Si ∈ (S) and Ri ∈ (R) for i = 1, . . . , m. Let S ′ be a fixed-point sub-Tμ-strategy of S . We shall denote by
#S(S ′) the number of occurrences of S ′ in the sequence S, that is

#S(S ′) = |{Si | Si = S ′, i = 1, . . . ,m}|. (20)

For a Tμ-strategy R ′ that is a fixed-point sub-Tμ-strategy of R , the definition of #S(R ′) is similar to #S(R ′) by taking Ri
instead of Si in Eq. (20).

We shall use the following notations throughout this Subsection and the next Subsection 12.2 as well. Let S (resp.
R) be a Tμ-strategy with fixed-point variables X1, . . . , Xs (resp. Y1, . . . , Yr). Let n ≥ 1 and let s : {X1, . . . , Xs} → N and
r : {Y1, . . . , Yr} → N be iteration mappings with s(Xi) = s(X j) = n. Let φμ be the mapping induced by the (C, C0)-quasi-
simulation S between S � R and ρs(S) � ρr(R). Let T be the fixed-point tree of S � R . Recall that T is not necessarily
connected, i.e. it may be composed of many connected sub-trees and thus it may have many roots.

In the following Definition 94 we define three measures, one to count the maximal number of repetitions of Tμ-strategies
in a sequence of tuples, a second one that is n minus the previous measure, and the third one that transfers the codistance
D� from ρs(S) � ρr(R) to the related Tμ-strategies that belong to the fixed-point tree T.

Notations 93 (For Definition 94). In the following Definition 94 we let S to be a left-maximal sequence

T1 � . . . � Tm

in T (i.e. T1 being a root of T) with m ≥ 1. According to Items (1a) and (1b) of Lemma 90, we know that for any i = 1, . . . , m,
one of the following two cases holds.

(i) Ti ∈ ̃(S � R) \ (
̃(S) ∪ ̃(R)

)
and hence it can be written as Ti = NF(〈Si, Ri,Mi〉) and in this case Ti′ ∈ ̃(S � R) \(

̃(S) ∪ ̃(R)
)

for i′ < i.
(ii) Ti ∈ ̃(S) ∪ ̃(R) and in this case i = m and Tm = Sm ∈ ̃μ(S) or Tm = Rm ∈ ̃μ(R).

This yields the finite sequence of tuples

S̃ = 〈S1, R1,M1〉, . . .
that either ends with a tuple 〈Sm, Rm,Mm〉 or a fixed-point Tμ-strategy Sm ∈ ̃μ(S) or a fixed-point Tμ-strategy Rm ∈
̃μ(R). Besides, the mapping φμ associates to the sequence S̃ the sequence

φμ(T1), . . . , φμ(Tm)

in ρs(S) � ρr(R) which is

ρs1(S1)� ρr1(R1), . . .

that ends with the Tμ-strategy ρsm (Sm) � ρrm (Rm) or ρsm (Sm) or ρrm (Rm), for iteration mappings si and ri .

Definition 94 (Measures on Tμ-strategies of fixed-point tree). We define three measures.
42

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
1. We define �#
S(Ti, T j), for 1 ≤ i ≤ j, as the maximal number of occurrences of Tμ-strategies that appear in the series

of tuples in S̃ starting from the tuple related to Ti and ending with the tuple related to T j . That is, if T j ∈ ̃(S � R) \(
̃(S) ∪ ̃(R)

)
, then

�#
S(Ti,T j) = max{#S(S p),#S(R p) | S p ∈ ̃μ(S), R p ∈ ̃μ(R), p = i, . . . , j}. (21)

If T j ∈ ̃(S) ∪ ̃(R), then

�#
S(Ti,T j) =

{
0 if i = j

�#
S(Ti,T j−1) if i > j.

(22)

2. For i ∈ {1,m}, define

ωS(Ti) = n − �#
S(T1,Ti). (23)

3. For i ∈ {1,m}, we define the codistance between T1 and Ti as follows.
If Ti ∈ ̃(S � R) \ (

̃(S) ∪ ̃(R)
)
, then

D�
S(Ti) =

{
n if i = 1

D�
(
(s1, r1), (si, ri)

)
if i > 1.

(24)

If Ti ∈ ̃(S) ∪ ̃(R), then

D�
S(Ti) =

{
n if i = 1

min
{

D�(Ti−1),d�(s1, si)
}

if i > 1.
(25)

When the sequence S is known and if there is no ambiguity we shall simplify the notations by omitting S and simply
writing �#(Ti, T j), ω(Ti) and D�(Ti) instead of �#

S(Ti, T j), ωS(Ti) and D�
S(Ti). These three measures are illustrated with the

following example.

Example 95. Let ξ1, ξ2, ξ3 be fixed-point Tμ-strategies, where ξi = μXi .Si(Xi) for i = 1, 2, 3, such that ξ3 is a sub-Tμ-
strategy of ξ2 which is a sub-Tμ-strategy of ξ1. Let R1, . . . , R6 be fixed-point free Tμ-strategies, and let M1, . . . , M6 be
memories with M1 = ∅.

Firstly, we consider the unification ξ1 � R1. We do not make explicit the derivation that starts from 〈ξ1, R1,M1〉 because
it has been detailed in the similar and simpler Example 89, see Eq. (16). We assume that the unification ξ1 � R1 gives rise
to the following sequence of tuples, in which ξ1 occurs 3 times, ξ2 occurs 2 times and ξ3 occurs once:

〈ξ1, R1,M1〉, 〈ξ2, R2,M2〉, 〈ξ1, R3,M3〉, 〈ξ3, R4,M4〉, 〈ξ2, R5,M5〉, 〈ξ1, R6,M6〉.
This yields the following (fixed-point) left-maximal sequence, denoted by S:

T1 � T2 � · · · � T6 (26)

in T(ξ1 � R1), where each Ti is the normal form of the related triplet (i.e. T1 =NF(〈ξ1, R1,M1〉), etc).
Secondly, we consider the unification of an unfolding of S1 with an unfolding of R1. Recall that R1, as well as the

other R2, . . . , R6, are fixed-fixed point free, and therefore they are equal to their unfolding. Hence, we define the following
iteration mappings in which n ≥ 1:

s1 = {X1 → n, X2 → n, X3 → n}, s2 = {X1 → n-1, X2 → n, X3 → n},
s3 = {X1 → n-1, X2 → n-1, X3 → n}, s4 = {X1 → n-2, X2 → n-1, X3 → n},
s5 = {X1 → n-2, X2 → n-1, X3 → n-1}, s6 = {X1 → n-2, X2 → n-2, X3 → n-1},

and we consider the unification ρs1 (ξ1) � R1, which is related to the unification ξ1 � R1 via the mapping φμ as follows:

φμ(T1) = ρs1(ξ1)� R1, φμ(T2) = ρs2(ξ2)� R2, φμ(T3) = ρs3(ξ1)� R3,

φμ(T4) = ρs4(ξ3)� R4, φμ(T5) = ρs5(ξ2)� R5, φμ(T6) = ρs6(ξ1)� R6.

The measures �#
S and ωS and D�

S , related to the (fixed-point) sequence S, are given in Table 3, in which the second row
shows the Tμ-strategy among {ξ1, ξ2, ξ3} that appears in Ti ; and the third row shows the iteration mapping si involved in
φμ(Ti).
43

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Table 3
An example of the measures �#

S and ωS , and the codistance D�
S related to the fixed-point left-maximal sequence S = T1 � · · · � T6 defined in Eq. (26).

The second row shows the Tμ-strategy among {ξ1, ξ2, ξ3} that appears in Ti , for i = 1, . . . , 6. The third row shows the iteration mapping si involved in
φμ(Ti), where the triplet (n1, n2, n3) refers to the iteration mapping {X1 → n1, X2 → n2, X3 → n3}.

Ti T1 T2 T3 T4 T5 T6

ξ j in Ti ξ1 ξ2 ξ1 ξ3 ξ2 ξ1

si (n,n,n) (n-1,n,n) (n-1,n-1,n) (n-2,n-1,n) (n-2,n-1,n-1) (n-2,n-2,n-1)

�#
S(T1,Ti) 1 1 2 2 2 3

ωS(Ti) n-1 n-1 n-2 n-2 n-2 n-3

D�
S(Ti) n n-1 n-1 n-2 n-2 n-2

In Lemma 96 we shall establish a useful relation between ω and D� .

Lemma 96. For any left-maximal sequence

T1 � · · · � Tm

in T with m ≥ 2, and for any p and q where 1 ≤ p < q ≤ m,

1. If for i = 1, . . . , q, there are Tμ-strategies Si ∈ ̃(S) and Ri ∈ ̃(R), and iteration mappings si : {X1, . . . , Xs} → N and ri :
{Y1, . . . , Ys} →N such that

φμ(Ti) = ρsi (Si)� ρri (Ri)

then

ω(Tq) ∈ {D�
(
(s1, r1), (sq, rq)

)
, D�

(
(s1, r1), (sq, rq)

) − 1}. (27)

2. If there is a Tμ-strategy ξm ∈ ̃(S) ∪ ̃(R) and an iteration mapping sm such that

φμ(Tm) = ρsm (ξm)

then

min{sm(X) | X ∈ dom(sm)} ≥ D�(Tm). (28)

From Lemma 76 we get the following corollary that establishes, in addition to another property, the semantic equivalence
between φμ(Zi) and φμ

ν (Zi) for a fixed-point variable Zi of a Tμ-strategy μZi .Ti(Zi) that appears in the fixed-point tree
T. Roughly speaking, this corollary will be useful to prove that φμ(μZi .Ti(Zi)) is a fixed-point of Ti(Zi) as explained at the
beginning of Subsection 12.3, and used in the proof of Lemma 103.

Corollary 97. Let S be a sequence

μZ1.T1(Z1) � · · · � μZm.Tm(Zm) � Zi

in T with m ≥ 1 and i ∈ {1, . . . ,m}.

1. If Zi ∈ Bound(S � R) \ (Bound(S) ∪Bound(R)) then

φμ(Zi) ≡D�
S

(Zi) φ
μ
ν (Zi). (29)

2. If Zm ∈ Bound(S) ∪Bound(R) (i.e. μZm.Tm(Zm) ∈ ̃μ(S) ∪ ̃μ(R)) then

φμ(μZm.Tm(Zm)) ≡D�
S

(μZm.Tm(Zm)) μZm.Tm(Zm). (30)

Proof. 1. Since Zi ∈ Bound(S � R) \ (Bound(S) ∪ Bound(R)) then it follows from Items (1a) and (1b) of Lemma 90
that there are Tμ-strategies Si ∈ (S) and Ri ∈ (R), and iteration mappings si, s j : {X1, . . . , Xs} → N and si, r j :
{X1, . . . , Xr} →N such that

φ
μ
ν (Zi) = ρs j (Si)� ρr j (Ri)

φμ(Zi) = ρsi (Si)� ρri (Ri)
44

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
where s j ≥ si and r j ≥ ri . Thus, by Eq. (24) of Definition 94 of D� , we have D�
S(Zi) = D�((s j, r j), (si, ri)). Hence the

claim follows from Corollary 77 that states that

ρs j (Si)� ρr j (Ri) ≡D�((s j,r j),(si ,ri)) ρsi (Si)� ρri (Ri).

2. Assume that μZm.Tm(Zm) is a sub-Tμ-strategy of S , the case when it is a sub-Tμ-strategy of R is similar. From Items
(1c) of Lemma 90 if follows that there is an iteration mapping sm : {X1, . . . , Xs} →N such that

φμ(μZm.Tm(Zm)) = ρsm (μZm.Tm(Zm)).

Let m = min{sm(Xi) | i = 1, . . . , s}. We know from Item (ii) Lemma 71 that

μZm.Tm(Zm) ≡m ρsm (μZm.Tm(Zm))

Hence it follows from Item (2) of Lemma 68 that to show Eq. (30) it suffices to show

D�(μZm.Tm(Zm)) ≤ m

But this was proved in Lemma 96, see Eq. (28). �
Although the following corollary will not be used in any further proofs, it is worth mentioning it.

Corollary 98. The (C, C0)-quasi-simulation that results between the unification of two Tμ-strategies, say S � R, and that of their
unfolding, say ρs(S) � ρr(R), (i.e. constructed in the proof of Lemma 87) is actually a (C, C0)-simulation.

Proof. This follows immediately from Corollary 97. That is, on the one hand for any Tμ-strategy μZ .T (Z) in S � R that is
not a sub-Tμ-strategy of S nor R , we have that each of φμ(μZ .T (Z)) (i.e. φμ

ν (Z)) and φμ(Z) corresponds to the unification
of two unfoldings of the same two Tμ-strategies. And on the other hand, for any Tμ-strategy μZ .T (Z) in S � R that is a
sub-Tμ-strategy of S or R , there is a (C, C0)-simulation between μZ .T (Z) and any unfolding of it. �
12.2. Derived tree and a lower bound for the number of jumps

The Eq. (27) of Lemma 96 allows one to distinguish between elements of T whose ω and D� are equal, and those whose
ω and D� are different by 1. The latter elements form the derived tree of T. The name “derived” tree is justified by the fact
that we want to focus on the elements of T on which D� changes and increases by 1.

Definition 99 (Derived tree ∂T of T). Recall that T = (μ(S � R), �). We define the derived tree of T, denoted by ∂T, as the
pair ∂T = (A, �) where A ⊆ μ(S � R) is defined by

A = {T ∈ μ(S � R) | ωS(T) = D�
S(T) − 1, for any maximal sequence S in T containing T}.

Example 100 (Derived tree ∂T). We consider Example 95, and we assume that the fixed-point tree T of ξ1 � R1 contains just
the sequence S = T1 � T2 � · · · � T6, defined in Eq. (26). By examining the last two rows of Table 3 that respectively exhibit
ωS(Ti) and D�

S(Ti), we notice that the equality ωS(T) = D�
S(T) − 1 holds for T = T1, T3, T6. Hence it follows that the derived

tree ∂T is composed of T1, T3, T6. Besides, in ∂T, we have T1 � T3 � T6.

