
Information Systems Management

Jean-François COUCHOT
couchot[at]femto-st[dot]fr

December 7, 2023

couchot[at]femto-st [dot] fr


Contents

1 Introduction to Databases 2
1.1 What is a database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Data consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Querying a database with SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data Query Language 5
2.1 The Chinook SQLite sample database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Simple selection with SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Ordering tuples with ORDER BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Remove duplicate rows in the result set with DISTINCT . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Filtering with WHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Getting linked data with JOIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.1 Coarse idea to merge tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6.2 Linking with INNER JOIN...ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.3 JOIN on more than 2 tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.4 Auto JOIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Aggregating values of an attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7.1 Simplest case: aggregating values over all the results . . . . . . . . . . . . . . . . . . . . . . 13
2.7.2 Aggregating values by GROUPing rows according to some attribute values . . . . . . . . . . 14
2.7.3 Conditions that only can be expressed with an aggregation function: HAVING . . . . . . . . . 15

2.8 Nested queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Set theoretic operators between queries: UNION, INTERSECT, EXCEPT . . . . . . . . . . . . . . . 16

2.9.1 UNION or INTERSECTion between two relations . . . . . . . . . . . . . . . . . . . . . . . 16
2.9.2 EXCEPT between two relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Data Manipulation Language 18
3.1 INSERT rows into 1 table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Insert data explicitly defined by its VALUES . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Inserting data from a SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 UPDATE data of existing rows in 1 table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 UPDATE one row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 UPDATE many rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 UPDATE with parametric values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 DELETE rows from 1 table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Data Definition Language 22
4.1 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 CREATE TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 PRIMARY KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 FOREIGN KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4.1 Motivating FOREIGN KEY with an example . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 ON DELETE and ON UPDATE actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



Chapter 1

Introduction to Databases

This chapter is widely inspired from [Aud09, sql].

1.1 What is a database

It is hard to provide a sentence that exactly defines what a database is. At least, we could write:

DEFINITION 1.1 (DATABASE). A database is an organized set of information with a common objective.

A database is thus a structured and organised set, that allows to store a large set of data with the objective of
easing the processing of adding, updating, searching for data. . . Of course, the core of this course is focused on digital
database.

DEFINITION 1.2 (DIGITAL DATABASE). A digital database is a structured set of data stored on media accessible
through a computer, which can be queried and updated by a community of users.

1.1.1 Data consistency

Creating a database aims at gathering data that are linked to each other in order to retrieve information using criteria,
which is based on the information content. However if the content is not consistent (e.g. Couchot is sometimes written
as Coucho), or if it is duplicated in many locations in the database, this may not be tractable. One can formalise this
as data inconsistency and redundancy respectively.

DEFINITION 1.3 (DATA REDUNDANCY). Data redundancy occurs when the same piece of data is stored in two or
more separate places

This data redundancy may lead to following problems:

• Wasted storage space.

• More difficult database update, database query.

• It may lead to Data Inconsistency.

Let us take an example of a cricket player table given in Table 1.1. For each player, the same information is
provided twice: which teams does s/he belong to? The answer is given as an ID and as a name.

DEFINITION 1.4 (DATA INCONSISTENCY). Data inconsistency refers to a situation of keeping the same data in dif-
ferent formats in two different locations.

“New Zealand” and “New Zeland” are instances of data inconsistency. Normalization (seen later) helps to avoid
redundancy and inconsistency.

2



Player Name Player Age Team Name Team ID

Virat Kohli 32 India 1

Rohit Sharma 34 India 1

Ross Taylor 37 New Zealand 2

Shikhar Dhawan 35 India 1

Kane Williamson 30 New Zeland 2

Table 1.1: First example for cricket player table

Figure 1.1: Hierarchy Model of a movie database

1.1.2 Models

1.1.2.1 Hierarchical Database

A hierarchical database is a form of database management system that links records in a tree structure so that each
record has only one owner. Figure 1.1 gives an example of such model.

These models have been progressively discarded because they violate the constraints of consistency and non-
redundancy in favor of the relational models seen below. However, these models can be interesting because of the
way they can be processed quickly. We speak of NoSQL, for instance.

This type of database won’t be treated in this course.

1.1.2.2 Relational Database (Codd)

The relational model (RM) for database management is an approach to managing data using a structure and language
consistent with first-order predicate logic, described in 1969 by F. Codd. All data is represented in terms of tuples,
grouped into relations. A database organized in terms of the relational model is a relational database. Important
terms1 are:

• Data types as used in a typical relational database. Might be the set of integers, the set of character strings, or
the set of dates. . . respectively named as "int", "char", "date", . . . .

• Attributes, which are the term used in the theory for what is commonly referred to as a column name. An
attribute name might be "name" or "age". Each attribute has a given type.

• Tuples, which are basically the same thing as a rows without any order between them;

• Relations. A relation is a table structure definition (a set of column definitions) along with the data appearing
in that structure. The structure definition is the heading and the data appearing in it is the body, a set of rows.

Here are two fundamental rules a relational database has to possess.

• Duplicate rows: the same tuple cannot appear more than once in a relation.

• Duplicate column names: every attribute hast to be unique.

To obtain this, a process of database normalization has to be performed, which introduces furthermore the notion
of key. For example, Table 1.5 is a relational database with

1Wikipedia, https://en.wikipedia.org/wiki/Relational_model

3

https://en.wikipedia.org/wiki/Relational_model


Id Title Director

1 Midnight in the Garden of Good and Evil 7

2 American Beauty 8

3 Breaking the waves 9

4 Dogville 9

Table 1.2: movie relation

Id First Name Last Name

1 John Cusack

2 Kevin Spacey

3 Annette Bening

4 Emily Watson

5 Stellan Skarsgard

6 Ncole Kidman

7 Clint Eastwood

8 Sam Mendes

9 Lars Von Trier

Table 1.3: person relation

IdP idM

1 1

2 1

2 2

3 2

4 3

5 3

5 4

6 4

Table 1.4:
distribution
relation

Table 1.5: A rational database of movies

• 3 relations (or 3 tables): Movie, Person, Actors

• All the attributes Id, IdP, IdM, Director possess the int type

• All the attributes Title, First Name, and Last name are stings.

• The keys are Id for movie relation, Id for person relation, and (IdP, IdM) for distribution relation.

1.1.3 Querying a database with SQL

The are many types of Simple Query Language (SQL) statements that are:

• Data Query Language (DQL) Statements: SELECT

• Data Manipulation Language (DML) Statements: INSERT, DELETE, UPDATE,. . .

• Data Definition Language (DDL) Statements: CREATE, ALTER, DROP, RENAME

This is the plan for the next three chapters.

