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Interaction between Liénard and Ikeda dynamics in a nonlinear electro-optical oscillator
with delayed bandpass feedback
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We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-
delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics
of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale
behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a
Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors
corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape
of the nonlinear function.
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I. INTRODUCTION

Uncovering patterns in highly complex dynamical systems
has always been a major challenge for the scientific commu-
nity. Since the discovery of the Lorenz attractor [1] in 1963,
the interest in understanding and exploring nonlinear dynam-
ics increased continuously. The exploration of deterministic
dynamics of nonlinear systems remains an active research
topic today. Among the many models experiencing such com-
plex behavior, nonlinear difference and differential equations
have been useful for the description of many different real
world phenomena, including steel beam motion between two
magnets [2], chemical oscillators exhibiting chaotic behavior
[3], or physiological control systems designed through the
insertion of a time delay element [4].

Systems with delayed feedback display a broad variety
of phenomena that are rarely observable in simpler systems
governed by ordinary differential equations. Delay differential
equations (DDEs) have been used for many applications, such
as hyperchaotic signal generation [5–8]. A particular DDE that
has inspired fundamental research as well as technological
applications is the Ikeda equation [9,10], which describes the
dynamics of a laser driven passive nonlinear ring resonator.
Experimental realizations of DDEs implemented in an electro-
optic (EO) system [11–14] allowed the development of high-
performance broadband chaotic communications [15,16], ul-
trastable microwave sources [17–19], and random number
generation [20]. The fundamental properties of networks of
such oscillators has also received significant attention [21–24].
Another important application of DDEs also emerged recently
as a branch of computer sciences. Using the Ikeda equation
as an integral component of neuromorphic processors, it is
possible to perform information processing and computing
tasks [25–27]. In our current work an integral term is added to
the original Ikeda equation, resulting in a band-pass effect due
to this low frequency cutoff. As a consequence, the system is
capable to show complex multiple time-scale dynamics.

The multiple time-scale behavior of the modified Ikeda
system has been investigated using several approaches like
stability and bifurcation analysis [13,28–31]. More recently,
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it was shown that such hybrid dynamics can be understood
through the paradigm of Liénard systems with attractive-
repulsive branches [32]. However, the description of the
waveform evolution requires a more extensive analysis of the
structural properties of the entire system.

It has been demonstrated that the structural shape of
the phase space depends largely on the nonlinear function’s
characteristics. In fact, some well-established chaotic systems
like Logistic, Tent and Bernoulli maps, Chua’s circuit [33],
Duffing-Holmes attractor [2], and the Ikeda equation are based
on different kinds of nonlinear functions. Their contribution
in the generation of complex and chaotic dynamics can be
qualitatively described through the stretching and folding
mechanism [34]. Stretching and folding results in exponential
divergence of close orbits in certain phase-space regions. Try-
ing to identify the relationship between nonlinear functions and
their resulting dynamics, some reports show how complexity
can be controlled by the nonlinear function extrema [35–37].

In this article, we propose a framework to characterize
a delayed-feedback nonlinear optoelectronic oscillator based
on the analysis of its nonlinear function. We analytically
explain the integral term’s impact for the modified Ikeda
system. In particular, we characterize the route to spiral-like
chaotic patterns in phase space, in dependency of feedback
strength and operating point. The paper is organized as
follows. In Sec. II we describe the nonlinear time-delayed EO
oscillator and present the dimensionless coupled first-order
delay differential equation. Section III contains a fixed point
stability analysis in dependence of the operational point
distance to the nonlinear function extrema. We confirm the
validity of the model with experimental data. In Sec. IV, we
analyze the Ikeda-Liénard dynamics of the system and perform
an attractor reconstruction from the experimental time series.
The last section concludes the article.

