Security for connected devices: introduction to error correction

Jean-Francois COUCHOT
couchot [at] femto-st [dot] fr

September 9, 2020

couchot [at]femto-st [dot] fr

Contents

1 Practical introduction to correction codes 2
1.1 Redundancy first! e e e e 2

1.2 Parity bit. L o e e 2

1.3 Dataduplication e e e e e e e 3

1.4 Hamming’s code(7,4) o e 4

2 The systematic codes of Hamming (2" — 1,2% — k& — 1) 5
2.1 Generator and control matrices L. L e e e e e e 5
2.2 General case: error detection and correction L. L. e e e e 6

3 Reed-Solomon’s codes RS(n, k, m) 8
3.1 Givetheset Fom afield structure e 8
3.1.1 Calculsmodulo p(x) o oo 8

3.1.2 The set Fa[z|/p(x) of the polynomials modulo p(x) 9

3.1.3 Construction of a field from an irreducible polynomial 9

3.2 Reed-Solomon Code RS(n,k,m) 10
3.2.1 Polynomial A(z) containing the information to be transmitted 10

3.2.2 Primaryrootofthe field Fom 10

3.2.3 Control polynomial B(Z) o i e 10

324 Code C(x) . . v v i 11

3.3 Errordetection and COrrection e e e e e e e e e e e e e e e 11
3.3.1 Detectiononly e e e e e 11

332 Errorcorrection i e e e e e e e e e e e e e e e e 12

Chapter 1

Practical introduction to correction codes

In 1948, Claude Shannon published a reference document "A mathematical theory of communication" [] the
basis of information theory and coding theory. For each communication channel, Shannon has identified a number
called capacity which is the maximum reliability that can be achieved by any communication on that channel. To
achieve this, it is necessary to set up data encoding/decoding processes which, in the end, will make it possible to
correct certain errors.

A communication channel is shown in the figure 1.1. At the source, a x message must be sent. If x is transmitted
as such in this channel, any noise would alter it and it would not be recoverable. The basic idea is to embed the
message with some redundancy so that, at the reception, you can find x. Redundancy is added by encoding and the
encoded message, called a ¢ codeword, is sent on the channel. The noise, expressed as an error vector e, is added to
the code producing a received vector y. This received vector is then decoded and an estimate of Z of the = message is
generated.

Message —> Encoder > Channel 1 Decoder > Receiver
source
| | | |
| [! | [
X =X X C=Cp - Cpy ' y=c+e X
message codeword | received estimate
I vector of message
|
e=e1---€,
error from

noise

Figure 1.1: Communication Channel

1.1 Redundancy first!

To encode these messages we think of redundancy. For example, who has never heard a transmission of the type "E
for Echo, R for Romeo, R for Romeo, O for Obvious, and R for Romeo" to transmit the word "error". To improve the
transmission of a message, this code multiplies the information, adds redundancy which is the key to any detector and
corrector code.

In the following, we consider that the encoded characters are the bits. For encoding blocks from k bits to n bits,
there are 2¥ different words to encode. Among the 2" possible received messages of length n, 2* are code words (i.e.,

without error) and therefore 2 — 2¥ are not correct. The performance of a code is the rate of p = —.
n

1.2 Parity bit

A second example is an error detection code. The 7-bit encoding of the usual characters is considered as shown in the
table 1.1.

To detect an error, the encoding adds an eighth bit to the seven-bit vector, called the parity bit which is 1 if and
only if the sum of the bits initially present is odd. For example, the sum of the seven bits of B being 1 + 0+ 0+ 0+ 0
+ 0 + 1 =2, the parity bit is then 0. B is then coded in 10000010.

Char Digit Binary Parity + bit

B 65 1000001 10000010
C 66 1000010 10000100
D 67 1000011 10000111
a 97 1100001 11000011

98 1100010 11000101
c 99 1100011 11000110

Table 1.1: Parity bit Checksum

This encoding detects that an error has been made during transmission, but it does not correct it, as the receiver
does not know which of the eight bits is the wrong bit. The receiver, noting the error, may, however, request a
retransmission of the problematic character. Be careful, this detector code is based on the assumption that at most one
bit is wrong (is it a reasonable assumption?).

