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Resum

La present tesi està dedicada a l’estudi dels làsers de semiconductor sotmesos a re-
alimentació i a acoblament òptics amb retard. Les complexes propietats dinàmiques
i espectrals d’aquests sistemes han sigut investigades emprant les actuals tecnologies
de detecció en l’àmbit de les telecomunicacions. Mitjançant aquestes eines, hem sigut
capaços de caracterizar experimentalment propietats dels nostres sistemes fins aleshores
desconegudes. Durant aquest treball, ambdós tipus de resultats, fonamentals i aplicats,
són presentats pels diferents experiments que hem realitzat.

La primera part de la tesi se centra en el sistema d’un làser sotmès a realimentació
òptica amb retard. El problema de la caracterització de la dinàmica s’aborda des de
la perspectiva de les escales de temps del sistema, relacionant els règims dinàmics
amb les freqüències caracteŕıstiques del làser amb realimentació òptica. Hem trobat
emṕıricament que els quocients entre aquestes freqüències caracteŕıstiques determina
completament la dinàmica resultant, el que constitueix un enfocament independent de
qualsevol model que es pot utilitzar, al mateix temps, per testejar la validesa dels models
numèrics que tinguin la intenció d’explicar el comportament dinàmic d’aquests làsers.
A més, la validesa general del nostre enfocament s’ha confirmat mitjançant la seva apli-
cació a làsers de caracteŕıstiques diferents.
Les propietats espećıfiques de la dinàmica d’aquest sistema també s’han caracteritzat a
partir de la funció d’autocorrelació de la intensitat. Per aquest propòsit, l’autocorrelació
experimental es compara amb l’autocorrelació obtinguda a partir del model per a un
oscil·lador lineal estocàstic amb retard. La relació entre els paràmetres del model i els
paràmetres del sistema experimental s’analitzen i discuteixen juntament amb els ĺımits
de validesa d’aquest enfocament.

En la segona part, hem estudiat diferents sistemes de dos làsers acoblats amb retard.
El fenomen de sincronització del caos és explorat en dues configuracions diferents: una
configuració d’acoblament unidireccional on el senyal del làser amb realimentació retar-
dada també està acoblat òpticament a un segon làser, i un esquema bidireccional de dos
làsers acoblats mútuament amb realimentació pròpia. A la primera configuració, hem
estudiat bàsicament la relació entre la consistència de la dinàmica i la possibilitat de
sincronitzar el segon làser. En aquest últim esquema, la robustesa de l’estat sincronitzat
es caracteritza en funció del desajustament en els paràmetres i de l’efecte del soroll.
A la pràctica, utilitzam el coneixement adquirit en els experiments de sincronització
per implementar un protocol d’intercanvi de clau segura a través d’un canal públic en
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l’esquema d’acoblament bidireccional. A més de demostrar experimentalment la possi-
bilitat d’implementar aquest protocol, analitzam els seus avantatges i debilitats.

Finalment, presentam una implementació fotònica d’un sistema dinàmic que exper-
imenta dos temps de retard diferents depenent de l’estat del sistema. En aquest sis-
tema experimental hem estudiat les caracteŕıstiques espectrals promitjades en el temps,
aix́ı com també les condicions necessàries perquè la dinàmica ocorri en estats separats.
També hem investigat la intensitat i la dinàmica dels espectres òptics en temps real per
demostrar l’existència i estudiar les propietats d’aquesta dinàmica on el retard depèn de
l’estat del sistema. Curiosament, propietats qualitativament similars es poden trobar a
partir d’un model numèric adequat d’aquest sistema.

En resum, al llarg d’aquesta tesi s’han presentat resultats d’àmbits fonamental i
aplicat en el camp de làsers de semiconductor acoblats òpticament amb retard. La
fenomenologia presentada és de potencial utilitat en una varietat d’aplicacions que van
des de la computació de reservoris basada en sistemes fotònics fins a les comunicacions
amb senyals caòtiques. A més, els avenços de caire fonamental poden ser potencialment
aplicats a altres classes de sistemes dinàmics més enllà dels làsers de semiconductor.
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Abstract

The present thesis is devoted to the study of semiconductor lasers subject to delayed
optical feedback and coupling. The complex spectral and dynamical properties of these
systems have been investigated using state-of-the-art telecommunications detection tech-
nologies. With such tools, we have been able to experimentally characterize previously
unknown features in our delay-coupled systems. Along this work, both fundamental and
applied results are presented for the different experiments investigated.

The first part of the thesis is focusing on the system of the single delayed feedback
laser. The problem of feedback characterization is approached from a time scale per-
spective, relating the dynamical regimes to the characteristic frequencies of the delayed
feedback laser. We have empirically found that the ratios of these characteristic frequen-
cies completely determine the dynamical behavior. This constitutes a model independent
approach that can be used, for example, to test the validity of numerical models that aim
at explaining the dynamical behavior of these lasers. Furthermore, the general extent of
our approach is validated by measuring various laser diodes with distinct characteristics.
Specific properties of the dynamics of the single laser with feedback system have also
been characterized by means of the intensity autocorrelation function. For this purpose,
the experimental autocorrelation is compared with the autocorrelation obtained from
a model of a stochastic linear oscillator with delay. The relation between the model
parameters and the experimental system parameters is analyzed and discussed together
with the limits of validity of this approach.

In the second part, systems with two delay-coupled lasers are studied. The phe-
nomenon of chaos synchronization is explored in two different configurations: a uni-
directional coupling configuration where the delayed feedback laser signal is optically
coupled to a second laser, and a bidirectional scheme of two mutually coupled lasers
with self-feedback. In the first configuration, the relation between the consistency of
the dynamics and the synchronizability with the second laser is studied. In the latter
scheme, the robustness of the synchronized state is characterized against detuning in
parameters and noise.
The knowledge gained in the synchronization experiments is used to implement a clas-
sical public-channel secure-key exchange protocol in the bidirectional coupling scheme.
This protocol is demonstrated experimentally, and its advantages and weaknesses are
analyzed.

Finally, we present a practical photonic implementation of a dynamical system expe-
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riencing two different delay times depending on the state of the system. The stationary
spectral characteristics of this experimental system are studied and the conditions for
the dynamics to occur in separated states are highlighted. We have also investigated
the real-time intensity and optical spectrum dynamics to demonstrate the existence and
properties of state-dependent delay dynamics. Qualitatively similar properties can be
found from a proper numerical model of this system.

Altogether, we have presented fundamental and applied aspects of semiconductor
lasers optically coupled with delay. The presented phenomenology is of immediate po-
tential use for a variety of applications that range from photonics-based reservoir com-
puting to chaos communications. In addition, the presented fundamental insights can
potentially be extended to other classes of dynamical systems.
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Chapter 1

Introduction

1.1 Motivation

Since the demonstration by Heinrich Rudolf Hertz in 1887 that electromagnetic waves
can propagate in free space1, many inventions have been made that have resulted in a
revolution in the way we humans communicate. Through the 20th century, telecommu-
nications have undergone profound changes resulting in a globally connected world with
the messages traveling at the speed of light. Different milestones have contributed to
the global spread of information, like the radio or the optical fibers. An unprecedented
number of signals travel nowadays encoded as binary digits across the planet connecting
the humanity under a huge heterogeneously composed network of networks, the Internet.

Nowadays, a variety of applications are incrementing Internet traffic: e-mails, video-
calls, banking transactions, voting, multimedia cloud services, etc., and the correspond-
ing traffic will further significantly increase in the foreseeable future. Moreover, an
increasing number of devices are joining this global connectome2. Devices like laptops,
tablets and especially smartphones are connected in a number that already exceeds the
sum of all past existent devices. Indeed, the next step in this global infrastructure is
expected to be even bigger, the transition towards what is known as the Internet of
Things. A concept that promises linking everyday “real world” objects like buildings
or vehicles to the previously software oriented devices by means of (wireless) sensor
networks, control systems, and automation.

In this scenario, Photonics is playing a central role. For already more than three
decades, global telecommunications rely on the backbone of photonics technologies using
light to create, transmit, and display most of the digital information that is generated.
Photonics technologies are offering two exclusive advantages to global telecommunica-
tions. Firstly, the development of cheap, fast and efficient emitters and receivers: the
semiconductor-based laser diodes and photodiodes. On the other hand, the possibil-
ity to transmit the huge amount of data using semiconductor lasers at the speed of light
and with low losses via optical fibers. Single-mode silica fibers typical transmission

1Theorized by James Clerk Maxwell’s electromagnetic theory of light in 1873.
2Name used in analogy to the map of neural connections in the human brain.
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2 CHAPTER 1. INTRODUCTION

capacities are in the range of 100 Gbit/s, only limited by nonlinear effects [1] 3.
In spite of their high transmission capacity, the growing demands of global telecom-

munications in combination with the chances to embrace new fields of application trigger
more research in photonics. Some of the new applications may come from the variety
of nonlinear properties of the photonic devices. The study of these properties have
brought improvements in already existing applications and have opened the door to
completely new applications, like the possibility to build all-optical computers [2, 3].

In this wide panorama, our work focuses on a particular subset of the nonlinear
phenomena in photonics devices: the effect of delayed optical feedback and coupling on
the emission dynamics of semiconductor lasers. Traditionally considered as a nuisance in
applications like telecommunications or optical-data storage [4], the sensitivity of these
devices to external perturbations offer promising opportunities when seen under the
perspective of new applications. Decades after the first reports of feedback instabilities,
there exists a renewed interest in delayed feedback effects due to novel scientific and
technological insights. Moreover, we now have the possibility to detect and study in
full bandwidth the resulting characteristics. The capabilities to control the variety of
complex dynamics further increases the chances to put semiconductor lasers with delayed
feedback in the center of a number of future photonic applications [5].

In this thesis, phenomena due to delayed optical feedback in semiconductor lasers
are revisited with new findings that dramatically simplify the zoo of complex dynamics
known up to this moment. A deeper understanding of the origin (and tailoring) of the
feedback induced instabilities could provide a new perspective on the dynamical regimes
induced by optical feedback and could prove very useful for applications. The key idea
is to exploit the knowledge gained on the interdependencies between the parameters and
the laser operating conditions that determine the feedback regimes to tailor the system
to various application needs.

Also, the nonlinear phenomenon of chaos synchronization in delay-coupled semicon-
ductor lasers, is studied in this thesis with the application to secure-communications in
mind. In the particular objective is to find the ideal experimental conditions for good
identical synchronization between two coupled lasers and implement a secure-key distri-
bution scheme. The interest in this particular application becomes clear in the context
of a global and ubiquitously connected world. Concepts like security and privacy of
telecommunications do no longer belong to a reduced number of privileged participants,
but to the whole community of connected users. Privacy is without doubt a universal
right, and everyone should be able to use this right if he or she wants to. Therefore,
satisfactory solutions to achieve privacy in a globally connected world are an important
subject of research.

1.2 Semiconductor Laser Devices

The importance that semiconductor lasers (SL) have in global telecommunications have
already been mentioned. Nevertheless, actual semiconductor-based laser diodes have

3The low-loss transmission window encompasses up to several tens of terahertz potential bandwidth.



1.2. SEMICONDUCTOR LASER DEVICES 3

evolved considerably since their origins at three different laboratories in 1962 [6–9].
First bulk semiconductor homostructure devices only allowed for pulsed operation at
liquid nitrogen temperatures. The practical innovations towards room-temperature CW
operation are associated with the introduction of double heterostructure and quantum
well active media, enormously enhancing the efficiency of the light confinement and
amplification in the SL.

Today, SL are small and efficient devices regularly used in a variety of applications
like optical data storage, metrology, spectroscopy, material processing, biophotonics,
pumping of other lasers and optical telecommunications. In particular, its application
to long-distance optical data transmission as a high-speed light source has permitted the
world-wide optical fiber communication networks. At present, quantum well lasers are
acknowledged as a standard for optical communications, with satisfactorily low operating
currents. The main features of SL that have led to their impressive development and
their ubiquitous application in many fields are:

− A wall-plug efficiency up to more than 60%.

− Small dimensions, typical volumes range in size from 100 µm3 to 1 mm3.

− Fast internal time scales that allow for high frequency modulations up to tens of
GHz.

− Narrow spectral linewidth. The SL used for telecommunications typically exhibit
optical linewidths of few tens to hundreds of Megahertz.

− Diversity of structures and properties. Modern epitaxy techniques allow individual
atomic layers growth and lateral structuring, tailoring with great precision the
physical properties and the device structure.

