
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232776699

The Peregrine soliton in nonlinear fibre optics

Article  in  Nature Physics · August 2010

DOI: 10.1038/nphys1740 · Source: OAI

CITATIONS

1,552
READS

1,297

8 authors, including:

Bertrand Kibler

Laboratoire Interdisciplinaire Carnot de Bourgogne

379 PUBLICATIONS   9,403 CITATIONS   

SEE PROFILE

Julien Fatome

CNRS

397 PUBLICATIONS   7,001 CITATIONS   

SEE PROFILE

Christophe Finot

Laboratoire Interdisciplinaire Carnot de Bourgogne

554 PUBLICATIONS   9,563 CITATIONS   

SEE PROFILE

Guy Millot

Université Bourgogne Europe

553 PUBLICATIONS   13,970 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Julien Fatome on 22 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/232776699_The_Peregrine_soliton_in_nonlinear_fibre_optics?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/232776699_The_Peregrine_soliton_in_nonlinear_fibre_optics?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bertrand-Kibler?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bertrand-Kibler?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Laboratoire-Interdisciplinaire-Carnot-de-Bourgogne?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bertrand-Kibler?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julien-Fatome?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julien-Fatome?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julien-Fatome?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christophe-Finot?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christophe-Finot?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Laboratoire-Interdisciplinaire-Carnot-de-Bourgogne?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christophe-Finot?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy-Millot?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy-Millot?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-Bourgogne-Europe?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy-Millot?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julien-Fatome?enrichId=rgreq-614f7062a763e8c6530becf2034b8984-XXX&enrichSource=Y292ZXJQYWdlOzIzMjc3NjY5OTtBUzo5OTY3MzE2MzQzNjA0NkAxNDAwNzc1MzQzMTc5&el=1_x_10&_esc=publicationCoverPdf


LETTERS
PUBLISHED ONLINE: 22 AUGUST 2010 | DOI: 10.1038/NPHYS1740

The Peregrine soliton in nonlinear fibre optics
B. Kibler1, J. Fatome1, C. Finot1, G. Millot1, F. Dias2,3, G. Genty4, N. Akhmediev5 and J. M. Dudley6*

The Peregrine soliton is a localized nonlinear structure pre-
dicted to exist over 25 years ago, but not so far experimentally
observed in any physical system1. It is of fundamental signif-
icance because it is localized in both time and space, and be-
cause it defines the limit of a wide class of solutions to the non-
linear Schrödinger equation (NLSE). Here, we use an analytic
description of NLSE breather propagation2 to implement ex-
periments in optical fibre generating femtosecond pulses with
strong temporal and spatial localization, and near-ideal tempo-
ral Peregrine soliton characteristics. In showing that Peregrine
soliton characteristics appear with initial conditions that do not
correspond to the mathematical ideal, our results may impact
widely on studies of hydrodynamic wave instabilities where the
Peregrine soliton is considered a freak-wave prototype3–7.

Solitons are localized waves arising from nonlinear and
dispersive interactions, and are central objects of nonlinear
science. The well-known envelope solitons of the NLSE have
been studied in many different systems including plasmas,
optical fibres and cold atoms8–10. In addition to envelope
solitons, the NLSE admits other classes of localized structure,
and there has been significant interest in spatio-temporal
breather solutions that undergo periodic energy exchange with a
finite background11,12. However, despite extensive mathematical
studies4,5, experiments have been limited to only a small number
of discrete systems9,13. Indeed, to our knowledge no studies have
explicitly characterized nonlinear breather localization in any
system described by the continuous NLSE. As a result, predictions
such as Peregrine’s that are central to nonlinear wave theory have
remained untested.