The following remark provides useful observations that can be illustrated by the Table 3 of the Example 95.

Remark 101. Notice that, for any maximal sequence S in T, the following statements follow from Eq. (27) of Lemma 96 and
from Definition 99.

1. Any (fixed-point) Tμ-strategy T which is in T but not in ∂T has the property ωS(T) = D�
S(T).

2. Since by Items (1a) and (1b) of Lemma 90 we know that each of D� and ω can be incremented by at most 1 from
a Tμ-strategy to its immediate sub-Tμ-strategy in T, then if T̂1 is in ∂T and T2 is in T such that T̂1 � T2, then
D�
S(T̂1) = D�

S(T2) + 1 and hence ωS(T̂1) = ωS(T2).

3. Similarly, if T1, . . . , Tm are in T, and T̂2 is in ∂T such that T1 � . . . � Tm � T̂2, then D�
S(Ti) = D�

S(T̂2) and ωS(Ti) =
ωS(T2) + 1, for any i ∈ {1, . . . ,m}.

4. In particular, if T̂1 and T̂2 are in ∂T such that T̂1 � T̂2, then D�
S(T̂1) = D�

S(T̂2) + 1 and ωS(T̂1) = ωS(T̂2) + 1.

Thanks to Lemma 96 and Remark 101, we show in the following Lemma 102 a crucial property of the derived tree ∂T
that was behind its introduction: if two Tμ-strategies T̂1 and T̂2 are in ∂T with T̂1 � T̂2, then the number of jumps between
the root of T̂1 and T̂2 is at least one.
45

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Lemma 102. Let

μ Ẑ1.T̂1(Ẑ1) � T̂2

be a sequence in ∂T. Define T̂ �
1(Z) to be the (unique) Tμ-strategy satisfying

T̂ �
1(T̂2) = T̂1(Ẑ1).

We have that

1 ≤ �Z (T̂ �
1(Z)). (31)

12.3. The unification of two Tμ-strategies is equivalent to the unification of their unfolding

We arrive at the key lemma that will allows us to show that unification of two Tμ-strategies is n-equivalent to the
unification of their unfolding. We already explained at the beginning of this Section 12 that, in the particular setting where
S � R is composed of just one Tμ-strategy, say μZ .T (Z), the purpose is to show that E is a fixed-point of T (Z), where E is
the unification of the unfolding of two Tμ-strategies. That is, we want to show that E is n-equivalent to T (E).

However, if we consider the general setting in which the fixed-point Tμ-strategies in S � R can be nested, namely if
we have a sequence S = μZ1.T1(Z1) � · · · � μZm.Tm(Zm) in S � R , then a fixed-point variable Zi may appear in any Tμ-
strategy μZ j .T j(Z j) for 1 ≤ i ≤ j ≤ m. Therefore, we need a general and inductive way to formulate and then to show
that certain fixed-point free Tμ-strategies E1, . . . , Em (which are in the Tμ-strategy that results from the unification of the
unfolding of S with the unfolding of R) are a fixed-point of T1(Z1), . . . , Tm(Zm), respectively, in the sense that Ei is ni -
equivalent to Ti(Ei), for i = 1, . . . , m, where ni is an appropriate constant. This general and inductive way of formulating
such requirements is achieved thanks to the mappings φμ and φ̂μ

ν by just imposing that φμ

(
μZi .Ti(Zi)

)
and φ̂μ

ν (Ti(Zi))

must be D�
S(μZi .Ti(Zi))-equivalent. In particular, φμ

(
μZi .Ti(Zi)

)
corresponds to Ei , while φ̂μ

ν (Ti(Zi)) corresponds to T (Ei)

since, roughly speaking, φ̂μ
ν (Ti(Zi)) corresponds to Ti

(
φ̂

μ
ν (Zi)

)
which is Ti(Ei).

Lemma 103. Let S (resp. R) be a Tμ-strategy with bound fixed-point variables X1, . . . , Xs (resp. Y1, . . . , Yr), and let n ≥ 1. Let
s : {X1, . . . , Xs} → N and r : {Y1, . . . , Yr} →N be iteration mappings with s(Xi) = r(Y j) = n, for i = 1, . . . , s and j = 1, . . . , r. Let
T be the fixed-point tree of S � R rooted at μZ1.T1(Z1). Let Ti be a right maximal sub-tree of T rooted at μZi .Ti(Zi) yielding the
unique sequence Si :

μZ1.T1(Z1) � · · · � μZi .Ti(Zi)

in T and let

ω(i) = ωSi (μZi .Ti(Zi))

D�(i) = D�
Si (μZi .Ti(Zi)).

Then for any i = 1, . . . , δ(T), and any maximal sequence

μZi .Ti(Zi) � · · · � μZm.Tm(Zm)

in Ti where i ≤ m, either

(i) Zi ∈ Bound(S � R) \ (
Bound(S) ∪Bound(R)

)
and in this case we have that

φμ

(
μZi .Ti(Zi)

) ≡D�(i) φ̂
μ
ν (Ti(Zi)), (32)

(ii) or i = m and Zm ∈ Bound(S) ∪Bound(R), and in this case we have that

φμ

(
μZm.Tm(Zm)

) ≡D�(m) μZm.Tm(Zm). (33)

Proof. The proof is by a double induction. The outer one is a structural induction on the tree ∂Ti .

Outer base case δ(∂Ti) = 0. In this case consider a maximal sequence

μZi .Ti(Zi) � · · · � μZm.Tm(Zm)

in Ti with 1 ≤ i ≤ m. Indeed, since δ(∂Ti) = 0 then

D�(i) = D�(i + 1) = . . . = D�(m). (34)
46

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
We make an inner structural induction on Ti .
Inner base case: δ(Ti) = 1.

Since Ti is not necessarily connected, it may contain many maximal sequences, but each one of them is com-
posed of just one fixed-point Tμ-strategy. Hence, consider a maximal sequence

μZm.Tm(Zm)

in Ti . And we need to show that

φμ

(
μZm.Tm(Zm)

) ≡D�(m)φ̂
μ
ν (Tm(Zm)) if Zm ∈ Bound(S � R) \ (

Bound(S) ∪ Bound(R)
)

(a)
φμ

(
μZm.Tm(Zm)

) ≡D�(m)μZm.Tm(Zm) if Zm ∈ Bound(S) ∪ Bound(R). (b)
(35)

If Zm ∈ Bound(S) ∪Bound(R) then Eq. (35)(b) follows from Eq. (30) of Corollary 97.
If Zm ∈ Bound(S � R) \ (

Bound(S) ∪ Bound(R)
)

then notice that Tm(Zm) is fixed point-free but may contain
free fixed-point variables besides Zm . Therefore there exists a fixed point-free Tμ-strategy T �(Z 1, . . . , Zl, Zm) with
l ≥ 0 and {Z 1, . . . , Zl} ⊆ {Z1, . . . , Zm} \ {Zm} such that Tm(Zm) = T �

m(Z 1, . . . , Zl, Zm). Hence we need to show that

φμ

(
μZm.T �

m(Z 1, . . . , Zl, Zm)
) ≡D�(m) φ̂

μ
ν (T �

m(Z 1, . . . , Zl, Zm)). (36)

On the one hand, it follows from Remark 86 that the left-hand side of Eq. (36) can be written as

LHS.(36) = φμ

(
μZm.T �

m(Z 1, . . . , Zl, Zm)
)

= T �
m

(
φμ(Z 1), . . . , φμ(Zl),φμ(Zm)

)
.

On the other hand, by the Definition 84 of φ̂μ
ν , the right-hand side of Eq. (36) can be written as

RHS.(36) = φ̂
μ
ν (T �

m(Z 1, . . . , Zl, Zm))

= T �
m(φ̂

μ
ν (Z 1), . . . , φ̂

μ
ν (Zl), φ̂

μ
ν (Zm)))

= T �
m(φ

μ
ν (Z 1), . . . , φ

μ
ν (Zl),φ

μ
ν (Zm)).

Thus we need to show that

T �
m(φμ(Z 1), . . . , φμ(Zl),φμ(Zm)) ≡D�(m) T �

m(φ
μ
ν (Z 1), . . . , φ

μ
ν (Zl),φ

μ
ν (Zm)). (37)

From Eq. (29) of Corollary 97 we have that

φμ(Zm) ≡D�(Zm) φ
μ
ν (Zm) and φμ(Z j) ≡D�(Z j) φ

μ
ν (Z j) for j = 1, . . . , l.

But we know from Eq. (34) above that D�(Zm) = D�(m) as well as D�(Zm) = D�(Z j) for j = 1, . . . , l. Thus Eq. (37)
holds by Item (2) of Lemma 68.

Inner induction step. Assume that Eq. (32) holds for a fixed-point sub-tree Ti of T, and we shall prove it for
the (unique) fixed-point sub-tree Ti−1 (of T) that contains Ti such that Ti is an immediate sub-tree of Ti . Assume
that Ti−1 is rooted at μZi−1.Ti−1(Zi−1).

Consider such tree Ti−1 and a maximal sequence

μZi−1.Ti−1(Zi−1) � μZi .Ti(Zi) � · · · � μZm.Tm(Zm)

in Ti−1. We recall that we have

D�(i − 1) = . . . = D�(m). (38)

The Tμ-strategy Ti−1(Zi−1) can be written in terms of its immediate fixed-point sub-Tμ-strategies and fixed-
point variables in the sense that there exist k ≥ 1 and l ≥ 0 and
i.) a fixed-point free Tμ-strategy T �

i−1(X1, . . . , Xk+l) in which each fixed-point variable X j is free, and
ii.) Tμ-strategies T1, . . . , Tk where each T j is either a fixed-point Tμ-strategy in μ(S � R), and
iii.) fixed-point variables Z 1, . . . , Zl where {Z 1, . . . , Zl} ⊆ {Z1, . . . , Zi−1},
such that Ti−1(Zi−1) can be written as

Ti−1(Zi−1) = T �
i−1(T1, . . . ,Tk, Z 1, . . . , Zl).

Hence, we need to show that

φμ

(
μZi−1.T

�
i−1(T1, . . . ,Tk, Z 1, . . . , Zl)

) ≡D�(i−1) φ̂
μ
ν (T �

i−1(T1, . . . ,Tk, Z 1, . . . , Zl)). (39)
47

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
On the one hand, it follows from Remark 86 that the left-hand side of Eq. (39) can be written as

LH.(39) = φμ

(
μZi−1.T

�
i−1(T1, . . . ,Tk, Z 1, . . . , Zl)

)
= T �

i−1

(
φμ(T1), . . . , φμ(Tk),φμ(Z 1), . . . , φμ(Zl)

)
.

On the one hand, by Definition 84 of φ̂μ
ν , the right-hand side of Eq. (39) can be written as

RH.(39) = φ̂
μ
ν

(
T �

i−1(T1, . . . ,Tk, Z 1, . . . , Zl)
)

= T �
i−1

(
φ̂

μ
ν (T1), . . . , φ̂

μ
ν (Tk),φ

μ
ν (Z 1), . . . , φ

μ
ν (Zl)

)
.

Therefore showing Eq. (39) amounts to show that

T �
i−1

(
φμ(T1), . . . , φμ(Tk),φμ(Z 1), . . . , φμ(Zl)

) ≡D�(i−1) T �
i−1

(
φ̂

μ
ν (T1), . . . , φ̂

μ
ν (Tk),φ

μ
ν (Z 1), . . . , φ

μ
ν (Zl)

)
.

(40)

We recall that from Eq. (38), we have D�(T j) = D�(i − 1) for j = 1, . . . , k as well as D�(Z j) = D�(i − 1) for
j = 1, . . . , l. Therefore from Item 2 of Lemma 68 it follows that to show Eq. (40) it is enough to show that for any
j = 1, . . . , k

φμ(T j) ≡D�(T j) φ̂
μ
ν (T j) (41)

and that for any j = 1, . . . , l,

φμ(Z j) ≡D�(Z j) φ
μ
ν (Z j) (42)

To achieve this, consider the two cases.
• For Eq. (41) assume that T j is of the form T j = μZ j .T�

j(Z j). We distinguish two cases depending on whether
Z j ∈ Bound(S � R) \ (

Bound(S) ∪ Bound(R)
)

or Z j ∈ (Bound(S) ∪ Bound(R)). For the first case we have the
sequence

μZi−1.Ti−1(Zi−1) � T j � μZi+1.Ti+1(Zi+1) � · · · � μZm.Tm(Zm)

in T. Let T j be the maximal sub-tree of Ti−1 which is rooted at T j . Since T j is an immediate sub-tree of
Ti−1, then Eq. (41) follows from the inner induction hypothesis. However, for the second case where Z j ∈
(Bound(S) ∪Bound(R)) we have the sequence

μZi−1.Ti−1(Zi−1) � T j

in T. That is, in this case we remind that the fixed-point Tμ-strategy T j is either a sub-Tμ-strategy of S or of
R . Hence, we have φ̂μ

ν (T j) = T j . It follows from the base case, i.e. Eq. (33) that

φμ(T j) ≡D�(T j) T j .