Exercise 1.1. Parity check
* How many errors can be detected with a simple parity check? Is it possible to correct these errors?
* Encode the following messages using a bit of parity: 1101011001, 100, 1111100011111001111.

» What is the performance of such a code?

1.3 Data duplication

We now present an error detector and corrector code. It consists in repeating the entire message several times. Each
character of a text is repeated three times. The word "011010" would thus be encoded as

000.111.111.000.111.000
If at most one error appears per character (which is reasonable), then it can be corrected:
100.111.110.001.110.000

would indeed be decoded as "011010". It is obvious that a code that would only double each character would not allow
the correction in case of error (to be convinced). However, this code is not used because of its cost: all information
must be transmitted 3 times.

Exercise 1.2. Repetition code. We use a repetition code. The bits are sent 5 times with. Each time, the probability of
being mistransmitted is equal to p.

 In such a 5-bit packet (i.e. 5 repetitions of the signal bit)

— What is the probability that i = 0,1, ...,5 of these 5 bits are reversed during transmission?
— What is the probability that the transmission error will be detected?
— What is the probability that the error will be transmitted undetected?

* Encode the following message: 01110.
* Decode the following message: 00100.11111.00101.01011.00100.

* What is the performance of such a code?

wy = W5 | wg = Wg | wy = Wy | wrong bit location
T T T there’s no wrong bit.
T T F wy is wrong
T F T we is wrong
T F F w3 is wrong
F T T ws is wrong
F T F wy is wrong
F F T wi is wrong
F F F wy is wrong

Table 1.2: Correction of the wrong bit by the Hamming code(7,4).

1.4 Hamming’s code(7,4)

In the following, the + sum and . product operators on the field Fo = {0.1} are considered as an "exclusive or" and
"and" respectively. Their truth tables are recalled below.

+\01 .‘01
0|0 1 0/0 0 (LD
111 0 110 1

In its version C(7, 4), Hamming’s code is limited to encoding four-letter words (u1, ug, ug, u4) € F3 to guarantee
their correct transmission. It is (vy,va, , v3, vy, s, 6, v7) € F3 defined by

(v1 = u1,v2 = U2, V3 = Uz, V4 = Ug, U5 = U] + U + U4, Vg = U + U3 + Ug, V7 = U2 + U3 + Usg)

that will be sent. The redundant characters vs, vg and v7 ensure the correct transmission of any 4-bit (u1, ug, ug, u4)
word when there is only one wrong bit in (vq, ve, . . ., v7).

Upon receipt of (wq,ws,...,wr), simply compare W5 = wy + we + wg, Ws = w1 + w3 + wy and W7 =
wy + ws + wy with ws, wg and wy respectively and read the table 1.2.

To transmit the word (1,0, 1, 1), for example, it is the message (v1, v2, v3, v4, V5, v, v7) = (1,0,1, 1,0, 1,0) that
is sent because:

vs = urtustus=14+0+1=0,
v6 = urtustus=1+1+1=1,
v; = ustuz+us=0+14+1=0.
Suppose the receiver retrieves (wi,ws, ..., w7) = (1,1,1,1,0, 1,0). He/she calculates
Ws = w1+w2+w4:1—|—1+1:15£w5,
We = witws+wg=1+14+1=1=wsg,
Wy = wotws+ws=14+14+1=1%#wr.

Assuming there is only one error, and reading the correction table, he/she finds that ws is wrong and corrects the error.
Exercise 1.3. Direct application of the Hamming code(7.4)

1. Code the following message: 0101.1001.0111

2. Decode the following message: 0100011.1001001.0101101.1010010.

Chapter 2

The systematic codes of
Hamming(2" — 1,28 — k — 1)

The two numbers 2¢ — 1 and 2¥ — k — 1 indicate respectively the length of the words in the code and the size of the
subspace formed by the words transmitted. For & = 3, we find the Hammingcode(7,4).

2.1 Generator and control matrices

Two matrices are important in defining the Hamming(2* — 1,2% — k — 1) code:

« the control matrix I} has 2¥ — 1 rows and k columns. In the case of a systematic code, this H}, matrix is

defined by
Py
Hy=|——1, 2.1
I,

where I, is the identity matrix k x k. In the upper part P}, are placed in line all non-zero IF§ vectors that are not
in I;,. We can therefore choose

110
101
01 1
Hy—| 111
100
010
001

This H}, matrix therefore contains all non-zero vectors of 5.

