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Chapter 1

Practical introduction to correction codes

In 1948, Claude Shannon published a reference document "A mathematical theory of communication" [Sha01] the
basis of information theory and coding theory. For each communication channel, Shannon has identified a number
called capacity which is the maximum reliability that can be achieved by any communication on that channel. To
achieve this, it is necessary to set up data encoding/decoding processes which, in the end, will make it possible to
correct certain errors.

A communication channel is shown in the figure 1.1. At the source, a x message must be sent. If x is transmitted
as such in this channel, any noise would alter it and it would not be recoverable. The basic idea is to embed the
message with some redundancy so that, at the reception, you can find x. Redundancy is added by encoding and the
encoded message, called a c codeword, is sent on the channel. The noise, expressed as an error vector e, is added to
the code producing a received vector y. This received vector is then decoded and an estimate of x̂ of the x message is
generated.

Figure 1.1: Communication Channel

1.1 Redundancy first!

To encode these messages we think of redundancy. For example, who has never heard a transmission of the type "E
for Echo, R for Romeo, R for Romeo, O for Obvious, and R for Romeo" to transmit the word "error". To improve the
transmission of a message, this code multiplies the information, adds redundancy which is the key to any detector and
corrector code.

In the following, we consider that the encoded characters are the bits. For encoding blocks from k bits to n bits,
there are 2k different words to encode. Among the 2n possible received messages of length n, 2k are code words (i.e.,

without error) and therefore 2n − 2k are not correct. The performance of a code is the rate of ρ = k

n
.

1.2 Parity bit

A second example is an error detection code. The 7-bit encoding of the usual characters is considered as shown in the
table 1.1.

To detect an error, the encoding adds an eighth bit to the seven-bit vector, called the parity bit which is 1 if and
only if the sum of the bits initially present is odd. For example, the sum of the seven bits of B being 1 + 0 + 0 + 0 + 0
+ 0 + 1 = 2, the parity bit is then 0. B is then coded in 10000010.
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Char Digit Binary Parity + bit
B 65 1000001 10000010
C 66 1000010 10000100
D 67 1000011 10000111
...
a 97 1100001 11000011
b 98 1100010 11000101
c 99 1100011 11000110

Table 1.1: Parity bit Checksum
.

This encoding detects that an error has been made during transmission, but it does not correct it, as the receiver
does not know which of the eight bits is the wrong bit. The receiver, noting the error, may, however, request a
retransmission of the problematic character. Be careful, this detector code is based on the assumption that at most one
bit is wrong (is it a reasonable assumption?).

Exercise 1.1. Parity check

• How many errors can be detected with a simple parity check? Is it possible to correct these errors?

• Encode the following messages using a bit of parity: 1101011001, 100, 1111100011111001111.

• What is the performance of such a code?

1.3 Data duplication

We now present an error detector and corrector code. It consists in repeating the entire message several times. Each
character of a text is repeated three times. The word "011010" would thus be encoded as

000.111.111.000.111.000

If at most one error appears per character (which is reasonable), then it can be corrected:

100.111.110.001.110.000

would indeed be decoded as "011010". It is obvious that a code that would only double each character would not allow
the correction in case of error (to be convinced). However, this code is not used because of its cost: all information
must be transmitted in three parts.

Exercise 1.2. Repetition code. We use a repetition code. The bits are sent 5 times with. Each time, the probability of
being mistransmitted is equal to p.

• In such a 5-bit packet (i.e. 5 repetitions of the signal bit)

– What is the probability that i = 0, 1, . . . , 5 of these 5 bits are reversed during transmission?

– What is the probability that the transmission error will be detected?

– What is the probability that the error will be transmitted undetected?

• Encode the following message: 01110.

• Decode the following message: 00100.11111.00101.01011.00100.

• What is the performance of such a code?
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w5 = W5 w6 = W6 w7 = W7 wrong bit location

T T T there’s no wrong bit.

T T F w7 is wrong

T F T w6 is wrong

T F F w3 is wrong

F T T w5 is wrong

F T F w2 is wrong

F F T w1 is wrong

F F F w4 is wrong

Table 1.2: Correction of the wrong bit by the Hamming code(7, 4).