• For Eq. (42), it follows from Eq. (29) of Corollary 97.
Outer induction step. Assume that Eq. (32) holds for a fixed-point sub-tree ∂Ti of T, we shall prove it for the
(unique) fixed-point sub-tree ∂(Ti−1) (of T) that contains ∂Ti such that ∂Ti is an immediate sub-tree of ∂Ti . Let
μ Ẑ î−1.T̂ î−1(Ẑ î−1) be a root of ∂(Ti−1), and let μ Ẑ î .T̂ î(Ẑ î) be a root of ∂(Ti). Consider such tree ∂(Ti−1) and a
maximal sequence

μ Ẑ î−1.T̂ î−1(Ẑ î−1) � μ Ẑ î .T̂ î(Ẑ î) � · · · � μ Ẑm̂.T̂m̂(Ẑm̂)

in ∂Ti−1. Assume that the maximal sequence in Ti−1 that lays between the root of ∂Ti−1 and the root of ∂(Ti) is
non-empty, the case where it is empty can be handled similarly. Let the following be such a sequence:

μ Ẑ î−1.T̂ î−1(Ẑ î−1) � μZ p.T p(Z p) � μZ p+1.T p+1(Z p+1) � · · · � μZq.Tq(Zq) � μ Ẑ î .T̂ î(Ẑ î)

where 1 ≤ p ≤ q. In this case, by Definition 99 of the derived tree ∂T we have

D�
(
μ Ẑ î−1.T̂ î−1(Ẑ î−1)

) = D�
(
μZ p.T p(Z p)

) + 1 (43)

D�(μZ j.T j(Z j)) = D�(μZ j+1.T j+1(Z j+1)) = D�
(
μ Ẑ î .T̂ î(Ẑ î)

)
for j = p, . . . ,q − 1. (44)

On the one hand, from the outer induction hypothesis we have that

φμ

(
μ Ẑ î .T̂ î(Ẑ î)

) ≡D�(T̂ î(Ẑ î))
φ̂ν

μ

(
T̂ î(Ẑ î)

)
. (45)
48

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
On the other hand, as far as Eq. (44) holds, using the same kind of induction made in the inner base case, we
can easily show that, for j = 1, . . . , q − 1, we have

φμ

(
μZ j .T j(Z j)

) ≡D�(μZ j .T j(Z j)) φ̂ν
μ

(
T j(Z j)

)
. (46)

Since μ Ẑ î .T̂ î(Ẑ î) is a sub-Tμ-strategy of μ Ẑ î−1.T̂ î−1(Ẑ î−1) then there is a Tμ-strategy T̂ �
i−1(Z) such that

T̂ î−1(Ẑ î−1) can be written as

T̂ î−1(Ẑ î−1) = T �
i−1

(
μ Ẑ î .T̂ î(Ẑ î)

)
.

Since by Eq. (43) we know that D�
(
μ Ẑ î−1.T̂ î−1(Ẑ î−1)

) = D�
(
μZ p .T p(Z p)

) + 1, then it follows from Item 1 of
Lemma 68 that to show Eq. (32), it suffices to show that

1 ≤ �Z
(
T̂ �

i−1(Z)
)
,

but this was proved in Lemma 102, see Eq. (31). �
In the following Corollary we show that the unification of two Tμ-strategies is equivalent to that of their unfolding in

the particular setting in which one of these two Tμ-strategies is a fixed-point one.

Corollary 104. Let S (resp. R) be a Tμ-strategy with bound fixed-point variables X1, . . . , Xs (resp. Y1, . . . , Yr) and let n ≥ 1. Let
s : {X1, . . . , Xs} → N and r : {Y1, . . . , Yr} → N be iteration mappings with s(Xi) = r(Y j) = n for i = 1, . . . , s and j = 1, . . . , r. If
either S or R is a fixed-point Tμ-strategy then

S � R ≡n ρs(S)� ρr(R) (47)

Or, the following two diagrams commute where Cμ stands of the set of fixed-point Tμ-strategies.

Cμ × C C

C0 × C0 C0

�

ρs(·)×ρr(·) ≡n

�

C × Cμ C

C0 × C0 C0

�

ρs(·)×ρr(·) ≡n

�

Proof. Let

E = ρs(S)� ρr(R),

and assume that S � R = μZ1.T1(Z1) for some Tμ-strategy T1(Z1). The key idea of the proof is to show that E is a fixed-
point of T1(Z1) in the sense that T1(E) ≡n E. To achieve this we take i = 1 in Eq. (32) of Lemma 103, and we get

φμ

(
μZ1.T1(Z1)

) ≡D�(μZ1.T1(Z1)) φ̂
μ
ν (T1(Z1))

But since D�
(
μZ1.T1(Z1)

) = n by the Eq. (24) of Definition 94 of D� , we get

φμ

(
μZ1.T1(Z1)

) ≡n φ̂
μ
ν (T1(Z1)). (48)

On the one hand, by Definition 84 of φμ together with Lemma 90 on the properties of φμ , it follows that the left-hand
side of Eq. (48) can be written as:

LH.(48) = φμ

(
μZ1.T1(Z1)

) = E. (49)

On the other hand, the right-hand side of Eq. (48) can be written as:

RH.(48) = φ̂
μ
ν (T1(Z1))

= T1(φ̂
μ
ν (Z1)) (Since Z1 is the only free fixed-point variable of T1(Z1))

= T1(φ
μ
ν (Z1)) (Definition 84 of φ̂

μ
ν)

= T1
(
φμ

(
μZ1.T1(Z1)

)
(Definition 84 of φ

μ
ν)

= T1(E). (From Eq. (49))

Summing up, and relying on Eq. (48), we get
49

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
T1(E) ≡n E.

It follows from Corollary 70 that

μZ1.T1(Z1) ≡n E.

But since, by definition, we have that S � R = μZ1.T1(Z1) and ρs(S) � ρr(R) = E, then we get the desired result, i.e.
Eq. (47). �

We generalize Corollary 104 by relaxing the assumption on the input Tμ-strategies and letting them to be arbitrary
instead of being fixed-point ones. We thus arrive at the main result of this Subsection.

Proposition 105. Let S (resp. R) be a Tμ-strategy with bound fixed-point variables X1, . . . , Xs (resp. Y1, . . . , Yr) and let n ≥ 1. Let
s : {X1, . . . , Xs} →N and r : {Y1, . . . , Yr} →N be iteration mappings with s(Xi) = r(Y j) = n for i = 1, . . . , s and j = 1, . . . , r. Then,

S � R ≡n ρs(S)� ρr(R),

which is illustrated by the commutative diagram below.

C × C C

C0 × C0 C0

�

ρs(·)×ρr(·) ≡n

�

Proof. There are fixed-point free Tμ-strategies S ′(X1, . . . , Xk) and R ′(Y 1, . . . , Y l), where k ≥ 1 and l ≥ 1, as well as fixed-
point Tμ-strategies ξ1, . . . , ξk and ζ1, . . . , ζl such that S and R can be written as:

S = S ′(ξ1, . . . , ξk) R = R ′(ζ1, . . . , ζl)

On the one hand, it follows from the composition Lemma 73 that there is a fixed-point free Tμ-strategy T (Z1, . . . , Zm) and
Tμ-strategies T1, . . . , Tm , where m ≥ 1, such that S � R can be written as

S � R = T (T1, . . . , Tm),

where for any i = 1, . . . , m, one of the following cases holds.

1. There is j ∈ {1, . . . ,k} and a Tμ-strategy Ri that is a sub-Tμ-strategy of R such that

Ti = ξ j � Ri or Ti = ξ j.

2. There is j ∈ {1, . . . , l} and a Tμ-strategy Si that is a sub-Tμ-strategy of S such that

Ti = Si � ζ j or Ti = ζ j.

We only discuss the first case since the second one is similar. On the other hand, since there is a (C, C0)-quasi-simulation
between S � R and ρs(S) � ρr(R) (i.e. Lemma 87) to together with the properties of the induced mapping φμ (Item (1) of
Lemma 90) it follows that ρs(S) � ρr(R) can be written as

ρs(S)� ρr(R) = T (T̃1, . . . , T̃m)

such that for any i = 1, . . . , m, we have

T̃ i = φμ(Ti) = ρs(ξ j)� ρr(Ri) or T̃ i = φμ(Ti) = ρs(ξ j).

If Ti = ξ j then it follows from Item (ii) of Lemma 71 that ξ j ≡n ρs(ξ j) since s(X) = n for any X in {X1, . . . , Xs}. Otherwise,
if Ti = ξ j � Ri then it follows from Corollary 104 that ξ j � Ri ≡n ρs(ξ j) � ρr(Ri). Therefore,

Ti ≡n T̃ i, for i = 1, . . . ,m.

Hence,

T (T1, . . . , Tm) ≡n T (T̃1, . . . , T̃m).

Thus the desired result follows. �

50

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
13. Proof of the main results

In this section we prove the main results of this paper stated in Section 6. The correctness of the unification and com-
bination operations for arbitrary Tμ-strategies will be proved in Subsection 13.1. The algebraic properties of the unification
and combination follow immediately from the correctness result, and will be proved in Subsection 13.2.

13.1. The correctness of the unification and combination

Now we are ready to prove the first main theorem of this paper regarding the correctness of the unification of Tμ-
strategies, Theorem 37. Its proof relies mainly on Proposition 105 and on the correctness of the unification for the fixed-
point free fragment of Tμ-strategies stated and proved in Proposition 55.

Theorem 37 (Correctness of the unification). For every term t ∈ T and for every Tμ-strategies S and R in C , we have that

�t(S � R) = �t(S)��t(R).

Proof. Let n be the depth of t . Assume that X1, . . . , Xs (resp. Y1, . . . , Yr) are the (bound) fixed-point variables of S (resp.
R) and let s and r be iteration mappings with s(Xi) = r(Y j) = n, for i = 1, . . . , s and j = 1, . . . , r. The proof follows from the
commutativity of the following diagram.

C × C C

C0 × C0 C0

E × E E

�t×�t

�

ρs(·)×ρr(·) ≡n

�t
�

�t×�t �t

�

Indeed, it follows from Proposition 105, Proposition 55, Item (ii) of Lemma 71 + Item (iii) of Lemma 49, and Item (iii) of
Lemma 49, respectively, that the following diagrams commute.

C × C C

C0 × C0 C0

�

ρs(·)×ρr(·) ≡n

�

C0 × C0 C0

E × E E

�

�t×�t �t

�

C × C

C0 × C0

E × E

�t×�t

ρs(·)×ρr(·)

�t×�t

C

C0

E

�t

≡n

�t

We restate these arguments in the language of equations rather than the language of diagrams. Let

S = ρs(S) and R = ρr(R).

We have that

S � R ≡n S � R (Proposition 105)

�t(S � R) = �t
(
S � R

)
. (Item (iii) of Lemma 49)

�t
(

S � R
) = �t(S)��t(R). (Proposition 55, since S and R are fixed-point free)

On the other hand,

S ≡n S and R ≡n R (Item (ii) of Lemma 71)

�t(S) = �t(S) and �t(R) = �t(R). (Item (iii) of Lemma 49)

Therefore

�t(S � R) = �t(S)��t(R). �

51

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
We can now state and prove the second main theorem of this paper on the correctness of the combination of Tμ-
strategies. In fact, the correctness of the combination follows from the correctness of the unification that we stated and
proved in Theorem 37 above.

Theorem 38 (Correctness of the combination). For every term t ∈ T and for every Tμ-strategies S and R in C , we have that

�t(S � R) = �t(S)��t(R).

Proof.

�t(S � R) = �t
(
(S � R) ⊕ S ⊕ R

)
(Def. 35 of �)

= �t
(
�t(S � R) ⊕ �t(S) ⊕ �t(R)

)
(Item (3) of Lemma 49)

= �t

((
�t(S)��t(R)

) ⊕ �t(S) ⊕ �t(R)
)

(Theorem 37)

= �
(
�t(S)��t(R)

)
(Def. 35 of �)

= �t(S)��t(R). � (Item (1a) of Lemma 49 since �t(S)��t(R) is position-based)

13.2. The algebraic properties of the unification and combination

Thanks to Theorems 37 and 38, and using mapping � (Definition 46), we can transfer all the algebraic properties of the
combination and unification of position-based Tμ-strategies (stated in Propositions 11 and 12) to Tμ-strategies.

Theorem 39. The quotient set C/≡ of Tμ-strategies together with the unification operation enjoy the following properties.

1. The neutral element of the unification upon C/≡ is [@ε.�].
2. The absorbing element of the unification is [f].
3. The unification of Tμ-strategies is associative, i.e. ([S1] � [S2]) � [S3] = [S1] � ([S2] � [S3]), for any S1, S2, S3 ∈ C .
4. The unification of Tμ-strategies is (non-)commutative if and only if the operation of merging of contexts “•” is (non-)commutative.
5. The unification of Tμ-strategies is idempotent if and only if the operation of merging of contexts is idempotent, that is, [S] � [S] =

[S] for any S ∈ C iff τ • τ = τ for any contexts τ in T� .

Proof. We only prove the associativity property. To prove the associativity of the unification for Tμ-strategies we rely on the
associativity of the unification of position-based Tμ-strategies (Proposition 11) together with the property of the function
�t (Theorems 37). Let S1, S2 and S3 be Tμ-strategies in C . To prove ([S1] � [S2]) � [S3] = [S1] � ([S2] � [S3]) we shall prove
[(S1 � S2) � S3] = [S1 � (S2 � S3)], i.e.

S1 � (S2 � S3) ≡ (S1 � S2)� S3.

It follows from Item iii.) of Lemma 49 that it suffices to prove that, for any term t ∈ T , we have that

�t
(

S1 � (S2 � S3)
) = �t

(
(S1 � S2)� S3

)
.

But this follows from an easy computation:

�t
(

S1 � (S2 � S3)
) = �t(S1)��t(S2 � S3) (Theorem 38)

= �t(S1)� (�t(S2)��t(S3)) (Theorem 38)

= (�t(S1)��t(S2))��t(S3) (Proposition 11)

= �t(S1 � S2)��t(S3) (Theorem 38)

= �t
(
(S1 � (S2 � S3)

)
. � (Theorem 38)

The algebraic properties of the combination of Tμ-strategies follow. They inherit the properties of associativity, (non-
)commutativity and idempotence from the position-based Tμ-strategies and the merging of contexts.

Theorem 40. The quotient set C/≡ of Tμ-strategies together with the combination operation enjoy the following properties.