4



Chapter 2

Data Query Language

In all this chapter, we consider the database to be created. We will just extract some data from the database.
First section presents the Chinook SQLite sample database we’ll use in all this chapter. All the queries are based

on the SELECT statement. This one will be presented in section 2.2. Ordering results and outputig only distinct
results will be shown in sections 2.3 and 2.4 respectively. Section 2.5 introduces the WHERE statement that filters
queries results. When queries deal with many tables, it is necessay to JOIN them, as presented in section 2.6.

Section 2.7 shwos how we can apply some aggregating function on the result values.

2.1 The Chinook SQLite sample database

Figure 2.1: Entity-Relation of SQLite Sample Database from https://www.sqlitetutorial.net/
sqlite-sample-database/

In all this chapter we’ll consider the Chinook sample database of SQLite Tutorial 1, displayed at figure 2.1.
This database contains 11 tables. Among them:

1https://www.sqlitetutorial.net/

5

https://www.sqlitetutorial.net/sqlite-sample-database/
https://www.sqlitetutorial.net/sqlite-sample-database/
https://www.sqlitetutorial.net/


• artists: data about artists. It is a simple table that contains only the artist identifier (Artistid) and name
(name).

• tracks: data of songs. Each track belongs to one album

• albums: data about a list of tracks. Each album belongs to one artist and one artist may have multiple albums.

• playlists and playlist_track: each playlist contains a list of tracks. Each track may belong to multiple playlists.
The relationship between the playlists table and tracks table is many-to-many.

2.2 Simple selection with SELECT

We fist explain how to use SELECT statement to query data from a single table.
In its (most) basic presentation, the SELECT statement is presented as follows:

1 SELECT column_list
2 FROM table;

SQLite evaluates this statement as follows:

1. First, the FORM clause is analyzed to is analysed to find out from which table the data should be extracted.
Notice that there can be several tables in the FORM clause (see Section 2.6).

2. Second, the SELECT clause is analyzed to find which column name or a list of comma-separated column names
to display.

3. The semicolon (;) terminates the statement.

Example 2.1 (First queries2).

The following query

1 SELECT Title
2 from albums;

would lead to

Title

For Those About To Rock We Salute You

Balls to the Wall

Restless and Wild

Let There Be Rock

Big Ones

Exercise 2.1. 1. What would be the result of the following query?

1 SELECT
2 trackid,
3 name,
4 composer,
5 unitprice
6 FROM
7 tracks;

2. Display all the available music genres.

3. Display the first name, the last name and the id of all costumers.

Next section shows how to order results output by SQLite.

2.3 Ordering tuples with ORDER BY

Output rows may or may not be in the order that they were inserted. These are data in an unspecified order. To sort
the result set, it is sufficient to add the ORDER BY clause to the SELECT after FROM, as follows:

6



1 SELECT
2 column_1, column_2, ...
3 FROM
4 table
5 ORDER BY
6 column_1 ASC,
7 column_2 DESC,
8 column_3;

where the sorting statement have to be placed after the ORDER BY clause. Obviously, ASC and DESC keywords
mean ascending and descending order respectively. If none of the ASC or DESC parameters are specified (as here with
column_3), the ASC order is executed by default Notice that the ORDER BY clause sorts rows using columns from
left to right (here, first column_1, next column_2,. . . ).

Example 2.2 (Ordered queries). Here are some queries easy to understand:

1 SELECT FirstName FROM customers ORDER BY FirstName;
2 SELECT albumid, name, milliseconds FROM tracks ORDER BY albumid ASC;
3 SELECT albumid, name, milliseconds FROM tracks ORDER BY albumid ASC, milliseconds DESC;

Exercise 2.2. 1. From table invoices, display the InvoiceId, the InvoiceDate, and the CustomerId.

2. Sort results by an increasing order applied to the InvoiceDate and the CustomerId.

3. Display the names, first name and date of birth of the employees, from the oldest to the youngest

2.4 Remove duplicate rows in the result set with DISTINCT

SELECT DISTINCT ... instead of SELECT removes duplicates in the output results.

• If only one attribute name is given after SELECT DISTINCT, duplicated values of this attribute are not dis-
played.

• If many attributes att1,att2,...,attn, are given duplicated values of (v1,v2,...,vn) are not
shown.

Example 2.3 (With and without DISTINCT).

Without the DISTINCT keyword.

1 SELECT city FROM customers
2 ORDER BY city;

City

Amsterdam
Bangalore
Berlin
Berlin
Bordeaux
...
Lisbon
London
London
...

where Berlin, London, and Mountain View
are duplicated.

With the DISTINCT keyword.

1 SELECT DISTINCT city FROM customers
2 ORDER BY city;

City

Amsterdam
Bangalore
Berlin
Bordeaux
...
Lisbon
London
...

without any duplication.

Exercise 2.3. 1. Display audio track names and notice that some are duplicates.

2. Filter these results to show only single tracks.

7



2.5 Filtering with WHERE

The WHERE clause only displays the results that satisfy a given condition. It is used as follows:

1 SELECT
2 column_list
3 FROM
4 table
5 WHERE
6 search_condition;

Example 2.4 (Displaying tracks, but not all of them). 1. First, we display some track data from tracks whose
album ID is 1]

1 SELECT
2 Name,
3 Milliseconds,
4 Albumid
5 FROM
6 tracks
7 WHERE
8 Albumid = 1;

Name Milliseconds AlbumId

For Those About To Rock 343719 1
(We Salute You)
Put The Finger On You 205662 1
Let’s Get It Up 233926 1
Inject The Venom 210834 1
Snowballed 203102 1
Evil Walks 263497 1
C.O.D. 199836 1
Breaking The Rules 263288 1
Night Of The Long Knives 205688 1
Spellbound 270863 1

2. we furthermore restrict to songs that have a duration longer than 4 minutes.

1 SELECT
2 Name,
3 Milliseconds,
4 Albumid
5 FROM
6 tracks
7 WHERE
8 Albumid = 1
9 AND milliseconds > 240000;

Name Milliseconds AlbumId

For Those About To Rock 343719 1
(We Salute You)
Evil Walks 263497 1
Breaking The Rules 263288 1
Spellbound 270863 1

Between the 2 conditions, the AND keyword has been added to express both conditions have to be True.

More generally, conditions can be comparisons as given in Table 2.1.
More details about syntax of BETWEEN3, IN4, LIKE5, and IS NULL 6 are given in the associated footnotes.