1.4 Hamming’s code(7, 4)
In the following, the + sum and . product operators on the field F2 = {0.1} are considered as an "exclusive or" and
"and" respectively. Their truth tables are recalled below.

+ 0 1

0 0 1
1 1 0

. 0 1

0 0 0
1 0 1

(1.1)

In its version C(7, 4), Hamming’s code is limited to encoding four-letter words (u1, u2, u3, u4) ∈ F4
2 to guarantee

their correct transmission. It is (v1, v2, . . . , v7) ∈ F7
2 defined by

(v1, v2, . . . , v7) = (u1, u2, u3, u4, u1 + u2 + u4, u1 + u3 + u4, u2 + u3 + u4)

that will be sent. The redundant characters v5, v6 and v7 ensure the correct transmission of any 4-bit (u1, u2, u3, u4)
word when there is only one wrong bit in (v1, v2, . . . , v7).

Upon receipt of (w1, w2, . . . , w7), simply compare W5 = w1 + w2 + w4, W6 = w1 + w3 + w4 and W7 =
w2 + w3 + w4 with w5, w6 and w7 respectively and read the table 1.2.

To transmit the word (1, 0, 1, 1), for example, it is the message (v1, v2, v3, v4, v5, v6, v7) = (1, 0, 1, 1, 0, 1, 0) that
is sent because:

v5 = u1 + u2 + u4 = 1 + 0 + 1 = 0,
v6 = u1 + u3 + u4 = 1 + 1 + 1 = 1,
v7 = u2 + u3 + u4 = 0 + 1 + 1 = 0.

Suppose the receiver retrieves (w1, w2, . . . , w7) = (1, 1, 1, 1, 0, 1, 0). He/she calculates

W5 = w1 + w2 + w4 = 1 + 1 + 1 = 1 6= w5,

W6 = w1 + w3 + w4 = 1 + 1 + 1 = 1 = w6,

W7 = w2 + w3 + w4 = 1 + 1 + 1 = 1 6= w7.

Assuming there is only one error, and reading the correction table, he/she finds that w2 is wrong and corrects the error.

Exercise 1.3. Direct application of the Hamming code(7.4)

1. Code the following message: 0101.1001.0111

2. Decode the following message: 0100011.1001001.0101101.1010010.
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Chapter 2

The systematic codes of
Hamming(2k − 1, 2k − k − 1)

The two numbers 2k − 1 and 2k − k − 1 indicate respectively the length of the words in the code and the size of the
subspace formed by the words transmitted. For k = 3, we find the Hammingcode(7, 4).

2.1 Generator and control matrices

Two matrices are important in defining the Hamming(2k − 1, 2k − k − 1) code:

• the control matrix Hk has 2k − 1 rows and k columns. In the case of a systematic code, this Hk matrix is
defined by

Hk =

 Pk

Ik

 , (2.1)

where Ik is the identity matrix k× k. In the upper part Pk are placed in line all non-zero Fk2 vectors that are not
in Ik. We can therefore choose

H3 =



1 1 0
1 0 1
0 1 1
1 1 1

1 0 0
0 1 0
0 0 1


.

This Hk matrix therefore contains all non-zero vectors of Fk2 .

• the generator matrix Gk has 2k − k− 1 rows and 2k − 1 columns. When Hk is defined as above, Gk is of the
form (

I2k−k−1 | Pk
)
,

with I2k−k−1 the identity matrix of size 2k − k − 1× 2k − k − 1. For G3, we have for example:

G3 =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 (2.2)

The following elements are noted:

• By construction, the product GkHk is the null matrix.

• If u = (u1, . . . , u2k−k−1) ∈ F2k−k−1
2 is a word to encode, v = uGk is the associated code word. The

associated code word does not change the word u and only adds additional bits since Gk = (I2k−k−1 | Pk). It
is said that the code is systematically.
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• For a binary word m of size 2k − 1, the word σ(m) = mHk is called the m syndrome. It’s a word of size k.

Exercise 2.1. Product matrix GH: null.