− Low costs per laser and possibility of integration in photonic integrated circuits.

All types of lasers share the same conceptual design, and SL are no exception. They
are constituted of two basic ingredients: an active medium and a resonant cavity.
The active medium amplifies the light by stimulated emission of radiation once the
pumping has created a population inversion. The resonator shapes the optical modes
and couples the coherent light out. In the paradigmatic example of SL, the thin depletion
region of the diode’s pn junction acts as the active medium and the resonator is of the
Fabry-Perot type, with the cleaved facets of the semiconductor crystal acting as the
reflectors. Depending on the semiconductor alloy used as gain medium, the laser will
emit in different wavelengths that range from UV to near infrared.

SL have also evolved in terms of different structures of the gain material. From bulk
to quantum well, and from quantum well to quantum dashes and dots and to quantum
cascade lasers. Quantum dot lasers (QDL) are a relatively new kind of semiconductor
laser made from an ensemble of nano-sized crystals grown inside the semiconductor ac-
tive region. These crystals, referred as dots to highlight its discrete volume, are the
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laser light emitters. QDL are considered the natural evolution of state-of-the-art quan-
tum well lasers for many applications. In particular, fields like telecommunications,
spectroscopy, or medical diagnosis could benefit from their enhanced properties (higher
potential modulation bandwidths, typically higher characteristic temperatures, etc...).
Quantum cascade lasers (QCL) [10, 11] are the most distinct devices in terms of their
operating principle. It makes use of engineered inter sub-band transitions in carefully
designed QW layer structures do not involve electron-hole recombinations. The electrons
are injected in the upper band and coherent radiation is emitted upon carrier radiative
relaxation to lower bands (engineered quantum states) within the conduction band. QCL
have become a SL alternative when the desired frequencies are in the mid-infrared to
THz range.

SL also come in a variety of distinct resonator structures. Laser cavities that differ
from the Fabry-Perot type have interesting properties for particular applications. Some
examples are useful to illustrate different possible laser cavities. The ring laser structure
is present in many types of lasers, not only in semiconductor lasers. In a ring laser,
the cavity has the shape of a ring and light propagates through it in two possible direc-
tions: clockwise and counter-clockwise. When both counter-propagating waves co-exist
in the ring cavity, they interfere in a pattern that changes with rotations of the laser.
Consequently, a widespread application for these lasers is to build gyroscopes [12, 13].
Distributed Bragg reflector (DBR) lasers and distributed feedback (DFB) lasers are semi-
conductor lasers that have resonator cavities based on the effective reflectivities caused
by interference of light when it propagates through their grating structures. In DBR
lasers two Bragg gratings are placed at either side of the cavity acting as mirrors. In
contrast, DFB lasers are lasers where the whole cavity consists of a periodic structure.
This periodic structure is usually obtained by modifications of the refractive index com-
bined with a phase shift element in the middle of the cavity. Both laser structures (DBR
and DFB) exhibit single-mode operation and are widely used in telecommunications.
Finally, vertical-cavity surface-emitting laser (VCSEL) structure have the particularity
that emits light perpendicularly to the semiconductor wafer surface. The VCSELs have
two epitaxially grown Bragg reflectors placed below and above the thin active medium
layer. VCSELs are versatile devices that allow for fast modulation rates, single-mode
emission, and easy collimation into an optical fiber. These conditions make them very
suitable for data-communications uses. Furthermore, thousands of these VCSELs are
fabricated on a single wafer. In fact, the coincidental vertical direction for the growth and
for the emission eases their operation as laser arrays, where they can achieve combined
emission powers in the order of watts.

Discrete-Mode Laser-Diodes present an etched-ridge Fabry-Perot structure that has
been designed for longitudinal-modes selection. Those lasers are the chosen devices in
the majority of the experiments that have been implemented in the present thesis. The
particularity of their design ensures single-longitudinal mode operation for a wide bias
currents range and the typical moderately-high powers related to edge emitter devices.
Additional information on the experimental characterization of these devices can be
found in appendix A.
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1.3 Nonlinear Dynamics of Semiconductor Lasers

A particularly interesting dynamical property of SL is their nonlinear response to per-
turbations, which is manifested in a pronounced sensitivity to, e.g., noise, variations in
the injection current, external optical injection or delayed optical feedback. Even small
amounts of re-injected light can destabilize the SL emission [14–16] and cause its dynam-
ics to exhibit chaotic behavior. For applications in which stable emission is needed, even
the reflections from the facet of any coupled fiber4 can give rise to destabilizing feedback.
Such instabilities are usually prevented via the introduction of optical isolators to shield
the laser diode from feedback. The problem is that this measure implies additional costs
and is detrimental in the design of compact and miniaturized photonic integrated cir-
cuits. These instability problems were one of the first questions that were addressed in
the study of the nonlinear properties of SL subject to delayed optical feedback [17].

Next, a different point of view was adopted and feedback effects gained interest
from the perspective of nonlinear dynamics (NLD) community. The different dynamical
regimes of a delay-coupled SL depend directly on the pump current and on the feed-
back parameters. The main feedback parameters are the amount of light re-injected
in the cavity (feedback rate), the length of the external cavity (EC) and the feedback
phase. A SL subject to delayed optical feedback or coupling may exhibit many charac-
teristic high-dimensional NLD phenomena, including hyper-chaotic regimes [18, 19] and
chaos synchronization when delay-coupled to other SL [20]. Moreover, since the highly
complex dynamics generated in delay-coupled lasers are used in applications as diverse
as chaotic secure communications [21], ultrafast random bit sequence generation [22],
rainbow refractometry [23], neuroinspired computation and ultrafast all-optical signal
processing [24, 25], a proper experimental and theoretical characterization and under-
standing is extremely desirable. It is clear that the reliability and flexibility of these
practical applications will benefit from the fundamental study of the dynamical proper-
ties of these delay systems.

The importance of SL subject to delayed optical feedback even goes beyond the
particular interest in laser dynamics and or their photonics related applications. SL
are well-controlled and tunable experimental systems in which we can study very accu-
rately delay-induced phenomena. Therefore, SL subject to delayed optical feedback are
excellent testbed examples of delay-coupled systems in general, being of fundamental
importance in a variety of fields. Some examples of these fields are chaos control [26],
neuroscience [27], traffic dynamics [28], population dynamics [29], gene regulatory net-
works [30, 31], generic models [32, 33], and encrypted communications [21]. The whole
range of possible applications of SL adds even more interest to the study of NLD phe-
nomena in SL.

To understand the origin of the nonlinear phenomena in SL we must take into ac-
count two distinct SL material properties. First, the fact that many SL can be described
as Class B lasers. To be considered class B lasers, SL must fulfill some assumptions
like, e.g., single mode emission or no spatial extension. This classification of lasers imply

4Commercial telecommunications lasers are fiber pigtailed.
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that the typical electric field and carriers inversion have decay rates much slower than
the decay rate of the medium polarization. In class B lasers, periodic solutions, known
as relaxation oscillations, are possible in which the laser energy oscillates between inver-
sion and optical field. Such oscillations can be undamped through external parameters
modulation or by delayed feedback.

The key property to understand the sensitivity of SL to delayed optical feedback
and/or external parameter modulation is the linewidth enhancement factor (α). It
represents the typically strong amplitude-phase coupling of the electromagnetic field and
the laser medium [34]. This nonlinear effect is caused by the carrier induced variations
in the real and imaginary parts of the semiconductor material susceptibility, χ(n) =
χr(n)+iχi(n). This means that any small amplitude perturbation caused by spontaneous
emission (inherently present in SL), bias injection modulation or by delayed optical
feedback will cause a perturbation in the phase of the field. The linewidth enhancement
factor (α parameter) is defined as [35]:

α = −d(χr(n))/dn

d(χi(n))/dn
(1.1)

where d(χr(n))/dn and d(χi(n))/dn are the respective derivatives of the real and
imaginary parts of the susceptibility with the carrier inversion. The particularities of
lasing transitions in the semiconductor medium, which occur between two partially filled
energy bands and not between discrete energy levels, gives rise to larger values of α in
SL in contrast with other types of lasers, like gas lasers, where α = 0. The inter-band
transitions lead to a strong amplitude-phase coupling of the electromagnetic field in
the laser medium and to the fast characteristic time scales of the SL. α is one of the
fundamental parameters important for the dynamics of SL and is typically the most
pronounced intrinsic nonlinearity in these kind of lasers.

The α parameter is also the origin for an anomalous broadening of the semiconductor
laser’s linewidth, first explained by Henry in 1982 [35], giving rise to an enhancement
of the laser linewidth by a factor of 1 + α2. It is also important for the modulation
response of the SL, because the amplitude-phase coupling due to α is the cause of
significant frequency chirp for high-bandwidth modulations.

1.3.1 Delayed Optical Feedback Effects on the Emission of Semicon-
ductor Lasers

The simplest configuration of delayed optical feedback is sketched in Figure 1.1. It
basically compromises the laser diode, the light propagating channel, and a mirror. The
laser diode emits in continuous wave under unperturbed operating conditions. The
mirror redirects a fraction κf of the laser’s emitted optical field into the laser cavity
again after a time τf . The channel is considered linear and only marginally affects the
properties of the propagating light. In experimental implementations of this scheme, the
channel can be formed by air or by an optical fiber.

Even small amounts of reinjected light, < −50 dB [36], may affect the laser emission.
Slightly higher feedback levels are already related with the destabilization of the laser
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Laser

Diode

Mirror

Figure 1.1: Schematic representation of the feedback phenomenon components. A fraction, κf , of the
light emitted by the laser diode is fed back with a certain delay τf .

emission and the corresponding drastic increase of the emission linewidth. In techno-
logical applications of semiconductor lasers, the role of the mirror can be played by a
variety of elements like, e.g., the fiber connections in telecommunications systems. In
many cases, reflections will originate at distances from the laser diode that can be con-
sidered long when compared with the characteristic laser intensity dynamics time scales.
This case is usually known as long-cavity feedback regime.

The first and most straightforward consequence of delayed feedback that can be
measured in SL is its effect on the output power. It is well known that polarization-
maintained optical feedback typically reduces the laser’s threshold5. This threshold
reduction is due to the photons being re-injected into the laser cavity, which reduce the
total losses and cause the lasing regime to set on at lower currents than in the solitary
laser case. In consequence, under constant biasing, the output power is usually higher
when delayed feedback is present.

Figure 1.2 displays two different power-current characteristics of the same laser un-
der different experimental conditions. The blue curve corresponds to the case of the
laser without feedback. In contrast, the orange line, with a reduced threshold current,
corresponds to the case of the laser subject to delayed optical feedback.

The first identifiable feature is the distinct slopes that both curves have above thresh-
old. This difference is related to the change in external differential quantum efficiency
(ηd) due to the reinjection of light and the corresponding change in balance of the output
facet reflectivity.

The laser used in this measurement has high power emission from one laser facet
(the output facet) and low power emission from the other facet. This asymmetry in the
power emission is engineered by asymmetric coating of the laser facets: one facet with
high-reflection (HR) coating (typical reflectivities larger than 90 % ) and a facet with
anti-reflection (AR) coating (typical reflectivities smaller than 10 %). These different
coatings lead to asymmetries of carrier density and optical field along the laser cavity
of the solitary laser. Our laser is fiber-pigtailed to the AR coated facet side of the laser
and the external cavity mirror is consequently connected to this facet. Once the delayed
optical feedback is active, a substantial decrease in the slope of the power-current curve
can be found, even leading to that both curves, with and without optical feedback,
cross for a certain value of the injection current. This value is referred to as the cross

5It is important to specify the type of feedback at this point. Neither incoherent feedback nor
polarization-rotated feedback typically cause a reduction of the lasing threshold
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Figure 1.2: Power-current characteristics of a single-mode laser under different operation conditions: in
solitary emission (blue line) and when subject to delayed optical feedback (orange line). The temperature
of the laser is set to 22 °C. The inset is a magnification of the region around the two distinct laser
thresholds.

over point [37]. The reason of the less steep slope is not that the laser’s output power
decreases in the presence of optical feedback, but that there is a change in the laser’s
cavity power balance caused by an increase in the effective power reflectivity on the
AR-coated facet.