Example 2.5 (BETWEEN, IN, LIKE, and IS NULL operators). Let us consider the following queries:

• SELECT * FROM invoices WHERE InvoiceDate BETWEEN '2010-01-01' AND '2010-01-31'; it displays invoices whose
date takes place between the First January of 2010 and the 31st of the same month.

• SELECT * FROM invoices WHERE BillingCountry IN ('Germany','France'); it displays invoices whose billing coun-
try is either Germany or France.

• SELECT * FROM invoices WHERE BillingCountry = "Germany" AND BillingPostalCode LIKE "1____"; it displays
invoices whose billing country is in Germany and whose postal code has 5 digits and starts with 1.

3https://www.sqlitetutorial.net/sqlite-between/
4https://www.sqlitetutorial.net/sqlite-in/
5https://www.sqlitetutorial.net/sqlite-like/
6https://www.sqlitetutorial.net/sqlite-is-null/

8

https://www.sqlitetutorial.net/sqlite-between/
https://www.sqlitetutorial.net/sqlite-in/
https://www.sqlitetutorial.net/sqlite-like/
https://www.sqlitetutorial.net/sqlite-is-null/


Operator Meaning

= Equal to

<> or != Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

BETWEEN X AND Y returns True if a value is greater than or equal to X
AND lower than or equal to Y.

IN returns True if a value is in a list of values.

LIKE returns True if a value matches a pattern
% (any sequence of 0/many characters), _ (any single character).

IS NULL returns True the value is NULL

Table 2.1: Comparison operators

• SELECT FirstName, LastName FROM customers WHERE Company IS NULL; it displays first name and last name of
customers who do not work in a company.

Logical operators allow to combine logical expressions. A logical operator returns 1, 0, or a NULL value. Ta-
ble 2.2 illustrates the basic logical operators.

Operator Meaning

AND returns True if both expressions are True and False otherwise

OR returns True if either expression is True

NOT reverses the value of other operators such as NOT IN, NOT BETWEEN, IS NOT NULL etc.

Table 2.2: Basic logical operators

Exercise 2.4. Provide a query only showing:

1. a list of unique billing countries from the Invoice table.

2. first name and last name of customers from Brazil.

3. first name and last name of customers who are not in the USA.

4. first name and last name of customers who are working in a company.

5. the Employees who are Sales Agents.

6. the InvoiceId, the InvoiceDate and the Total of invoices were date is in 2009 or in 2011.

2.6 Getting linked data with JOIN

In relational databases and due to normalization process, data is often distributed in many related tables. Links
between tables are formalized thanks to PRIMARY KEYs and FOREIGN KEYs. Fore instance, as seen in Figure 2.1:

• The media_types relation has the MediaTypeId KEY. The tracks relation has the MediaTypeid
FOREIGN KEY which is linked to the former. It precises which mediatype has this track.

• The artists relation has the ArtistId KEY. The albums relation has the ArtistId FOREIGN KEY
which is linked to the former. Each album has been created by one artist.

9



2.6.1 Coarse idea to merge tables

Suppose for instance two tables albums and artist as given in figure 2.1. Atributes of albums are AlbumId,
Title, and ArtistId whereas attributes of artists are ArtistId and Name. The attributes ArtistId is a
reference to ArtistId of table artists.

Data is split into two tables to avoid inconsistency Table 2.3 and 2.4 give excerpts of these two tables. In such a
model, the artist Alanis Morissette for instance will be stored once and thus always written in the same manner.

AlbumId Title ArtistId

1 For Those About To Rock We Salute You 1

2 Balls to the Wall 2

3 Restless and Wild 2

4 Let There Be Rock 1

5 Big Ones 3

Table 2.3: Excerpt of table albums

ArtistId Name

1 AC/DC

2 Accept

3 Aerosmith

4 Alanis Morissette

Table 2.4: Excerpt of table artists

AlbumId Title Name

1 For Those About To Rock We Salute You AC/DC
1 For Those About To Rock We Salute You Accept

...
1 For Those About To Rock We Salute You Philip Glass Ensemble
2 Balls to the Wall AC/DC
2 Balls to the Wall Accept

...
2 Balls to the Wall Philip Glass Ensemble

Table 2.5: Result of query “SELECT AlbumId, Title, Name FROM albums, artists”
AlbumId Title Name

1 For Those About To Rock We Salute You AC/DC
2 Balls to the Wall Accept
3 Restless and Wild Accept

...
347 Koyaanisqatsi (Soundtrack from the Motion Picture) Philip Glass Ensemble

Table 2.6: Result of query “SELECT AlbumId, Title, Name FROM albums
INNER JOIN artists ON albums.ArtistId = artists.ArtistId”

Suppose now we want to display for each album its ID, its title and its contributor artist. A coarse idea would be
to execute such query:

1 SELECT
2 AlbumId, Title, Name
3 FROM
4 albums, artists

whose result is given in Table 2.5. In this query, all the artists are associated with each album. Indeed we did not
force the artist who created the album (albums.ArtistId) to be the same as the one whose name is displayed
(artists.ArtistId). Mathematically speaking, the cartesian product between the 2 sets albums and artists
is computed. Next section shows how to constrain the join between tables.

10



2.6.2 Linking with INNER JOIN...ON

1 SELECT
2 Title,
3 Name
4 FROM
5 albums INNER JOIN artists ON albums.ArtistId = artists.ArtistId

or equivalently

1 SELECT
2 Title,
3 Name
4 FROM
5 albums, artists
6 WHERE
7 albums.ArtistId = artists.ArtistId

whose result is given in Table 2.6. For each row in the albums table, the INNER JOIN clause compares the
value of the ArtistId column with the value of the ArtistId column in the artists table. If both are equal,
it combines data from albums.AlbumId, albums.Title, and artists.Name columns and includes this row
in the result set.

Exercise 2.5. Provide a query only showing:

1. The track name and its genre when unit price is greater than 1.

2. All the album names from artist “Led Zeppelin”.

It is possible to query data from multiple tables by using INNER JOIN clause, which combines columns from
correlated tables.

2.6.3 JOIN on more than 2 tables

Figure 2.2: JOIN on 3 tables

Figure 2.2 shows these tables tracks, albums, artists and their links. One track belongs to one album and
one album have many tracks. The tracks table is associated with the albums table via AlbumId column. One
album has been created exactly by one artist and one artist may have zero, one or many albums. The albums table is
linked to the artists table via ArtistId column.