1. Show that G3H3 is null.

2. Generalize for any k, showing that GkHk is also null, according to the construction of Hk and Gk.

The code of the previous example is systematic with k = 3. First we have 23−3−1 = 4. For u = (u1, . . . , u4) =
(1, 0, 1, 1) as in the introduction, we have v = uG3 = (1, 0, 1, 1, 0, 1, 0). The first 4 bits are copied, the last 3
are used as control. If we calculate the σ(v) syndrome, we obtain (0, 0, 0) while if we calculate the one of the
w = (1, 1, 1, 1, 0, 1, 0), we have (1, 0, 1). The following section formalizes this.

2.2 General case: error detection and correction

PROPOSITION 2.1. Let be a code of Hamming(2k − 1, 2k − k − 1) of control matrix Hk. A word w is a code word
if and only if its syndrome σ(w) is the null vector.

The previous proposal allows to check if there is an error.

Exercise 2.2. Demonstration. Demonstrate the previous proposal.

The following proposal corrects an error when it exists.

PROPOSITION 2.2. Let be a code of Hamming(2k − 1, 2k − k − 1) of control matrix Hk. If σ(m) is not the null
vector then there is a ith line in Hk that is equal to it. It is the ith component wi that is wrong.

PROOF. Let w = (w1, . . . , w2k−1) be a word of size 2k−1. Since σ(w) is not null and since Hk contains all the
2k − 1 not null line of size k, there exists i such that σ(w) = (Hi,1, . . . ,Hi,k). Let us write w as

w = (w1, . . . , wi−1, wi, . . . , w2k−1)

and let w′ be
w′ = (w1, . . . , wi−1, wi, . . . , w2k−1)

i.e. w′ is equal tow everywhere, but in index i. Let us prove that the syndrome ofw′ is null. Indeed the cth component,
1 ≤ c ≤ k, of σ(w′) is defined by

σ(w′)c =
2k−1∑
l=1,l 6=i

wl.Hl,c + wi.Hi,c. (2.3)

• If wi is 1, σ(w′)c is reduced to
∑2k−1
l=1,l 6=iwl.Hl,c. But we know that Hi,c is the cth of σ(w), i.e.

Hi,c =
2k−1∑
l=1,l 6=i

wl.Hl,c + 1.Hi,c.

We can deduce that
∑2k−1
l=1,l 6=iwl.Hl,c is null, and so σ(w′)c = 0.

• If wi is 0, wi is 1. Equation (2.3) leads to

σ(w′)c =
∑2k−1
l=1,l 6=iwl.Hl,c +Hi,c.

Hi,c can be replaced by σ(w)c leading to

σ(w′)c =
∑2k−1
l=1,l 6=iwl.Hl,c +

(∑
l=1,l 6=iwl.Hl,c

)
which is null too.
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Exercise 2.3. Set dimensions. The following questions are about the Hammingcode(2k − 1, 2k − k − 1).

1. In this code, how many letters have the words u to transmit? How many separate words can be transmitted?

2. How many letters have the words encoded in v?

3. How many distinct words received w (wrong or not) will be decoded as the same message u?

4. Is there a w ∈ F2k−1
2 that is not, at a possible error except, the encoding v of a message u ∈ F2k−k−1

2 ?

Exercise 2.4. Let p = 1000−1 be the probability that a bit is transmitted incorrectly.

1. What is the probability of having precisely 2 faulty bits when transmitting 7 bits, as when transmitting a word
from Hamming code C(7, 4)?

2. What is the probability of having more than one error when transmitting 7 bits?

3. Rather than the Hamming code, we transmit a bit by repeating it 3 times. We decode by majority vote. Calculate
the probability that the bit sent will be correctly decoded.

4. We transmit 4 bits by repeating each bit 3 times. What is the probability that the 4 bits will be decoded correctly?
Comparing the results of this question with 2 above, we see that the simple code has a slight advantage over
the Hamming code C(7, 4), but at the cost of transmitting 12 bits rather than 7.

Practical Work 2.1. Hamming Implantation(7, 4). In the following, we focus on the version of Hamming(7, 4) seen
in this chapter.

