Sécurité Appliquée PVP. TD5 Apprentissages ϵ -DP ou pas

Jean-François COUCHOT couchot [arobase] femto-st [point] fr

3 janvier 2023

1 Régression Linéaire

Exercice 1.1. Régression Multiple par MCO^1 On considère 5 observations en 2 dimenssions, étiquetées par y:

x_1	0.12	0.14	0.31	0.37	0.49
x_2	29.0	33.0	17.0	21.0	12.0
y	21	24.3	12.7	15.6	9

- 1. Exprimer le problème à l'aide d'un système matriciel.
- 2. Montrer que la fonction objectif est

$$f_D(\omega) = -0.577 + 1.499x_1 + 0.744x_2.$$

3. Evaluer la somme des résidus quadratiques.

Exercice 1.2. Régression Multiple ϵ -DPw

- 1. L'algorithme de regression ϵ -DP vu en cours peut-il s'appliqueer directement? Pourquoi?
- 2. Normaliser les données pour qu'on puisse appliquer cet alogorithme. g_1 , g_2 et g_y sont les trois fonctions de normalisation. Remplir le tableau suivant :

x_1			
x_2			
y			

- 3. Exprimer le nouveau problème à l'aide d'un système matriciel.
- 4. Trouver la nouvelle fonction objectif. Que constatez-vous par rapport à la précédente?
- 5. Montrer que la sensibilité Δ vaut 18 dans ce cas. Pour ε valant 100, proposer une nouvelle fonction objectif.
- 6. Evaluer les prédictions avec cette nouvelle fonction. Mesurer la somme des résidus quadratiques.
- 7. Conclure sur la pertinence de cette approche naïve, pour un budget raisonnable.

^{1.} https://www.dunod.com/sciences-techniques/introduction-au-machine-learning-1