Another difference between both curves is the kink close to the solitary laser threshold
in the feedback case (region highlighted at the Figure 1.2 inset). This loss of linearity
in the power-current characteristics above threshold, not present in the solitary laser
case, can be related with dynamical instabilities of the output power [16]. The charac-
teristic frequencies these low-frequency fluctuations exhibit are significantly lower than
other laser characteristic frequencies as, e.g., the relaxation oscillation frequencies, the
laser internal round trip frequency, and the external cavity round trip frequency. These
fluctuations occur close to the solitary laser threshold for moderate to strong feedback
conditions.

As explained in the previous section, the linewidth enhancement factor (α) plays
a crucial role in the destabilization of the laser emission via delayed optical feedback.
This parameter acts as the coupling mechanism between light intensity and spectral
emission properties. In consequence, any intensity fluctuation in the laser’s emission
will be fed back by the delay line, amplified by the gain medium, and coupled to the
optical frequency via α. Figure 1.3 represents the influence of delayed optical feedback
on the optical spectrum of a single-mode laser diode.

Figure 1.3a presents the experimental optical spectra with and without feedback as
detected from a grating optical spectrum analyzer (resolution 0.05 nm). This 10 nanome-
ter scale permits to identify that this laser emits in a single-longitudinal mode under
both conditions. It can be observed that the delayed feedback spectrum is asymmetri-
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Figure 1.3: Impact of delayed optical feedback on the linewidth of a laser diode. Panel (a) plots the
spectra measured with a grating spectrometer. In panel (b) the phenomenon of coherence collapse is
shown in high resolution. The arrow indicates the broadening direction of the optical spectrum when
the feedback strength increases.

cally broadened towards higher wavelengths. Nevertheless, it is hard to resolve further
particular effects on the laser’s linewidth from this plot. Indeed, one feature that can
be recognized is the emission level in the side-modes of the laser diode resonator cavity
with a side-mode suppression ratio larger than 40 dB. This is a cavity with a separation
between the cavity modes of 1.2 nm (that corresponds to the resonance conditions).

A more highly resolved view of the feedback effects on the laser’s linewidth are
displayed in Figure 1.3b, where the spectra have been measured with a high-resolution
optical spectrum analyzer [38] (resolution 10 MHz). The different spectra correspond
to different feedback strengths. The black curve plots the solitary laser spectrum. The
higher the value of the feedback strength (the lighter the curve color), the broader
becomes the optical spectrum, particularly broadening towards lower frequencies. For
the highest feedback conditions (orange curve) in this particular device, the broadening
of the spectrum already covers more than 20 GHz. This is a well known phenomenon
frequently referred in literature as coherence collapse [39].

The multi-GHz broadening of the optical spectrum coincides with the appearance of
sub-nanosecond fluctuations in the output intensity. Figure 1.4 illustrates the impact
of delayed optical feedback on both emission characteristics of semiconductor lasers.
Figures 1.4b and 1.4d plot the intensity time traces corresponding to two illustrative
conditions. The solitary emission is depicted in panels 1.4a and 1.4b. Here, the optical
linewidth is narrow (≤ 1MHz) and the relaxation oscillation sidebands are clearly iden-
tifiable as the only signature of dynamics reflected in the optical domain. The intensity
shows small fluctuations around a constant value, which are the combination of sponta-
neous emission amplification (relaxations oscillations) and detection noise. In contrast,
in panels 1.4c and 1.4d, the behavior under delayed optical feedback is illustrated. The
optical spectrum experiences a dramatic broadening, expanding its linewidth from MHz
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Figure 1.4: Fingerprint of the coherence collapse phenomenon on the intensity dynamics. The optical
spectra depicted in panels (a) and (c) correspond to the solitary laser and the delayed feedback laser
scenarios respectively. The corresponding AC-coupled (no DC voltage component) time traces are plotted
in panels (b) and (d). The tens of GHz linewidth collapse is reflected in fast and chaotic oscillations of
the corresponding time trace.

to tens of GHz. The intensity dynamics experiences the corresponding expected desta-
bilization, with chaotic pulsations on sub-ns time scale. Detection bandwidth plays a
fundamental role in the study of the intensity dynamics of this system. The fast intensity
pulsations, that remained mostly unresolved for a long time, can now be characterized
in detail due to multi-GHz scopes in combination with fast photodetectors.

The last characterization tool that we will illustrate is the RF power spectrum.
The presence of sub-nanosecond chaotic pulsations will have the direct consequence of
broadening the RF bandwidth up to multiple GHz.

Figure 1.5 depicts the fingerprint of the delayed feedback on the RF power spectrum.
In a multiple GHz scale (panel 1.5a) it can be seen that the spectrum broadens from
roughly 2 GHz to a spectrum flattened by the multi-GHz hyperchaos signature. The
relaxation oscillations frequency are clearly visible in the solitary laser conditions (highest
power frequency in the black curve). In the two distinct values of the feedback strength
(green and red lines represent successively higher feedback strengths) the maxima peaks
broaden and shift towards higher frequencies.

Figure 1.5b is an illustration of the fingerprint of the delay time in the laser spectrum
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Figure 1.5: Evolution of the RF power spectral density (PSD) under delayed optical feedback. Panel
(a) shows the PSD over a 12 GHz frequency span for increasing feedback conditions. The solitary laser
emission (black line) and two successively higher values of the feedback strength (green and red lines)
are depicted. Panel (b) depicts a zoom of the first 100 MHz in a feedback scenario where the signature
of the inverse delay time is clearly recognizable. The external-cavity frequency resonances are clearly
visible as equidistant peaks separated by 13.43 MHz.

for such long external cavity feedbacks. The inverse of the external-cavity roundtrip time
is clearly recognizable as resonance peaks in the RF power spectrum. These peaks are
separated in frequency a distance corresponding to the inverse of the light flight time in
the external cavity, here 13.43 MHz (τf ≃ 74.5 ns).

1.4 Chaos Synchronization in Optically-Coupled Semicon-
ductor Lasers

In section 1.1 we discussed the central role of photonics in nowadays telecommunications.
Indeed, it would be desirable if this physical layer that sustains the global connectome,
could be employed to realize extra security and privacy needed in the present.

In our days, privacy of communications is assured via software-based cryptogra-
phy [40]. The actual paradigm is the public-key cryptography, an approach mostly
based on algorithmic procedures for asymmetric ciphering. It is beyond the scope of
this introduction to enter into the details of the specific methods used to encrypt and
decrypt the data using algorithmic-based public-key cryptography, but we will give a
brief overview of the advantages and possible risks. The obvious advantage in compar-
ison with the methods prior to public-key cryptography is the applicability to today’s
widely connected world. Indeed, this approach has hugely helped to the democratization
of encrypted communications.

The standard cryptosystem in this respect is known as the RSA (after MIT professors
Ravi, Shamir, and Adleman) [41]. The reason why this software based cryptosystem is
considered relatively secure and has become a standard is related to the mathematical
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difficulty to break it. The security of this algorithm relies on the difficulty to decompose
very large numbers into its prime factors. The best known algorithms associated with
the prime numbers factorization face a complexity that grows exponentially with the
size of the integer number to factorize. The “security rule” is actually quite simple, the
bigger the number used, the more secure the communications is.

However, a change in the complexity of factoring big numbers could undermine the
security of most encryption systems. This threat could come either from the world of
mathematics in the form of some advanced algorithm for the factorization6 or from the
world or physics in the form of, e.g., the quantum computer approach [42].

Therefore, hardware-based encryption of the information via the physical layer rep-
resents an attractive option for the security enhancement of today’s algorithmic security
schemes. Photonics systems, given their privileged position as the backbone of mod-
ern global telecommunications, provide a realistic chance to implement this possibility.
Among the possible options of photonics-based secure communications schemes, in the
present work we implement a secure-key protocol based on identical chaos synchro-
nization between two delay-coupled SL. Advantages and limitations will be extensively
discussed in the chapter devoted to this topic.

Chaos synchronization is the natural evolution in the NLD framework of the classical
synchronization phenomenon, already discovered in the mid 1660’s by Christiaan Huy-
gens. The key idea behind the synchronization phenomenon is the subtle nature of the
coupling between the synchronized systems. The coupling should not drive the system
with higher intensity than the intrinsic dynamics of the system [43].

In the specific topic of chaos synchronization, the pioneering work by Fujisaka and
Yamada [44] was soon followed by Pikovski’s idea of synchronization of chaotic attrac-
tors [45], and by Afraimovich’s first demonstration [46]. Finally, the concept was ex-
perimentally demonstrated in the beginning of the 1990’s by Pecora and Carroll under
convenient coupling conditions [47–49].

Chaos synchronization was numerically demonstrated for SL by Winful and Rahman
already in 1990 [50]. However, robust experimental synchronization between all-optical
chaotic SL required more time. Two optically-coupled semiconductor lasers exhibited
synchronized dynamics in the sub-nanosecond time scale for weak to moderate coupling
rates and long delay times in [20, 51]. Figure 1.6 illustrates an exemplary scenario of
identical chaos synchronization between two optically-coupled SL in experiments.

The original concept of chaos synchronization in SL contemplated perfect synchro-
nization conditions by means of coupling of identical laser units. In this type of system,
the information is secured by means of hiding it within (or nonlinearly mixing it with)
the noise-like output of the chaotic emitter. This idea is only successful if the receiver
is able to exactly extract the deterministic chaotic waveform from the mixed message-
dynamics information. This mechanism was coined chaos-pass-filtering [51] and had the
additional advantage that an hypothetic eavesdropper could only extract the message

6In fact, there exist no mathematical limitation to the possibility of finding a simplification method
that would lower down the complexity to factorize prime numbers and convert an exponentially difficult
problem into a polynomially difficult problem.
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Figure 1.6: Example of identical chaos synchronization between two delay-coupled lasers in experi-
ments. The fast sub-ns chaotic pulsations are well synchronized up to the level of detection noise.

with an identical laser. It is obvious that the difficulty for the eavesdropper to find an
identical device is enhanced with respect to that of the emitter and receiver, that may
have shared this information beforehand.

The first proposed schemes of optical chaos cryptography involved solid-state lasers
and fiber ring lasers [52, 53]. Using semiconductor lasers delayed-coupling is a very
advantageous mechanism to achieve chaos cryptography, because SL coupled in such
a way typically display high-dimensional chaotic dynamics, with hundreds of positive
Lyapunov exponents. Consequently, intensive research on SL systems with feedback has
been carried out to demonstrate that photonics-based chaos cryptography is possible in
their synchronized hyperchaotic regime [54,55].

However, there is a drawback in the proposed schemes, identical chaos synchroniza-
tion is difficult to achieve in experiments. Indeed, the unavoidable mismatches present
in real systems (that can be very small but nevertheless significant in the context of
NLD) and a variety of noise sources typically degrade the synchronization quality and
might induce frequent failures in the explained scheme.

The approach we follow in this thesis to overcome this problem is via a particular
key-distribution protocol. This scheme relies on identical synchronization (therefore it
needs at least very similar units), but exchanges only a key between both units, not the
full message. Therefore we can afford loosing some bits due to mismatches and due to
noise-induced desynchronization events and still exchange those secure synchronized bits
between the two coupled units. We will demonstrate that our proposed scheme is robust
against desynchronization events and, therefore, suitable for field technological applica-
tions, where parameter mismatches between the lasers and noise in the communication
channels are unavoidable.
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1.5 Outline of this Thesis

In the present thesis, the reader will find a study on the dynamics of semiconductor lasers
optically coupled with delay. The thesis can be divided into three conceptually different
parts. In the first part, centered around the system of a single laser subject to delayed
feedback, different aspects of the dynamical behavior of this system are characterized in
detail. In the second part, our attention shifts from the single laser system to a system
of two delay-coupled lasers. The phenomenon of chaos synchronization is studied in this
context and, for the specific case of identical synchronization, it is used to implement a
secure communications scheme. The third part is devoted to the study of a novel system
of a single laser with two cavities of different length. A more detailed chapter-oriented
outline is provide in the following:

• In Chapter 2, the dynamics of a semiconductor laser subject to delayed optical
feedback is studied in detail. The problem of feedback-induced instabilities is ap-
proached from a time scale perspective, relating the dynamical regimes with the
characteristic frequencies of the delayed feedback system. The empirical finding
that the ratios of these characteristic frequencies completely determine the dy-
namics constitutes a model independent approach to the characterization of these
systems that can be used, for example, to test the validity of numerical models
intended to explain the dynamical behavior of these lasers. The general validity
of our approach is validated in comparison with other laser diodes with distinct
characteristics.