To display each track (its id and its name), in which album it appears and its associated artist, it is sufficient to use
two INNER JOIN clauses in the SELECT statement as follows:

11



1 SELECT
2 TrackId,
3 tracks.Name AS 'Track Name',
4 albums.Title AS 'Album Title',
5 artists.Name AS 'Artist Name'
6 FROM
7 tracks
8 INNER JOIN albums ON tracks.AlbumId = albums.AlbumId
9 INNER JOIN artists ON albums.ArtistId = artists.ArtistId;

Exercise 2.6. Provide a query only showing:

1. the Invoices of customers who are from Brazil. The resultant table should show the customer’s full name, Invoice
ID, Date of the invoice and billing country.

2. the track name with each invoice line item.

3. all the Tracks. The resulting table should include the Album name, Media type and Genre.

4. all the genre names from the artist Led Zepplin.

5. all the customers (names and ID) who paid for one track created by Iron Maiden at least .

6. all the artist names who created a track that appears in one playlist, at least.

2.6.4 Auto JOIN

Auto join make it easy to detect which values are duplicated. It is sufficient

1. to join the table (left) on itself (right) according to the attribute whose duplicated values are being searched for
and

2. to impose that the identifier of the left table is greater than that of the right table

Example 2.6 (Selecting tracks with duplicated title name).

1. We first join the tracks table with itself on the attribute Name as follows:

1 SELECT L_tracks.TrackId,
2 L_tracks.Name,
3 R_tracks.TrackId,
4 R_tracks.Name
5 FROM tracks AS L_tracks
6 INNER JOIN tracks AS R_tracks
7 ON L_tracks.Name = R_tracks.Name
8 ORDER BY L_tracks.Name

whose results are

TrackId Name TrackId Name

3027 "40" 3027 "40"
2918 "?" 2918 "?"

...
1221 2 Minutes To Midnight 1221 2 Minutes To Midnight
1221 2 Minutes To Midnight 1289 2 Minutes To Midnight
1221 2 Minutes To Midnight 1319 2 Minutes To Midnight

...
1289 2 Minutes To Midnight 1221 2 Minutes To Midnight
1289 2 Minutes To Midnight 1319 2 Minutes To Midnight

Each track is linked with itself. But some track are linked with others. For instance, track (1221, 2 Minutes To
Midnight) is linked to track (1289,2 Minutes To Midnight).

12



2. Let us furthermore impose that L_tracks.TrackId > R_tracks.TrackId as follows:

1 SELECT L_tracks.TrackId,
2 L_tracks.Name,
3 R_tracks.TrackId,
4 R_tracks.Name
5 FROM tracks AS L_tracks
6 INNER JOIN tracks AS R_tracks
7 ON L_tracks.Name = R_tracks.Name
8 WHERE L_tracks.TrackId > R_tracks.TrackId
9 ORDER BY L_tracks.Name

This contraint will remove all the rows where Ids are equal (the first row, the second) which are not realy
duplicated values.

3. If we just want to keep the duplicated track names, it is thus sufficient to execute:

1 SELECT DISTINCT L_tracks.Name
2 FROM tracks AS L_tracks
3 INNER JOIN tracks AS R_tracks
4 ON L_tracks.Name = R_tracks.Name
5 WHERE L_tracks.TrackId > R_tracks.TrackId
6 ORDER BY L_tracks.Name

Exercise 2.7 (Direct applications of auto-join). Answer to the following questions thanks to a SQL query.

1. Wich city is cited at least twice in the customers table?

2. Which genre appears at least twice in the tracks table?

2.7 Aggregating values of an attribute

Aggregate functions operate on a set of rows and return a single result. They are:

• MIN(), MAX(): returns the minimum and the maximum value in a group resp.

• SUM(), AVG(): returns the sum of values and the average value of a group resp.

• COUNT(): returns the number of rows that match a specified condition.

All these functions are applicable on an attribute (a column), not on a row!
We first show how they can be used on the whole result set.

2.7.1 Simplest case: aggregating values over all the results

For all these aggregate functions the syntax is

1 SELECT
2 AGGREGATE_FUNCTION([DISTINCT] attribute_1),
3 attribute_2, ...
4 FROM
5 table1, table2
6 ...

Example 2.7. 1. Display the name, and its duration of the audio track with the minimal duration.

1 SELECT Name, MIN(Milliseconds) FROM tracks

2. Display the average duration (in minutes) of the entire set of audio tracks.

13



1 SELECT AVG(Milliseconds)/60/1000 AS 'average duration' FROM tracks

3. display the whole duration (in ms) of the album “Sozinho Remix Ao Vivo”

1 SELECT SUM(Milliseconds)
2 FROM tracks NATURAL JOIN albums
3 WHERE title = 'Sozinho Remix Ao Vivo';

The following focusses on counting rows.

• COUNT(expression): all non-NULL values including duplicates; this the default value;

• COUNT(DISTINCT expression): only unique and non-null values are counted;

• COUNT(*): returns the number of values, including NULL and duplicates.

Example 2.8 (Queries with COUNT).

1 SELECT COUNT(*) FROM invoices;
2 --number of rows from the invoices table
3

4 SELECT COUNT(*) FROM tracks WHERE albumId = 10;
5 --number of tracks whose albumId is 10:
6

7 SELECT COUNT(DISTINCT BillingState) FROM invoices;
8 --number of distinct states in invoices table

Exercise 2.8 (Using aggregate functions). Provide queries that

1. displays the smallest track (in term of bytes).

2. displays the number of items for Invoice ID 37.

3. express the total duration (in ms) of all tracks produced by Led Zeppelin.

4. displays how many customers purchass at least one track.

5. displays how many customers did not fill in the state attribute.

2.7.2 Aggregating values by GROUPing rows according to some attribute values

Sometimes it is useful to make calculations by grouping rows that have the same value for some attributes. For
instance, for each album you can find out the duration of the longest track. This would be:

1 SELECT AlbumId, MAX(Milliseconds) AS 'duration of lt' FROM tracks
2 GROUP BY AlbumId;

The examples below show how to aggregate results grouped by the values of some attributes.

Example 2.9.

1 SELECT albumid, COUNT(albumid) AS NB_track FROM tracks GROUP BY albumid;
2 -- displays all the albums and the number of tracks in each album:
3

4 SELECT albums.albumId, albums.Title , SUM(Milliseconds)/1000/60 AS duration
5 FROM tracks,albums WHERE tracks.albumId = albums.albumId GROUP BY tracks.albumId ;
6 -- displays the duration of all the albums in minutes
7

8 SELECT invoiceId, SUM(tracks.unitPrice * quantity) AS invoice_total_price
9 FROM invoice_items, tracks

10 WHERE invoice_items.trackId = tracks.trackId GROUP BY invoiceID;
11 -- displays the total price of each invoice
12

14



Exercise 2.9. Provide a query showing:

1. the number of line items for each invoice

2. the number of invoices per billing country.