In a sense, this is surprising because the theory of NLSE
breather evolution also describes induced modulation instability, a
process extensively studied in hydrodynamics and fibre optics14–18.
Experiments in optics, however, have been strongly motivated
by telecommunications goals to generate high-contrast pedestal-
free pulses19–22, and the opportunity to characterize solitons on
a finite background seems to have been overlooked. Indeed,
even fundamental studies of Fermi–Pasta–Ulam recurrence in
modulation instability have been carried out using initial conditions
far from those that would excite Peregrine soliton features23. Here,
we report experiments in optical fibre specifically designed to study
breather evolution in a regime approaching the excitation of the
Peregrine soliton. We demonstrate explicitly its spatio-temporal
localization and, at the point of maximum temporal compression,
use frequency-resolved optical gating (FROG) to explicitly measure
the temporal soliton characteristics on a finite background. Our
results are in very good agreement with numerical simulations and
Peregrine’s analytic prediction.

1Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS —Université de Bourgogne, Dijon, France, 2Centre de Mathématiques et de Leurs
Applications (CMLA), ENS Cachan, 94230 Cachan, France, 3UCD School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland,
4Tampere University of Technology, Optics Laboratory, FI-33101 Tampere, Finland, 5Optical Sciences Group, Research School of Physics and Engineering,
Institute of Advanced Studies, The Australian National University, Canberra ACT 0200, Australia, 6Institut FEMTO-ST, UMR 6174 CNRS—Université de
Franche-Comté, 25030 Besançon, France. *e-mail: john.dudley@univ-fcomte.fr.

Our experiments are designed using the breather formalism of
ref. 2.With dimensionless fieldψ(ξ,τ ), the self-focusingNLSE is:

i
∂ψ

∂ξ
+

1
2
∂2ψ

∂τ 2
+|ψ |2ψ = 0 (1)

Here ξ and τ are normalized distance and time, and induced
modulation instability involves the evolution along ξ of a
temporally modulated continuous wave towards a train of
ultrashort compressed pulses followed by a return phase of
broadening towards the initial state. Although the general evolution
can be complex, it has recently been shown24 that the compression
dynamics can be described for a wide range of initial conditions by
the analytic Akhmediev breather2,4:

ψ(ξ,τ )=

[
(1−4a)cosh(bξ)+

√
2acos(�τ )+ ibsinh(bξ)

√
2acos(�τ )−cosh(bξ)

]
eiξ

(2)

Here � is the dimensionless modulation frequency, a= 1/2(1−
�2/4), where 0 < a < 1/2 determines the frequencies that ex-
perience gain and b = [8a(1 − 2a)]1/2 determines the instabil-
ity growth. Dimensional transformations are given below, and
dimensional forms of both equations (1) and (2) are given in
the Methods section.

Figure 1 shows how the breather characteristics depend strongly
onmodulation frequency. As themodulation parameter a increases,
the temporal separation between adjacent peaks increases at the
same time as the compressed temporal width of each individual
peak decreases. This leads to a greater temporal localization (defined
below) as a approaches the limiting value of 1/2. The evolution
at a = 1/4 is associated with maximum modulation-instability
gain, and is indeed the regime of previous experiments19,23. The
limiting solution for a→ 1/2 derived by Peregrine has a particular
fractional form that has led this class of solution to be described
as a ‘rational soliton’

ψ(ξ,τ )=
[
1−

4(1+2iξ)
1+4τ 2+4ξ 2

]
eiξ (3)

The figure also plots the ideal Peregrine soliton to show the breather
evolution approaching this solution as the overlap between adjacent
peaks reduces with increasing a.

Figure 2a shows in more detail the dependence on modulation
parameter of the breather profile at the point ofmaximum temporal
compression ξ = 0. The pseudocolour plot of |ψ(0,τ )|2 highlights
the increased peak localization as a→ 1/2, with the right panels
illustrating how the intensity of the half-period breather peak
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Figure 1 | Plotted Akhmediev breather solutions using equation (2) for modulation parameter a= 0.25, a= 0.45 and a= 0.48, as well as the ideal
Peregrine soliton of equation (3), the limiting case of the Akhmediev breather as a→ 1/2. Maximum temporal compression occurs at normalized
distance ξ =0. The differences between the Akhmediev breather (AB) with a=0.48 and the Peregrine soliton can be seen with close inspection of the
decay of the peak to the wings; they are shown more clearly in Fig. 2.