• Chapter 3 is devoted to the characterization of specific properties of the dynamics
by means of the shape of the intensity autocorrelation function. For this purpose,
the experimental autocorrelation is compared with the autocorrelation obtained
from a model of a linear stochastic oscillator with delay. The relation between
the model parameters and the experimental system parameters is analyzed and
discussed together with the limits of validity of this approach.

• In Chapter 4, the chaos synchronization phenomenon is explored in two con-
figurations: an unidirectional coupling configuration where the delayed feedback
configuration presented in the previous chapters is extended via an optically cou-
pled response laser, and a bidirectional coupling scheme of two mutually coupled
lasers with self-feedback. In the first configuration, the relation between dynam-
ics and synchronization is studied. In the latter scheme, the robustness of the
synchronized state is characterized against detuning in parameters and noise.

• In Chapter 5, the knowledge gained in the synchronization experiments is used
to implement a classical public-channel secure-key exchange protocol in the bidi-
rectional coupling scheme. This protocol is demonstrated experimentally, and its
advantages and weaknesses are analyzed.

• In Chapter 6, we discuss a system consisting in a semiconductor laser with fil-
tered feedback from two delay cavities. Such system displays a dynamical regime
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dominated by state-dependent delay dynamics, where the system switches in a
self-organized fashion between two well-separated delays determined by the state
of the system itself.

• The last chapter is devoted to present some Concluding Remarks. Therefore,
the main results of this thesis are summarized. In addition, we also propose some
perspectives for future investigations and discuss possible directions of the delay-
coupled semiconductor lasers field.
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Chapter 2

Semiconductor Lasers Subject to
Delayed Optical Feedback:
Similarity Properties in the
Dynamics

2.1 Introduction

Early after the experimental demonstration of the first semiconductor laser [6] it was
reported that delayed optical feedback1 can induce instabilities in the emission of semi-
conductor lasers [14–16]. This phenomenon originally represented a nuisance in the
performance of laser diodes because even low amounts of feedback dramatically reduced
the coherence and the stability of the emission of these lasers [39, 56, 57]. Therefore,
it became important to understand semiconductor lasers with delayed optical feedback
and their dynamics in order to avoid or control the feedback issues. For many years the
most accepted classification of dynamical regimes in delayed feedback lasers has been
due to Tkach and Chraplyvy on the sample of a DFB laser subject to feedback from a
distant mirror [36]. This classification established a rigid map of states in dependence of
the feedback strength and the distance to the reflecting mirror, two fundamental param-
eters in delay-coupled lasers. However, only limited understanding of the fundamental
mechanisms that cause feedback instabilities are obtained from such classifications.

Indeed, the feedback regimes require a redefinition under a more physics related
perspective. For this purpose, here a concept related to the property of synchronizability
of chaotic dynamics is utilized.

1In the context of this thesis, the expression delayed optical feedback always refers to light coupled
back into the cavity of the laser diode maintaining the polarization orientation.

17
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2.1.1 Strong and Weak Chaos Regimes

In the last decades, a number of studies have addressed the topic of chaos synchroniza-
tion in delay-coupled systems. A fundamental property, namely chaos strength, has been
introduced in relation with the Lyapunov spectrum of delay-coupled nonlinear oscilla-
tors [58–60]. The formal definition addresses the stability of chaos synchronization in
delay-coupled networks where the coupling delay times are much longer than the char-
acteristic time scales of the uncoupled systems. In particular, strong chaos and weak
chaos refer to different scaling behaviors of the maximum Lyapunov exponent within
the synchronization manifold.

For strong chaos, the maximum Lyapunov exponent is independent of the delay time
and its magnitude is comparable to the inverse of the characteristic time scales of the
uncoupled systems, therefore the synchronization will be unstable already on the fastest
time scales. For weak chaos, the maximum Lyapunov exponent is comparable to the
inverse of the delay time. Hence, the trajectories of the coupled units will separate on
the time scale of the long delay time and synchronization can be stable. The oscillator
is capable to synchronize its instantaneous emission with its delayed feedback field (or
with a different laser’s field) if it is emitting in the weak chaos regime. On the contrary,
if the oscillator is emitting in strong chaos, it will not be able to synchronize its emission
with any other in-coupled field. This defines two different dynamical regimes for delay-
coupled nonlinear oscillators: one regime where synchronization is possible and stable
(weak chaos), and another regime where synchronization is not possible because it is
fundamentally unstable (strong chaos).

In the scenarios of delayed feedback and delay-coupled SL, our aim is to unveil
the relations between these important chaos regimes and the dynamics as measured
in experiments. Therefore, the interest in this property goes beyond the scope of this
chapter and is also addressed in chapter 4.

2.1.2 Chapter Outline

The results presented in this chapter constitute a novel perspective on the consequences
of delayed optical feedback on the dynamics of semiconductor lasers. The old problem of
feedback characterization has been approached from a time scale perspective, drawing a
scenario where the dynamical regimes have a meaningful relation with the characteristic
frequencies of the delay-coupled system. These frequencies will be completely charac-
terized from direct experimental measurements in quantum well single mode SL. The
dynamics changes correspondingly with the changes of the ratios of these characteristic
frequencies. This empirical finding constitutes a model independent approach that can
be used to test the validity of numerical models that intend to explain the dynamical
behavior of these lasers. The good agreement of our approach with the paradigmatic
rate equations model for a quantum-well single-mode SL subject to delayed feedback [61]
is demonstrated in section 2.7. The final part of the chapter is devoted to discuss the
applicability of this approach to quantum dot lasers, i.e., SL with different gain material
than quantum well lasers. These results extend the validity of our model-independent
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redefinition of dynamical regimes in delayed FB lasers.

2.1.3 Contributions to the Work in the Present Chapter

A significant part of the results presented in this chapter has been published as: X.
Porte, M. C. Soriano, and I. Fischer, “Similarity properties in the dynamics of delayed-
feedback semiconductor lasers”, Physical Review A, 89, 023822 (2014). The work on
the similarity properties in QD lasers has been published in the conference proceedings
of the 24th International Semiconductor Laser Conference as: Xavier Porte, Miguel C.
Soriano, Stefan Breuer, Lukas Drzewietski, Wolfgang Elsäßer, and Ingo Fischer, “Scaling
Properties of the Dynamics of Semiconductor Lasers in External Cavities” (2014).

The planning and execution of the experiments in quantum well lasers have been done
by me under the supervision of Miguel C. Soriano and I. Fischer. Numerical simulations
were performed by Miguel C. Soriano. The experiments on quantum dot lasers have
been executed at the Technical University of Darmstadt (Semiconductor Optics Group
laboratories) by me in collaboration with Lukas Drzewietski and Stefan Breuer. The
planning of the quantum dot experiments and posterior discussion of the results have
been done together in collaboration with Lukas Drzewietski, Stefan Breuer, Wolfgang
Elsäßer, Miguel C. Soriano and Ingo Fischer.

2.2 Experimental Methods

2.2.1 Semiconductor Lasers

In the first part of the chapter, experimental results using two quantum-well semicon-
ductor lasers are presented. These lasers are a discrete-mode laser diode (DM) [62] and
a distributed-feedback laser diode (DFB) [34]. Both lasers are single longitudinal-mode
emitters in absence of feedback, with side-mode suppression ratios larger than 40 dB.
The threshold current of the DM laser is Ith = 12.08 mA at a temperature of 22 ℃.
The threshold current of the DFB laser is Ith = 7.72 mA at a temperature of 21 ℃.
The emission wavelengths of these two lasers are around 1550 nm. Under the previously
mentioned operating conditions, the DM laser emits with a frequency of 194327.8GHz
and the DFB laser emits with a frequency of 194524.7GHz.

The linewidth enhancement factor (α parameter) is a parameter closely related to the
sensitivity of a semiconductor laser to delayed optical feedback. We have characterized
the α parameter of these lasers using the Henning-Collins method [63]. The α parameters
obtained for the DM and the DFB lasers are ≃ 1.9 and ≃ 3.2, respectively.

In the last section, the validity of the presented approach is tested for a device with
different gain material and cavity structures, a quantum dot (QD) laser diode with a
Fabry-Perot resonator cavity. This device has a gain medium composed of three inde-
pendently grown populations of quantum dots. The emission wavelength of the different
populations ground states (GS) are λGS1 ≃ 1273 nm, λGS2 ≃ 1249 nm, and λGS3 ≃ 1226
nm. Within this potentially broad bandwidth, the Fabry-Perot cavity structure allows
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the emission in different, equally spaced, longitudinal modes. The threshold current for
the selected operating temperature (18 ℃) is Ith = 92.56 mA.

2.2.2 Feedback Experiments in Fiber-Based Setups

Most experimental setups employed in this thesis are fiber-based. Only in some cases
the laser will be free-space mounted and the connection to the rest of the fiber setup
will be made via a coupling stage.

Fiber-based feedback setups have some advantages with respect to the traditionally
used free-space setups. These advantages include among others: higher mechanical sta-
bility, accessibility to long/very-long external cavities and availability of many standard
telecommunications components. In contrast, the control of the polarization of light
propagating through the optical fibers needs to be taken care of in these setups. Inher-
ent birefringence in optical fibers can be compensated for using an in-line polarization
controller. In addition, birefringence is affected by modifications in stress along the fiber
or variations of the ambient temperature. The experience acquired during the experi-
ments under laboratory conditions demonstrates that these phenomena and their effects
can be kept under control.

L D Circ Att

Spl

P C

P D

τ

Figure 2.1: Scheme of our typical experimental setup to study feedback dynamics. LD: laser diode,
Circ: optical circulator, PC: polarization controller; Att: optical attenuator, Spl: one by two intensity
splitter with ℜ and (1-ℜ) splitting ratios, →: optical isolator, and PD: photodiode.

From the possible different configurations to implement delayed optical feedback us-
ing fiber-based setups, we have chosen the single-pass fiber-loop. Figure 2.1 depicts this
particular scheme of experimental setup, realized by employing standard telecommuni-
cation components. The dashed red line encloses the external cavity of round trip time
τ defined by twice the length of the laser’s fiber pigtail plus the fiber components loop.
Such a fiber-optic external cavity has characteristic round-trip times of ∼ 100 ns.

A variety of fiber-based elements allows to accurately control the different experi-
mental parameters, and the fiber-loop configuration ensures that none of the components
is crossed more than once during the optical path (obvious exception to this rule is the
circulator that encloses the loop). This avoids additional losses, consequence of pass-
ing twice through each component. All fiber connectors are FC/APC connectors (ferrule
connectors with an angled physical contact), reducing considerably back-reflections from
the connections between components by ∼ 65 dB.
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By means of measuring the relative losses through the successive elements in the
external cavity, a maximum value of the feedback strength σmax can be estimated. The
maximum feedback strength, i.e., the proportion of intensity reflected back to the laser
diode cavity for the depicted setup is 54%. From this maximum value, the feedback
strength σ can be attenuated by more than 30 dB using the in-line attenuator. The
attenuation and the feedback rate are related via the following expression:

Attenuation[dB] = −20 log10

(
σ

σmax

)
. (2.1)

Thus, any axis plotting the feedback attenuation will depend logarithmically on the
proportion of power fed back into the laser diode cavity.

2.2.3 Acquisition Conditions

The time-dependent intensities have been detected using a 12.5 GHz bandwidth AC-
coupled photodetector and a 16 GHz analog bandwidth oscilloscope. The time traces
sampling frequency is 40 GSamples/s and their typical recorded time interval is over
100µs. The optical spectra at 1550 nm have been recorded using a Brillouin scattering-
based high-resolution optical spectrum analyzer with 10 MHz optical resolution. A more
flexible but less precise diffraction grating optical spectrum analyzer has been used to
detect the emission of the QD laser around 1220 nm. This instrument has a broad tuning
range from 600 nm to 1750 nm with a maximum resolution of 50 pm.

2.3 Characteristic Frequencies of Delayed Feedback Lasers

The approach followed in this chapter implies the experimental determination of the
characteristic time scales present in semiconductor lasers when subject to delayed optical
feedback. These time scales correspond to the frequencies that constitute the complex
spectral characteristics of these lasers. Moreover, it is of major importance to know this
information for the characterization of possible operating conditions. Three fundamental
frequencies have been identified to determine the resulting feedback dynamics, and are
therefore studied in this section. Two of them can be directly determined from the optical
spectrum. The other one, too small to be accurately resolved in the optical spectrum
(since with very long external cavities), has been characterized via the intensity power
spectrum.