3. the number of times each track appears in invoices, where both tracksName and trackId are displayed

4. Total sales per billing country. Which country spents the most?

5. the number of tracks per genre. The genre name should be displayed instead of its ID.

6. the number of existing tracks for each media type.

7. the number of tracks that have been sold by a particular artist.

2.7.3 Conditions that only can be expressed with an aggregation function: HAVING

One may want to express conditions using aggregation functions. For example “(albums with) the number of tracks
greater than 10” could be written as “... COUNT(trackId) > 10”. These conditions are not allowed with the
WHERE clause because they concern a group. We use the HAVING clause which must follow a GROUP BY.

The following example proposes combination of the SUM aggregation function with GROUP BY and HAVING
clauses. This latter is furthermore based on an alias introduced by AS.

Example 2.10.

1

2 SELECT albums.albumId,
3 albums.Title ,
4 SUM(Milliseconds)/1000/60 AS 'duration'
5 FROM tracks NATURAL JOIN albums
6 GROUP BY tracks.albumId
7 HAVING duration > 60
8 ORDER BY duration DESC

This query displays all the albums where the whole duration is greater than 1 hour.

Exercise 2.10. Provide a query showing:

1. the albums (albumID, album title) whose number of tracks is greater than 13.

2. the tracks (name) whose name appears more than 1 time .

3. the artists (id and name) whose have at least 3 genres.

2.8 Nested queries

A nested SELECT is a query within a query: there is a SELECT statement within the main SELECT.

Example 2.11 (Tracks whose duration is more than twice the average duration of the tracks). It can be done in
two steps:

1. What follows computes the average duration of all the tracks:

1 SELECT AVG(Milliseconds) FROM tracks;

which returns 393599.2121039109

2. It remains to diplay tracks whose duration is more than twice this number

1 SELECT trackID, name FROM tracks WHERE Milliseconds > 2*393599.2121039109

However this task can be solved in one step with a nested query:

15



1 SELECT trackID,
2 name
3 FROM tracks
4 WHERE Milliseconds > 2*
5 (SELECT AVG(Milliseconds)
6 FROM tracks)

The subquery returns a single value. With this average duration returned by the nested query, the outer query can
select tracks who satisfy the duration condition.

When the nested query is independant, it is interpreted first and results are computed. Next the outer is interpreted
using these results.

Exercise 2.11 (Nested queries). 1. List of artists who created more than 10 tracks, and thus, the distinct genres
for these artists

2. List of tracks which appear at least twice in the invoice_items table. Thus display the average duration of
these tracks

3. List of artists whose number of track purchased is greater than 40. What are the most present musical genres
among the tracks created by these artists?

4. List of users (ID, first name, last name) who have made at least one invoice whose total amount exceeds the
average amount of an invoice by 20 %.

2.9 Set theoretic operators between queries: UNION, INTERSECT, EXCEPT

2.9.1 UNION or INTERSECTion between two relations

It is sometimes required to combine similar data from multiple relations or multiple database into a complete result
set. For instance, let us consider “playlists that contain only 1 musical genre or 1 artist ” It can be easyly translated
into

1 SELECT playlist_track.playlistID
2 FROM playlist_track INNER JOIN tracks ON playlist_track.trackID = tracks.trackID
3 INNER JOIN genres ON tracks.genreID = genres.genreID
4 GROUP BY playlistID
5 HAVING COUNT(DISTINCT genres.genreID) =1
6 UNION
7 SELECT playlist_track.playlistID
8 FROM playlist_track INNER JOIN tracks ON playlist_track.trackID = tracks.trackID
9 INNER JOIN albums ON tracks.albumID = albums.albumID

10 GROUP BY playlistID
11 HAVING COUNT(DISTINCT albums.albumID) =1

The INTERSECT statement produces the intersection between the two relations.

2.9.2 EXCEPT between two relations

SQLite EXCEPT operator compares the result sets of two queries and returns distinct rows from the left query that
are not output by the right query.

For instance, let us write query displaying “artists who never produce rock music”.

1 SELECT albums.artistID FROM albums
2 EXCEPT
3 SELECT albums.artistID
4 FROM albums INNER JOIN tracks ON albums.albumID = tracks.albumID
5 INNER JOIN genres ON tracks.genreID = genres.genreID
6 WHERE genres.name ="Rock"

take care, it is not equal to

16



1 SELECT albums.artistID
2 FROM albums INNER JOIN tracks ON albums.albumID = tracks.albumID
3 INNER JOIN genres ON tracks.genreID = genres.genreID
4 WHERE genres.name !="Rock"

For instance Artist 8 is returned by the latter, not by the former.

Exercise 2.12 (Playing with UNION, INTERSECT, EXCEPT). Provide queries with:

1. artists (ID and name) who created albums but who have not sold any tracks.

2. artists (ID and name) who have sold 1 track, at most.

3. playlists that do not contain any Reggae tracks.

17



Chapter 3

Data Manipulation Language

In all this chapter, we consider that the database has already been created. We will only modify the data of one table
at a time. Modifications are INSERT (Section 3.1), UPDATE (Section 3.2), and DELETE (Section 3.3).

3.1 INSERT rows into 1 table

The INSERT statement allows to insert rows into a table either row by row where each row is defined by its VALUE
or from data provided by a SELECT statement.

3.1.1 Insert data explicitly defined by its VALUES

Inserting multiple rows into 1 table is achieved by the following form of the INSERT statement

1 INSERT INTO Table (Att1, Att2,...) VALUES (x1, x2,...), (y1, y2,...),...

where

• (Att1, Att2,...) is a sub-list of all attributes of Tablewe want to precise in the new records (x1, x2,...), (y1, y2,...);

• (x1, x2,...), (y1, y2,...) is the list of tuples of values such that:

– the value order is the same than the attribute order (xn ↔ Attn);

– each value xn: has to belong to the domain of Attn;

– in case of multiple insertion: use comma-separated tuples.

Example 3.1 (Inserting 3 artists and displaying modifications.). What follows inserts 3 rows into the artists
table.

1 INSERT INTO artists (name)
2 VALUES
3 ("Buddy Rich"),
4 ("Candido"),
5 ("Charlie Byrd");

Result can thus be verified thanks to:

1 SELECT
2 ArtistId,
3 Name
4 FROM
5 artists
6 ORDER BY
7 ArtistId DESC
8 LIMIT 5;

Exercise 3.1 (A recent Red Hot Chili Peppers album). “Return of the Dream Canteen” is a recent album of the
group Red Hot Chili Peppers

18



1. How to verify whether this group is already in this database or not?

2. How to verify whether this album is already in this database or not?

3. Insert this album and the following 3 songs, each of them has “Rock” genre and “MPEG audio file” as medi-
aType, and 0.99$ as unitprice:

(a) Tippa My Tongue, 04:20.