II. ELECTRO-OPTIC OSCILLATOR SETUP AND MODEL

The EO oscillator typically used for implementing an Ikeda
system is illustrated in Fig. 1(a). It consists of the following
devices: (i) A 1.55-μm semiconductor telecom laser diode
whose optical power can be tuned from 0 to 20 mW. (ii) A
Mach-Zehnder modulator (MZM) connected to the laser by an
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FIG. 1. (a) Schematic diagram of the nonlinear time-delayed EO
setup. MZM, Mach-Zehnder modulator; PD, photodiode; DL, delay
line; BPF, bandpass filter; Amp, RF amplifier. (b) Experimental record
of the nonlinear transmission function showing an up to quartic-like
approximated polynomial, with up to three accessible extrema.

optical fiber. The MZM performs the nonlinear transformation
through its modulation transfer function,

Pout(t) = Pin cos2

[
π

2

V (t)

VπRF

+ π

2

VDC

VπDC

]
, (1)

where the VπDC = 6.64 V and VπRF = 3.80 V are the DC
and RF half-wave voltages of the modulator, respectively. The
voltage V (t) is the modulating signal while VDC is the bias
voltage that controls the operating point of the modulator.
(iii) A 4-km-long optical fiber delay line, resulting in a
delay time of τD � 19.472 μs. (iv) An amplified photodiode
detecting the light, and providing a voltage proportional to
the optical intensity according to Vpd(t) = SP0(t − τD), where
S = 1.08 V/mW is the sensitivity of the InGaAS photodiode
equipped with a transimpedance amplifier. (v) A bandpass
filter with cutoff frequencies fl = 22.5 Hz and fh = 0.6 MHz.
(vi) A radio-frequency amplifier with gain G = 3.3. The
amplified signal is connected to the RF electrode of the MZM,
thereby closing the feedback loop.

Assuming that the bandpass filter results from the cascade
of first-order low-pass and high-pass filters with fl � fh,
it can be shown that system dynamics can be described
by a normalized integrodifferential delay equation, which is
explicitly written as

x(t) + τ
dx

dt
(t) + 1

θ

∫ t

t0

x(ξ ) dξ = β cos2[x(t − τD) + φ0],

(2)
where

x(t) = πV (t)

2VπRF

; φ0 = π

2

VDC

VπDC

; β = πGSPin

2VπRF

; (3)

τ = 1

2πfh
; θ = 1

2πfl
. (4)

For the dynamical system, the main control parameter β can be
tuned through the laser power Pin. Furthermore, φ0 stands for
the bias offset phase of the MZM. Both β and φ0 are bifurcation
parameters for the oscillator. τ and θ are the characteristics fast
and slow response times of the filter.

For mathematical purposes, it is convenient to rewrite
Eq. (2) as a set of two-dimensionless coupled first-order DDEs
with respect to the dimensionless time ζ = t/τD , resulting in

ε ẋ(ζ ) = −x(ζ ) − δ y(ζ ) + β cos2[x(ζ − 1) + φ0],

ẏ(ζ ) = x(ζ ), (5)

with ε = τ/τD and δ = τD/θ .

III. DYNAMICS OF THE AUTONOMOUS SYSTEM

In the following, the dynamical characteristics of the
time-delayed EO oscillator are briefly analyzed. A first step is
the stability analysis of the trivial fixed point, which can be
investigated by deriving an eigenvalue characteristic equation
obtained after assuming perturbations proportional to eλζ in
Eq. (5):

λ2 + λ[1 + β sin(2φ0)e−λ] + ε = 0. (6)

The analysis of this transcendental equation reveals that the
trivial fixed point is stable when |β sin(2φ0)| < 1; beyond this
limit, a Hopf-bifurcation might arise. In this case, the solution
of Eq. (6) becomes purely imaginary (λ = iω), and we obtain
the following equations:

ω tan ω = δ − εω2,

−β sin(2φ0) = (cos ω)−1. (7)

The first equation of Eqs. (7) defines the eigenmodes of
the system, allowing us to analytically calculate the Hopf
angular frequency. The second equation describes the section
of the nonlinear function where the oscillation is possible,
as a function of each angular frequency. For sections of
the nonlinear function with a positive slope, we find that
the eigen angular frequency is ω � √

δ, corresponding to a
slow oscillation. Figures 2(a)–2(c) show corresponding slow
oscillations. For operation along the negative slope we obtain
ω � π , hence the period of oscillation is approximately twice
the delay time.