(shaded region delimited by arrows) approaches the Peregrine
soliton (solid line) for a > 0.4. These results are important in
showing that this parameter regime yields characteristic Peregrine
soliton features in the temporal envelope even though the ideal
solution exists only asymptotically in the limit of zero modulation-
instability gain (b→ 0 as a→ 1/2).

The emergence of Peregrine soliton characteristics with increased
temporal localization is also associated with increasing spatial
localization. This is because the modulation-instability recurrence
period also increases asymptotically as a→ 1/2. To discuss this
quantitatively, we introduce localization measures in terms of ratios
of the temporal and spatial periods relative to the individual tempo-
ral and spatial peak half-widths. These can be readily calculated or
determined from numerical simulations of the NLSE as a function of
modulation parameter (see the Methods section). The solid lines in
Fig. 2b plot (i) temporal localization τper/δτo, (ii) spatial localization
ξper/δξo and (iii) their product (τper/δτo)(ξper/δξo), which defines
spatio-temporal localization. The regime of rapidly increasing
‘strong localization’ for a> 0.4 is where the right panels in Fig. 2a
show Peregrine soliton characteristics in the temporal envelope. As
discussed below, this regime is accessible in our experiments. This
analysis is thus highly significant because it shows how Peregrine
soliton characteristics can appear experimentally, even though the
idealmathematical asymptotic limit can never be reached in practice.

Figure 3 shows our experimental set-up (see the Methods
section). An input field A(z = z0,T )=

√
P0[1+αmodexp(iωmodT )]

is injected into fibre with group velocity dispersion β2(s2 m−1)
and nonlinearity γ (W−1 m−1). The input power is P0, and αmod
and ωmod are modulation strength and frequency. The dimensional
field A(z,T )(W1/2) is A = P0

1/2ψ . Defining a characteristic
length LNL= (γP0)−1 and timescale T0= (|β2|LNL)1/2, dimensional
distance z (m) and time T (s) are related to the normalized
parameters by z = ξLNL and T = τT0. The frequency ωmod is
related to the modulation parameter a by 2a = [1− (ωmod/ωc)2]
with ω2

c = 4γP0/|β2|. Modulation-instability gain is seen for
modulation parameters 0 < a < 1/2, which corresponds to
ωc > ωmod > 0. With these definitions, evolution towards the
Peregrine soliton as a→ 1/2 corresponds to the limit where
ωmod→ 0, accessible in practice by beating two narrow-linewidth
lasers to create an initial low-frequency-modulated wave.

We used an input field obtained from a pump laser at
λp = 1,554.53 nm mixed with a closely spaced tunable signal at λs,
with αmod = 0.225 (see the Methods section for other parameters).
Experiments first studied two-dimensional localization dynamics as
a function of modulation parameter a. Although we use a fibre of
fixed length, the spatial dynamics in ξ were readily measured by
varying pump power (recall ξ = zγP0). By changing the pump–
signal detuning to vary a while studying dynamical evolution by
varying P0, the temporal and spatial localization parameters defined
above were determined from the ξ and τ dependence of the mea-
sured autocorrelation function g (ξ,τ )=〈|ψ(ξ,t )|2 |ψ(ξ,t−τ )|2〉.
Figure 2b shows that the measured localization parameters are
in very good agreement with predictions. This verifies that we
can enter experimentally the divergent regime where Peregrine
soliton characteristics are observed with the values of a > 0.4
accessible with our set-up.