(b) Peace and LoveE, 04:03.

(c) Reach Out, 04:11.

In the previous exercise, some values have not been provided (Composer and Bytes for instance). In this case, the
default NULL value is inserted into the database for those attributes.

Exercise 3.2 (Problem with Instertion). We want to add the artist named “Bud Powell”. To achieve this, the fol-
lowing query is proposed:

1 INSERT INTO artists (artistID,name) VALUES (1,'Bud Powell');

1. Implement this query and verify it generates an error.

2. Explain this error and correct the query.

3.1.2 Inserting data from a SELECT

The second form of the INSERT statement contains a SELECT statement instead of a VALUES clause. A new entry is
inserted into the table for each row of data returned by executing the SELECT statement. If a attribute-list is specified,
the number of attributes in the result of the SELECT must be the same as the number of items in the attribute-list.
Otherwise, if no attribute-list is specified, the number of attributes in the result of the SELECT must be the same as
the number of attributes in the table. The syntax is as follows:

1 INSERT INTO Table (Att1, Att2, ...) SELECT Att1, Att2, ...

Example 3.2 (Inserting a new playlist from another one). The following query inserts a new playlist (named ’Your
New PlayList’) containing 50% of the tracks from the “Brazilian Music” existing playlist in the database

1 -- Step 1: Create a new playlist
2 INSERT INTO playlists (Name) VALUES ('Your New Playlist');
3

4 -- Step 2: Insert 50% of tracks FROM 'Brazilian Music' into the new playlist
5 INSERT INTO playlist_track (PlaylistId, TrackId)
6 SELECT
7 (SELECT PlaylistId FROM playlists
8 WHERE Name = 'Your New Playlist') AS TheNewPlaylistId, playlist_track.TrackId
9 FROM playlist_track INNER JOIN playlists

10 ON playlists.PlaylistId = playlist_track.PlaylistId
11 WHERE Name = 'Brazilian Music'
12 ORDER BY RANDOM() LIMIT
13 (SELECT CAST(COUNT(TrackId)*0.5 AS INT) FROM playlist_track INNER JOIN playlists
14 ON playlists.PlaylistId = playlist_track.PlaylistId
15 WHERE Name = 'Brazilian Music');

Exercise 3.3 (Inserting with SELECT). Create a new invoice for Leonie Köhler customer with all the items of her
last invoice.

3.2 UPDATE data of existing rows in 1 table

Updating rows values of 1 table is achieved by the following form of the UPDATE statement

19



1 UPDATE Table SET Att1 = Val1, Att2 = Val2, ... WHERE Condition

where

• all rows of Table which verify the Condition of the WHERE statement will be updated

• the value of each attribute Att1, Att2 will be set to Val1, Val2.

3.2.1 UPDATE one row

When the WHERE condition is a equality between a primary key and a defined value, only one row is returned. It is
this row that is modified.

Example 3.3 (Changing Address of Margaret Park). The following query change location data (address, city, state,
postal code of the employee Margaret Park.

1 UPDATE employees SET city = 'Toronto', address= '14 Langton Ave', state = 'ON', postalcode = 'M4N 3C4'
2 WHERE employeeid =
3 (SELECT employeeid
4 FROM employees
5 WHERE LastName='Park'
6 AND FirstName='Margaret')

3.2.2 UPDATE many rows

When several rows verify the WHERE condition, all these rows will be UPDATEd by this change.

Example 3.4 (Modifying the genre of all Red Hot Chili Peppers tracks). Sometimes, tracks of Red Hot Chili Pep-
pers are misclassified as “Alternative & Punk” and sometimes as “Rock”. The following query corrects this erroneous
classification.

1 UPDATE tracks SET genreID =
2 (SELECT GenreId
3 FROM genres
4 WHERE Name LIKE "Rock")
5 WHERE AlbumId IN
6 (SELECT AlbumId FROM albums INNER JOIN artists ON
7 albums.ArtistId = artists.ArtistId
8 WHERE artists.Name LIKE 'Red%');

which can be verified with

1 SELECT DISTINCT genres.Name,
2 artists.Name
3 FROM genres INNER JOIN tracks ON genres.GenreId = tracks.genreId
4 INNER JOIN albums ON tracks.AlbumId = albums.AlbumId
5 INNER JOIN artists ON albums.ArtistId = artists .ArtistId
6 WHERE artists.Name LIKE 'Red%';

3.2.3 UPDATE with parametric values

It is possible to UPDATE attributes with values that depend on other attributes values
For instance, it is possible to increase the track unitprice of 10% for tracks whose unitprice is lower than 1, and of

5% only otherwise.

1 UPDATE tracks SET UnitPrice =
2 CASE
3 WHEN UnitPrice < 1 THEN
4 1.1*UnitPrice
5 ELSE 1.05*UnitPrice END

20



Exercise 3.4 (Update, Update, Update). Provide the following queries, which

1. set the duration of track "Balls to the Wall" to 342500ms.

2. Set the price to 1$ of all Alanis Morissette tracks.

3. Set the last name in uppercase (UPPER function) in the customers table

3.3 DELETE rows from 1 table

DELETE statement removes from a table all rows verifying a condition specified in a WHERE statement. It is defined
as follows:

1 DELETE FROM Table WHERE Condition

Example 3.5 (Deleting all artists whose name starts with A). This is achieved with the following code.

1 DELETE FROM artists WHERE Name LIKE'A%'

Example 3.6 (Deleting all artists whose tracks does no appear in any invoice). First of all the nested query that
select all artists whose tracks does no appear in any invoice, and next, deletion.

1 DELETE
2 FROM artists
3 WHERE ArtistId IN
4 (SELECT ArtistId
5 FROM artists EXCEPT SELECT albums.ArtistId
6 FROM albums INNER JOIN tracks ON albums.AlbumId = tracks.AlbumId
7 INNER JOIN invoice_items ON tracks.TrackId = invoice_items.TrackId)

Notice that if no WHERE statement is provided, all rows from the table are removed. In the following query, all
rows from artists table are removed.

1 DELETE FROM invoices

Exercise 3.5 (Removing rows). 1. Delete all rows from table playlist_track and from table playlists.

2. Delete all genres that are never associated with a track.

3. Delete all tracks that do not appear in any invoice.

Notice that in the SQLiteTutorial example, it is possible to delete all the artists even if references to these artists
are not removed: the albums table always contains references to all ArtistIds. This behavior is problematic since
it leads to inconsistency. Next chapter shows how to avoid this in the database definition.