1. The neutral element of the combination upon C/≡ is [f].
2. The combination of Tμ-strategies is associative, i.e. ([S1] � [S2]) � [S3] = [S1] � ([S2] � [S3]), for any S1, S2, S3 ∈ C .
3. The combination of Tμ-strategies is (non-)commutative if and only if the operation of merging of contexts • is (non-)commutative.
52

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
4. The combination of Tμ-strategies is idempotent if and only if the operation of merging of contexts is idempotent, that is, [S] �[S] =
[S] for any S ∈ C iff τ • τ = τ for any contexts τ in T� .

Proof. Very similar to the proof of Theorem 39. �
The congruence and non-degeneracy of the unification and combination are stated in the two following theorems, re-

spectively.

Theorem 41 (Congruence and non-degeneracy of the unification). The following holds.

1. The unification of Tμ-strategies is a congruence, that is, for any Tμ-strategies S1, S2, S in C , we have that:

If S1 ≡ S2 then S1 � S ≡ S2 � S and S � S1 ≡ S � S2.

2. The unification is non-degenerate, that is, for any Tμ-strategies [S] and [S ′] in C/≡, we have that

[S] � [S ′] = [f] iff [S] = [f] or [S ′] = [f].

Proof. We only prove the first Item. On the one hand, it follows from Theorem 38 that

�t(S1 � S) = �t(S1)��t(S).

On the other hand, since S1 ≡ S2, it follows from Item iii.) of Lemma 49 that

�t(S1) = �t(S2).

Hence we get

�t(S1 � S) = �t(S2)��t(S)

= �t(S2 � S). (Theorem 38)

Again, from Item iii.) of Lemma 49, we get

S1 � S ≡ S2 � S.

The proof of the remaining claims is similar. �
Theorem 42 (Congruence and non-degeneracy of the combination). The following holds.

1. The combination of Tμ-strategies is a congruence, that is, for any Tμ-strategies S1, S2, S in C , we have that:

If S1 ≡ S2 then S1 � S ≡ S2 � S and S � S1 ≡ S � S2.

2. The combination is non-degenerate, that is, for any Tμ-strategies [S] and [S ′] in C/≡, we have that

[S]� [S ′] = [f] iff [S] = [f] and [S ′] = [f].

Proof. Similar to the proof of Theorem 41. �
14. Conclusion and future work

We addressed the problem of extension and combination of proofs encountered in the field of computer aided asymptotic
model derivation. We introduced a class of rewriting strategies on which the operations of unification and combination were
defined and proved correct. The design of this class is inspired by the μ-calculus formalism [8] together with practical needs
emerging from asymptotic model derivation.

The Tμ-strategies are indeed modular in the sense that they navigate in the tree without modifying it, then they insert
contexts. This makes our formalism flexible since it allows one to modify and enrich the navigation part and/or the inser-
tion part without disturbing the set-up. Besides, the ideas and techniques behind the unification and combination of the
navigation part, namely the unification of fixed-point Tμ-strategies or recursion, are generic and could be used in several
applications beyond rewriting strategies as far as they incorporate recursion. Although the Tμ-strategies can be viewed as
a finite algebraic representation of infinite trees [29,30], our technique of unification and combination involving μ-terms
and their unfolding is new. We envision consequences of these results on the study of the syntactic (or modulo a theory)
53

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
unification and the pattern-matching of infinite trees once they are expressed as μ-terms in the same way we expressed
the Tμ-strategies. It follows that a rewriting language that transforms algebraic infinite trees and incorporates the least and
greatest fixed-point operators could be elaborated.

We implemented the unification procedure within a user specification language of mathematical expressions, proofs and
extensions and their combination for asymptotic models. We noticed that the size of the resulting Tμ-strategies is big, and
the good news is that they contain many redundant and inaccessible parts in the same way a graph or a transition system
contains equivalent sub-parts, and a program contains inaccessible code. This raises the question of the minimization or
reduction of Tμ-strategies which remains open. We managed recently to design an algorithm that decides whether two Tμ-
strategies are semantically equivalent by looking at their structure. This is known as the word problem in other fields, e.g. in
universal algebras [31,32]. Proving the correctness of this algorithm is under way. This semantic equivalence algorithm will
probably be useful for the minimization of Tμ-strategies since one can factorize the equivalent sub-parts. This technique
is similar to the techniques of reduction of Petri nets and transition systems and event structures by the bisimulation
equivalence relation [33–36], and to the reduction of graphs by internal isomorphisms, or automorphism [37,38].

Since the class of Tμ-strategies can be viewed as μ-calculus in the sense that it supplements elementary strategies with
the fixed-point operator, one can pose the hierarchy problem for it. The hierarchy problem asks whether, for any n ≥ 1,
there exists a Tμ-strategy with n bound fixed-point variables, such that no Tμ-strategy with less than n bound fixed-point
variables is equivalent to it. The hierarchy problem was posed for many μ-calculi [39,40] and it might help in reducing the
size of the Tμ-strategies, namely in minimizing the number of bound fixed-point variables.

Declaration of competing interest

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.
The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter

discussed in the manuscript

Appendix: proofs of lemmas

A. Proofs for Section 9

Fact 52. Let I ′, J ′, J ′′ be sets. Then, (I ′ ∩ J ′′) ∪ (I ′ \ (J ′ ∪ J ′′)) = I ′ \ J ′ .
Proof.

(I ′ ∩ J ′′) ∪ (I ′ \ (J ′ ∪ J ′′)) = {x | x ∈ I ′ and x ∈ J ′′} ∪ {x | x ∈ I ′ and x /∈ J ′ ∪ J ′′}
= {x | x ∈ I ′ and x ∈ J ′′} ∪ {x | x ∈ I ′ and x /∈ J ′ and x /∈ J ′′}
= {x | (x ∈ I ′ and x ∈ J ′′) or (x ∈ I ′ and x /∈ J ′ and x /∈ J ′′)}
= {x | x ∈ I ′ and (x ∈ J ′′ or x /∈ J ′ or x /∈ J ′′)}
= {x | x ∈ I ′ and x /∈ J ′}
= I ′ \ J ′. �

B. Proofs for Section 10

Lemma 71. Let S be a Tμ-strategy with (bound) fixed-point variables X1, . . . , Xs and let s : {X1, . . . , Xs} →N be an iteration map-
ping.

(i) If S is a fixed-point Tμ-strategy, say μX .S ′(X) with X ∈ {X1, . . . , Xs}, then there exists a fixed-point free Tμ-strategy
S̃(X1, . . . , Xm) with m ≥ 1, and Tμ-strategies S1, . . . , Sm−1, Sm(X) such that for any n ≥ 1,

μn X .S ′(X) = S̃
(

S1, . . . , Sm−1, Sm
(
μn−1 X .S ′(X)

))
(50)

ρs(μX .S ′(X)) = S̃
(
ρs(S1), . . . , ρs(Sm−1),ρs′

(
Sm(μX .S ′(X))

))
(51)

where s′ is the iteration mapping defined on {X1, . . . , Xs} by s′(X) = s(X) − 1 and s′(X ′) = s(X ′) for X ′ 	= X.
(ii) If m = min{s(X1), . . . , s(Xs)}, then S ≡m ρs(S).

Proof. For Item (i), indeed S ′(X) can be written in terms of its immediate fixed-point sub-Tμ-strategies where X
appears free in one of them since X appears once in S ′(X). That is, there exists a fixed-point free Tμ-strategy
S̃(X1, . . . , Xm) with m ≥ 1, and (fixed-point) Tμ-strategies S1, . . . , Sm−1, Sm(X) such that S ′(X) can be written as S ′(X) =
54

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
S̃(S1, . . . , Sm−1, Sm(X)). To show Eq. (50) we rely on the fact that S̃(X1, . . . , Xm) is fixed-point free and on Definition 66
of unfolding together with a simple structural induction on S̃(X1, . . . , Xm). The computations are straightforward and we
don’t make them. To show Eq. (51), let s̃ be the iteration mapping defined on {X1, . . . , Xs} as the restriction of s on
{X1, . . . , Xs} \ {X}. Since S̃(X1, . . . , Xm) is fixed-point free, then by the Definition 66 of unfolding and making use of Eq. (50)
we get

ρs(μX .S ′(X)) = ρs
(
μX . S̃(S1, . . . , Sm−1, Sm(X))

)
= μs(X) X .ρs

(
S̃(S1, . . . , Sm−1, Sm(X))

)
= μs(X) X . S̃

(
ρs(S1), . . . , ρs(Sm−1),ρs

(
Sm(X)

))
= μs(X) X . S̃

(
ρs(S1), . . . , ρs(Sm−1),ρs̃

(
Sm(X)

))
= S̃

(
ρs(S1), . . . , ρs(Sm−1),ρs̃

(
Sm

(
μs(X)−1 X .S ′(X)

)))
(By Eq. (50))

= S̃
(
ρs(S1), . . . , ρs(Sm−1),ρs′

(
Sm(μX .S ′(X))

))
.

To show the Item (ii) we next generalize the idea that a Tμ-strategy μn X .S ′(X) could be written as S ′(S ′(· · · (f)) where
the number of jumps between its root and f is at least n, as well as the fact that μX .S ′(X) could be written as
S ′(S ′(· · · (μX .S ′(X)))). Technically, we rely on Eq. (5) and we shall show that there exist Tμ-strategies ξ1, . . . , ξm and a
fixed-point free Tμ-strategy T (X1, . . . , Xm) and an unraveling U(·) of S , such that U(S) and ρ(S) can be written as

U(S) = T (ξ1, . . . , ξm) (52)

ρs(S) = T (f, . . . , f) (53)

such that

min
{
�Xi

(
T (X1, . . . , Xm)

) | i = 1, . . . ,m
} ≥ m. (54)

We make a double induction: the outer one being on �(s) def= (s(X1), . . . , s(Xs)) with the lexicographic order, and the inner
one being on the number of nested fixed-point sub-Tμ-strategies of S , i.e. on h(S) the star height of S . The outer base
case when �(s) = (0, . . . , 0) holds trivially since in this case the set of terms of depth 0 is empty. For the outer induction
step, we assume that the claim holds for s′ and we shall prove it for any s with �(s) = �(s′) + (b1, . . . , bs) where there is
i ∈ {1, . . . , s} such that bi = 1 and b j = 0 for any i 	= j. We make an inner induction on h(S). The inner base case h(S) = 0
holds trivially since in this case S is fixed-point free because the unfolding of S is S . For the inner induction step we
assume that the claim holds for a Tμ-strategy S ′ and we shall prove it for any S with h(S) = h(S ′) + 1. We only discuss
the case when S if a fixed-point Tμ-strategy, say S = μX .S ′(X), since the case when S is of the form S = S̃(ξ1, . . . , ξk),
for a fixed-point free Tμ-strategy S̃(X1, . . . , Xk) and a fixed-point Tμ-strategies ξ1, . . . , ξk with k ≥ 1, does not provide
difficulties since it is easily reducible to the case under discussion, because ρs

(
S̃(ξ1, . . . , ξk)

) = S̃
(
ρs(ξ1), . . . , ρs(ξk)

)
. We rely

on the fact that S ′(X) can be written as S ′(X) = S̃(S1, . . . , Sm−1, Sm(X)), for fixed-point Tμ-strategies S1, . . . , Sm−1, Sm(X)

in ̃μ(S), S̃(X1, . . . , Xm) being a fixed-point free Tμ-strategy. From Eq. (50) above we have that ρs(S) = ρs(μX .S ′(X)) =
S̃
(
ρs(S1), . . . , ρs(Sm−1), ρs′

(
Sm(μX .S ′(X))

))
, where s′ is the iteration mapping defined on {X1, . . . , Xs} by s′(X) = s(X) − 1

and s′(X ′) = s(X ′) for X ′ 	= X .
Therefore, we have that

S = μX . S̃(S1, . . . , Sm−1, Sm(X))

U(S)
def= S̃

(
S1, . . . , Sm−1, Sm(μX .S ′(X))

)
ρs(S) = S̃

(
ρs(S1), . . . , ρs(Sm−1),ρs′

(
Sm(μX .S ′(X))

)
.

On the one hand, then it follows from inner induction hypothesis that the claims (52), (53) and (54) hold for Si with
respect to ρs(Si) for i = 1, . . . , m − 1, since h(Si) < h(S). On the other hand, since s′(X) = s(X) − 1 and s′(X ′) = X ′ for any
X ′ 	= X , then it follows from the outer induction hypothesis that there is a fixed-point free Tμ-strategy S̃k(Y 1, . . . , Y k) and
Tμ-strategies ζ1, . . . , ζk such that

U
(

Sm(μX .S ′(X))
) = S̃m(ζ1, . . . , ζk) (55)

ρs′(Sm(μX .S ′(X))) = S̃m(f, . . . , f) (56)
55

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
such that

min
{
�Y i

(
S̃m(Y 1, . . . , Y k)

) | i = 1, . . . ,k
} ≥ m′ (57)

where m′ = min{s′(Xi) | i = 1, . . . , s}. If m > s(X), then we are done since in this case m′ = m. Otherwise, if m = s(X) then
m′ = s(X) − 1. But since μX .S ′(X) is monotonic then �X (S ′(X)) ≥ 1. That is, there is at least one jump between the root of
S ′(X) and X . This jump is either between the root of S̃(S1, . . . , Sm−1, Xm) and Xm , i.e. �Xm

(
S̃(S1, . . . , Sm−1, Xm)

) ≥ 1 and
in this case we are done; or between the root of Sm(X) and X , i.e. �X

(
Sm(X)

) ≥ 1 and in this case we can assume without
loss of generality that X is an immediate sub-Tμ-strategy of Sm(X), say μX .S ′(X) = ζk , and thus we get the desired result
since �Xm

(
T (X1, . . . , Xm)

) ≤ 1 + �Y k

(
T (X1, . . . , Sm(Y k))

)
. �

Lemma 73 (Composition Lemma). Let S and R be Tμ-strategies. Assume that there are fixed-point free Tμ-strategies S ′(X1, . . . , Xk)

and R ′(Y1, . . . , Yl), where k ≥ 1 and l ≥ 1, and Tμ-strategies ξ1, . . . , ξk where ξi ∈ (S), and Tμ-strategies ζ1, . . . , ζl where ζi ∈
(R), such that S and R can be written as:

S = S ′(ξ1, . . . , ξk) R = R ′(ζ1, . . . , ζl).

