

De-identification of medical reports for machine learning tasks: application to ICD-10 code association

<u>*J.-F.* COUCHOT¹</u>, *D.* LAIYMANI¹, *A.* RAHMANI², *P.* SELLES², *Y.* TCHOUKA¹ ¹FEMTO-ST, Université de Franche-Comté, CNRS, France

²Hôpital Nord Franche-Comté (HNFC), France

Nov. 26th. 2024

RECION BOURGOGNE FRANCHE COMTE Plan

Motivation

De-identification of medical reports for associating ICD-10 code

De-identification of clinical texts, ICD assoc. | Couchot, Laiymani, Rahmani, Selles, Tchouka | Nov. 26th. 2024 2/ 15

Leveraging AI for Healthcare Process Improvement

- Significant interest among hospitals in optimizing a number of tasks by leveraging AI, particularly by exploiting textual medical records from patient files:
 - Identifying similarities between patients and their pathologies, thereby gaining direct access to successful treatment pathways for these pathologies versus less successful ones.
 - Detecting abnormal patient journeys, for example, where a condition associated with treatment is suspected.
 - ► Automatically associating medical codes with patient journeys (according to the ICD-10 classif.) for statistical purposes and hospital reimbursement. (@ HNFC ≈ 12 individuals from the Medical Information department carry out this coding task e.g.)

Bridging the Gap: Developing AI Tools for Healthcare with sanitized Data

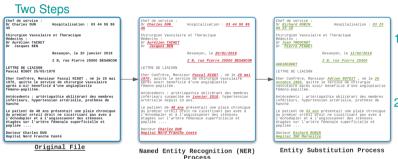
Who can can develop ML to for Medical Institutions?

- Medical institutions generally lack the expertise to develop advanced AI (with diverse data types like text, tables, and vectors).
- Even within these institutions, legal restrictions (GDPR...) prevent AI researchers (FEMTO-ST) from accessing patient data to develop AI tools.

Is de-identification the answer?

- Al tool prototypes can be created in labs and then customized with realistic data derived from a robust and useful de-identified medical data from a medical institution.
 - Robust: the level of information leakage is mathematically bounded: based on Differential Privacy, the standard adopted today in academia, in industry
 - Useful: surrogating preserves chronology of events, distinguish between personal and medical details (e.g., "Charcot"), and maintain familial relationships.

De-Identification: A Twofold Method



- 1. Named Entity Recognition (NER) for identifying information (efficiency issue)
- Sanitizing of detected information (optimization issue: minimizing leakage while preserving utility)

Application Context With ICD-10 Code Association Task

ICD-10: Standardized Diagnostic Tool for Recording Health Conditions

- Developed by the World Health Organization (WHO).
- Used worlwide to classify diseases, injuries, and health conditions...
- Reimbursement Impact: Codes are essential for billing and reimbursement systems.

Application Context with ICD-10 Code Association Task

- Manual Coding: Currently, healthcare professionals assign codes manually based on medical records.
- Automated Coding: This task can be framed as a multi-label text classification problem, where the goal is to automatically assign appropriate ICD-10 codes to medical documents.

- Supported by the Bourgogne-Franche-Comté region and the EUR EIPHI.
- In partnership with the Medical Information Department of the HNFC.

Motivation

De-identification of medical reports for associating ICD-10 code

Named Entity Recognition for HIPAA Categories

Iterative Learning on HNFC Datasets: HNFC-NER-EVAL, HNFC-NER-TRAIN

- Increasingly large, progressively more de-identified datasets.
- Automatically pre-labeled and manually validated.
- Model: Hybrid¹, then deep learning only².

NER Results

Method	CamemBERT-ner		MEDINA		FlauBERT-ner		Hybride		Healthinf		Dernoncourt							
Dataset						HNFC									i2b2			
Metric	Р	R	F ₁	Р	R	F_1	Р	R	F_1	Р	R	F_1	Р	R	F_1	Р	R	F_1
PER	89	99	93.8	98.2	97.7	98.2	91.8	97.6	94.6	96.3	99.8	98	97.2	98.9	98	98.2	99.1	98.6
ORG	7.	21.8	11.1	32.6	24.8	28.1	16.9	34.1	22.6	41.1	57.3	47.8	90	51	65.6	92.9	71.4	80.7
LOC	46	67.2	54.6	98.8	81.1	89.1	75.7	66.3	70.7	88.4	95.8	92	99.4	94.4	96.9	95.9	95.7	95.8
DATE		NA		97.7	86.6	91.9		NA		97.7	86.7	91.9	99.2	95.7	97.4	99	99.5	99.2
AGE		NA		91.5	66.9	77.3		NA		91.5	66.9	77.3	98.2	91.8	95	98.9	97.6	98.2
TEL		NA		99.5	97.9	98.7		NA		99.5	97.9	98.7	99.4	99.8	99.6	98.7	99.7	99.2
REF		NA			NA			NA			NA		96.1	79.5	87		NA	
QID		NA			NA			NA			NA		77.2	32	45.3	99.2	98.7	99
Micavg.	70.8	51.5	59.6	98.2	91.2	94.5	85.8	86.7	86.3	94.6	94.9	94.7	98.5	96.4	97.4	98.3	98.5	98.4

¹Tchouka, Couchot, Coulmeau, et al. 2022, "De-Identification of French Unstructured Clinical Notes for Machine Learning Tasks".