Figure 4 shows detailed measurements of dynamics and the
compressed temporal profile for strong localization with a= 0.42.
Figure 4a shows simulations plotting the expected evolution of
|ψ(ξ,τ )|2 over the range of ξ varied in our experiments (see the
Methods section). Figure 4b,c shows the simulated autocorrelation
function and spectrum. These results are compared to experiment
(with no free parameters), exhibiting very good agreement. The
autocorrelation results in Fig. 4b (i) are particularly clear in showing
the two-dimensional localization at the distance of maximum
compression when ξ =2.5. To illustrate the growth–decay intensity
dynamics explicitly, Fig. 4b (ii) shows an increase in autocorrelation
peak signal with ξ . Here, experiments (points) are compared with
simulations (line).

Detailed temporal measurements using FROG were carried out
at ξ = 2.5 where Peregrine soliton characteristics are expected
at maximum compression. Figure 5a,b shows the measured and
retrieved FROG traces. The retrieved intensity and phase (see the
Methods section) are shown as the blue line withmarkers in Fig. 5d.
The peak power of the retrieved profile is calculated from the
measured output power with no free parameters. Experimental
results are compared to numerical simulations (red line), and we
see excellent agreement. Figure 5c shows the FROG trace of the
simulated field. The grey line plots the analytic Peregrine soliton
from equation (3), with maximum peak power from theory of
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Figure 2 | Evolution towards Peregrine soliton characteristics with increasing modulation parameter for temporal profile characteristics and localization
behaviour. a, Numerical results using equation (2) showing the temporal characteristics of the maximally compressed breather. The pseudocolour plot
shows the maximally compressed breather intensity |ψ(0,t)|2 as the modulation parameter varies over 0< a<0.5. Limiting cases a=0 and a=0.5
correspond to a plane wave and the Peregrine soliton, respectively. The panels on the right illustrate how for a>0.4, the half-period breather profile
(shaded region delimited by arrows) approaches the ideal Peregrine soliton envelope (solid line). The timebase is normalized relative to the minimum
modulation period of τ =π as a→0. Note the expanding timebase as the modulation parameter increases. b, The dependence on modulation parameter
of (i) temporal, (ii) spatial and (iii) spatio-temporal localization parameters as defined in the text. The figure highlights the divergent nature of localization
as a increases above 0.4. The solid lines represent analytical/numerical results (see the Methods section) and the points with error bars are obtained from
experiment. The error bars in b are calculated from the average over 5 series of repeated measurements of temporal and spatial localization at each value
of a, taking into account estimated errors of±5% in measurements of temporal width and power.

ECL 1
Coupler

Phase modulator

EDFA
HNLF

OSA

FROG

Autocorrelator

900 m
ECL 2

Figure 3 | Experimental set-up. ECL: external-cavity laser; OSA: optical
spectrum analyser; FROG: frequency-resolved optical gating. HNLF: highly
nonlinear fibre. EDFA: erbium-doped fibre amplifier.

9P0 = 2.7W. On the right axis, the intensity for all curves is
normalized to that of the dimensionless |ψ(0,τ )|2.