Then, there is a fixed-point free Tμ-strategy T (Z1, . . . , Zm) and Tμ-strategies T1, . . . , Tm, where m ≥ 1, such that

S � R = T (T1, . . . , Tm)

where for any i = 1, . . . , m, there is an alternative between the two following choices.

(a) There are j ∈ {1, . . . ,k}, a Tμ-strategy Ri(Y 1, . . . , Y l′) that is a sub-Tμ-strategy of R ′(Y1, . . . , Yl) with l′ ≤ l, and a set of Tμ-

strategies {ζ 1, . . . , ζ l′ } ⊆ {ζ1, . . . , ζl} such that

Ti = ξ j � Ri(ζ 1, . . . , ζ l′) or Ti = ξ j. (58)

(b) There are j ∈ {1, . . . , l}, a Tμ-strategy Si(X1, . . . , Xk′
) that is a sub-Tμ-strategy of S ′(X1, . . . , Xk) with k′ ≤ l, and a set of Tμ-

strategies {ξ1, . . . , ξk′ } ⊆ {ξ1, . . . , ξk} such that

Ti = Si(ξ1, . . . , ξk′
)� ζ j or Ti = ζ j . (59)

Proof. The proof is by structural induction on the fixed-point free Tμ-strategies S ′(X1, . . . , Xk) and R ′(Y 1, . . . , Y l). The base
case is when k = l = 1 and S ′(X1) = X1 and R ′(Y1) = Y1. In this case we have S ′(ξ1) = ξ1 and R ′(ζ1) = ζ1. The result is
obvious since S � R = ξ1 � ζ1. For the induction step assume that the claim holds for some Tμ-strategies S ′′ and R ′′ , and we
shall show it for any S and R such that either (i) S ′′ is an immediate sub-Tμ-strategy of S and R ′′ = R , or (ii) S = S ′′ and
R ′′ is an immediate sub-Tμ-strategy of R , or (iii) S ′′ (resp. R ′′) is an immediate sub-Tμ-strategy of S (resp. R). The proof
is not hard and involves straightforward computations. We only elucidate the case when S is a pattern-matching and R is
arbitrary, and the case when both S and R are Most Tμ-strategies. The remaining cases fall into one of these two.
• If S ′(X1, . . . , Xk) = u; S ′′(X1, . . . , Xk) and R is arbitrary, then in this case

S � R = S ′(ξ1, . . . , ξk)� R ′(ζ1, . . . , ζl)

= u; (S ′′(ξ1, . . . , ξk)� R ′(ζ1, . . . , ζl)
)
.

From the induction hypothesis it follows that there is a fixed-point free Tμ-strategy T ′(Z1, . . . , Zm) and Tμ-strategies
T ′

1, . . . , T
′
m with the right properties (58) and (59) such that S ′′(ξ1, . . . , ξk) � R ′(ζ1, . . . , ζl) = T ′(T ′

1, . . . , T
′
m). By letting

T (Z1, . . . , Zm) = u; T ′(Z1, . . . , Zm) we get the desired result.
• If S ′(X1, . . . , Xk) = Most(S ′′(X1, . . . , Xk)) and R(X1, . . . , Xk) = Most(R ′′(X1, . . . , Xk)), then

S � R = S ′(ξ1, . . . , ξk)� R ′(ζ1, . . . , ζl)

= Most
(

S ′′(ξ1, . . . , ξk)
)
� Most

(
R ′′(ζ1, . . . , ζl)

)
= If

(
Most

(
S ′′(ξ1, . . . , ξk)

)
&Most

(
R ′′(ζ1, . . . , ζl)

))
Then Most

((
S ′′(ξ1, . . . , ξk)� R ′′(ζ1, . . . , ζl)

) ⊕ S ′′(ξ1, . . . , ξk) ⊕ R ′′(ζ1, . . . , ζl)
)
. (Rule 7a)

On the one hand, it follows from the induction hypothesis that there is a fixed-point free Tμ-strategy T ′(Z ′
1, . . . , Z

′
m) and

Tμ-strategies T ′
1, . . . , T

′
m with the right properties (58) and (59) such that S ′′(ξ1, . . . , ξk) � R ′′(ζ1, . . . , ζl) = T ′(T ′

1, . . . , T
′
m).

On the other hand, let T (Z 1
1, . . . , Z 1

k , Z 2
1, . . . , Z 2

l , Z ′
1, . . . , Z

′
m, Z 3

1, . . . , Z 3
k , Z 4

1, . . . , Z 4
l) the fixed-point free Tμ-strategy with

free variables Z 1, . . . , Z 1, Z 2, . . . , Z 2, Z ′ , . . . , Z ′
m, Z 3, . . . , Z 3, Z 4, . . . , Z 4 defined as follows:
1 k 1 l 1 1 k 1 l

56

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
T (Z 1
1, . . . , Z 1

k , Z 2
1, . . . , Z 2

l , Z ′
1, . . . , Z ′

m, Z 3
1, . . . , Z 3

k , Z 4
1, . . . , Z 4

l) =
If
(
Most(S ′′(Z 1

1, . . . , Z 1
k))&Most(R ′′(Z 2

1, . . . , Z 2
l))

)
Then Most

(
T ′(Z ′

1, . . . , Z ′
m) ⊕ S ′′(Z 3

1, . . . , Z 3
k) ⊕ R ′′(Z 4

1, . . . , Z 4
l)

)
Let T 1

i , T 3
i , T 2

j , T
4
j be the Tμ-strategies defined by

T 1
i = T 3

i = ξi, for i = 1, . . . ,k

T 2
j = T 4

j = ζ j, for j = 1, . . . , l

Therefore, S � R can be written as

S � R = T (T 1
1 , . . . , T 1

k , T 2
1 , . . . , T 2

l , T ′
1, . . . , T ′

m, T 3
1 , . . . , T 3

k , T 4
1 , . . . , T 4

l)

which satisfies the properties (58) and (59). �
C. Proofs for Section 11

Lemma 76. There exist fixed-point free Tμ-strategies T1, . . . , Tm, T (Z1, . . . , Zm), where each Zi is a free fixed-point variable and
m ≥ 1, such that ρs1(S) � ρr1 (R) and ρs2 (S) � ρr2 (R) can be written as

ρs1(S)� ρr1(R) = T (T1, . . . , Tm)

ρs2(S)� ρr2(R) = T (f, . . . , f).

Proof. The proof is by induction on �(S, R, s1, s2, r1, r2)
def= (

δ(ρs1 (S)), δ(ρs2 (S)), δ(ρr1 (R)), δ(ρr2 (R))
)
. The base case is

when �(S, R, s1, s2, r1, r2) = (0, 0, 0, 0), i.e. S and R are either f or @ε.τ . This case is trivial. For the induction step,
assume that the claim holds for Tμ-strategies S̃, R̃ and iteration mappings s̃1, ̃s2, ̃r1, ̃r2, and we shall prove it for any
Tμ-strategies S, R and iteration mappings s1, s2, r1, r2 where �(S, R, s1, s2, r1, r2) = �(S̃, R̃, ̃s1, ̃s2, ̃r1, ̃r2) + (1, 1, 0, 0), or
�(S, R, s1, s2, r1, r2) = �(S̃, R̃, ̃s1, ̃s2, ̃r1, ̃r2) + (0, 0, 1, 1), or �(S, R, s1, s2, r1, r2) = �(S̃, R̃, ̃s1, ̃s2, ̃r1, ̃r2) + (1, 1, 1, 1). We only
discuss the cases when δ(ρs2 (S)) ≥ 1 (and hence δ(ρs1 (S)) ≥ 1 since s1 ≥ s2) and δ(ρr2 (R)) ≥ 1 (and hence δ(ρr1 (R)) ≥ 1
since r1 ≥ r2), because the cases when δ(ρs2 (S)) = 0 or δ(ρs2(S)) = 0 (but not both) are just a particular case of the general
case that follows, and can be handled similarly using the composition Lemma 73. We distinguish two cases depending on
S and R .
First case. If neither S nor R is a fixed-point Tμ-strategy, then there exist fixed-point free Tμ-strategies S ′(X1, . . . , Xk) and
R ′(Y 1, . . . , Y l) and Tμ-strategies S1, . . . , Sk and R1, . . . , Rl , where each Si (resp. Ri) is an immediate sub-Tμ-strategy of S
(resp. R), i.e. δ(S ′(X1, . . . , Xk)) = 1 (resp. δ(R ′(Y 1, . . . , Y l)) = 1), such that S and R can be written as:

S = S ′(S1, . . . , Sk)

R = R ′(R1, . . . , Rl).

Hence,{
ρs1(S) = S ′(ρs1(S1), . . . , ρs1(Sk))

ρr1(R) = R ′(ρr1(R1), . . . , ρr1(Rl)),
and

{
ρs2(S) = S ′(ρs2(S1), . . . , ρs2(Sk))

ρr2(R) = R ′(ρr2(R1), . . . , ρr2(Rl)).
(60)

It follows from the composition Lemma 73 that there exist a fixed-point free Tμ-strategy T (Z1, . . . , Zm), and Tμ-strategies
T 1

1 , . . . , T 1
m and T 2

1 , . . . , T 2
m such that

ρs1(S)� ρr1(R) = T (T 1
1 , . . . , T 1

m)

ρs2(S)� ρs2(S) = T (T 2
1 , . . . , T 2

m),

where the Item (a) or (b) holds. We only discuss the first possibility (since the second is symmetric) according to which,
for any i = 1, . . . , m there is j ∈ {1, . . . ,k}, and a Tμ-strategy Ri(Y1, . . . , Yl′) that is a sub-Tμ-strategy of R ′(Y1, . . . , Yl) with
l′ ≤ l, and a set of Tμ-strategies {R1

1, . . . , R1
l′ } ⊆ {R1, . . . , Rl} such that

T 1
i = ρs1(S j)� Ri(R1

1, . . . , R1
l′) or T 1

i = ρs1(S j) (61)

T 2
i = ρs1(S j)� Ri(R2

1, . . . , R2
l′) or T 2

i = ρs2(S j). (62)

If T 1
i = ρs1 (S j) and hence T 2

i = ρs2 (S j), then the claim follows from Remark 72. Otherwise, the claim follows from the
induction hypothesis.
57

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
Second case. If S is a fixed-point Tμ-strategy, say μX . S̃(X), then we distinguish two cases. If s2(X) = 0 then the claim
holds trivially since in this case ρs2 (S) = f. If s2(X) > 0 and therefore s1(X) > 0 since s1 ≥ s2, then it follows from Eq. (51)
of Lemma 71, that there exists a fixed-point free Tμ-strategy S ′(X1, . . . , Xk) and Tμ-strategies S1, . . . , Sk−1, Sk(X), where
δ(S ′(X1, . . . , Xk)) = 0, such that ρs1 (μX . S̃(X)) and ρs2 (μX . S̃(X)) can be written as

ρs1(μX . S̃(X)) = S ′(ρs1(S1), . . . , ρs1(Sk−1),ρs′
1

(
Sk(μX . S̃(X))

))
ρs2(μX . S̃(X)) = S ′(ρs2(S1), . . . , ρs2(Sk−1),ρs′

2

(
Sk(μX . S̃(X))

))
where s′

v(X) = s′
v(X) − 1 and s′

v (X ′) = sv(X ′) for X ′ 	= X , for v = 1, 2. Thus the reasoning is very similar to the one made in
the first case, more precisely it is done by taking Eq. (60) in which we replace ρsv (Sk) by ρs′

v

(
Sk(μX . S̃(X))

)
, for v = 1, 2.

Thus the induction hypothesis can be applied as well. �
Lemma 87. Let S and R be Tμ-strategies with bound fixed-point variables Bound(S) = {X1, . . . , Xs} and Bound(R) = {Y1, . . . , Yr}.
Let M ∈ M(S, R) be a memory with respect to S and R. Let s : {X1, . . . , Xs} → N and r : {X1, . . . , Xr} → N be iteration mappings.
There is a (C, C0)-quasi-simulation S between NF(〈S, R,M〉) and NF(〈ρs(S),ρr(R),∅〉). In particular, the following diagram
commutes.

C × C C

C0 × C0 C0

�

ρs(·)×ρr(·) S

�

Proof. We make of use of Lemma 73. The proof is by structural induction on ρs(S) and ρr(r), according to which the
(C, C0)-simulation S will be inductively constructed. The base case holds trivially. For the induction step we assume that
the claim holds for Tμ-strategies ρs′′ (S ′′) and ρr′′ (R ′′) and we shall prove for any Tμ-strategies ρs(S) and ρr(R) such that
either (i) ρs′′(S ′′) is an immediate sub-Tμ-strategy of ρs(S) and R ′′ = R and r′′ = r, or (ii) ρr′′(R ′′) is an immediate sub-Tμ-
strategy of ρr(S) and S ′′ = S and s′′ = s, or (iii) ρs′′(S ′′) (resp. ρr′′(R ′′)) is an immediate sub-Tμ-strategy of ρs(S) (resp.
ρr(S)). We distinguish three cases depending on S and R:

1. If S and R are fixed-point free, then this case is trivial since ρs(S) = S and ρr(R) = R .
2. If S and R are of the form S = S ′(S1, . . . , Sk) and R = R ′(R1, . . . , Rl) for fixed-point free Tμ-strategies S ′(X1, . . . , Xk) and

R ′(Y1, . . . , Yl), i.e. S = u; S ′ or S = S ′ ⊕ S ′′ or S = Most(S ′) or S = If S ′ Then S ′′ or S = ∧
i=1,k @pi .Si and similarly for R ,

then the result follows immediately from Lemma 73 since in these cases ρs(S ′(S1, . . . , Sk)) = S ′(ρs(S1), . . . , ρs(Sk)
)

and
ρr(R ′(R1, . . . , Rl)) = R ′(ρr(R1), . . . , ρr(Rl)

)
, since the induction hypothesis can be applied on each ρr(Si) and ρr(R j),

for i ∈ {1, . . . ,k} and j ∈ {1, . . . , l}.
3. If S is fixed-point S = μX .S ′(X), with X ∈ {X1, . . . , Xs}, then S is replaced by S ′(S) in the unification, and thus we

reduce this case to the case 2 above as follows:

〈S, R,M〉 = 〈μX .S ′(X), R,M〉 →
{
μZ .〈S ′(S), R,M′〉 if (S, R, ·) /∈ M

Z if (S, R, Z) ∈M

where Z = fresh(S, R) and M′ =M ∪ {(S, R, Z)}, and

〈ρs(S),ρr(R),∅〉 = 〈ρs(μX .S ′(X)),ρr(R),∅〉

=
{

〈f,ρr(R),∅〉 if s(X) = 0

〈ρs(μX .S ′(X)),ρr(R),∅〉 if s(X) > 0

=
{
f if s(X) = 0

〈ρs(μX .S ′(X)),ρr(R),∅〉 if s(X) > 0.