« the generator matrix G, has 2* — k — 1 rows and 2¥ — 1 columns. When Hj, is defined as above, G}, is of the
form

(IQk—k—l | Pk’))

with I« _,_; the identity matrix of size 2¥ — k — 1 x 2¥ — k — 1. For G'3, we have for example:

100 01 1 0
6={ 501 0011 =
000 111 11
The following elements are noted:
* By construction, the product Gy Hy, is the null matrix.
e Ifu = (up,...,ugk_p_q) € F%k’k’l is a word to encode, v = uG}, is the associated code word. The

associated code word does not change the word u and only adds additional bits since G, = (Iox_j,_1 | Pp). It
is said that the code is systematically.

» For a binary word m of size 2¥ — 1, the word o(m) = mH} is called the m syndrome. It’s a word of size k.

Exercise 2.1. Product matrix GH: null.
1. Show that GsHj is null.

2. Generalize for any k, showing that Gy Hy, is also null, according to the construction of Hy, and Gj,.

The code of the previous example is systematic with k = 3. First we have 23 —3—1 = 4. Foru = (uy,...,u4) =
(1,0,1,1) as in the introduction, we have v = uGs = (1,0,1,1,0,1,0). The first 4 bits are copied, the last 3
are used as control. If we calculate the o(v) syndrome, we obtain (0,0,0) while if we calculate the one of the
w=(1,1,1,1,0,1,0), we have (1,0, 1). The following section formalizes this.

2.2 General case: error detection and correction
PROPOSITION 2.1. Let be a code of Hamming(2* — 1,2% — k — 1) of control matrix Hj,. A word w is a code word

if and only if its syndrome o (w) is the null vector.

The previous proposal allows to check if there is an error.

Exercise 2.2. Demonstration. Demonstrate the previous proposal.

The following proposal corrects an error when it exists.

PROPOSITION 2.2. Let be a code of Hamming(2¥ — 1,2F — k — 1) of control matrix Hy. If o(m) is not the null
vector then there is a ™ line in H), that is equal to it. It is the i component wj; that is wrong.

PROOF. Letw = (w1, ..., wq_;) be a word of size 281, Since o(w) is not null and since H}, contains all the
2k — 1 not null line of size k, there exists i such that o(w) = (H; 1, .., H;). Let us write w as
w = (wl, ey Wi—1, Wiy . .. ,w2k_1)

and let w' be

/ J—
w = (wl, vy, Wi—1, Wy, - - .,w2k_1)

i.e. w' is equal to w everywhere, but in index i. Let us prove that the syndrome of w' is null. Indeed the ¢ component,
1 < ¢ <k, ofo(w') is defined by
2k 1
a(wl)c = Z wl-Hl,c +Wi-Hi,c- (2.3)
1=1,1i
e Ifw; is 1, o(w'). is reduced to leifll# wy.H) .. But we know that H; . is the A of o(w), i.e.
2k 1
Hic= > w.Hj.+1.H.
I1=1,1#i
We can deduce that Zfif}# wy.H ¢ is null, and so o(w’). = 0.
e Ifw; is 0, w; is 1. Equation (2.3) leads to
k_
U(w/>0 - 252:17517&1‘ wl'Hl,c + Hi,c-

H; . can be replaced by o(w). leading to

k_
U(w’)c = Zl2:1,l17éi wl'Hl,c + (Zl=1,l;£i wl.Hl,C)

which is null too.

Exercise 2.3. Set dimensions. The following questions are about the Hammingcode(2F — 1,2F — k — 1).
1. In this code, how many letters have the words u to transmit? How many separate words can be transmitted?
2. How many letters have the words encoded in v?
3. How many distinct words received w (wrong or not) will be decoded as the same message u?

k } . . ko
4. Is thereaw € Fg ~L that is not, at a possible error except, the encoding v of a message u € IF'% k=15
Exercise 2.4. Let p = 1000~ be the probability that a bit is transmitted incorrectly.

1. What is the probability of having precisely 2 faulty bits when transmitting 7 bits, as when transmitting a word
from Hamming code C(7,4)?

2. What is the probability of having more than one error when transmitting 7 bits?

3. Rather than the Hamming code, we transmit a bit by repeating it 3 times. We decode by majority vote. Calculate
the probability that the bit sent will be correctly decoded.