These measurements confirm the expected temporal features of
the Peregrine soliton—a temporally localized peak (400 fs duration)
surrounded by a non-zero background. The FROG measurements
also confirm the different signs of the peak and background
amplitudes through the measured relative π phase difference. The
measured phase profile (blue line and markers) in the vicinity of
the intensity null (indicated by the arrow) is shown in Fig. 5d and
compared to that expected for the Peregrine soliton (grey line).
Finally, in Fig. 5e we plot the measured spectral intensities (blue)
compared to simulation (red markers), and the analytic spectrum∣∣ψ̃∣∣2 ∼ exp[−2π|ν|(|β2|/γP0)1/2] for the ideal Peregrine soliton
(grey). Note that this spectrum is calculated for the time-varying
envelope component so that the delta-function component at the
pump is not shown, but the analytic spectrum reproduces very well
the decay of themeasured sideband amplitudes.
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error bars are calculated from the average over five repeated independent series of measurements of the peak signal evolution. In (i) traces are plotted with
normalization to a peak of unity at each ξ to highlight temporal localization; in (ii) normalization is with respect to the global peak signal intensity with
propagation to highlight spatial localization. c, Comparing simulated (left) and experimental (right) spectral dynamics.
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Figure 5 | Experimental results showing the measured temporal characteristics of the maximally compressed pulse at ξ= 2.5, and comparison with the
predicted Peregrine soliton. a–c, Measured (a), retrieved (b) and simulated (c) FROG traces. d, Intensity and phase from experiment (blue), simulation
(red) and for the ideal Peregrine soliton (grey). e, Corresponding spectral characteristics from experiment (blue), simulation (red markers, shown at peaks
only for clarity) and for the ideal Peregrine soliton (grey). The Peregrine soliton spectrum is of the time-varying envelope component so that the
delta-function component at the pump wavelength is not shown.

These experiments represent the first amplitude and phase
measurements of a nonlinear breather structure in any continuous
NLSE soliton-supporting system. The results show the existence
of a strongly localized temporal peak on a non-zero background,
and confirm Peregrine’s theoretical predictions of a rational

soliton envelope. Our results highlight how experiments in
optics using readily available components and advanced pulse
metrology can be used to conveniently test more general theories
of nonlinear waves25. We anticipate applications in establishing
links between optical and hydrodynamic extreme events26 and
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in studying modulation-instability dynamics in other systems27.
In showing that Peregrine soliton characteristic are excited even
for non-ideal perturbation frequencies, our results may impact
on the search for oceanic rogue-wave forecasting signatures
in meteorological data.

Methods
For completeness, we first give dimensional forms of the NLSE and breather
solutions equations (1) and (2) respectively. The dimensionalNLSE is given by:

i
∂A
∂z
−
β2

2
∂2A
∂T 2
+γ |A|2A= 0

with β2 < 0 for the self-focusing form (that is, fibre anomalous dispersion). The
breather evolution in z and T is given in dimensional form as:

A(z,T )=
√
P0

(1−4a)cosh(bz/LNL)+ ibsinh(bz/LNL)+
√
2acos(ωmodT )

√
2acos(ωmodT )−cosh(bz/LNL)

The numerical results in Figs 1 and 2 were obtained directly from equation (2).
In numerical simulations solving the NLSE equation (1), we used a standard
split-step scheme28.

The localization properties shown in Fig. 2 are defined in terms
of normalized variables as follows. A measure of time-domain
localization can be derived analytically from the form of profile of the
breather solution at the point of maximum temporal compression:
|ψ(0,τ )|2 = ([(1−4a)+

√
2acos(�τ )]/[

√
2acos(�τ )−1])2. We define the

profile temporal width δτ0 as the position when the intensity is zero-valued
adjacent to the peak. Zeros appear in the profile for a> 1/8, and the ratio between
the period τper = 2π/� and the temporal width can then be expressed analytically
as: τper/δτ0= 2πcos−1[(4a−1)/

√
2a]. This expression is that used to plot the solid

line in Fig. 2b (i). Under non-ideal initial conditions, multiple spatial recurrence
periods of breather evolution are observed, and longitudinal localization is not
amenable to straightforward analysis. We therefore used numerical simulations
of the NLSE plotting peak intensity evolution with ξ . This allows us to determine
the spatial period ξper and the half-width δξo of the intensity evolution with ξ to
yield the ratio ξper/δξo. The solid line in Fig. 2b (ii) shows a smooth polynomial
fit to simulations that we carried out for varying a. At the parameters used in our
experiments for the detailed temporal analysis (a= 0.42), the measured spatial
localization factor exceeded 10.