If s(X) = 0 then this case is trivial since there is by definition a (C, C0)-quasi-simulation between any fixed-point Tμ-
strategy and f, as well as between any fixed-point variable Z and f. If s(X) > 0 and (S, R, Z) ∈ M then there is by
definition a (C, C0)-quasi-simulation between Z and NF

(〈ρs(μX .S ′(X))
)
,ρr(R),∅〉). If s(X) > 0 and (S, R, ·) /∈ M then

it follows from Eq. (51) of Lemma 71 that there exist a fixed-point free Tμ-strategy S̃(X1, . . . , Xm) and Tμ-strategies
S1, . . . , Sm−1, Sm(X), with m ≥ 1, such that S ′(X) can be written as S ′(X) = S̃(S1, . . . , Sm−1, Sm(X)). On the one hand,
S ′(S) = S̃(S1, . . . , Sm−1, Sm(S)). On the other hand,

ρs(μX .S ′(X)) = S̃
(
ρs(S1), . . . , ρs(Sm−1),ρs′

(
Sm(μX .S ′(X))

))
,

58

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
where s′(X) = s(X) − 1 and s′(X ′) = s(X ′) for X ′ 	= X . This brings us back to the case 2 above in which the induction
hypothesis can be applied on each ρs(Si), for i = 1, . . . , m − 1 and for ρs′

(
Sm(μX .S ′(X))

)
. �

Lemma 90. Let S and R be Tμ-strategies with bound fixed-point variables Bound(S) = {X1, . . . , Xs} and Bound(R) = {Y1, . . . , Yr}.
Let s : {X1, . . . , Xs} → N and r : {X1, . . . , Xr} → N be iteration mappings. Let φμ be the mapping induced by the (C, C0)-quasi-
simulation S between S� R and ρs(S) �ρr(R) constructed in the proof of Lemma 87. The mapping φμ enjoys the following properties.

1. For any fixed-point Tμ-strategy T in S � R, there exist Tμ-strategies μX ′.S ′(X ′) and R ′ , mappings s′ : {X1, . . . , Xs} → N and
r′ : {Y1, . . . , Yr} →N , and a memory M′ such that one of the four following cases holds.
(a) T =NF

(〈μX ′.S ′(X), R ′,M′〉) and φμ(T) = (
ρs′ (μX ′.S ′(X ′)) � ρr′ (R ′)

)
.

(b) T =NF
(〈R ′,μX ′.S ′(X ′),M′〉) and φμ(T) = (

ρr′ (R ′) � ρs′ (μX ′.S ′(X ′))
)
.

(c) T = μX ′.S ′(X ′), with X ′ ∈ {X1, . . . , Xs} and μX ′.S ′(X ′) ∈ μ(S), and φμ(T) = ρs′ (μX ′.S ′(X ′)).
(d) T = μX ′.S ′(X ′), with X ′ ∈ {Y1, . . . , Ys} and μX ′.S ′(X ′) ∈ μ(R), and φμ(T) = ρr′ (μX ′.S ′(X ′)).

2. For any fixed-point sequence

T1 � · · · � Tm

in T(S � R) with m ≥ 1 and for any i = 1, . . . , m, there are iteration mappings si : {X1, . . . , Xs} →N and ri : {Y1, . . . , Yr} →N ,
such that one of the following two cases holds:
(a) There is a Tμ-strategy Si(Xi) ∈ (S) with Xi ∈ {X1, . . . , Xs}, and a Tμ-strategy Ri ∈ (R) such that

φμ(Ti) = ρsi (μXi .Si(Xi))� ρri (Ri),

and for i = 1, . . . , m − 1 and for any X ∈ {X1, . . . , Xs} and any Y ∈ {Y1, . . . , Yr}, we have that

si+1(X) =
{

si(X), if X 	= Xi

si(Xi) − 1, if X = Xi and ri+1(Y) = ri(Y) (63)

(b) There is a Tμ-strategy Si ∈ (S), and a Tμ-strategy Ri(Y i) ∈ (R) with Y i ∈ {Y1, . . . , Yr}, such that

φμ(Ti) = ρsi (Si)� ρri (μY i .Ri(Y i)),

and for i = 1, . . . , m − 1 and for any X ∈ {X1, . . . , Xs} and any Y ∈ {Y1, . . . , Yr}, we have that

si+1(X) = si(X) and ri+1(Y) =
{

ri(Y), if Y 	= Y i

ri(Y i) − 1, if Y = Y i (64)

Proof. 1. For Item 1, we just replaced the (C, C0)-quasi-simulation relation S of Lemma 88 by its induced mapping φμ .
2. For Item 2, we consider a fixed-point Tμ-strategy Ti in T(S � R) with i ∈ {1, . . . ,m − 1}, and we shall see that Eq. (63)

and Eq. (64) hold for any Tμ-strategy T in T(S � R) such that

Ti � T.

For this purpose, assume that

φμ(Ti) = ρsi (μXi .Si(Xi))� ρri (Ri) (65)

since the case when

φμ(Ti) = ρsi (Si)� ρri (μY i .Ri(Y i)) (66)

can be handled similarly. It follows from Eq. (51) of Lemma 71 that there is a Tμ-strategy S̃ such that ρsi (μXi .Si(Xi))

can be written as

ρsi (μXi .Si(Xi)) = ρs′
i
(S̃) where s′

i(X) =
{

si(X) if X 	= Xi

si(X) − 1 if X = Xi .
(67)

On the other hand, notice that there is a fixed-point free Tμ-strategy Ŝ i(X1, . . . , Xk) (resp. R̂ i(Y1, . . . , Yl)) with k ≥ 1
(resp. l ≥ 1), and fixed-point Tμ-strategies ξ1, . . . , ξk (resp. ζ1, . . . , ζk) each one is in μ(S) (resp. μ(R)), such that
ρs′

i
(S̃) (resp. ρri (Ri+1)) can be written as

ρs′
i
(S̃) = Ŝ i(ρs′

i
(ξ1), . . . , ρs′

i
(ξk))

ρri (Ri+1) = R̂ i(ρri (ζ1), . . . , ρri (ζl)).
59

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
It follows from the composition Lemma 73 that there is a fixed-point free Tμ-strategy Ti(Z1, . . . , Zm) such that

φμ(Ti) = ρsi (μXi .Si(Xi))� ρri (Ri)

= Ŝ i(ρs′
i
(ξ1), . . . , ρs′

i
(ξk))� R̂ i(ρri (ζ1), . . . , ρri (ζl))

= T (α1, . . . ,αm)

such that for any v = 1, . . . , m, one of the following two cases holds.
(a) There is w ∈ {1, . . . ,k}, and a Tμ-strategy R̃ v(Y 1, . . . , Y l′) that is a sub-Tμ-strategy of R̂ i(Y1, . . . , Yl) with l′ ≤ l, and

a set {ζ 1, . . . , ζ l′ } ⊆ {ζ1, . . . , ζl} such that

αv = ρs′
i
(ξw)� R̃ v(ρri (ζ

1), . . . , ρri (ζ
l′)) or αv = ρs′

i
(ξw).

But since R̃ v (ρri (ζ
1), . . . , ρri (ζ

l′)) = ρri (R̃ v(ζ 1, . . . , ζ l′)), Ti � φ−1
μ (αv), and the iteration mappings s′

i and si satisfy
Eq. (67), then we get Eq. (63).

(b) There is w ∈ {1, . . . ,k}, and a Tμ-strategy S̃ v (X1, . . . , Xk′
) that is a sub-Tμ-strategy of Ŝ i(X1, . . . , Xk) with k′ ≤ k,

and a set {ξ1, . . . , ξk′ } ⊆ {ξ1, . . . , ξk} such that

αv = S̃ v(ρs′
i
(ξ1), . . . , ρs′

i
(ξk′

))� ρri (ζw) or αv = ρri (ζw).

But since R̃ v (ρri (ζ
1), . . . , ρri (ζ

l′)) = ρri (R̃ v(ζ 1, . . . , ζ l′)) and then we have Ti � φ−1
μ (αv), and the iteration mappings

s′
i and si satisfy Eq. (67), then we get Eq. (63).

In summary, we assumed that φμ(Ti) satisfies Eq. (65) and we get Eq. (63). However if we assume that φμ(Ti) satisfies
Eq. (66) then we get Eq. (64) by similar arguments. �

D. Proofs for Section 12

Before proving Lemma 96, we want to get a certain fixed-point Tμ-strategy from each Ti of the sequence S. More
precisely, notice that for any i ∈ {1, . . . ,m}, one of the following situations holds.

i.) If Ti = NF〈Si, Ri,Mi〉, then either Si is a fixed-point Tμ-strategy regardless of Ri that could be a fixed-point Tμ-
strategy as well, or Ri is a fixed-point Tμ-strategy and Si is not. In the first case we want to get Si , and in the second
we want to get Ri .

ii.) Otherwise, if Ti is a fixed-point sub-Tμ-strategy of S or R , then we want to get Ti .

The formal definition follows.

Definition 91. For any i ∈ {1, . . . ,m}, we define

�μ(Ti) =

⎧⎪⎨⎪⎩
Si if Ti = NF〈Si, Ri,Mi〉 and Si ∈ μ(S)

Ri if Ti = NF〈Si, Ri,Mi〉 and Ri ∈ μ(R)

Ti if Ti ∈ ̃μ(S) ∪ ̃μ(R).

We need the following simple Fact.

Fact 92. For any finite sets A, A′, B, B ′ ⊂N ,

(i) if max(A) ≤ max(A′) and if max(B) ≤ max(B ′) then max(A ∪ B) ≤ max(A′ ∪ B ′).
(ii) Therefore, to show that max(A ∪ B) ≤ max(A′ ∪ B ′), it suffices to show that max(A) ≤ max(A′) and max(B) ≤ max(B ′).

Lemma 96. For any left-maximal sequence

T1 � · · · � Tm

in T with m ≥ 2, and for any p and q where 1 ≤ p < q ≤ m,

1. If for i = 1, . . . , q, there are Tμ-strategies Si ∈ ̃(S) and Ri ∈ ̃(R), and iteration mappings si : {X1, . . . , Xs} → N and ri :
{Y1, . . . , Ys} →N such that

φμ(Ti) = ρsi (Si)� ρri (Ri)
60

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
then

ω(Tq) ∈ {D�
(
(s1, r1), (sq, rq)

)
, D�

(
(s1, r1), (sq, rq)

) − 1}. (68)

2. If there is a Tμ-strategy ξm ∈ ̃(S) ∪ ̃(R) and an iteration mapping sm such that

φμ(Tm) = ρsm (ξm)

then

min{sm(X) | X ∈ dom(sm)} ≥ D�(Tm). (69)

Proof. 1. Since ω(Tq) = n − �#(T1, Tq), showing Eq. (68) amounts to show

n − �#(T1,Tq) ∈ {D�
(
(s1, r1), (sq, rq)

)
, D�

(
(s1, r1), (sq, rq)

) − 1}. (70)

Since s1 ≥ sq and r1 ≥ rq , then for v = 1, . . . , s there exist positive numbers αq
v where n − α

q
v ≥ 0, and for w = 1, . . . , r,

there exist positive numbers βq
w where n − β

q
w ≥ 0, such that the iteration mappings sq, rq can be written as{

sq(Xv) = n − α
q
v

rq(Y w) = n − β
q
w .

On the one hand, from the Definition 74 of d� and D� , we get

d�(s1, sq) =
{

min{sq(Xv) | sq(Xv) 	= s1(Xv) for v = 1, . . . , s} if s1 > sq

∞ if s1 = sq

=
{

min{n − α
q
v | n − α

q
v 	= n for v = 1, . . . , s} if s1 > sq

∞ if s1 = sq

=
{

n − max{αq
v | for v = 1, . . . , s} if s1 > sq

∞ if s1 = sq.

Similarly

d�(r1, rq) =
{

n − max{βq
w | for w = 1, . . . , r} if r1 > rq

∞ if r1 = rq.

Let

mS = max{αq
v | for v = 1, . . . , s}

mR = max{βq
w | for w = 1, . . . , r}.