21



Chapter 4

Data Definition Language

4.1 Data types

SQLite provides 4 data classes that are:

• INTEGER are positive or negative whole numbers. It can be refined into BIGINT(8 bytes), INT (4 bytes),
MEDIUMINT (3 bytes), SMALLINT (2 bytes), and TINYINT (1 byte).

• REAL are numbers with decimal values. It can be refined into DOUBLE (8 bytes), FLOAT(p) (4 bytes if p
<24),

• TEXT are unlimited length strings, stored using the database encoding (UTF-8 for instance). It can be refined
into CHARACTER(p) (at most p characters padded with ” ”, possibly) VARCHAR(p) (at most p, no padding),
NATIVE CHARACTER(p) (at most p unicode characters padded with ” ”, possibly)

• BLOB stands for a binary large object (image, sound) that can store any kind of data.

If the main objective is not efficiency at all, one can restrict oneself to these 4 classes.

Exercise 4.1 (A type to each data).
What type can be associated with each of the following data:

1. A french cell phone number starting with 06/07, with digits only?

2. An email address?

3. A price (everyday objects)?

4. A date of birth?

5. A last name?

6. A sentence?

7. A duration (of a few minutes) in milliseconds?

4.2 CREATE TABLE

The CREATE TABLE statement do the task of creating a new table in a SQL database. Its syntax is as follows:

1 CREATE TABLE table_name (
2 column_1 data_type PRIMARY KEY,
3 column_2 data_type NOT NULL,
4 column_3 data_type DEFAULT 0,
5 table_constraints
6 ) [WITHOUT ROWID];

where:

• table_name specifies the name of the table currently being created;

22



• column_1, column_2, column_3 specifies the attribute (column) names. Each attribute has a name, data
type, possibly a constraint among:

– PRIMARY KEY: this attribute is the primary table key;

– UNIQUE: each row must contain a unique combination of values in all the columns identified by the
UNIQUE constraint;

– NOT NULL: the attribute may not contain a NULL value

– CHECK attribute constraint: each time a new row is inserted into the table or an existing row is updated,
the expression associated with each CHECK constraint is evaluated;

• table_constraints specifies other constraints, like PRIMARY KEY defined with many column, FOREIGN
KEY. . .

• WITHOUT ROWID option: specific to SQLite. By default (i.e. when WITHOUT ROWID is not present), SQLite
creates an implicit attribute referred to as the rowid. The rowid column stores a 64-bit signed integer key that
uniquely identifies the row inside the table. By specifying WITHOUT ROWID, this action is avoided.

Exercise 4.2 (First Creates).

1. Create the table artists

2. Create the table albums

4.3 PRIMARY KEY

Each table in SQLite must have one PRIMARY KEY which is either supported by a single attribute or a set of at-
tributes.

If PRIMARY KEY is added to an attribute definition (as in the above example), then the primary key for the table
consists of that single attribute. Otherwise, if a PRIMARY KEY clause is specified as a table-constraint, then the
primary key of the table consists of the list of attributes specified as part of the PRIMARY KEY clause.

Example 4.1 (Table playlist_track with a pair as PRIMARY KEY). .
The following script defines table playlist_track represented in figure 4.1

Figure 4.1: Playlist_track between Playlists and Tracks

1 CREATE TABLE playlist_track (
2 PlaylistId INTEGER,
3 TrackId INTEGER,
4 PRIMARY KEY (PlaylistId,TrackId),
5 ...) WITHOUT ROWID

23



• A track, defined by its TrackId may belong to many playlists, each being defined by it PlaylistID and

• A playlists defined by it PlaylistID may contain many tracks, each being defined by its TrackId.

Notice first that the PRIMARY KEY is required for all the WITHOUT ROWID tables. For other tables, it is
optional. In this case, a rowid column that uniquely identifies each row inside the table is indeed created. However,
this rowid attribute cannot be referenced.

Notice secondly that if an integer attribute is a primary key and you want its value to increase automatically with
each insertion, this is very straightforward in SQLite. It is sufficient that the attribute is declared as INTEGER and
WITHOUT ROWID must not be added.

Example 4.2. Table media_types with mediaTypeId as auto increasing integer value
The following query creates the media_types table.

1 CREATE TABLE media_types (
2 MediaTypeId INTEGER PRIMARY KEY,
3 Name VARCHAR(27))

Since the MediaTypeId attribute is defined as a INTEGER PRIMARY KEY and since WITHOUT ROWID is
not append, the attribute MediaTypeId will be automatically incremented with each insertion like:

1 INSERT INTO media_types (Name) VALUES ('MPEG 3')

Exercise 4.3 (Create tables with autoincrement behavior).

1. Create tables artist and album such that artist.ArtisId and album.AlbumID are INTEGER
which are automatically incremented on each insertion.

2. Insert data into artist table and next into album one without setting the ID of the aforementioned tables.

4.4 FOREIGN KEY

4.4.1 Motivating FOREIGN KEY with an example

Exercise 4.3 created the following 2 tables artist and album as follows:

1 CREATE TABLE artist(
2 ArtistId INTEGER PRIMARY KEY,
3 Name VARCHAR(85)
4 );
5 CREATE TABLE album(
6 AlbumId INTEGER PRIMARY KEY,
7 Title VARCHAR(95),
8 ArtistId INTEGER -- Must map to an artist.ArtistId!
9 );

The comment in the declaration (namely album.ArtistId must map to an artist.ArtistId!) says that
for each row in the album table there exists a corresponding row in the artist table. Unfortunately, it is only a comment.
Rows might be inserted into the album table that do not correspond to any row in the artist table. Or rows might
be deleted from the artist table, leaving orphaned rows in the track album that do not correspond to any of the
remaining rows in artist.

During the table creation, one solution is to add an SQL foreign key definition into the table-constraint (after all
attribute declaration) as follows:

1 CREATE TABLE album(
2 AlbumId INTEGER PRIMARY KEY,
3 Title VARCHAR(95),
4 ArtistId INTEGER,
5 FOREIGN KEY(ArtistId) REFERENCES artist(ArtistId))
6 );

24



Now, attempting to insert a row into the album table that does not correspond to any row in the artist table will
fail, as will attempting to delete a row from the artist table when there exist dependent rows in the album table.