1. Develop a program that implements Hamming(7, 4) by exploiting matrix products with H3 and G3 seen in this
chapter. We’ll make sure we work in F2.

2. Evaluate the algorithm on all words of F4
2 with all possible errors. Check that the original word is still the one

that is found.

3. Check that the product G3 ×H3 is zero.

Practical Work 2.2. Hamming(2k − 1, 2k − k − 1). In this practical work, the aim is to generalize the construction
of Hk and Gk.

1. Develop a program that generates Hk and Gk according to the constraints outlined in this chapter.

2. Evaluate the algorithm on all words from F2k−k−1
2 with all possible errors, for k = 3, . . . , 5. Check that the

original word is still the one that is found.
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Chapter 3

Reed-Solomon’s codes RS(n, k, m)

This chapter uses elements from [Rou09, Wik17].
In the following, we consider m, n, k, t, each in N with n = k + 2t and:

• m is the number of bits per used symbol; if each symbol is a character, m can be equal to 8 for example and we
have bytes;

• k is the number of symbols contained in the original message;

• n is the number of symbols transmitted.

• 2t is the number of redundancy symbols; according to the relationship given above, the t number is deduced
from n and k; it is therefore not a code parameter;

These codes are noted as RS(n, k,m). Reed-Solomon codes can correct two types of errors: errors due to changes
in data and errors resulting from the loss of information as long as the relation 2E + S ≤ n− k is satisfied, where E
is the number of errors and S is the number of erasures in the block. If there is nor erasure, the maximum number of
corrected error is n−k

2 , i.e. t.

3.1 Give the set F2m a field structure

Each symbol is a character that will be stored as am bit vector, i.e. as a number in F2m . LetA be a message consisting
of k symbols (u1, . . . , uk). Each ui is part of the F2m set.

For example, the message “13” of k = 2 characters would be translated into F22 into u = (1, 3). In the following
we try to correct t = 1 errors. We therefore work with RS(4, 2, 2).

The Reed-Solomon algorithm requires a field structure for the set F2m in particular that the only divisor of 0 is
0. However, if we equip this set of classical operators with sum and product modulo 2m, the set F2m is not a field.
Indeed, for any integer i, 1 ≤ i < m, on 2i × 2m−i ≡ 2m ≡ 0 mod(m). Thus 2i, not zero, is a divisor of 0. The
following section shows that it is possible to build sum and product operators on this set that gives it a field structure.

3.1.1 Calculs modulo p(x)

In the same way that we can calculate "modulo p", it is possible to calculate "modulo a polynomial p(x)".
For example, p(x) = x2 + x+ 1 ∈ F2[x]. The square of the polynomial (x2 + 1) modulo p(x) in F2[x] is

(x2 + 1)× (x2 + 1) ≡ x4 + 2x2 + 1
≡ x4 + 1
≡ x+ 1(mod p(x)).

Indeed, it is enough to write the Euclidean division to be convinced of this:

x4 +1 x2 +x +1

x4 +x3 +x2 x2 +x

x3 +x2

x3 +x2 +x

x +1
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and therefore x4 + 1 = (x2 + x+ 1)× (x2 + x) + x+ 1.

Exercise 3.1. In F2[x], calculate x2(x2 + 1) mod(x+ 1).

3.1.2 The set F2[x]/p(x) of the polynomials modulo p(x)

In the following, p(x) ∈ F2[x] is a polynomial in x of degree m whose variables and coefficients belong to F2. The
quotient F2[x]/p(x) is the set of polynomials of F2[x] modulo p(x). All these polynomials are of degree q < m. The
set F2[x]/p(x) therefore contains all the polynomials of the form p0 + p1x+ . . . pm−1x

m−1, which are 2m since each
pi belongs to F2.

For example, if p(x) = x2 + x+ 1, we have F2[x]/p(x) = {0, 1, x, x+ 1}. If we take p′(x) = x2 + 1, we have
F2[x]/p′(x) = {0, 1, x, x + 1}. The sets F2[x]/p(x) and F2[x]/p′(x) both contain 22 elements. However, we note
that (x+ 1)2 = x2 + 1 in F2[x]. In addition, as

(x+ 1)2 = x2 + 1 ≡ 0 mod(x2 + 1) (x+ 1) is a divisor of 0,

≡ 1 mod(x2 + x+ 1),

we can conclude that F2[x]/p′(x) is not a field
The following section shows how to choose p(x) to build a field.