4. We transmit 4 bits by repeating each bit 3 times. What is the probability that the 4 bits will be decoded correctly?
Comparing the results of this question with 2 above, we see that the simple code has a slight advantage over
the Hamming code C(7,4), but at the cost of transmitting 12 bits rather than 7.

Practical Work 2.1. Hamming Implantation(7,4). In the following, we focus on the version of Hamming(7,4) seen
in this chapter.

1. Develop a program that implements Hamming(7,4) by exploiting matrix products with Hs and G5 seen in this
chapter. We’ll make sure we work in FF.

2. Evaluate the algorithm on all words of F3 with all possible errors. Check that the original word is still the one
that is found.

3. Check that the product G3 x Hs is zero.

Practical Work 2.2. Hamming (2" — 1,2% — k — 1). In this practical work, the aim is to generalize the construction
of Hy, and Gy,

1. Develop a program that generates Hy, and Gy, according to the constraints outlined in this chapter.

2. Evaluate the algorithm on all words from]F%k_k_1 with all possible errors, for k = 3,...,8. Check that the
original word is still the one that is found.

Chapter 3

Reed-Solomon’s codes RS(n, k, m)

This chapter uses elements from [,].
In the following, we consider m, n, k, t, each in N with n = 2™ — 1 = k + 2¢ and:

* m is the number of bits per used symbol; if each symbol is a character, m can be equal to 8 for example and we
have bytes;

* k is the number of symbols contained in the original message;
* n is the number of symbols transmitted.

* 2t is the number of redundancy symbols; according to the relationship given above, the ¢ number is deduced
from n and k; it is therefore not a code parameter;

These codes are noted as RS(n, k, m). Reed-Solomon codes can correct two types of errors: errors due to changes

in data and errors resulting from the loss of information as long as the relation 2F + S < n — k is satisfied, where

is the number of errors and S is the number of erasures in the block. If there is nor erasure, the maximum number of
n—~k

corrected error is i Le. t

3.1 Give the set o a field structure

Each symbol is a character that will be stored as a m bit vector, i.e. as a number in Fom. Let A be a message consisting
of k symbols (u1,...,ux). Each u; is part of the Fom set.

For example, the message “3” of k = 1 symbol which is coded over m = 2 bits would be translated into Fy2 into
u = (3). In the following we try to correct ¢ = 1 errors. We therefore work with RS(3,1,2).

The Reed-Solomon algorithm requires a field structure for the set Fom in particular that the only divisor of O is
0. However, if we equip this set of classical operators with sum and product modulo 2", the set Fom is not a field.
Indeed, for any integer i, 1 < ¢ < m, on 20 % Ml = oM = Omod(m). Thus 2% not zero, is a divisor of 0. The
following section shows that it is possible to build sum and product operators on this set that gives it a field structure.

3.1.1 Calculs modulo p(z)

In the same way that we can calculate "modulo p", it is possible to calculate "modulo a polynomial p(x)".
For example, p(x) = 22 + x + 1 € Fy[z]. The square of the polynomial (22 + 1) modulo p(z) in Fa[z] is

(2 +1) x (22+1) = 2 +22%2+1
= 2'+1
= x4+ 1(modp(x)).
Indeed, it is enough to write the Euclidean division to be convinced of this:
z? +1|2? +z +1

xt +23 a2 2?2 4o

and therefore 2% + 1 = (22 + o + 1) x (22 + 2) + = + L.
Exercise 3.1. In Fo[z], calculate x*(x? + 1) mod(z + 1).

3.1.2 The set Fy[z|/p(x) of the polynomials modulo p(z)

In the following, p(z) € Fa[x] is a polynomial in x of degree m whose variables and coefficients belong to Fa. The
quotient Fa[x]/p(z) is the set of polynomials of F3[x] modulo p(z). All these polynomials are of degree ¢ < m. The
set F3[x] /p(x) therefore contains all the polynomials of the form pg + p12 + . .. py,—_12™ L, which are 2™ since each
p; belongs to Fa.