Hence

D�
(
(s1, sq),d�(r1, rq)

) = min(d�(s1, sq),d�(r1, rq))

=

⎧⎪⎨⎪⎩
min(n − mS ,n − mR) if sq > s1 and rq > r1

n − mS if sq > s1 and rq = r1

n − mR if sq = s1 and rq > r1

=

⎧⎪⎨⎪⎩
n − max(mS ,mR) if sq > s1 and rq > r1

n − mS if sq > s1 and rq = r1

n − mR if sq = s1 and rq > r1

On the other hand, since Ti =NF(〈Si, Ri,Mi〉), for i = 1, . . . , q, then consider the sequence of tuples

Sq = 〈S1, R1,M1〉, . . . , 〈Sq, Rq,Mq〉
and recall the definition of �#(T1, Tq) from Eq. (21) of Definition 94:

�#(T1,Tq) = max{#Sq (Si),#Sq (Ri) | Si ∈ ̃μ(S), Ri ∈ ̃μ(R), i = 1, . . . ,q}.
We distinguish three cases depending on the iteration mappings s1, sq, r1, rq .
61

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
• If sq = s1 then d�(s1, sq) = ∞, and rq > r1 and hence d�(r1, rq) = n − mR . In this case max{#Sq (Si) | Si ∈ ̃μ(S), i =
1, . . . , q} ∈ {0,1} and max{#Sq (Ri) | Ri ∈ ̃μ(R), i = 1, . . . ,q} ≥ 1, and hence �#(T1, Tq) = max{#Sq (Ri) | Ri ∈ ̃μ(R),

i = 1, . . . , q}. Therefore, in this case showing Eq. (70) amounts to show that

n − max{#Sq (Ri) | Ri ∈ ̃μ(R), i = 1, . . . ,q} ∈ {n − mR ,n − mR − 1}, i.e.

max{#Sq (Ri) | Ri ∈ ̃μ(R), i = 1, . . . ,q} ∈ {mR ,mR + 1}.
• If rq = r1 then d�(r1, rq) = ∞, and sq > s1 and hence d�(s1, sq) = n −mS . With similar reasoning, in this case we need

to show that

max{#Sq (Si) | Si ∈ ̃μ(S), i = 1, . . . ,q} ∈ {mS ,mS + 1}.
• If sq > s1 and rq > r1 then d�(s1, sq) = n −mS and d�(r1, rq) = n −mR . In this case showing Eq. (70) amounts to show

n − max
{

#Sq (Si),#Sq (Ri) | Si ∈ ̃μ(S),Ri ∈ ̃μ(R), i = 1, . . . ,q
} ∈

{n − max(mS ,mR),n − max(mS ,mR) − 1}.
That is,

max
{

#Sq (Si),#Sq (Ri) | Si ∈ ̃μ(S),Ri ∈ ̃μ(R), i ∈ [1,q]} ∈ {max(mS ,mR),max(mS ,mR) + 1}.
It follows from Item (ii) of Fact 92 that to show Eq. (70) it suffices to show that{

max{#Sq (Si) | Si ∈ ̃μ(S), i = 1, . . . ,q} ∈ {mS ,mS + 1}
max{#Sq (R j) | Si ∈ ̃μ(R), i = 1, . . . ,q} ∈ {mR ,mR + 1}.

Summing up these three cases, to show Eq. (70) it suffices to assume that sq > s1 and to show

max{#Sq (Si) | Si ∈ ̃μ(S), i = 1, . . . ,q} ∈ {mS ,mS + 1} (71)

Let ξ ∈ ̃μ(S) ∩ {S1, . . . , Sq} be a fixed-point Tμ-strategy. Indeed, ξ appears #Sq (ξ) times in Sq and let q̃ be the
greatest i ∈ {1, . . . ,q} such that ξ = Si . Since ξ is by definition a fixed-point Tμ-strategy, then it can be written as
ξ = μXṽ . S̃(Xṽ), for some ṽ ∈ {1, . . . , s} and for some Tμ-strategy S̃(Xṽ) ∈ ̃(S). To show Eq. (71), it suffices to show
that either
(i) q̃ = q and in this case #Sq (ξ) = α

q
ṽ + 1, or

(ii) q̃ 	= q and in this case #Sq (ξ) = α
q
ṽ .

The proof is by induction on q. For the base case q = 1, we claim that S1 is a fixed-point Tμ-strategy because otherwise
s1 = s2 which contradicts the assumption s2 > s1. Hence let S1 = ξ . Recall that s1(Xv) = n for v = 1, . . . , s. In this case
it follows from Eq. (63) of Item 2 of Lemma 90 that s2(Xṽ) = s1(Xṽ) − 1 = n − 1 and that s2(Xv) = s1(Xv) for any
v ∈ {1, . . . , s} \ {ṽ}. That is, α2

ṽ = 1, and α2
v = 0 for any v 	= ṽ .

(i) If S2 = ξ , i.e. q̃ = q = 2, then #Sq (ξ) = 2 = α2
ṽ + 1.

(ii) If S2 	= ξ , i.e. q̃ = 1 	= q = 2, then in this case #Sq (ξ) = 1 = α2
ṽ .

For the induction step assume that the claim holds for q and let us prove it for q + 1.
(1) If Sq = ξ , then by the induction hypothesis #Sq (ξ) = α

q
ṽ + 1. Besides, from Eq. (63) of Item 2 of Lemma 90 we have

that αq+1
ṽ = α

q
ṽ + 1.

(i) If Sq+1 = ξ , i.e. q̃ = q + 1, then in this case we have #Sq+1 (ξ) = #Sq (ξ) + 1 = (α
q
ṽ + 1) + 1 = α

q+1
ṽ + 1.

(ii) If Sq+1 	= ξ , i.e. q̃ = q, then in this case we have #Sq+1 (ξ) = #Sq (ξ) = α
q
ṽ + 1 = α

q+1
ṽ .

(2) If Sq 	= ξ , then by the induction hypothesis #Sq (ξ) = α
q
ṽ . Besides, from Eq. (63) of Item 2 of Lemma 90 we have that

α
q+1
ṽ = α

q
ṽ .

(i) If Sq+1 = ξ , i.e. q̃ = q + 1, then in this case we have #Sq+1 (ξ) = #Sq (ξ) + 1 = α
q
ṽ + 1 = α

q+1
ṽ + 1.

(ii) If Sq+1 	= ξ , i.e. q̃ 	= q and q̃ 	= q + 1, then in this case we have #Sq+1 (ξ) = #Sq (ξ) = α
q
ṽ = α

q+1
ṽ .

2. To show Eq. (69), assume that ξm ∈ ̃(S), the case where ξm ∈ ̃(R) is similar. Let

m = min{sm(X) | X ∈ {X1, . . . , Xs}}.
Recall from Eq. (25) of Definition 94 of D� that

D�(Tm) =
{

n if m = 1

min
{

D�(Tm−1),d�(s1, sm)
}

if m > 1.
62

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
We want to show that m ≥ D�(Tm−1). If m = 1 then m = n = D�(Tm), hence the claim trivially holds. If m > 1 then
D�(Tm) = min

{
D�(Tm−1), d�(s1, sm)

}
and in this case we distinguish two cases depending on sm . If sm = s1 then m = n,

D�(Tm−1) < n and d�(s1, sm) = ∞, thus D�(Tm) = D�(Tm−1) < n = m. Therefore, m ≥ D�(Tm). If sm < s1 then in this case
m = d�(s1, sm), which is obviously greater or equal to min

{
D�(Tm−1), d�(s1, sm)

}
. �

Lemma 102. Let

μ Ẑ1.T̂1(Ẑ1) � T̂2

be a sequence in ∂T. Define T̂ �
1(Z) to be the (unique) Tμ-strategy satisfying

T̂ �
1(T̂2) = T̂1(Ẑ1).

We have that

1 ≤ �Z (T̂ �
1(Z)). (72)

Proof. The idea of the proof is to show that either (i) both μ Ẑ1.T̂1(Ẑ1) and T̂2 result from the unification of the same Tμ-
strategy with another Tμ-strategy, i.e. �μ(μ Ẑ1.T̂1(Ẑ1)) = �μ(T̂2) and in this case we know from Lemma 64 that there is at
least one jump between the root of μ Ẑ1.T̂1(Ẑ1) and T̂2. Or, (ii) μ Ẑ1.T̂1(Ẑ1) and T̂2 result from the unification of different
Tμ-strategies, i.e. �μ(μ Ẑ1.T̂1(Ẑ1)) = �μ(T̂2). In this case there must be a Tμ-strategy T that lies in T between μ Ẑ1.T̂1(Ẑ1)

and T̂2 such that �μ(T) = �μ(T̂2). Hence there is at least one jump between the root of T and T̂2, and therefore there is
at least one jump between the root of μ Ẑ1.T̂1(Ẑ1) and T̂2. We need the two following claims, where Claim 103 is used to
prove Claim 104 which will be used to prove this Lemma.

Claim 103. Consider a sequence Sm: T1 � . . . � Tm in T where T1 is the root of T, with m ≥ 1. For any q = 1, . . . , m, if there are two
Tμ-strategies M, M ′ such that �#(T1, Tq) = #Sq (M) = #Sq (M ′) then Tq is not in ∂T.

Proof. Assume that there are only two Tμ-strategies M and M ′ such that �#(T1, Tq) = #Sq (M) = #Sq (M ′). The case where
there are more than two can be handled similarly. Indeed, there is a Tμ-strategy T p in Sq on which the number of oc-
currences of M (resp. or M ′) has reached the maximum while that of M ′ (resp. M) did not. More precisely, there is p < q
such that either �#(T1, Tq) = �#(T1, T p) = #Sq (M) = #Sq (M ′) + 1 or �#(T1, Tq) = �#(T1, T p) = #Sq (M ′) = #Sq (M) + 1.
Assume that the first case holds since the second case can be handled similarly. Recall that ω(Tq) = ω(T p) since
�#(T1, Tq) = �#(T1, T p). Towards a contradiction: assume that Tq is in ∂T. If T p ∈ ∂T then by Item (4) of Remark 101
we have ω(Tq) = ω(T p) + 1, which is a contradiction. If T p is not in ∂T then by Item (3) of Remark 101 we have
ω(Tq) = ω(T p) + 1, which is a contradiction. This ends the proof of Claim 103. �
Claim 104. Let T̂1 and T̂2 be two Tμ-strategies in ∂T where T̂1 � T̂2 . If �μ(T̂1) 	= �μ(T̂2) then the sequence in T that lies between
T̂1 and T̂2 is not empty, and there exists a Tμ-strategy T in this sequence such that �μ(T) = �μ(T̂2).

Proof. Assume that �μ(T̂1) = M1 and �μ(T̂2) = M2. Let S1 (resp. S2) be the sequence in T from the root of T to T̂1 (resp.
to T̂2). By Item (4) of Remark 101 we have #S2 (M2) = #S1 (M1) + 1. However, either there is at least one Tμ-strategy, say
T , in T in the sequence between T̂1 and T̂2 such that �μ(T) = �μ(T̂2), or #S1(M2) = #S1 (M1). But this second possibility
is not possible, since otherwise, by Claim 103 we would have had that T̂1 is not in ∂(T) which contradicts the assumption
of the current claim. This ends the proof of Claim 104. �

To prove Lemma 102 we distinguish two cases depending whether the sequence in T that lies between μ Ẑ1.T̂1(Ẑ1) and
T̂2 is empty or not. Let S′ be such sequence. If S′ is empty, then it follows from Claim 104 that �μ(μ Ẑ1.T̂1(Ẑ1)) = �μ(T̂2).
This means that during the unification process, the same Tμ-strategy which is a sub-Tμ-strategy of S or R appeared twice,
which implies that there is a position jump between T �

1(Z) and Z . Or more formally, it follows from Lemma 64 that
1 ≤ �Z (T̂ �

1(Z)). Otherwise, if the sequence S′ is not empty then from Claim 104 it follows that there is a Tμ-strategy ζ
in S′ such that �μ(ζ) = �μ(T̂2). Since T̂2 is a sub-Tμ-strategy of ζ , then there is a unique Tμ-strategy ζ �(Z) such that
ζ �(T̂2) = ζ . Thus by using the same Lemma 64 we deduce that 1 ≤ �Z (ζ �). But since ζ is a sub-Tμ-strategy of T̂ �

1(T̂2), then
ζ �(Z) is a sub-Tμ-strategy of T̂ �

1(Z) and hence 1 ≤ �Z (T̂ �
1(Z)) as well. This ends the proof of Lemma 102. �

References

[1] B. Yang, W. Belkhir, M. Lenczner, Computer-aided derivation of multi-scale models: a rewriting framework, Int. J. Multiscale Comput. Eng. 12 (2) (2014)
91–114.
63

http://refhub.elsevier.com/S2352-2208(21)00109-7/bib77073E64D37BA7D885F46CE8A8AE92BCs1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib77073E64D37BA7D885F46CE8A8AE92BCs1

W. Belkhir, N. Ratier, D.D. Nguyen et al. Journal of Logical and Algebraic Methods in Programming 125 (2022) 100746
[2] W. Belkhir, A. Giorgetti, M. Lenczner, A symbolic transformation language and its application to a multiscale method, J. Symb. Comput. 65 (2014)
49–78.

[3] W. Belkhir, N. Ratier, D.D. Nguyen, B. Yang, M. Lenczner, F. Zamkotsian, H. Cirstea, Towards an automatic tool for multi-scale model derivation illustrated
with a micro-mirror array, in: SYNASC 2015, IEEE Computer Society, 2015, pp. 47–54, https://hal .inria .fr /hal -01243204.

[4] N. Charalambakis, Homogenization techniques and micromechanics. A survey and perspectives, Appl. Mech. Rev. 63 (3) (2010) 030803.
[5] B. Yang, W. Belkhir, M. Lenczner, A. Giorgetti, R. Dhara, Computer–aided multiscale model derivation for MEMS arrays, in: EUROSIM 2011, IEEE Comput.