In our experiments, the initial signals (pump and seed) were generated
from two telecommunications-grade external-cavity lasers (ECL-OSICS model
1560-PM) with intrinsic linewidths <200 kHz. The fibre used was 900m of
highly nonlinear fibre (OFS Specialty Fiber) with β2 =−8.85×10−28 s2 m−1 and
γ = 0.01W−1 m−1 at λp. The fibre was dispersion-flattened to have low third-order
dispersion β3 = 1.331×10−41 s3 m−1 around 1,550 nm. Fibre loss was 1 dB km−1.
A phase modulator was used to broaden the narrow intrinsic external-cavity-laser
linewidths to ∼100MHz so as to suppress Brillouin scattering in the fibre at the
power levels used in our experiments28. Both the pump and the seed were then
amplified to the power levels used in the experiments by means of an erbium-doped
fibre amplifier (EDFA-IPG model EAD-1-C-PM). Note that the injection set-up
was all-polarization maintaining to maximize the modulation-instability process
occurring in the optical fibre. A low-noise amplifier was used so as to clearly
favour the induced breather dynamics over spontaneous broadband modulation
instability. Indeed, the limiting factor in reducing the modulation frequency
between the pump and the signal so as to approach the ideal case of a→ 1/2 is
the decreasing gain for the stimulated process relative to the spontaneous growth
of sideband content, which occurs over a continuous range from the pump
to the maximum frequency ωc. In our experiments this limited the maximum
attainable value of a= 0.42.

For the experimental results in Fig. 4, we varied P0 from 0.2 to 0.4W while
varying ωmod over 196.7–278.2GHz (by tuning λs from 1,556.12–1,556.77 nm)
to maintain constant a= 0.42. Note that the spectral measurements in Fig. 4 are
plotted against wavelength to show the change in modulation frequency that
ensures that a is held constant. The point of maximum temporal compression
at ξ = 2.5 corresponded to P0 = 0.30W and ωmod = 241GHz. For the results in
Fig. 5, the FROG technique used a second-harmonic generation implementation,
and retrieval of the intensity and phase of the underlying field from the measured
FROG trace was carried out using a generalized projections algorithm, adapted
for finite background fields and/or periodic pulse trains29. We measured five
periods of the FROG trace although for clarity only the central period is shown
in Fig. 5. The non-collinear autocorrelation measurements were carried out
using an independent second-harmonic generation autocorrelator providing an
important verification of measurement fidelity. Both autocorrelation and FROG
measurements are self-referencing and thus insensitive to relative source phase
variation. Retrieval was carried out using a 256×256 grid and the FROG error for

the result in Fig. 5d was G= 0.005, a typical error for a periodic FROG trace29.
Optical spectra were measured using a 0.02-nm-resolution bandwidth optical
spectrum analyser (Yokogawa-AQ6370). In practice, optimization of the injected
power to obtain maximum compression for the available fibre length of 900m was
used by continuous monitoring of spectral and autocorrelation measurements for
various input powers around 0.3W.

The NLSE simulations shown in Fig. 4 for our experimental conditions
considered an input corresponding to a weakly modulated continuous-wave field
with modulation frequency and depth corresponding to experiment. A low level of
bandwidth-limited noise at −50 dB modelled the effect of amplified spontaneous
emission in the EDFA and a phenomenological one photon per mode background
was also included to model quantum noise30. The effect of fibre loss was included
through a correction to the propagation distance (by using the effective length
defined as Leff = [1− exp(−αL)]/α, where α accounts for fibre losses28) when
plotting the experimental results. This approach is satisfactory in allowing
the simulations to be used to confirm experimental observation of temporal
compression and localization in the breather evolution. On the other hand,
when comparing the retrieved intensity and phase of the Peregrine soliton, the
simulations in Fig. 5 used generalized NLSE simulations including fibre third-order
dispersion and spontaneous Raman scattering30. However, we found that the
generalized NLSE simulations yield essentially the same temporal and spectral
characteristics as a NLSEmodel at the power levels considered.
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