For example, if p(z) = 22 + z + 1, we have Fa[z]/p(z) = {0, 1,2,z + 1}. If we take p/(x) = 2% + 1, we have
Folz]/p'(z) = {0,1, 2,2 + 1}. The sets Fy[x]/p(x) and Fa[x]/p’(x) both contain 22 elements. However, we note
that (z + 1)? = 22 + 1 in Fo[x]. In addition, as

(x+1)>=22+1 = 0mod(z*+ 1)~ (x + 1) is a divisor of 0,
= 1mod(z? +z+ 1),

we can conclude that Fo[z]/p’(x) is not a field
The following section shows how to choose p(z) to build a field.

3.1.3 Construction of a field from an irreducible polynomial

In Fa[x| let p(x) be a polynomial of degree m. The set Falz|/p(z) is a 2™ element field if and only if p(z) is
irreducible in Fa[z], i.e. p(z) is not the product of 2 polynomials in Fy[z] of degree below m.

We immediately have that 22 + 1 = (z + 1)? so the polynomial 22 + 1 is not irreducible in F5[x]. Let’s consider
p(z) = 2% + o + 1 in Fy[x]. If it was not irreducible, it would be the product of two degree 1 polynomials that would
determine its roots. However, neither O nor 1 are roots. Thus, it is irreducible.

Exercise 3.2. Irreducibility. InFs[z], what about the irreducibility of the polynomials % +1, 23+ 2* +x, 23 +2+1
and 3 + 2? + 2+ 12

By taking p(z) = 22 + x + 1 and considering Fo[z]/p(z) = {0,1, 2,2 + 1}, we can construct the following
multiplication and addition tables:

X 0 1 T r+1 + 0 1 x r+1
0 0 0 0 0 0 0 1 T T+ 1
1 0 1 T r+1 1 1 0 rz+1 x
T 0 T r+1 1 T T r+1 0 1
r+1/0 z+1 1 x z+1|xz+1 T 1 0

Finally, we can build a bijection of Fom in F3[z] /p(2) which associates the i element of Fom with the i element
of Fa[z]/p(x), if the elements of a set can be ordered. Thanks to this we can define a product and a sum on Fam which
gives it a field structure. For Fq2 it would be:

x[0 1 2 3 +/0 1 2 3
0/0 0 0 O 0/0 1 2 3
11012 3 11103 2 G.D
210 2 3 1 212 3 01
310 3 1 2 313 210
By construction for any element e € Fam, we have e + e = 0.

Exercise 3.3. Field from an irreducible polynomial.

1. Find the only irreducible polynomial on Fy of degree 2, both of degree 3 and all three of degree 4.

2. Build the addition and multiplication tables on the field Fg with 8 elements. We will consider the irreducible
polynomial x3 + = + 1.

Practical Work 3.1. Implement the addition and subtraction tables of Fg. How to do for Fos ?

3.2 Reed-Solomon Code RS(n,k,m)

The Reed-Solomon code RS(n, k, m) will be defined as a polynomial with a degree of n or less on Fam [z]. Let’s see
how to build this polynomial.
3.2.1 Polynomial A(z) containing the information to be transmitted

From the message u = (uy,...,u), where each u; belongs to the field Fom (built as in the previous section) the
Reed-Solomon algorithm builds the polynomial A(x) defined as:

Az) = e ugah T gt g (32)

This polynomial of degree less than or equal to & — 1 belongs to Fom[z] which is the set of polynomials whose
coefficients belong to Fom.
In the previous example, we would have A(z) = 3.

3.2.2 Primary root of the field Fo

There is a non-zero element « of Fom such that all other non-zero elements of this field can be expressed as a power
of a. The « element is called a primitive root of Fom.
Fy2 \ {0} = {1,2,3}. Let’s calculate the successive powers of 2 from the equation (3.1):

20 =
2t =
2’ =
We can therefore conclude that 2 is a primitive root of [F52, while 1 is not.

Exercise 3.4. Field Fos. Let be defined the sum and product over Fys as follows.

+]10 1 2 3 4 5 6 7 x|01 2 3 45 6 7
0101 2 3 45 6 7 0/0 00 0O0O0OO0OO
111 0 3 2 5 4 76 1101 2 3 456 7
2123 016 7 45 210 2 46 3175
313 21 07 6 5 4 310 3 6 5 7 41 2
414 5 6 7 01 2 3 410 4 3 7 6 2 5 1
515 4 7 6 1 0 3 2 510 51 4 2 7 3 6
616 74 5 2 3 01 6/0 6 71 5 3 2 4
7176 543 210 710 75 216 4 3

It is the solution of exercise 3.3. Prove that any o € {2,3,4,5,6, 7} is a primitive root of Fos.