When −β sin(2φ0) > 1, a mixed-mode oscillation appears
[32]; see Figs. 2(d)–2(f). It results from the superposition
of two waveforms: (i) a slow-scale periodic signal, with
5-ms period, which is consistent in magnitude with the value
obtained at the Hopf threshold for the slow eigenfrequency,
ω = √

δ, leading to a physical period of 2πτD/ω =√
2πτD/fl � 2.3 ms. There, the curves at the top and bottom of

the time series correspond to relaxation oscillations separated
by sudden jumps. (ii) The fast-scale dynamics generated in the
extrema’s neighborhood of the periodic time series. Finally,
dynamics with a strong coexistence of both time scales are
shown in Figs. 2(g)–2(i). Through a qualitative inspection of
the nonlinear function in Figs. 2(a), 2(d), and 2(g), one can ob-
serve that the sections of the nonlinear function with a negative
slope increase with β. This causes the emergence of fast-scale
oscillations with period T = 40 μs = 2τD at the extrema of
the slow envelop; see Figs. 2(e), 2(f), 2(h), and 2(i). Here, the
decay in the temporal envelopes for the fast-scale oscillations
are related to the existence of relaxation epochs. Such epochs
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FIG. 2. Experimental and numerical results normalized gain β set to 1.4 (first row), 1.7 (second row), and 2.2 (third row). Left column:
Transmission function of the MZM when operated at the middle inflection point with positive slope (φ0 = −π/4). Central column, experimental
time traces; right column, numerical time traces.

are fast-time-scale oscillations occurring in the neighborhood
of the nonlinear function extrema and along its negative slopes.
This highlights the importance of the nonlinear function’s
shape in the actual dynamical solution. In addition, one can
see that the period of the slow envelope continuously increases
with growing β, from 2.3 ms at the slow envelope Hopf
threshold (β � 1), to 14 ms in Figs. 2(g)–2(i), through 5 ms
in Figs. 2(a)–2(c) and 10 ms in Figs. 2(d)–2(f). Such a period
of growth is consistent with the analytical study reported in
Ref. [31].

By zooming in the extrema’s neighborhood of the time
series when {β = 2.2, φ0 = −π/4}, it can be seen that fast-
scale oscillations have an obvious correspondence with the
dynamics generated by the isolated parts of the nonlinear
function with negative slope, where {β = 2.2, φ0 = −π/2; 0}.
Figures 3 and 4 show time series for φ0 = −π/4 and φ0 =
−π/2; 0, respectively. In Figs. 3(b) and 3(c) focus on the top
and bottom of the nonlinear function. In Fig. 4, these two
extrema are disconnected, with dynamics shown in panels (c)
and (d). Under both conditions, dynamics are qualitatively
comparable, having the same oscillation period T � 2τD �
40 μs as predicted by Eqs. (7) for the first fast eigenmode,

with a very similar theoretical value compared to standard
Ikeda model with double delay periodicity.

IV. THE LIÉNARD-IKEDA APPROACH

In this section, we analyze the interaction between the two
time scales involved in the regime of breather oscillations.
We therefore focus on the configuration where φ0 = −π/4,
resulting in perfectly symmetric oscillations. One should
notice that the particular case 0 = −π/4 is used here for
analytical convenience only, resulting in the perfect symmetry
conditions assumed in the original Liénard limit cycle theo-
rem. Deviations away from −π/4, however, do not modify
qualitatively the observed waveform, essentially changing the
duty cycle of the slow motion. This was already underlined in
previous references such as Ref. [32]. In the particular case of
0 = −π/4, Eq. (5) can be rewritten as

ẍ + ẋ − β cos[2x(ζ − 1)]ẋ(ζ − 1) + εx = 0. (8)

In order to recover the textbook equation for Liénard system
[38] from the previous equation of a bandpass EO delay
dynamics, one needs to apply a new change of variable
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FIG. 3. (a) MZM transmission function with labels {�,©} for
the portions with negative slope. Zoom at the top (b) and bottom (c)
of the time series showing mixed-mode dynamics, where β = 2.2
and φ0 � −π/4. Both with period T = 40 μs = 2τD .