1 CREATE TABLE artist (ArtistId INTEGER PRIMARY KEY, Name VARCHAR(85));
2 INSERT INTO artist (Name) VALUES ("Frank Sinatra"), ("Dean Martin") ;
3 SELECT * FROM artist;
4 --1 Frank Sinatra
5 --2 Dean Martin
6

7

8 PRAGMA foreign_keys = ON;
9

10 CREATE TABLE album(
11 AlbumId INTEGER PRIMARY KEY,
12 Title VARCHAR(95),
13 ArtistId INTEGER,
14 FOREIGN KEY(ArtistId) REFERENCES artist(ArtistId));
15

16 --INSERT INTO album (Title, ArtistId) VALUES ("Dino: Italian Love Songs",200);
17 -- Error: FOREIGN KEY constraint failed
18 -- There is no artist with ArtistId equal to 200!
19

20 INSERT INTO album (Title, ArtistId) VALUES ("Dino: Italian Love Songs",2);
21 INSERT INTO album (Title, ArtistId) VALUES ("A Winter Romance",2);
22

23 SELECT * FROM album;
24 --1 Dino: Italian Love Songs 2
25 --2 A Winter Romance 2
26

27 DELETE FROM artist WHERE Name = 'Frank Sinatra';
28 SELECT * FROM artist;
29 --2 Dean Martin
30

31 --DELETE FROM artist WHERE Name = 'Dean Martin';
32 --Error: FOREIGN KEY constraint failed

4.4.2 ON DELETE and ON UPDATE actions

Foreign key ON DELETE and ON UPDATE clauses define actions that take place when deleting rows from the refer-
enced table or modifying the referenced key values of existing rows. Basically, either action is prohibited (RESTRICT
keyword) or it is propagated (CASCADE keyword) into dependant children as follows:

• ON UPDATE RESTRICT, ON DELETE RESTRICT: modifying or deleting a parent key which is referenced
in one or more child keys is prohibited. It is the same behavior as without ON UPDATE or ON DELETE;

• ON UPDATE CASCADE, ON DELETE CASCADE propagates the update or delete operation on the parent key
to each dependent child key. For an "ON DELETE CASCADE" action, this means that each row in the child
table that was associated with the deleted parent row is also deleted. For an "ON UPDATE CASCADE" action,
it means that the values stored in each dependent child key are modified to match the new parent key values.

Example 4.3. ON DELETE CASCADE
The following example shows the normal behavior with ON DELETE CASCADE constraint.

1 CREATE TABLE artist (ArtistId INTEGER PRIMARY KEY, Name VARCHAR(85));
2 INSERT INTO artist (Name) VALUES ("Frank Sinatra"), ("Dean Martin") ;
3

4 PRAGMA foreign_keys = ON;
5

6 CREATE TABLE album(
7 AlbumId INTEGER PRIMARY KEY,
8 Title VARCHAR(95),
9 ArtistId INTEGER,

10 FOREIGN KEY(ArtistId) REFERENCES artist(ArtistId) ON DELETE CASCADE ON UPDATE CASCADE);
11

12 INSERT INTO album (Title, ArtistId) VALUES ("Dino: Italian Love Songs",2);
13 INSERT INTO album (Title, ArtistId) VALUES ("A Winter Romance",2);
14 INSERT INTO album (Title, ArtistId) VALUES ("Christmas Songs by Sinatra",1);
15

16

17 DELETE FROM artist WHERE Name = 'Dean Martin';

25



18 SELECT * FROM album;
19

20 --3 Christmas Songs by Sinatra 1
21 -- all albums from 'Dean Martin' have been removed too.

Exercise 4.4 (Creation of tables with foreign keys and associated actions).

1. Define the genres table such that the GenreId is a auto incremented integer primary key.

2. Define the tracks table such that the TrackId is a auto incremented integer primary key and whose at-
tributes MediaTypeId, GenreId, and AlbumId are foreign keys with CASCADE action for ON UPDATE
and for

26



Bibliography

[Aud09] Laurent Audibert. Bases de données : de la modélisation au SQL : conception des bases de données,
modèle relationnel et algèbre relationnelle, langage SQL, programmation SQL : support de cours, exer-
cices corrigés. Ellipses, 2009.

[BA19] Sofia Benbelkacem and Baghdad Atmani. Random forests for diabetes diagnosis. In 2019 International
Conference on Computer and Information Sciences (ICCIS), pages 1–4. IEEE, 2019.

[ED08] Khaled El Emam and Fida Kamal Dankar. Research paper: Protecting privacy using k-anonymity. J.
Am. Medical Informatics Assoc., 15(5):627–637, 2008.

[INS18] INSEE. Guide du secret statistique. Technical report, INSEE, 2018.

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkitasubrama-
niam. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1):3, 2007.

[NC20] Benjamin Nguyen and Claude Castelluccia. Techniques d’anonymisation tabulaire : concepts et mise en
oeuvre. CoRR, abs/2001.02650, 2020.

[otEU16] Official Journal of the European Union. Consolidated versions of the treaty on european union and the
treaty on the functioning of the european union, 2016. 2016/C 202/01.

[sql] Sqlite tutorial. https://www.sqlitetutorial.net.

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

27

https://www.sqlitetutorial.net

	Introduction to Databases
	What is a database
	Data consistency
	Models
	Querying a database with SQL


	Data Query Language
	The Chinook SQLite sample database
	Simple selection with sql|SELECT|
	Ordering tuples with sql|ORDER BY|
	Remove duplicate rows in the result set with sql|DISTINCT|
	Filtering with sql|WHERE|
	Getting linked data with sql|JOIN|
	Coarse idea to merge tables
	Linking with sql|INNER JOIN...ON|
	sql|JOIN| on more than 2 tables
	Auto sql|JOIN|

	Aggregating values of an attribute
	Simplest case: aggregating values over all the results
	Aggregating values by sql|GROUP|ing rows according to some attribute values 
	Conditions that only can be expressed with an aggregation function: sql|HAVING|

	Nested queries
	Set theoretic operators between queries: sql|UNION|, sql|INTERSECT|, sql|EXCEPT| 
	 sql|UNION| or sql|INTERSECT|ion between two relations
	 sql|EXCEPT| between two relations


	Data Manipulation Language
	sql|INSERT| rows into 1 table
	Insert data explicitly defined by its sql|VALUES| 
	Inserting data from a sql|SELECT| 

	 sql|UPDATE| data of existing rows in 1 table
	sql|UPDATE| one row
	sql|UPDATE| many rows
	sql|UPDATE| with parametric values

	sql|DELETE| rows from 1 table

	Data Definition Language
	Data types
	sql|CREATE TABLE|
	sql|PRIMARY KEY|
	sql|FOREIGN KEY|
	Motivating sql|FOREIGN KEY| with an example
	 sql|ON DELETE| and sql|ON UPDATE| actions