Figure 2.2 shows the dependence of the optical spectra on the feedback strength
for the DM laser. The figure is made of stacked optical spectra for different values
of the attenuation. Each one of the 48 color-coded horizontal lines corresponds to an
experimentally recorded optical spectrum for a given attenuation value. The increase in
attenuation reduces the feedback strength, that has its maximum at 0dB of attenuation.
The injection current has been kept constant at 1.5Ith for all the recorded spectra. The
solitary emission optical frequency, denoted with a solid line, has been shifted to 0GHz.
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Figure 2.2: Color-coded optical spectra versus the feedback attenuation. The important frequencies
are highlighted with different lines in the figure, i.e., a solid line denotes the solitary laser emission
frequency, fSOL. The dashed-dotted line marks the solitary relaxation oscillations frequency, fS

RO.
Finally, the dashed curve indicates the feedback-induced frequency shift, ∆ffb.

The increase in feedback strength tends to enhance the dynamical bandwidth. The
broadened optical spectra extend towards the lower frequencies direction due to the
positive sign of the α parameter. Only at the strongest feedback conditions, the spec-
trum collapses again to a narrow linewidth state. This transition, the occurrence of
which strongly depends on the α parameter, will be explained in more detail later in
this chapter. The dashed line indicates the maximum of the bandwidth enhanced spec-
trum, here named ∆ffb, which shifts with the feedback attenuation. This is the first
characteristic frequency that can be directly determined from the optical spectrum. The
logarithmic dependence of ∆ffb on attenuation indicates (following Eq. 2.1) a linear
relation between this frequency and the feedback strength in experiments, which is in
good agreement with the predicted dependence in rate-equations based models of a laser
with feedback.

The dashed-dotted line (parallel to the solitary laser frequency line) at ≃ 4 GHz
denotes the second characteristic frequency, the relaxation oscillations frequency for the
solitary laser fS

RO. This frequency is strongly undamped for feedback attenuations larger
than 25dB, and does not shift significantly with attenuation. In fact, fRO mainly depends
on the pump current. Figure 2.3 shows the clear square root dependence of this frequency
with the excess pump current ( I

Ith
− 1). Therefore, the relaxation oscillations frequency

is the second relevant frequency of the system which we can directly characterize from
the optical or the power spectrum.

The last frequency that has an important role in the dynamics of the system is the
inverse of the delay time. It appears as a consequence of coupling the laser diode to
the external cavity. For such long fiber-based cavities, this frequency is of the order
of few MHz, and it is better characterized via the intensity power spectrum. Figure
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Figure 2.3: Experimentally determined relaxation oscillations frequency (for the solitary laser) as a
function of the excess pump current. The slope of the linear fit (dashed red line) is 0.5± 0.01, indicating
a very good agreement with the square root expected dependence.

2.4 illustrates the power spectrum of the DM laser subject to feedback. The broad
bandwidth extending beyond 9 GHz at -10 dB indicates chaotic dynamics under these
operating conditions.

Figure 2.4: Power spectrum of the DM laser subject to delayed optical feedback for a bias current of
I = 1.1Ith and the highest feedback strength σmax = 0.54. The inset magnifies the power spectrum at 1
GHz. The resonances of the external cavity frequency modulate the power spectrum with the external
cavity frequency, fEC = 13.32± 0.01 MHz.

The inset in Fig. 2.4 depicts a zoom at 1 GHz of the power spectrum2. A modulation
with a frequency spacing equal to the inverse of the external cavity roundtrip time is
clearly visible. This resonances structure extends all along the power spectrum. For this
particular external cavity length the frequency corresponds to fEC = 13.32± 0.01 MHz,
corresponding to Lext = 15.49 ± 0.01 m. A longer cavity would result in even closer

2The power levels of the inset and the main panel do not coincide because the data have been detected
with different resolution bandwidths.
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external cavity modes.

The figures in this section demonstrate that the main frequencies of feedback lasers
can be directly determined in experiments. The influence of fRO and fEC on the dy-
namics has been recognized in earlier works. Here, we include ∆ffb as the third key
frequency in the determination of the dynamical regime, as it will be explained in detail.

2.3.1 Autocorrelation Function of the Intensity Dynamics

In laser systems with optical feedback, the time scales may differ by several orders of
magnitude. Nowadays, state of the art technologies offer the possibility to detect and
record these relevant time scales from the intensity dynamics. The acquisition conditions
for the time series depicted in this thesis include a sampling time of 25ps (16GHz analog
bandwidth) and a recorded time interval over 100µs. This means that the acquired time
series always comprise more than 500 repetitions of the delay time. Thus, the time scales
related to fRO and fEC are present (with enough statistics) in the recorded time series
and, in consequence, we can analyze them in detail.

Figure 2.5: Autocorrelation function (AC) of the intensity dynamics showing the successive laser
response echoes at multiples of the delay time for a bias current of 1.08Ith and a feedback attenuation of
1.9 dB. The three panels on the right-hand side depict zooms centered at the central AC peak (0), the
first (τ) and the second (2τ) delay echoes, respectively. The dashed magenta line in the right-central
panel indicates the height of the AC at this first delay echo. The delay time is τ = 75.25± 0.025ns.

A commonly used approach to analyze the characteristic time scales of a delayed
feedback system is to calculate the autocorrelation function of the recorded intensity
(AC) [64, 65]. Figure 2.5 illustrates the intensity dynamics AC of a delayed feedback
laser. The normalized AC is averaged, here, over the whole time series:

AC(k) =
⟨I(t + k)I∗(t)⟩

⟨|I|2(t)⟩
, (2.2)

where I represents the detected intensity of the optical field (I = E∗E) and k is the
lag time.
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The features of the AC function around time shifts of delay-time size (τ) are high-
lighted on the three right hand side panels in Fig. 2.5. Each panel shows an oscillatory
structure of frequency and decay similar to those of the relaxation oscillations, but af-
fected by the chaoticity of the dynamics. The region around τ (from now on referred
as the first delay echo) is of special interest because it illustrates the nonlinear trans-
formation of the delayed feedback signal by the laser [65]. In particular, the AC peak
height of the first delay echo (indicated with a dashed magenta line in Fig. 2.5) is a
good indicator for the weak and strong chaos regimes in SL (see sections 2.4.1 and 4.3),
and it will be named from now on as the dynamics signature.

2.4 Invariant Dynamics Signature

The heights of the AC at successive delay echoes depend on the bias current and the
feedback strength. The dependence on these two parameters is characterized here in
order to explore the different possible dynamical regimes and their transitions by means
of the AC height at the first delay echo. Figure 2.6 depicts the maximum AC height at
the first delay echo versus variations in feedback strength and bias current. The plotted
data cover injection currents in the range from 1.1Ith to 1.5Ith (four different symbols)
and for attenuations up to 25dB. Lower attenuations are depicted on the right hand
side (high feedback strengths), and higher attenuations are depicted on the left hand
side (low feedback strengths). There exists a dependence on the attenuation that is
clearly repeated for every current. Nevertheless, the different currents result in different
dependencies.
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Figure 2.6: Maximum AC height at the first delay echo versus attenuation for four different bias
currents: circles (I=13 mA), squares (I=14 mA), triangles (I=16 mA), and crosses (I=18 mA). The
solitary laser threshold is Ith = 12.08 mA.

It is clear from Figs. 2.2, 2.3 and 2.4 that the characteristic time scales depend on the
operating conditions and the feedback parameters. Figure 2.2 illustrates the feedback
induced frequency shift ∆ffb dependence on the attenuation, while Fig. 2.3 shows that
the experimentally measured fRO exhibits a square root dependence on the injection
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current. Therefore, each bias current condition in Fig. 2.6 has a different fRO and, in
consequence, a different ratio fRO/∆ffb.

If the ratio fRO/∆ffb is to be kept constant, the increase in fRO for increasing bias
currents can be compensated for by changing the ∆ffb correspondingly, i.e., rescaling
the attenuation axis in accordance. The result of keeping the variations between those
two characteristic time scales constant is plotted in Fig. 2.7. The same dependence is
found when the data is plotted versus a rescaled version of the attenuation. The set of
curves corresponding to different injection currents collapse onto the same curve, which
is a sign of similarity properties. Suddenly, the different AC heights follow a unique
non-monotonous dependence on the feedback strength, exhibiting a clear minimum for
intermediate feedback strengths. The transitions from high correlation regions to the
low correlation region (intermediate attenuations) can be attributed to the emergence of
strong chaos [60, 66]. The motivation behind this rescaling is to keep the measurement
independent from the variations between characteristic time scales, as long as their ratios
are kept constant.
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Figure 2.7: Maximum AC height at the first delay echo versus the rescaled attenuation for four different
bias currents: circles (I=13 mA), squares (I=14 mA), triangles (I=16 mA), and crosses (I=18 mA). The
AC heights corresponding to different currents collapse to a single curve when plotted versus the rescaled
attenuation (detailed explanation in the text).

The rescaled version of the attenuation is obtained starting from the expression
already introduced in Eq. 2.1. We choose the AC curve at 2Ith as a reference and
rescale the feedback attenuation for the other currents such that the ratios fRO/∆ffb
correspond. Thus, the attenuation axis is modified in order to compensate for the
variation of fRO. As shown in Fig. 2.3, fRO scales proportionally to the square root
of the bias current above threshold for this laser diode3. This is the scaling that is
compensated for by shifting the attenuation axis. After rescaling, all currents (except
2Ith) have points with negative attenuation values. In order to keep the attenuation axis
positive valued for all currents, the following expression of the rescaled attenuation also
includes an offset AS [dB] equal for all curves:

3The same square-root dependence with the bias current is predicted from rate equations models of
single mode quantum well SL
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Rescaled Attenuation (σ, I) [dB] = AS −20 log10

(
σ

σmax

)
︸ ︷︷ ︸

Attenuation

+20 log10

(√
I

Ith
− 1

)
.

(2.3)

2.4.1 Physical Mechanism for Weak and Strong Chaos

As it was explained in the previous section, once the attenuation is rescaled the dynam-
ics exhibits similarity properties. The AC heights become invariant under appropriate
transformation of feedback strength taking into account the corresponding bias current.
All data collapse onto a single U-shaped curve, with particularly low values of the AC
heights for intermediate attenuations.
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Figure 2.8: (a) maximum AC height at the first delay echo as a function of the rescaled feedback
attenuation for four operating currents of the DM laser. The pump currents correspond to 1.1Ith (circle),
1.25Ith (square), 1.5Ith (triangle), and 2Ith (cross), respectively. (b) exemplary evolution of the optical
spectra versus the feedback strength for a bias current of 1.5 Ith. The solitary emission optical frequency
(solid magenta line) has been shifted to 0 GHz, and the fRO (dashed-dotted line) has been measured
independently to be ≃ 4 GHz for this bias current. The dashed curve represents the evolution of ∆ffb
with the rescaled attenuation. The meaning of the cyan lines in both panels is explained in the text.

Altogether, the physical mechanism behind the shape of the AC heights has not
yet been clarified. To find the answer, we compare the rescaled AC heights curves
with the optical spectral information in Fig. 2.8. Figure 2.8a depicts the maximum
AC height at the first delay echo as a function of the rescaled feedback attenuation.
Figure 2.8b contains the spectral data already introduced in Fig. 2.2, although here it is
plotted against the rescaled attenuation. The set of data depicted in Fig. 2.8 extends the
validity of our approach to higher injection currents (2Ith) and a larger range of feedback
strengths at the expense of having a lower signal-to-noise ratio (SNR) for detection.
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In Fig. 2.8a, a cyan vertical line illustrates the rescaled attenuation for which the
AC heights have their common minimum. This cyan line is also plotted in Fig. 2.8b (an
horizontal line in this case) at the same rescaled attenuation value. Remarkably, the AC
height is minimum in the region in which ∆ffb (dashed magenta curve) approaches fRO

(dashed-dotted magenta line) in Fig. 2.8b. The strong nonlinear interactions resulting
from the mixing of these two characteristic frequencies is identifiable in the broadening
of the optical spectrum at both sides of the solitary laser frequency. Consequently, the
nonlinear mixing of ∆ffb and fRO can be considered as the physical mechanism leading
to the appearance of a region of strong chaos, i.e. low AC heights, in semiconductor
lasers subject to delayed optical feedback. The U-shaped region around the AC heights
minimum at intermediate attenuations in Fig. 2.8a is the consequence of this nonlinear
mixing between ∆ffb and fRO.