s = ζ
√

δ/ε. Doing this and assuming that the delay can be
neglected compared to the time scales of the Liénard cycle,
one indeed obtains

ẍ + F ′(x)ẋ + G′(x) = 0, (9)

where

F ′(x) = 1√
εδ

[1 − β cos(2x)] (10)

is an even function scaling the nonlinear damping, while
G′(x) = x is an odd function corresponding to the restoring
force. This associated function F (x) is determined from F ′(x)
in Eq. (10). The Liénard plane is thus defined as

ẋ = y − F (x), (11)

ẏ = −g(x), (12)

where

F (x) =
∫ x

0
F ′(ξ ) dξ = 1√

εδ

[
x − 1

2
β sin(2x)

]
, (13)

and g(x) = G′(x) are smooth odd functions. From here it
is possible to obtain the Liénard xy plane, which provides
the exact solutions for the nonlinear transformations shown
in Figs. 2(a), 2(d), and 2(g). According to the theorem
ruling Liénard equation and its possible limit cycle solutions,
Eqs. (11)–(13) have stable limit cycles if F (x) has exactly
three zeros with F ′(0) = (εδ)−

1
2 [1 − β] < 0 if β > 1, and

F (x) → ∞ if x → ∞ [38]. A more detailed analysis of the
Liénard derivation and bandpass Ikeda dynamics, as well as its
detailed discussion in the xy plane, can be found in Ref. [32].

The previous transformation of the bandpass EO delay
dynamics into a Liénard system is helpful to discuss our main
finding concerning the regime depicted in Figs. 2 to 6. In the
EO bandpass delay system with moderate feedback (β = 1
to ca. 3), fast and slow timescales are in fact nonlinearly
coupled, however, in an unidirectional way. Fast dynamics
obey the standard Ikeda equation, while slow dynamics follow

FIG. 4. MZM transmission functions for β = 2.2, if φ0 � 0 (a)
and φ0 � −π/2 (b). Time series associated to the nonlinear function
with φ0 � 0 (c) and φ0 � −π/2 (d). Both with period T = 40 μs =
2τD .

a Liénard limit cycle. The slow Liénard cycle actually drives
the operating point 0, around which a fast conventional Ikeda
dynamics (i.e., low pass model, without the integral term)
develops. To demonstrate this physically, we have performed a
simple experiment in which the Liénard compound is replaced
by an external triangular waveform modulating the offset phase
parameter. The triangular shape of the waveform is motivated
by the fact that the external drive is intended to replace the
integral variable y of the original bandpass delay dynamics.
This variable is indeed the long-time-scale integral of the
variable x, which can be approximated, on average (due to
the slow integration time of concern), by a constant, whether
positive or negative. The corresponding integral is then simply
a triangular waveform. Such a system is then modeled by

ε
dz

dt
(t) = −z(t) + β cos2[z(t) + 0 + u(t)], (14)

where u(t) is a triangular waveform having an amplitude
and a period tuned, so that its effects emulate the actually
observed slow oscillation of the Liénard limit cycle. One could
notice that the previous Eq. (14) can be obtained from the
bandpass Ikeda model in Eq. (5), setting z(t) = x(t) + δy(t)
and u(t) = −δy(t), and assuming that the term εδẏ is a
negligible derivative in time compared to εż, due to the
smallness of δ. Experimental and numerical results are shown
in Fig. 5, where both the global shape as well as finer details at
fast time scales are in excellent agreement. Experimentally, the
forcing u(t) of the standard Ikeda system was implemented by
modulating φ0 through the MZM’s DC input, with amplitude
VDC = 5.9 V and frequency 211 Hz. By using these values
we approximate the slow periodic envelope of the bandpass
Ikeda with the triangular signal, whose frequency is typically
around 200 Hz. Furthermore, the amplitude of the triangular
signal spans the full extrema neighborhood of the nonlinear
function, φ0 ∈ {−π/2, . . . ,0}, where the Ikeda-like dynamics
are dominant. The time traces exhibit Ikeda-like oscillations
combined with periodic breathing at the frequency of the
external modulation. Consequently, it can be deduced that the
evolution of the system displays Ikeda-like oscillations close
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INTERACTION BETWEEN LIÉNARD AND IKEDA . . . PHYSICAL REVIEW E 94, 062208 (2016)