²Tchouka, Couchot, and Laiymani 2023, "An Easy-to-Use and Robust Approach for the Differentially Private De-Identification of Clinical Textual Documents".

Surrogate generation strategies: DATEs and AGEs

Temporal data surrogate issues

- 1. Privacy:
 - Very identifying
 - Re-identification risk: the chronology of events
- 2. Utility:
 - The relevance of events
 - The patient's features

Related Work on Date Substitution: Uniform Shifting of DATEs

MIMIC3³, I2B2⁴ datasets.

Attack on HNFC-NER-EVAL Dates with Uniform Shifting

The interval $I = [I_1, \dots, I_{n-2}]$ is NOT modified and is unique in 98% of this dataset.

³ Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. W. H., Feng, M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC3, a freely accessible critical care database. Scientific data, 3(1), 1-9.

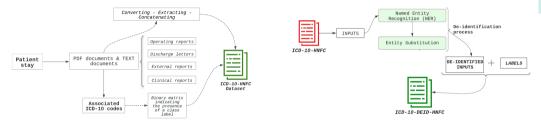
⁴https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

Sanitizing Integrating Metric-Privacy

- Theory: $\forall x_1, x_2, y, \Pr(\mathcal{M}(x_1) = y) \leq e^{\varepsilon \cdot d(x_1, x_2)} \Pr(\mathcal{M}(x_2) = y).$
- Dates: $\mathcal{M}_{date}(x) = x + v \text{ t.q. } v \sim Lap(\frac{1}{\varepsilon}).$
 - Allows to distinguish betw. 08/01/42 and 14/03/18 (birth and death dates of St. Hawking) whereas DP not.
- ► Locations: $\Pr(\mathcal{M}_{loc}(x) = o) \propto e^{\varepsilon \cdot d(x,o)}$, s.t. *d* an epidemiological based distance.
 - ► Avoid to sanitize Dijon with Beze too often (in BFC but epidemiologically ≠).

ICD-10 Code Association⁵

Datasets Buildings



⁵Tchouka, Couchot, Laiymani, Selles, et al. 2023, "Automatic ICD-10 Code Association: A Challenging Task on French Clinical Texts".

ICD-10-HNFC dataset : Challenging Metrics

Descriptive statistics of ICD-10-HNFC dataset

	Dataset	Dataset with class reduction
Documents	56014	-
Tokens	41868993	-
Average sequence length	747	-
Total ICD codes	416125	415830
Unique ICD codes	6160	1564
Codes with less than 10 examples	3722	523
Codes with 100 examples or more	641	471

Two issues in ICD-10 codes association

- 1. Input patient file : usually a long sequence:
 - Average sequence length (747) > maximum input size for Transformers (512): scalability issue
- 2. Large number of different codes, labels, but sparse
 - 6160 unique ICD codes, 3722 of whom have only been less than 10 times: scalability and sparsability issue

ICD-10 Code Association– Results

State-of-the-Art⁶ Code Association Results

Models	Language	Dataset	Labels	F ₁ -score	
PLM-ICD ⁷	English	MIMIC 2	5,031	0.5	
	U	MIMIC 3	8,922	0.59	
8 Dalloux	French	Personnel	6,116	0.39	
Dalloux	riench	reisonnei	1,549	0.52	
PROPOSAL			6,160	0.47	
PROPUSAL	French	ICD-10-HNFC	1,564	0.55	
Dalloux	riench		6,160	0.27	
Dailoux			1,564	0.35	

Impact of De-identification on Results

Dataset	Labels	Precision	Recall	F ₁ -score
ICD-10-HNFC		0.47	0.46	0.47
ICD-10-DEID-HNFC	6160	0.44	0.43	0.44
ICD-10-TAG-HNFC		0.43	0.41	0.42

⁸Dalloux et al. 2020, "Supervised Learning for the ICD-10 Coding of French Clinical Narratives".

⁶Tchouka, Couchot, Laiymani, Selles, et al. 2024, "Differentially private de-identifying textual medical document is compliant with challenging NLP analyses: Example of privacy-preserving ICD-10 code association".

⁷Huang, Tsai, and Chen 2022, "PLM-ICD: automatic ICD coding with pretrained language models".

GitHub Open source implementation

- Automatic ICD-10 code classification system in French⁹
- \bullet Surrogate generation strategies in de-identification with metric privacy mechanism 10
- Named Entity Recognition system in medical context¹¹
- Automatic ICD-10 code association with CNN^{12}

⁹Automatic ICD-10 code classification system in French. https://github.com/mlfiab/icd10-french

- ¹⁰Surrogate Generation in De-identification. https://github.com/mlfiab/surrogate-deid
- ¹¹Named Entity Recognition system in medical context. https://github.com/mlfiab/ner-french
- 12 Automatic ICD-10 code association with CNN. https://github.com/mlfiab/cnn-icd10