3.1.3 Construction of a field from an irreducible polynomial

In F2[x] let p(x) be a polynomial of degree m. The set F2[x]/p(x) is a 2m element field if and only if p(x) is
irreducible in F2[x], i.e. p(x) is not the product of 2 polynomials in F2[x] of degree below m.

We immediately have that x2 + 1 = (x+ 1)2 so the polynomial x2 + 1 is not irreducible in F2[x]. Let’s consider
p(x) = x2 + x+ 1 in F2[x]. If it was not irreducible, it would be the product of two degree 1 polynomials that would
determine its roots. However, neither 0 nor 1 are roots. Thus, it is irreducible.

Exercise 3.2. Irreducibility. In F2[x], what about the irreducibility of the polynomials x2 +1, x3 +x2 +x, x3 +x+1
and x3 + x2 + x+ 1?

By taking p(x) = x2 + x + 1 and considering F2[x]/p(x) = {0, 1, x, x + 1}, we can construct the following
multiplication and addition tables:

× 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

Finally, we can build a bijection of F2m in F2[x]/p(x) which associates the ith element of F2m with the ith element
of F2[x]/p(x), if the elements of a set can be ordered. Thanks to this we can define a product and a sum on F2m which
gives it a field structure. For F22 it would be:

× 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

(3.1)

By construction for any element e ∈ F2m , we have e+ e = 0.

Exercise 3.3. Field from an irreducible polynomial.

1. Find the only irreducible polynomial on F2 of degree 2, both of degree 3 and all three of degree 4.

2. Build the addition and multiplication tables on the field F8 with 8 elements. We will consider the irreducible
polynomial x3 + x+ 1.

Practical Work 3.1. Implement the addition and subtraction tables of F8. How to do for F28?
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3.2 Reed-Solomon Code RS(n, k, m)
The Reed-Solomon code RS(n, k,m) will be defined as a polynomial with a degree of n or less on F2m [x]. Let’s see
how to build this polynomial.

3.2.1 Polynomial A(x) containing the information to be transmitted

From the message u = (u1, . . . , uk), where each ui belongs to the field F2m (built as in the previous section) the
Reed-Solomon algorithm builds the polynomial A(x) defined as:

A(x) = u1x
k−1 + u2x

k−2 + · · ·+ uk−1x
1 + uk. (3.2)

This polynomial of degree less than or equal to k − 1 belongs to F2m [x] which is the set of polynomials whose
coefficients belong to F2m .

In the previous example, we would have A(x) = 1x+ 3.

3.2.2 Primary root of the field F2m

There is a non-zero element α of F2m such that all other non-zero elements of this field can be expressed as a power
of α. The α element is called a primitive root of F2m .

F22 \ {0} = {1, 2, 3}. Let’s calculate the successive powers of 2 from the equation (3.1):

20 = 1
21 = 2
22 = 3.

We can therefore conclude that 2 is a primitive root of F22 , while 1 is not.

Exercise 3.4. Let be defined the sum and product over F23 as follows.

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

× 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

It is the solution of exercise 3.3. Prove that any α ∈ {2, 3, 4, 5, 6, 7} is a primitive root of F8.

3.2.3 Control polynomial B(x)

Let α be a primitive root of the field F2m . First, we build the generator polynomial of the code as follows:

G(x) = (x+ α)(x+ α2) . . . (x+ α2t)

whose roots are α, α2, . . . , α2t. This polynomial depends only on the number of errors to be corrected (i.e. t) and the
primitive root α of the field F2m .

The control polynomial B(x) is then defined by:

B(x) = A(x)× x2t mod(G(x)) (3.3)

In the previous example, we would have successively

G(x) = (x+ 2)(x+ 22)
= (x+ 2)(x+ 3)
= (x2 + x+ 1)

10



In addition, A(x)× x2 = (1x+ 3)× x2 = x3 + 3x2 = (x2 + x+ 1)(x+ 2) + 3x+ 2. Indeed, we have

x3 +3x2 x2 +x +1

x3 +x2 +x x +2

2x2 +x
2x2 +2x +2

3x +2
Thus,

B(x) = 3x+ 2 mod(G(x).