3.2.3 Control polynomial B(z)
Let « be a primitive root of the field Fom. First, we build the generator polynomial of the code as follows:

G(z) = (z+a)(z+a?) ... (z+a?)

whose roots are o, o2, ..., &% This polynomial depends only on the number of errors to be corrected (i.e. t) and the

primitive root « of the field Faom.
The control polynomial B(z) is then defined by:

B(z) = A(z) x 2% mod(G(x)) (3.3)
In the previous example, we would have successively

Gx) = (z+2)(z+2%)
(x+2)(x+3)
2?4 z+1

10

In addition, A(z) x 2% = 3 x 22 = 322 = (22 + 2 + 1) x 3 + 3z + 3. Indeed, we have
322 2 4r +1
322 +3x +3| 3

3r +3

Thus,
B(z) = 3z + 3mod G(x).

324 Code C(z)
The code C(x) is defined by C(x) = A(x) x 2% + B(x).

PROPOSITION 3.1. Forany j, 1 < j < 2t the value of C(a7) is null.

PROOF. Indeed, we successively have for j such that 1 < j < 2t:

Cla?) = Ae’) x (a?)* + B(o)
= A(ad) x (&) 4+ A(e?) x (a?)? + d.(G(a?)) thanks to equ. (3.3)
= A(ad) x (a?)? + A(a?) x ()" + d.0 since G(a?) =0
— 0

In the previous example the Reed-Solomon code corresponding to the message m is C(z) = 322 + 3z + 3.

3.3 Error detection and correction

During the transmission of the polynomial C'(x), errors in some coefficients may occur. D(z) is considered to be the
received polynomial.
For instance let us consider the received polynomial is D(z) = x? + 3z + 3.

3.3.1 Detection only

The receiver computes syndroms .S; = D(a?) in Fom forall j, 1 < j < 2t.

PROPOSITION 3.2. Error detection in RS(n, k, m) with syndroms

o If S; = Oforall j, 1 < j < 2t, one can consider that there was no transmission error, i.e. D(z) = C(z). The
original message m is found using the k coefficients of the highest degree terms of the polynomial D(x).

* If there is some j, 1 < j < 2¢ such that S; = D(ozj) is not zero, there has been a transmission error on at least
one of the coefficients that will need to be corrected.

For instance, for o« = 2 we calculate D(«) as given in the following table:

j |l | D(a) Sj
12 2x2+3x2+3=3+1+3=1=|5,
23 |3x3+3x3+3=2+42+3=3=|58,

Both syndromes 57 and Ss are not null. There is an error, so.

11

3.3.2 Error correction

The final objective is to find the polynomial E(x) of errors and to retrieve the initial message C'(z) = D(x) + E(x).

Let
v .
=> e’ (3.4)
r=1
be the error polynomial we want to find. Notice that

» E(x) contains v not null coeffecients, which is is thus the number of errors; The number of errors v is less that
t, by hypothesis.

¢ 7, are the idices, between 0 and n — 1 where there is an error.

* ¢;, is the value of the error.

3.3.2.1 Finding the number of errors.

Since C'(z) = D(z) + E(x), we thus have E(x) = D(z) + C(z). Particularely, for j, 1 < j < 2¢, we have

E(aj) = D(aj) + C(aj) = D(ozj) =8;= Z eiTaj'ir 3.5
r=1
thanks to (3.4).
Let us consider the polynomial
12
=[] (1 + o). (3.6)
d=1
This polynomial can be expanded into
Alz) =14 Nz + Xoz? + -+ N2 3.7

whose _have to be calculated. To achieve this, we note that

Sutj—1M + Surj2da+ -+ S = 34 Sprjr N
= v, (2::1 eiroz(“+j_l)'i"))\, definition (3.5),
= >, eira(”fﬂ)'“‘ S Ao~ lirreordering
S e (@) A £1)
= Yrope (@) A (a7 300 e, (o)
= YV e ()" since A(a™") is null

Sotj
So we have a system of a v linear equations, at most.
S+ S+ + 51 = S
Sl,+1)\1 + S, 4+ -+ 857, = SV+2
Sop—1A1 + Sop—2A2 + -+ SN = Sz

In addition, the highest value v less than or equal to ¢ for which the determinant of this system is not zero is
precisely the number v equal to the number of errors transmitted. So we start from v = ¢, and if the determinant is
zero, we decrease v until we get a non-zero determinant.