Various regions with well differentiated AC heights can be identified in Fig. 2.8a.
These regions have corresponding spectral characteristics easy to distinguish in Fig.
2.8b. Below the maximum rescaled attenuation the laser exhibits stable emission in its
solitary frequency (shifted to 0GHz), that corresponds to the drop in AC heights beyond
38dB. A slight increase of the feedback strength from this point causes undamping of the
relaxation oscillations [67–69], subsequently entering the weak chaos (high correlations)
regime. Further increase of the feedback strength causes the transitions towards strong
chaos for intermediate attenuations. A second region of weak chaos appears for increasing
feedback. Finally, for the strongest feedback conditions, also in Fig. 2.8b, the laser
emission becomes stable again exhibiting emission in the high-gain modes region.

Furthermore, in order to prove the general validity of our approach, data from another
laser is provided. Both panels in Fig. 2.9 show data from a different laser diode, i.e.,
the DM laser has been replaced by a distributed-feedback (DFB) laser diode, keeping
the rest of the experimental setup unchanged.

Identical conclusions can be drawn from the combined data of the DFB laser. The AC
heights fall under the same invariant curve when plotted against the rescaled attenuation.
The common minimum in the AC heights (denoted with a cyan line in both panels) again
corresponds to the region of maximum nonlinear mixing between the two characteristic
frequencies: ∆ffb (dashed magenta curve) and fRO (dashed-dotted magenta line).

The abscissas in panels 2.8a and 2.9a extend almost 10 dB more than in Fig. 2.7,
because smaller and larger values for the feedback strength are explored. Interestingly,
one can observe deviations of the correlation values from the invariant behavior for low
feedback strengths. These deviations are completely explained by the different signal-
to-noise ratios (SNR) at different bias currents, affecting the experimentally determined
values.

A detailed characterization of the SNR impact demonstrates that the effect limiting
the heights of the AC for weak feedback values is their respective SNR, and not a
deviation from the invariant dynamics. The experimental data with the highest AC
value (0.96) at the first delay echo of Fig. 2.8a has been selected. This experimental
condition corresponds to the current with the highest SNR, 2Ith. Fig. 2.10 depicts the
AC signature when white noise is externally added to a given experimental time series.
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Figure 2.9: (a) maximum AC height at the first delay echo as a function of the rescaled feedback
attenuation for (a) three operating currents of the DFB laser. The pump currents correspond to 1.25Ith
(square), 1.5Ith (triangle), and 2Ith (cross), respectively. Panel (b) depicts the evolution of the optical
spectra versus the feedback strength also for the DFB laser. The corresponding bias current is 1.5 Ith
in both lasers. The solitary emission optical frequency (solid magenta line) has been shifted to 0 GHz,
and its corresponding fRO (dashed-dotted line) has been measured independently to be ≃ 2.8 GHz. The
evolution of ∆ffb with the rescaled attenuation is represented by a dashed curve. The meaning of the
cyan lines in both panels is explained in the text.
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Figure 2.10: Dependence of the maximum of the first delay echo on the SNR (solid line). The original
time series corresponds to the conditions with the highest AC at delay echo for the DM laser: bias
current of 2Ith and 26 dB feedback attenuation. The different symbols depict the maxima of the first
delay echo for the other pump currents under weak feedback conditions: 1.1Ith (circle), 1.25Ith (square),
and 1.5Ith (triangle).

The addition of noise is associated with a drop in correlation to values below 0.4. For
comparison, the different higher AC signatures for the other currents have also been
plotted. The dependence given by the SNR influence is in good agreement with the
experimental findings within a margin of error below 5%.

Remarkably, there are also deviations for high feedback strengths in panel 2.8a. These
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deviations have been verified to be due to the onset of alternations between chaotic
dynamics and stable emission. The highly averaged picture captured by the AC is the
reason why our dynamics signature is pulled down in such conditions of alternating
dynamics. This effect is prominent in the DM laser due to the low α parameter of this
laser (∼ 2). Another particularity caused by the low α value of the DM laser is that,
for the strongest feedback conditions, the emission becomes stable and narrow linewidth
again. In fact, the points at the extreme left and right sides in panel 2.8a, showing
correlations lower than 0.2, correspond to stable emission in different spectral regions.
For high feedback strengths, the dynamics gets trapped in the high-gain modes region,
and in the solitary emission mode for very low feedback strengths. The normalized
AC mostly reflects intensity and detection noise under both conditions. In contrast to
the DM laser, the DFB laser with a higher α parameter (∼ 3) does not exhibit stable
emission in the scanned parameters range.

2.5 Full Rescaling of the Dynamics

The so far considered rescaling only accounts for the dependence of the dynamics sig-
nature on bias current and feedback strength. Exploring the similarity properties of
this delay system further, the delay characteristic frequency (fEC = 1/τ) should play a
crucial role as well. Therefore, keeping the ratio of the relaxation oscillations and the ex-
ternal cavity frequencies constant, i.e. fRO/fEC , in addition to the condition fRO/∆ffb,
fully equivalent dynamics should be obtained. This is correspondingly illustrated with
the schematic drawing in Fig. 2.11.

Figure 2.11: Schematics depicting the change in delay time. The indicated ratios between characteristic
frequencies must be kept constant to completely rescale the dynamics.

In order to test the previous arguments, the experiment is performed for two delay
times, namely τ1 and τ2, where τ2 > τ1. The length of the external optical cavity is
extended by adding 5 meters of fiber. The delay time is consequently increased from
τ1 = 75.18ns to τ2 = 99.95ns, corresponding to a scaling factor of β = τ1

τ2
= 0.75.

For these two cases the pump current of I1 = 2Ith is compared to a pump current of
I2 = 1.566Ith, respectively, such that fRO/fEC remains equal. The different bias currents
imply that the amplitudes rescale correspondingly, in addition to the rescaling in time.

The similarity of the dynamics after a change in the delay time is illustrated in Figure
2.12, where the AC is shown for the rescaled delay time and current. Remarkably, not
only the maximum AC height at delay echoes is invariant, as shown in panel (a), but
the time-rescaled AC function around the delay times, as depicted in panels (b) and
(c). The curves correspond to the same condition with minimum AC height at -14 dB
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Figure 2.12: (a) AC height at the first delay echo for two different dynamical conditions. Crosses and
triangles correspond to 2Ith, τ1 = 75.18ns and to 1.566Ith, τ2 = 99.95ns, respectively. (b) full AC around
the central peak and (c) the first delay echo for a particular rescaled attenuation (indicated with a star)
in panel (a). In panels (b) and (c), the dashed lines correspond to 2Ith, τ1 = 75.18ns and the solid
lines correspond to 1.566Ith, τ2 = 99.95ns. Each curve in the lower panels corresponds to the rescaled
attenuation with the minimum of each respective AC height in panel (b). The time axis is rescaled by
∆t′ = τ1

τ2
∆t for the solid lines in panels (b) and (c).

in Fig. 2.12, indicated with a star. Thus, this verifies that the whole time-rescaled AC
functions correspond.

This result is of high relevance, since it means that dynamics of delayed feedback SL
can be scaled in amplitude and time. A particular dynamics that is observed for a certain
delay time, can be simply slowed down or accelerated by changing delay time, feedback
attenuation and pump parameter appropriately. By this, the dynamical properties can
be adjusted and tailored according to the requirements of applications.



32 CHAPTER 2. SIMILARITY PROPERTIES

2.6 Dynamical Regimes

To gain further insights into the similarity properties of the feedback dynamics we discuss
some significant examples. The particular regimes are selected according to their position
along the characteristic U-shaped AC heights curve. In section 2.6.1, the regime with
high AC values under weak FB conditions is depicted. Section 2.6.2 illustrates the regime
of the lowest AC height values at intermediate FB strengths. Finally, in section 2.6.3,
the high-correlation dynamics corresponding to the highest FB strengths are depicted.

2.6.1 Low Feedback Strengths

The first illustrated regime corresponds to the weakest FB conditions, in the onset
region of the dynamical instabilities. Figure 2.13a indicates with a star the characteristic
high dynamics signature for this regime. The rescaled attenuations corresponding to
these low values of FB strength are around 30 dB and, in the selected example, the
bias current is I=18 mA (≃ 1.5Ith). These conditions correspond to the undamped
relaxation oscillations (URO) dynamics [69], occurring just after the transition from
stable to unstable emission.

Figure 2.13b shows the optical spectrum, in which some characteristic frequencies
are present. The highest intensity peak corresponds to the solitary laser mode. The
frequency peak at its immediate left side corresponds to the feedback induced frequency
shift (∆ffb). Moreover, one can observe other side peaks that are shifted by multiples
of the relaxation oscillations (fRO). This weak feedback regime is defined by ∆ffb being
(significantly) smaller than the solitary relaxation oscillations frequency (fRO). This
condition is fulfilled for different feedback strengths depending on the specific value of
the α parameter because the growth of ∆ffb increases with α.

The AC is depicted in Fig. 2.13c for an interval of 10τ . It becomes clearer now
why in this regime the AC height potentially has its maximum values. The overall AC
decay along multiple delay echoes is very small and the system contains, in average,
persistent τ -fedback memory of its past states. The inset in Fig. 2.13c depicts the
AC oscillations around the first delay echo. These oscillations are the signature of the
undamped relaxation oscillations in the AC, they have a frequency mainly dominated
by the relaxation oscillations frequency visible in the optical spectrum. In the broader
view of the AC, a particular lobe structure modulates the AC envelope amplitudes for
multiple delay echoes. This modulation is related to the interplay between the different
frequencies that influence the dynamics. Only a slight modification of any of the feedback
parameters can significantly modify the lobes structure, but their influence on the AC
height will be much minor.

Finally, Figure 2.13d illustrates the spatio-temporal representation [70–72] of the
intensity dynamics. In this two-dimensional representation, the delay time is plotted as
a pseudo-space variable. Here, the abscissa denotes the time offset in a delay window of
length τ . Meanwhile the vertical axis denotes the ordinal of the current delay window.
From such a representation in delay-coupled systems, much information can be extracted
from long time series, specially if the plotted dynamics is irregular or chaotic. In our
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Figure 2.13: Characteristics for low FB strength dynamics at bias current and rescaled attenuation
of I=18 mA and 31 dB, respectively. The star in panel (a) indicates the AC height value for this
experimental conditions. The other panels depict (b) the optical spectrum, (c) the AC (with inset at
the first delay echo), and (d) the spatio-temporal representation of the real-time intensity (with inset for
magnification).

case, already at first glance the high correlation that the dynamics has with τ becomes
apparent. For a time window of 500τ (more than 30 µs), two distinct and separated
dynamics regions coexist. These two dynamics are a stable emission dynamics and an
oscillatory state. The region magnified in the inset allows identifying the clear oscillations
of constant frequency fRO that characterize the oscillatory region. The coexistence of
these two regions resembles the phenomenon of chimera states. This is an hybrid type
of dynamics where two states coexist for a homogeneous system, i.e., an ordered state
and a dynamical state. Chimera type of dynamics has been previously demonstrated in
optical systems [73] and in delay-coupled electronic oscillators [74] among other types of
systems.
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2.6.2 Intermediate Feedback Strengths

In this section, the particular region in the AC heights curve of the concave U-shaped
minimum is discussed. The star in panel 2.14a indicates the position along the AC
heights curves of the selected minimum. The rescaled attenuations corresponding to
this low-correlation conditions are in the range {18 − 25} dB, and the highlighted data
point corresponds to a bias current of I=16 mA (≃ 1.3Ith). This intermediate feedback
region represents the paradigmatic strong chaos regime, associated with the dynamics
signature approaching a minimum. As explained in section 2.4.1, the nonlinear mixing
between ∆ffb and fRO is enhanced in this region. This feature can be identified in
panel 2.14b, with a broad spectrum covering more than 20GHz at -20dB height, and
a decaying spectral power of ≃ 2 dB/GHz. Even more, the extended view of the AC
in panel 2.14c clearly illustrates the fast fading memory of the dynamics at successive
delay echoes for these experimental conditions. The AC height at the first delay echo is
below 0.3, as visible in the inset.

It is important to mention that low AC values only indicate strong chaos in this
intermediate feedback region. In Figure 2.8a, the extreme values show similarly low
AC values for the DM laser. As it has already been explained, these points reflect the
transition of the dynamics towards CW emission. Nevertheless, these points can easily
be distinguished from strong chaos with similarly low correlations via the corresponding
time series. Panel 2.14d shows the spatio-temporal representation of the current strong
chaos conditions. One can still recognize structures, which however decorrelate quickly.