3.2.4 Code C(x)

The code C(x) is defined by C(x) = A(x)× x2t +B(x) and is naturally equal to 0 for x = αj , 1 ≤ j ≤ 2t.
Indeed, we successively have for j such that 1 ≤ j ≤ 2t:

C(αj) = A(αj)× (αj)2t +B(αj)
= A(αj)× (αj)2t +A(αj)× (αj)2t + d.(G(αj)) thanks to equ. (3.3)
= A(αj)× (αj)2t +A(αj)× (αj)2t + d.0 since G(αj) = 0
= 0

In the previous example the Reed-Solomon code corresponding to the message m is C(x) = x3 + 3x2 + 3x+ 2.

3.3 Error detection and correction

During the transmission of the polynomial C(x), errors in some coefficients may occur. D(x) is considered to be the
received polynomial.

For instance let us consider the received polynomial is D(x) = 2x3 + 3x2 + 3x+ 2.

3.3.1 Detection only

The receiver computes syndroms Sj = D(αj) in F2m for all j, 1 ≤ j ≤ t.
• If Sj = 0 for all j, 1 ≤ j ≤ 2t, he/she considers that there was no transmission error, i.e. D(x) = C(x). The

original message m is found using the k coefficients of the highest degree terms of the polynomial D(x).

• If there is some j, 1 ≤ j ≤ 2t such that Sj = D(αj) is not zero, there has been a transmission error on at least
one of the coefficients that will need to be corrected.

For instance, for α = 2 we calculate D(α) as given in the following table:

j αj D(αj) Sj

1 2 2.1 + 3.3 + 3.2 + 2 = 2 + 2 + 1 + 2 = 3 = S1

2 3 2.1 + 3.2 + 3.3 + 2 = 2 + 1 + 2 + 2 = 3 = S2

Both syndromes S1 and S2 are not null. There is an error, so.

3.3.2 Error correction

The final objective is to find the polynomial E(x) of errors and to retrieve the initial message C(x) = D(x) + E(x).
Let

E(x) =
ν∑
r=1

eirx
ir (3.4)

be the error polynomial we want to find. Notice that

• E(x) contains ν not null coeffecients, which is is thus the number of errors; The number of errors ν is less that
t, by hypothesis.

• ir are the idices, between 0 and n− 1 where there is an error.

• eir is the value of the error.

11



3.3.2.1 Finding the number of errors.

Since C(x) = D(x) + E(x), we thus have E(x) = D(x) + C(x). Particularely, for j, 1 ≤ j ≤ 2t, we have

E(αj) = D(αj) + C(αj) = D(αj) = Sj =
ν∑
r=1

eirα
j.ir (3.5)

thanks to (3.4).
Let us consider the polynomial Λ(x) =

∏ν
r=1(1 + αirx). This polynomial can be expanded into

Λ(x) = 1 + λ1x+ λ2x
2 + · · ·+ λνx

ν

whose λ. have to be calculated. To achieve this, we note that

Sν+j−1λ1 + Sν+j−2λ2 + · · ·+ Sjλν =
∑ν
l=1 Sv+j−l.λl

=
∑ν
l=1

(∑ν
r=1 eirα

(v+j−l).ir
)
λl definition (3.5),

=
∑ν
r=1 eirα

(v+j).ir ∑ν
l=1 λl.α

−l.ir reordering
=

∑ν
r=1 eir (αir )v+j (Λ(α−ir ) + 1

)
=

∑ν
r=1 eir (αir )v+jΛ(α−ir ) +

∑ν
r=1 eir (αir )v+j

=
∑ν
r=1 eir (αir )v+j since Λ(α−ir ) is null

= Sv+j

So we have a system of a ν linear equations, at most.