Soc. (2011), 6 pages, https://members .femto -st .fr /sites /femto -st .fr.michel -lenczner /files /content /conferences /EurosimE2011 -YanBel .pdf.
[6] M. Lenczner, R.C. Smith, A two-scale model for an array of AFM’s cantilever in the static case, Math. Comput. Model. 46 (5–6) (2007) 776–805.
[7] W. Belkhir, N. Ratier, D.D. Nguyen, M. Lenczner, Unification and combination of iterative insertion strategies with rudimentary traversals and failure,

CoRR, arXiv:1904 .10901 [abs], 2019, http://arxiv.org /abs /1904 .10901.
[8] A. Arnold, D. Niwiński, Rudiments of μ-Calculus, Studies in Logic and the Foundations of Mathematics, 2001, London, Amsterdam.
[9] J. Bradfield, I. Walukiewicz, The μ-calculus and model-checking, in: H.V.E. Clarke, T. Henzinger (Eds.), Handbook of Model Checking, Springer-Verlag,

2015.
[10] H. Cirstea, C. Kirchner, L. Liquori, B. Wack, Rewrite strategies in the rewriting calculus, in: B. Gramlich, S. Lucas (Eds.), 3rd International Workshop on

Reduction Strategies in Rewriting and Programming, in: ENTCS, vol. 86(4), Elsevier, Valencia, Spain, 2003, pp. 18–34.
[11] L. Aceto, Action Refinement in Process Algebras, Cambridge University Press, USA, 1992.
[12] R. Gorrieri, A. Rensink, Chapter 16 - action refinement, in: J. Bergstra, A. Ponse, S. Smolka (Eds.), Handbook of Process Algebra, Elsevier Science,

Amsterdam, 2001, pp. 1047–1147, http://www.sciencedirect .com /science /article /pii /B9780444828309500345.
[13] T. Yavuz, Partial predicate abstraction and counter-example guided refinement, J. Log. Algebraic Methods Program. 110 (2020) 100437, http://www.

sciencedirect .com /science /article /pii /S2352220817300378.
[14] S. Ghilardi, L. Santocanale, Algebraic and model theoretic techniques for fusion decidability in modal logics, in: LPAR’03, vol. 2850, 2003, pp. 152–166.
[15] C. Benzmüller, A top-down approach to combining logics, in: ICAART, SciTePress Digital Library, 2013, pp. 346–351, http://christoph -benzmueller.de /

papers /C35 .pdf.
[16] J.C. Blanchette, N. Kosmatov (Eds.), Tests and Proofs - 9th International Conference, TAP 2015, LNCS, vol. 9154, Springer, 2015.
[17] Z. Manna, C.G. Zarba, Combining decision procedures, in: Formal Methods at the Crossroads. From Panacea to Foundational Support, 10th Anniversary

Colloquium of UNU/IIST, 2002, pp. 381–422, Revised Papers, https://doi .org /10 .1007 /978 -3 -540 -40007 -3 _24.
[18] Q.Z. Sheng, X. Qiao, A.V. Vasilakos, C. Szabo, S. Bourne, X. Xu, Web services composition: a decade’s overview, Inf. Sci. 280 (2014) 218–238, https://

doi .org /10 .1016 /j .ins .2014 .04 .054, http://www.sciencedirect .com /science /article /pii /S0020025514005428.
[19] L. Jensen, I. Kaufmann, K. Larsen, S. Nielsen, J. Srba, Model checking and synthesis for branching multi-weighted logics, J. Log. Algebraic Methods

Program. 105 (2019) 28–46, https://doi .org /10 .1016 /j .jlamp .2019 .02 .001, http://www.sciencedirect .com /science /article /pii /S2352220818300336.
[20] S. Kahane, Grammaires d’unification polarisées, in: TALN 2004, Fès, Morocco, 2004, https://hal .archives -ouvertes .fr /hal -00170540.
[21] S. Kahane, F. Lareau, Grammaire d’Unification Sens-Texte: modularité et polarisation, in: Grammaire d’Unification Sens-Texte: modularité et polarisation,

Dourdan, 2005, pp. 23–32, https://halshs .archives -ouvertes .fr /halshs -00120407.
[22] N. Francez, S. Wintner, Unification Grammars, Cambridge University Press, 2011.
[23] S. Richard, Un outil pour développer et tester les grammaires d’unification polarisées, 2017.
[24] K. Vijay-Shanker, A. Joshi, Unification-based tree adjoining grammars, Technical Reports, CIS, 03 1991.
[25] B. Yang, Contribution to a kemel of symbolic asymptotic modeling software, Ph.D. thesis, Université de Franche-Comté, 2014.
[26] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, J. Symb. Log. 5 (4) (1955) 370, http://www.jstor.org /stable /2963936 ?origin =crossref.
[27] L.C. Eggan, Transition graphs and the star-height of regular events, Mich. Math. J. 10 (4) (1963) 385–397, https://doi .org /10 .1307 /mmj /1028998975.
[28] J. Braquelaire, B. Courcelle, The solutions of two star-height problems for regular trees, Theor. Comput. Sci. 30 (2) (1984) 205–239, https://doi .org /10 .

1016 /0304 -3975(84)90063 -X, http://www.sciencedirect .com /science /article /pii /030439758490063X.
[29] B. Courcelle, Fundamental properties of infinite trees, Theor. Comput. Sci. 25 (2) (1983) 95–169, https://doi .org /10 .1016 /0304 -3975(83)90059 -2, http://

www.sciencedirect .com /science /article /pii /0304397583900592.
[30] Y. Chen, M. O’Donnell, Infinite terms and infinite rewritings, in: S. Kaplan, M. Okada (Eds.), Conditional and Typed Rewriting Systems, in: Lecture Notes

in Computer Science, vol. 516, Springer, Berlin / Heidelberg, 1991, pp. 115–126.
[31] D.E. Knuth, P.B. Bendix, Simple word problems in universal algebras, in: J. Leech (Ed.), Computational Problems in Abstract Algebra, Pergamon, 1970,

pp. 263–297, http://www.sciencedirect .com /science /article /pii /B978008012975450028X.
[32] S. Crvenković, Word problems for varieties of algebras (a survey), Filomat 9 (3) (1995) 427–448, http://www.jstor.org /stable /43999230.
[33] Ph. Schnoebelen, N. Sidorova, Bisimulation and the reduction of Petri nets, in: M. Nielsen, D. Simpson (Eds.), Proceedings of the 21st International

Conference on Applications and Theory of Petri Nets (ICATPN 2000), in: Lecture Notes in Computer Science, vol. 1825, Springer, Århus, Denmark, 2000,
pp. 409–423, http://www.lsv.ens -cachan .fr /Publis /PAPERS /PS /SchSid -atpn2000 .ps.

[34] J.-C. Fernandez, L. Mounier, A tool set for deciding behavioral equivalences, in: J.C.M. Baeten, J.F. Groote (Eds.), CONCUR ’91, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1991, pp. 23–42.

[35] Y.-P. Cheng, H.-Y. Wang, Y.-R. Cheng, On-the-fly branching bisimulation minimization for compositional analysis, in: O.H. Ibarra, H.-C. Yen (Eds.), Im-
plementation and Application of Automata, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 219–229.

[36] A. Armas-Cervantes, P. Baldan, L. García-Bañuelos, Reduction of event structures under history preserving bisimulation, J. Log. Algebraic Methods
Program. 85 (6) (2016) 1110–1130, https://doi .org /10 .1016 /j .jlamp .2015 .10 .004, http://www.sciencedirect .com /science /article /pii /S2352220815001091,
2013.

[37] R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics (Vols. 1 & 2), MIT Press, Cambridge, MA, USA, 1996.
[38] B. König, M. Nederkorn, D. Nolte, Cores: a tool for computing core graphs via SAT/SMT solvers, J. Log. Algebraic Methods Program. 109 (2019) 100484,

https://doi .org /10 .1016 /j .jlamp .2019 .100484, http://www.sciencedirect .com /science /article /pii /S2352220818301561.
[39] D. Berwanger, E. Grädel, G. Lenzi, On the variable hierarchy of the modal μ-calculus, in: J. Bradfield (Ed.), Computer Science Logic, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2002, pp. 352–366.
[40] W. Belkhir, L. Santocanale, The variable hierarchy for the games μ-calculus, Ann. Pure Appl. Log. 161 (5) (2010) 690–707, https://doi .org /10 .1016 /

j .apal .2009 .07.015, the Third workshop on Games for Logic and Programming Languages (GaLoP), http://www.sciencedirect .com /science /article /pii /
S0168007209001572.
64

http://refhub.elsevier.com/S2352-2208(21)00109-7/bibF7E41F0EC16BEB4E28DC83B8B5A26E5Fs1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibF7E41F0EC16BEB4E28DC83B8B5A26E5Fs1
https://hal.inria.fr/hal-01243204
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibFA9A18146688A20E15739ED7C4647D79s1
https://members.femto-st.fr/sites/femto-st.fr.michel-lenczner/files/content/conferences/EurosimE2011-YanBel.pdf
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibD2940161C76BB9DEEC9B40A62AC5CDDAs1
http://arxiv.org/abs/1904.10901
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib9CDCE7E594781294C7143D4D8AC9F160s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibA97ED0B25F214187D51B92AEC0DF2858s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibA97ED0B25F214187D51B92AEC0DF2858s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib4EF3F57AD68894BFF97BE1326727BFB3s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib4EF3F57AD68894BFF97BE1326727BFB3s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib5C78E4FEB42B0B1DC432D0CCCBE3B4BAs1
http://www.sciencedirect.com/science/article/pii/B9780444828309500345
http://www.sciencedirect.com/science/article/pii/S2352220817300378
http://www.sciencedirect.com/science/article/pii/S2352220817300378
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib96659DB1BCF0C29A52787A3035B5876Cs1
http://christoph-benzmueller.de/papers/C35.pdf
http://christoph-benzmueller.de/papers/C35.pdf
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib85DB02AAE46DBF6736C48CD87792D765s1
https://doi.org/10.1007/978-3-540-40007-3_24
https://doi.org/10.1016/j.ins.2014.04.054
https://doi.org/10.1016/j.ins.2014.04.054
http://www.sciencedirect.com/science/article/pii/S0020025514005428
https://doi.org/10.1016/j.jlamp.2019.02.001
http://www.sciencedirect.com/science/article/pii/S2352220818300336
https://hal.archives-ouvertes.fr/hal-00170540
https://halshs.archives-ouvertes.fr/halshs-00120407
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib33AFF14D87B5278F8F1FB9CC1BBDBEC7s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib17A7479F2E9C16B3F5D1088B398CD150s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib57CA6FCE7D197332124A43950CD94850s1
http://www.jstor.org/stable/2963936?origin=crossref
https://doi.org/10.1307/mmj/1028998975
https://doi.org/10.1016/0304-3975(84)90063-X
https://doi.org/10.1016/0304-3975(84)90063-X
http://www.sciencedirect.com/science/article/pii/030439758490063X
https://doi.org/10.1016/0304-3975(83)90059-2
http://www.sciencedirect.com/science/article/pii/0304397583900592
http://www.sciencedirect.com/science/article/pii/0304397583900592
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibE93B0E5CE8D1F57F2BB0FE1748803F97s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibE93B0E5CE8D1F57F2BB0FE1748803F97s1
http://www.sciencedirect.com/science/article/pii/B978008012975450028X
http://www.jstor.org/stable/43999230
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/SchSid-atpn2000.ps
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibAECD696CB217A301E511E8FD25F55F6Es1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibAECD696CB217A301E511E8FD25F55F6Es1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibEFF1ACBBA1DAE1A85A9C9E615891CBE1s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bibEFF1ACBBA1DAE1A85A9C9E615891CBE1s1
https://doi.org/10.1016/j.jlamp.2015.10.004
http://www.sciencedirect.com/science/article/pii/S2352220815001091
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib8FD2F70B9948BE13C7BEB19E05B7557Fs1
https://doi.org/10.1016/j.jlamp.2019.100484
http://www.sciencedirect.com/science/article/pii/S2352220818301561
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib5F4D89DB8F9C3409B1E047AA63F09469s1
http://refhub.elsevier.com/S2352-2208(21)00109-7/bib5F4D89DB8F9C3409B1E047AA63F09469s1
https://doi.org/10.1016/j.apal.2009.07.015
https://doi.org/10.1016/j.apal.2009.07.015
http://www.sciencedirect.com/science/article/pii/S0168007209001572
http://www.sciencedirect.com/science/article/pii/S0168007209001572

	Unification and combination of a class of traversal strategies made with pattern matching and fixed-points
	1 Introduction
	Organization of the paper

	2 Preliminaries: terms, substitution, notations, rewriting
	3 Position-based Tμ-strategies and their combination
	4 The class of Tμ-strategies
	5 Unification and combination of Tμ-strategies
	5.1 A correctness criterion for the extension of the unification and combination to Tμ-strategies
	5.2 Sub-Tμ-strategies, memory and pre-Tμ-strategies
	5.3 The procedure of unification of Tμ-strategies

	6 Statement of the results
	6.1 Correctness of the unification and combination procedures
	6.2 Algebraic properties of the unification and combination

	7 Outline of the proof of the main result
	8 From Tμ-strategies to position-based Tμ-strategies: the definition of the mapping Ψ
	9 Proof of the correctness of the unification of Tμ-strategies: the fixed-point free setting
	10 Properties of the unification reduction system and of Tμ-strategies
	10.1 Measures of Tμ-strategies: the star height and the depth of Tμ-strategies
	10.2 Termination and confluence of the unification reduction system
	10.3 Iteration mapping and (generalized) unfolding of Tμ-strategies
	10.4 Properties of Tμ-strategies and their fixed-points
	10.5 The composition lemma

	11 Unification and unfolding
	11.1 The equivalence between the unification of several unfoldings of two Tμ-strategies
	11.2 Fixed-point tree and fixed-point sequence
	11.3 The relations of (C,C0)-simulation and (C,C0)-quasi-simulation
	11.4 Relating the structure of the unification of two Tμ-strategies with that of their unfolding

	12 The equivalence between the unification of two Tμ-strategies and that of their unfoldings
	12.1 Measures and codistance on fixed-point tree
	12.2 Derived tree and a lower bound for the number of jumps
	12.3 The unification of two Tμ-strategies is equivalent to the unification of their unfolding

	13 Proof of the main results
	13.1 The correctness of the unification and combination
	13.2 The algebraic properties of the unification and combination

	14 Conclusion and future work
	Declaration of competing interest
	Appendix: proofs of lemmas
	A Proofs for Section 9
	B Proofs for Section 10
	C Proofs for Section 11
	D Proofs for Section 12

	References