2.6.3 High Feedback Strengths

Finally, the strong FB conditions are depicted in Fig. 2.15.

Figure 2.15a illustrates the typical high correlations of the data with rescaled atten-
uations close to 0dB. The bias current of the point highlighted with a star is I=13 mA
(≃ 1.1Ith). For such low current, the laser exhibits low-frequency fluctuations (LFF).
The paradigmatic LFF dynamics is characterized by irregularly distributed dropouts
in the intensity dynamics. The characteristic LFF power dropouts are clearly distin-
guishable in Fig. 2.15d as dark horizontal lines that last for τ and repeat irregularly
every ∼ 20τ . The low amplitude of these intensity dropouts and their characteristic fre-
quencies, almost three orders of magnitude slower than the picosecond pulsations of the
underlying chaotic dynamics, triggered a lot of interest in this phenomenon. However,
despite being widely studied in the past [18,75–80], this dynamics still gives rise to new
insights nowadays [81,82].

The optical spectrum in panel 2.15b shows a two-peaked structure with a distance
of ∼ 20GHz between the broad peaks. The highest peak, on the left side, corresponds to
the spectral signature of the maximum feedback-induced frequency shift (∆ffb), while
the peak on the right side of the spectrum is the signature of the dynamics in the region
of the solitary laser mode.

The high values of correlation (e.g., inset in panel 2.15c) indicate that the high FB
strength conditions correspond to the weak chaos regime. The long-term propagation
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Figure 2.14: Exemplary dynamics at intermediate FB strengths. The bias current is I=16mA and
the rescaled attenuation is 19dB. Panel (a) shows the AC height curves. The AC height for the current
experimental conditions is indicated with a star. The other panels depict (b) the optical spectrum, (c)
the AC (with inset at the first delay echo), and (d) the spatio-temporal representation of the intensity
time series (with inset for magnification).

of vertical structures visible in the spatio-temporal representation (inset in panel 2.15d)
supports this interpretation.

2.7 Comparison with Numerical Modelling

All previous results have been obtained in experiments using quantum well single mode
laser diodes. Even though our approach is model-independent, it is of major interest to
test if numerical models can reproduce its results. Only those numerical models able
to reproduce the observed similarity properties in the chaotic dynamics are suitable to
study the dynamics of our delayed feedback lasers. A semiconductor laser subject to
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Figure 2.15: High FB strength dynamics at bias current and rescaled attenuation of I=13 mA and 0
dB, respectively. Panel (a) depicts the AC heights at the first delay echo, with a star indicating the AC
height value for this specific experimental conditions. The other panels show the (b) optical spectrum,
(c) AC (with inset at the first delay echo), and (d) space-time representation of the intensity time series
(with inset for magnification).

moderate optical feedback can in many cases be described by the Lang-Kobayashi (LK)
rate equations as follows [61,76,83],

Ė(t) =
1 + iα

2
GN n(t)E(t) + κE(t− τ)e−iω0τ , (2.4)

ṅ(t) = pexc Jth − γ n(t) − [Γ + GN n(t)] |E(t)|2 , (2.5)

where E and n are the complex electric field amplitude and the carrier number
above threshold, respectively. The feedback parameters are the delay time τ and the
feedback rate κ. The excess pump current over threshold is pexc = ( J

Jth
− 1). The

laser parameters in Eqs. (2.4) and (2.5) are the linewidth enhancement factor (α), the
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differential optical gain (GN = 2.142 · 104 s−1), and the laser solitary frequency (ω0).
The pump threshold current in units of the electron charge is Jth = 1.552 · 1017 s−1,
γ = 0.909 · 109 s−1 is the carrier decay rate, and Γ = 0.357 · 1012 s−1 is the cavity
decay rate. Parameter values have been chosen according to [76, 83], except for α = 3,
τ = 10 ns−1. The feedback rate κ has been varied in the range {1 . . . 100} ns−1. In this
model, the relaxation oscillations frequency is given by fRO = 1

2π

√
GNpexcJth and the

maximum feedback-induced frequency shift (position of the high gain external cavity
mode) is ∆ffb = ακ/2π [56, 84].
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Figure 2.16: Maximum of the first autocorrelation peak as a function of the feedback attenuation for
three different operating currents: 1.1Ith (circle), 1.25Ith (square), 1.5Ith (triangle), and 2Ith (cross)
respectively. In the lower panel, the feedback rate has been scaled as

√
pexc. Figure courtesy of Miguel

C. Soriano.

Fig. 2.16 depicts the numerical results for the height of the first AC peak for different
pump currents. The results for the AC heights become pump current independent when
the feedback rate κ is rescaled by

√
pexc, as shown in the lower panel. This similarity

results are in good agreement with the rescaling found in the experiments in, e.g., Fig.
2.7.

Following the model expressions for the characteristic frequencies scaling with the sys-
tem parameters, the condition for the AC heights rescaling corresponds to fRO/∆ffb ∼√
pexc/κ. Indeed, the generic expression for the full scaling of the dynamics requires

the extension including the external cavity frequency. Therefore, keeping the ratio of
the relaxation oscillations and the external cavity frequencies constant, i.e. fRO/fEC ∼
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τ
√
pexc = const., in addition to the condition fRO/∆ffb ∼ τ

√
pexc = const., equiva-

lent dynamics are obtained. The following similarity property for the autocorrelation
function comprises the previous findings,

AC
(
∆t; τ, pexc, κ

) ∼= AC
(
β∆t; βτ,

pexc
β2

,
κ

β

)
,

In order to also corroborate the physical mechanism behind the emergence of strong
chaos found in experiments, the numerical optical spectra of the laser with feedback have
also been computed. The different panels in Figure 2.17 show the optical spectra as a
function of the feedback strength in dB (0 dB corresponds to maximum feedback), where
each panel corresponds to a different pump current. The different dynamical regions and
transitions observed in this figure are very similar to the experimentally observed ones for
the DFB laser in Fig. 2.9b. For increasing feedback (always starting from the bottom of
each panel), the laser exhibits a transition from stable emission to undamped relaxation
oscillations like in the experiments. Further increasing the feedback, the frequency bands
corresponding to the relaxation oscillations and its higher harmonics start to nonlinearly
mix with ∆ffb, until they can no longer be distinguished.

The minimum in the AC height curves (horizontal magenta line in each panel of Fig.
2.17) occurs just after the onset of the strong mixing of the characteristic frequencies.
In particular, the minimum AC height at delay echo occurs when ∆ffb (dashed curve)
approaches the corresponding relaxation oscillations frequency of the solitary laser. In-
terestingly, all spectra show a characteristic extension on the left and right hand sides
for feedback strengths centered at the minimum AC height. This signature of the strong
nonlinear mixing of frequencies is common to all currents.

2.8 Similarity Properties in Quantum Dot Lasers

The main goal of this section is to test the validity of the rescaling approach in quantum
dot (QD) lasers, i.e. SL with a different gain material. These lasers constitute a relatively
new kind of SL that have attracted a lot of attention. The reason is that QD based lasers
have many properties that differ from those of their QW counterparts (see section 1.2).
Consequently, it is interesting to devote the following paragraphs to introduce the main
properties and characteristics of QD based lasers.

2.8.1 Brief Introduction to Quantum Dot Lasers Particularities

QD lasers are made from an ensemble of nano-sized crystals grown inside the semicon-
ductor active region. These crystals, referred as dots to highlight its discrete volume,
are the light emitters. QD lasers are considered the natural evolution of state-of-the-art
quantum well lasers for many applications. Fields like telecommunications, spectroscopy,
or medical diagnosis could benefit from their enhanced properties.

The idea that a 0-dimensional active region in SL could improve their temperature
stability is already three decades old [85]. Later predictions pointed in the direction of
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(a) (b)

(c) (d)

Figure 2.17: Color-coded power spectral density of the numerically calculated optical spectra versus
feedback strength in dB (i.e. attenuation) for four different excess pump currents: (a) pexc = 0.1, (b)
pexc = 0.25, (c) pexc = 0.5, and (d) pexc = 1. The horizontal solid lines indicate the feedback for which
the AC height is minimum at each current, and the dashed curves depict the position of ∆ffb. Figure
courtesy of Miguel C. Soriano.

power saving due to the lasing threshold reduction [86]. It was a long way from these
predictions until the first demonstration of real quantum dots lasing was reported in 1994
[87, 88]. Superior lasing characteristics than its quantum well counterparts were finally
achieved in 1997 by Bimberg et al. [89] by increasing the density of the quantum dot
structures. Nowadays QD lasers emitting at 1.3µm are typically constituted by several
layers of self-assembled InAs dots (following the Stranski-Krastanov growth process)
grown on top of a GaAs substrate [90]. The diversity of sizes and positions in the
self-assembled ensemble of QD cause an important inhomogeneous broadening in the
emission of these lasers. Other important properties that have also been reported for
these lasers are high modulation bandwidths capabilities with low relative intensity noise
[91–93], and simultaneous lasing at the QD discrete ground (GS) and excited (ES) states
[94].
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Another intriguing property that QD laser devices typically show is a low sensitivity
to optical feedback [95–97]. Different reasons have been related with the cause of this
robustness against optical feedback, like their characteristic low values of the α param-
eter or the high values of their relaxation oscillations damping [98,99]. In spite of that,
complex dynamics induced by optical feedback have been reported in QD lasers. Partic-
ularly interesting examples are the antiphase dynamics between GS and ES [100, 101],
and the feedback impact on the balance between the emission states [101,102].

2.8.2 Invariant Dynamics Signature in Quantum-Dot Lasers

The main idea of this section is to test the validity of the presented rescaling approach
in QD lasers. In consequence, we have reproduced the scaling experiments with the
QD laser already introduced in the methods section. Figure 2.18 depicts the maximum
height of the AC at the first delay echo versus the rescaled attenuation for different bias
currents at a temperature of 18 ℃. The selected bias currents are 1.25Ith, 1.4Ith, and
1.75Ith.
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Figure 2.18: Maximum of the first autocorrelation peak as a function of the rescaled attenuation for
three different operating currents: 1.25Ith (circle), 1.4Ith (square), and 1.75Ith (triangle) respectively.

Analogously to the results in section 2.4, our dynamics measurement (the AC height
at the first delay echo) shows similarity properties when it is plotted such that the ratio
fRO/∆ffb is kept constant. The points corresponding to the three different bias cur-
rents follow one invariant curve from the highest feedback strengths until approximately
23dB. We find the presence of similar regimes than in the scenario with the QW lasers
(DM and DFB lasers): a regime of weak chaos indicated by high correlations in the low
feedback strengths region, followed by a potential regime of strong chaos denoted by low
correlations when the feedback strength is further increased, and a rise in the correla-
tion values when the dynamics enter in the weak chaos regime again at high feedback
strengths. Certainly, here the low correlations for the strong chaos regime are not as
low as in the QW lasers scenario. Possible explanations could be related with a small
value of the α parameter [103] or with the multi mode nature of the dynamics for this
particular device. Further studies with single mode QD lasers are required in order to
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gain further insights in this particular question.
There is another important difference to highlight between the AC height curves of

the QD laser and those previously shown for the QW lasers (sections 2.4 and 2.4.1).
In Fig. 2.18, the similarity properties seem to be valid up to a certain value of the
rescaled attenuation (approx. 23dB). Below this point (in the lower feedback strengths
direction), the AC heights are scattered and do not drop as happens in the QW lasers
scenario. In order to gain further insights in what is affecting the dynamics at different
attenuations, the optical spectrum information is helpful.

Figure 2.19: Optical spectra for a bias current of 1.75Ith versus the rescaled feedback attenuation. The
measured optical power is color-coded in dBm.

Figure 2.19 shows the evolution of the optical spectrum versus the rescaled attenu-
ation. The 27 plotted optical spectra correspond to the same experimental conditions
of Fig. 2.18 for the bias current of 1.75Ith. The optical spectrum evolves from emission
in GS2 and GS3 to emission in GS1 by increasing the FB strength. The comparison
with Fig. 2.18 indicates that the rescaling is fulfilled when the emission is centered in
GS1. When the two higher energy ground states dominate the emission, the dynamics
no longer shows similarity properties. Further detailed studies are needed to understand
the additional factors that come into play when the QD laser is emitting in more than
one state.