Sνλ1 + Sν−1λ2 + · · ·+ S1λν = Sν+1
Sν+1λ1 + Sνλ2 + · · ·+ S2λν = Sν+2

...
S2ν−1λ1 + S2ν−2λ2 + · · ·+ Sνλν = S2ν

In addition, the highest value ν less than or equal to t for which the determinant of this system is not zero is
precisely the number ν equal to the number of errors transmitted. So we start from ν = t, and if the determinant is
zero, we decrease ν until we get a non-zero determinant.

On our example, ν = 1 = t and we have thus:

S1λ1 = S2
3λ1 = 3

which allows to have one solution, which is λ1 = 1.

3.3.2.2 Finding error’s locations.

Once ν is found, the system is solved, which defines the polynomial Λ. Roots of this polynomial are further found.
For each root r, its inverse is expressed as a power of α: there exists some ir such that r.αir is equal to 1. The error
locations are {i1, . . . , iν .}.

On our example, we can deduce that Λ(x) = 1 + x. This polynomial admits one single root, which is r = 1. we
have thus to solve

r.αir = 1
1.2i1 = 1

whose admits one solution i1 = 3.

3.3.2.3 Finding error’s values

In equation (3.5), (Sj =
∑ν
r=1 eirα

j.ir ), we can now solve this system leading to the errors e1, . . . , er. The polynomial
E(x) is thus defined and C(x) = D(x) + E(x) can be extracted.

On our example, it remains to solve equations (3.5) Sj =
∑ν
r=1 eirα

j.ir for j, 1 ≤ j ≤ 2t. It is equivlent to the
systeme {

S1 = e3α
3

S2 = e3α
2×3 which is equivalent to

{
3 = e3.1
3 = e3.1
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The error e3 is thus equal to 3. The error polynomial is thus E(x) = 3x2. Finally,

C(x) = D(x) + E(x)
= 2x3 + 3x2 + 3x+ 2 + 3x3

= x3 + 3x2 + 3x+ 2

Exercise 3.5. We want now to correct 2 errors in a message of length 2 for 4 types of caracters.

1. Show that RS(6, 2, 2) meets the above requirements.

2. Show that G(x) = x4 + 3x3 + x+ 3 is a correct generator polynomial.

3. What is the message codded into D1(x) = 3x5 + 3x4 + x3 + 3x2 + 3x+ 1?

4. What is the message codded into D2(x) = x5 + 2x4 + x3 + x2 + 3x+ 1?

5. What is the message codded into D3(x) = 2x5 + 2x4 + 2x2 + x?

Practical Work 3.2. Playing with a Reed-Solomon implementation.

1. Install a Reed-Solomon implementation (for example rs.py extracted from https://rextester.com/ZMBYT68318)
on your computer.

2. Execute the code and understand the evaluation part.

3. How many errors can be corrected? How many errors are introduced in the message?

Practical Work 3.3. Implementation on a PyBoard with MicroPython

1. Implement all the previous codes (Hamming74 and Reed-solomon) on a PyBoard.

2. When decoded word is equal to the original one, make the green led flashing 10 times.

3. Evaluate them.

13

https://rextester.com/ZMBYT68318


Bibliography

[Rou09] Mathématiques et Technologie. Springer, 2009.

[Sha01] Claude E Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and
Communications Review, 5(1):3–55, 2001.

[Wik17] Wikipédia. Code de reed-solomon — wikipédia, l’encyclopédie libre, 2017. [En ligne; Page disponible le
16-sept-2019].

14


	Practical introduction to correction codes
	Redundancy first!
	Parity bit
	Data duplication
	Hamming's code(7,4)

	The systematic codes of Hamming(2k-1,2k-k-1)
	Generator and control matrices
	General case: error detection and correction

	Reed-Solomon's codes RS(n,k,m)
	Give the set F2m a field structure
	Calculs modulo p(x)
	The set F2[x]/p(x) of the polynomials modulo p(x)
	Construction of a field from an irreducible polynomial

	Reed-Solomon Code RS(n,k,m)
	Polynomial A(x) containing the information to be transmitted
	Primary root of the field F2m
	Control polynomial B(x)
	Code C(x)

	Error detection and correction
	Detection only
	Error correction