FIG. 5. (a, b) Breathers-like dynamics can be generated by
changing periodically the MZM operating point in the Ikeda EO
setup, and (c, d) zoom at the top of the time series.

to the extrema neighborhood, while the integral part induces
slow-time-scale Liénard-like oscillations.

It is informative to illustrate the system’s dynamics in a two-
dimensional (2D) phase space using an attractor reconstruction
technique. This procedure is carried out by using an additional
time-delay coordinate x(ζ − 1), which allows us to project the
original attractor onto a two-dimensional phase space. In order
to implement this method, we have recorded an experimental
time trace from the EO experimental setup, and used it to obtain
the coordinates for the time-delay-based 2D-embedding.
Figure 6 shows two-dimensional projections of the
reconstructed attractors in the phase space for two types of
breathers, where β ∈ {1.7,2.2}. The existence of a large limit
cycle is revealed by the slow-scale dynamics corresponding
to the Liénard dynamics. The spiral-like trajectories in the
limit cycle represent the fast-scale Ikeda-like solutions in
the 2D-projection. This behavior is maintained even when the
fast-scale dynamics has a chaotic nature. The spiral-shaped
pattern of the attractor is related to the relaxation dynamics
of the system induced by the slow-scale periodic oscillation,
which yields a decaying in time envelope for the Ikeda-like
waveforms. This spiral pattern is therefore the topological
signature of a global interaction of two different dynamics,
which are interacting nonlinearly with different time scales,
however, unidirectionally from the slow motion (θ ) into the
fast ones (τD and τ ).

V. CONCLUSION

We have investigated the dynamics of a bandpass delayed
nonlinear EO system, and their particular slow-fast solutions,
when the nonlinear feedback involves a positive slope between
two extrema. Depending on the strength of the nonlinear
delayed feedback weighted by the bifurcation parameter β,
various solutions are bifurcating. Figure 7 illustrates such
a sequence of bifurcations, from the Hopf point to highly
complex fully developed chaos, as parameter β is increased
from zero. The particular parameter conditions of concern have
been recently investigated in the view of Liénard limit cycle.

FIG. 6. First-return maps from the time series: (a) β = 1.7 with
the corresponding zoom at the top and bottom extrema, (b) β = 2.2
with the corresponding zoom at the top and bottom extrema, where
φ0 = −π/4.

We have further shown that beyond the Liénard limit-cycle
solution, the Liénard-Ikeda solution can be interpreted as
the unidirectional coupling of a conventional (i.e., low pass
instead of bandpass) Ikeda dynamics and a Liénard limit
cycle modulating the phase parameter of the Ikeda dynamics.
Our result is demonstrated experimentally by constructing
an Ikeda dynamics nonautonomously driven by the typical
waveform—a triangular one—typically issued from a Liénard
system. Experimental and numerical results are found in
excellent agreement, and the results are supported by analytics
developed on the original bandpass Ikeda model. As illustrated

FIG. 7. Numerical simulations of distributions of the orbits x(t)
for different feedback gain values β and φ0 = −π/4.
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in Fig. 7, when β is further increased (ca. above 3.3),
stronger time scales interplay results in the vanishing of the
Liénard slow limit cycle and gives rise to fully developed
chaos. We anticipate that such fully developed chaos consists
of a more complex and probably bidirectional time-scale
nonlinear mixing, as clearly shown by the nicely smoothed
probability density function profile after the vanishing of the
Liénard envelope (see Fig. 7). Future work will focus on
the exploration of such system dynamics for strong β, when the
three timescales θ , τ , and τD are suspected to mutually trigger

the chaotic oscillations, thereby inducing a higher complexity
in the timescale interactions.
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