On our example, ¥ = 1 = ¢t and we have thus:

Siai = 5
1M = 3

which allows to have one solution, which is A\; = 3.

12

3.3.2.2 Finding error’s locations.

Once v is found, the system is solved, i.e. one can find 1y, ..., 1,, which defines the polynomial A as in (3.7).

The roots r1, ..., r, of this polynomial are further found by systematic evaluation. For each ry, ..., 7, the
polynomial A(r) = 1 + A7 + Aor? + - - - + A, is null.

Thus, by considering the definition of A given in (3.6),

(1+ a®z)(1 + o’22) ... (1 + a’x) is null for any equal to rq, ..., 7.

For each root r, there exists some 4, such that 1 + r.a’" is equal to 0 The error locations are {iy, .. .,4,.}.

On our example, we can deduce that A(x) = 1 + 3. This polynomial admits one single root, which is = 2. we
have thus to solve

rxaor o= 1
2x2 = 1
21 =
whose admits one solution i1 = 2.
3.3.2.3 Finding error’s values
In equation (3.5), (S; = >_/_; e, o), we can now solve this system leading to the errors ey, . . . , e,.. The polynomial

E(z) is thus defined and C'(xz) = D(z) + E(z) can be extracted.

On our example, it remains to solve equations (3.5) S; = >V_; e;, a7 for j, 1 < j < 2t. It is equivalent to the
systeme
1 = €eg X 3

Sl = 63Xa2
3 = 62)(2

S on X 02X2 which is equivalent to {
2 = €3

The error ey is thus equal to 2. The error polynomial is thus F(x) = 222. Finally,

C(z) = D(x)+ E(x)
x? + 3x + 3 + 222
= 32°+3z+3

Exercise 3.5. We want now to correct 2 errors in a message of length 2 for 4 types of caracters.
1. Show that it is required to have 3 bits per symbols. We will thus use the fields Fs defined in exercise 3.4.
2. Show that G(z) = z* + 523 + 422 4 x + 4 is a correct generator polynomial with o = 3.
3. What is the message codded into Dy(z) = x5 4 22° + 23 + 32 + 37

4. What is the message codded into Do(x) = x5 4 22° + 42* + 23 + 622 + 32 + 32

Practical Work 3.2. Playing with a Reed-Solomon implementation.

1. Install a Reed-Solomon implementation (for example s . py extracted from https://rextester.com/ZMBYT68318)
on your computer.

2. Execute the code and understand the evaluation part.

3. How many errors can be corrected? How many errors are introduced in the message?

Practical Work 3.3. Implementation on a PyBoard with MicroPython
1. Implement all the previous codes (Hamming74 and Reed-solomon) on a PyBoard.
2. When decoded word is equal to the original one, make the green led flashing 10 times.

3. Evaluate them.

13

https://rextester.com/ZMBYT68318

Bibliography

[Rou09] Mathématiques et Technologie. Springer, 2009.

[ShaO1] Claude E Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and
Communications Review, 5(1):3-55, 2001.

[Wik17] Wikipédia. Code de reed-solomon — wikipédia, I’encyclopédie libre, 2017. [En ligne; Page disponible le
16-sept-2019].

14

	Practical introduction to correction codes
	Redundancy first!
	Parity bit
	Data duplication
	Hamming's code(7,4)

	The systematic codes of Hamming(2k-1,2k-k-1)
	Generator and control matrices
	General case: error detection and correction

	Reed-Solomon's codes RS(n,k,m)
	Give the set F2m a field structure
	Calculs modulo p(x)
	The set F2[x]/p(x) of the polynomials modulo p(x)
	Construction of a field from an irreducible polynomial

	Reed-Solomon Code RS(n,k,m)
	Polynomial A(x) containing the information to be transmitted
	Primary root of the field F2m
	Control polynomial B(x)
	Code C(x)

	Error detection and correction
	Detection only
	Error correction