Furthermore, another consequence of the broad multi state lasing induced bandwidth
is the high variability in the AC heights at low feedback strengths. Many different
dynamical behaviors can be present in the simultaneous multi mode and multi state
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combined emissions of GS2 and GS3. This variety of possible dynamics, that range from
stable emission to pulsed operation, result in the different characteristic AC heights
observed in Fig. 2.18.

2.9 Discussion and Summary

We have shown in experiments and simulations that the dynamics of a laser with delayed
feedback shows similarity properties. For a certain change of pump currents, if delay time
and feedback strength are adjusted in accordance, the ratio between the total number of
external cavity modes and the maximum feedback-induced frequency shift also remains
constant. For different feedback strengths, pump parameters and delay times, equivalent
dynamics are observed, when keeping the ratios fRO/∆ffb and fRO/fEC constant.

Three different lasers have been used in the experiments described in this chapter,
all of them showing similarity properties. In the QD laser, the rescaling is fulfilled for a
significant part of the rescaled attenuation range, only failing at low feedback strengths
when the laser emits in different higher energy ground states.

The maximum AC height at the first delay echo (our dynamics signature) has been
used as a consistency indicator of the laser response to its own delayed signal. In essence,
the similarity properties consist in the collapse of all measured data on a single curve
when the feedback strength parameter is rescaled appropriately. This behavior demon-
strates invariance with respect to parameter changes that keep the time scales ratio
constant. This similarity property of the AC height proves that the transitions between
different dynamical regimes are not directly linked to an absolute feedback strength or
pump current, as traditionally considered [36, 104], but rather to the interplay between
these two parameters via their associated characteristic time scales. An intriguing con-
sequence of these results is that in order to characterize the dynamical properties of
semiconductor lasers subject to delayed optical feedback, one can reduce the amount
of measurements in parameter space significantly. The whole process would consist in
characterizing the dependence once, either on feedback strength or pump current, while
keeping the other parameter constant. Any feedback condition could be deduced from
other values of the parameters simply keeping the ratios between characteristic time
scales constant. It is worth noting that the similar AC height for different currents can
be achieved for the same delay time as long as the system can still be considered to be
in the very long cavity limit.

It has also been shown that the drop in AC height at intermediate feedback strengths
is caused by the strong nonlinear mixing of fRO and ∆ffb. In fact, this intermediate
strong chaos region separates two weak chaos regions at low and high feedback strengths.
In addition of demonstrating the presence of weak and strong chaos regimes in delayed
FB lasers, our approach goes beyond the strong limitations of the analytic derivation
of the strong and weak chaos theory. Those limitations include: long external cavity,
neglected carrier dynamics, and low feedback strengths. The experimental results are
valid far beyond the mentioned limitations.

If the delay time is included in the rescaling process, the full autocorrelation func-
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tion can be rescaled accordingly. Therefore, a particular dynamics observed for a certain
delay time, can be simply slowed down or accelerated by changing delay time, feedback
attenuation and pump parameter appropriately. The dynamical properties can therefore
be adjusted and tailored for the particular needs of applications. This constitutes a pow-
erful tool to extend the applicability ranges of laser dynamics. Of course, the limitations
to our dynamics rescaling approach come from those laser parameters that cannot be
compensated for, like for example the α parameter. However, it is worth mentioning
that even for a given laser, α is not a fixed constant, but it can be tuned [105] within
certain limits.

Particular regions of the invariant AC heights curve have also been analyzed to
illustrate some specific dynamics in detail. A paradigmatic dynamical regime is the LFF
dynamics, typically associated with low currents and strong feedback scenarios. Under
the similarity perspective, this dynamics constitutes a nice example of the weak chaos
regime at high feedback strengths.

The rescaling approach has been confirmed for the Lang-Kobayashi model, validating
the suitability of this model to reproduce the dynamics found in the experiments with
real lasers. The same approach can be used to efficiently perform model verification in
models to describe QD lasers, where proper rate equation models are still under debate.

Altogether, the rescaling methodology and the similarity properties found in the
delayed feedback induced dynamics constitute a device- and model-independent powerful
approach to characterize and tailor laser dynamics over large ranges of bias currents and
feedback strengths.
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Chapter 3

Properties of the Autocorrelation
Function of a Laser with Feedback

3.1 Introduction

Among the variety of phenomena that delayed coupling can induce in semiconductor
lasers, some of the most intriguing examples are high-dimensional chaos and chaos syn-
chronization [19,83]. The fundamental nonlinear nature of the coupling process is at the
origin of these complex behaviors. A detailed study of such phenomena requires knowl-
edge on complexity indicators, e.g., the Lyapunov spectrum, correlation dimensions, or
entropy. However, these are often hard to obtain from experimental data because of
inherent noise sources and, in the particular case of delay-coupled systems, the high
dimensionality of the system. On the contrary, one of the most accessible measurements
in experiments, the autocorrelation function (AC), has a nontrivial relation with the
nonlinear properties of the system (exception made of some particular cases [106,107]).

In this thesis, the autocorrelation function (AC) of the intensity time series has
already been used to study the weak and strong chaos regimes in the dynamics of delayed
feedback SL. The AC of an intensity time series clearly shows the fingerprint of the
delay time in these lasers, as shown in section 2.3. Structures composed by damped
oscillations are present at successive multiples of the delay time. The maximum height
of the AC around the first multiple of the delay time (first delay echo) has been used as
the signature of the dynamics complexity, namely the dynamics signature. Different bias
currents, feedback strengths or delay times result in distinct decays of the overall AC
and, therefore, in different heights at the first delay echo. Interestingly, a fundamental
similarity appears when the dynamics signature is plotted such that the ratios between
the characteristic time scales are kept constant. All previously disperse values of the
dynamics signature collapse on the same invariant curve, where distinguishable strong
chaos (low correlations) and weak chaos (high correlations) regimes are depicted. This
approach is confirmed for a large variety of feedback strengths, pump parameters and
delay times.

In this chapter, we introduce a model of a stochastic linear oscillator with delay and

45
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compare its analytically obtained AC to the experimentally observed AC. We investi-
gate which characteristic features of the experimentally observed AC can be explained
by this simple linear model. We find that in a wide range of dynamical regimes the
experimentally observed AC can be well approximated by this model.

3.1.1 Chapter Outline

In the present chapter, the full shape of the AC will be used to characterize specific
properties of the dynamics. For this purpose, the experimental AC is compared with
the AC obtained from a model of a linear stochastic oscillator with delay.

In order to compare both AC, the experimental delay time must be precisely known.
In section 3.2, the method used to obtain the round-trip time of the light in the external
cavity is introduced. The advantage of this method is that its results do not depend on
the dynamics of the system.

Section 3.3 is devoted to the introduction of the linear model (LM) and its analytic
expression of the AC. The LM AC is explicitly compared with the experimental AC in
section 3.4. Accordingly, the experimental AC is fitted with the analytical expressions of
the model AC for different operating conditions. The limits of validity of the comparison
between model AC and experimental AC are discussed by means of the fit error in section
3.5.

Finally, in section 3.6 the relation between the model parameters and the experimen-
tal system parameters is analyzed and discussed.

3.1.2 Contributions to the Work in the Present Chapter

The major part of the results presented in this chapter has been published as: X. Porte,
O. D’Huys, T. Jüngling, D. Brunner, M. C. Soriano, and I. Fischer, “Autocorrelation
properties of chaotic delay dynamical systems: A study on semiconductor lasers”, Phy-
sical Review E, 90, 052911 (2014).

The theoretical analysis of the linear stochastic model was developed by Otti D’Huys.
The planning and execution of the experiments have been done by me under the super-
vision of Daniel Brunner, Miguel C. Soriano and I. Fischer. All authors contributed to
the discussion of the results.

3.2 Experimental Methods

Figure 3.1 depicts the schematic view of the setup used for the experiments described in
this chapter. Most of the components employed in this setup, as well as the acquisition
conditions correspond to those introduced in detail in section 2.2. The SL used in this
chapter is the DM laser already used in section 2.2.1.

In this version of the setup, the previous coupler has been substituted by a two
by two coupler. The second input allows for the determination of the external cavity
delay time by measuring the round-trip time of injected light pulses. This constitutes
an essential measurement for the proper comparison between model and experiments.
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Figure 3.1: Schematic view of the experimental setup. LD: laser diode, LR: reference laser diode, Circ:
optical circulator, PC: polarization controller; Att: optical attenuator, Spl: two by two intensity splitter,
→: optical isolator, and PD: photodiode.

3.2.1 Experimental Technique to Determine the Delay Time

The external cavity round trip time is measured via the injection of a train of short light
pulses. The measured delay time corresponds to the time separation between successive
reflections in the external cavity of each light pulse.

A CW reference laser (LR) and a 20 GHz bandwidth Mach-Zender (MZ) intensity
modulator are combined to generate the light pulses. The LR emits a constant output
with narrow linewidth around 1550 nm and has been fine tuned from the DM laser
wavelength such that the minimum amount of light from the reference laser is coupled
into the DM laser cavity. The MZ modulator is DC biased to low transmission. Then
light pulses are generated by increasing the transmission of the MZ modulator via a
voltage pulse. The square wave voltage pulse is generated with a 12 GSamples/s arbitrary
waveform generator. Each pulse has a duration of 10 ns, and the temporal separation
between the generated pulses is 500 ns. Therefore, each pulse travels multiple times
through the external cavity before the next pulse is injected. The acquired waveform
has been averaged, triggering to the rising edge of each pulse.

The injected pulse and the first reflection are shown in Figure 3.2. The first pulse
arrives to the photodetector with a lag t0 + t1. The next pulse (that has traveled once
through the external cavity) arrives to the photodetector with a time lag of t0 + t1 + τ .
Thus, the difference between the arrival of the two pulses gives us the delay time τ . The
measured external cavity roundtrip time is τ = 75.25 ± 0.025 ns.

3.3 Autocorrelation Function of a Linear Stochastic Delay
Model

In this section, a linear model to describe the AC of a delayed feedback laser is presented.
This model does not intend to properly reflect the equations of motion of a SL subject
to delayed optical feedback. But characteristic emergent properties of the underlying
complex dynamics are taken into consideration in the model.
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Figure 3.2: Oscilloscope time trace of the delay time measurement. The depicted square pulses cor-
respond to the injected pulse and to the first reflection. The distance between the pulses rising edges
corresponds to the delay time of 75.25± 0.025 ns.

The model considers the following simple linear stochastic oscillator with delayed
feedback

ẋ(t) = (−α + iω)x(t) + βe−iϕx(t− τ) + ξ(t) , (3.1)

with x ∈ C. The parameters ω and α (with α > 0) represent the characteristic frequency
and damping of the oscillator, respectively.

Without delay, the model corresponds to an harmonic oscillator, with solutions that
decay exponentially as cos(ωt)e−αt. The main idea behind this model is to extend the
linear response theory to the fully developed chaotic regime. When time scale separation
is possible, it is a common procedure to consider the fast complex drive signals as
noise [108]. The delay term is linearly added to the harmonic oscillator. The feedback
strength is denoted by β and the feedback phase by −ϕ. In the context of the current
theoretical analysis, we require that the conditions for weak feedback (β < α) and long
delay (τ ≫ max(α−1, β−1, ω−1)) are fulfilled. The complex drive signal of the delayed
feedback laser is composed by fast chaotic trajectories. This high bandwidth dynamics is
in the model approximated by a white noise ξ(t) term (with ⟨ξ(t)ξ(t′)⟩ = 2Dδ(t−t′)). In
comparison with the experimental system, the variable x(t) is associated with the time-
dependent intensity of the laser. The parameters ω and α can be respectively associated
to the relaxation oscillations frequency and damping.

The four panels of Fig. 3.3 illustrate the suitability of a white noise term to ap-
proximate the high bandwidth chaotic dynamics from an experimental viewpoint. Each
panel depicts two experimental intensity power spectra for a given bias current, one
corresponding to the solitary laser and the other to the delayed feedback laser emission.
The increase in bandwidth caused by delayed optical feedback is obvious for all depicted
bias currents, resulting in an almost flat power spectral shape. Even for the two lower
currents, where the spectra are not entirely flat, the -10 dB bandwidth has increased
beyond 10 GHz, which is more than twice the solitary emission bandwidth.
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Figure 3.3: Intensity power spectra of the DM laser with (red) and without delayed optical feedback
(black). The bias current corresponding to each of the four panels are (a) 14mA, (b) 16mA, (c) 18mA,
and (d) 20mA. The threshold current is I = 12.08mA. The dashed vertical lines indicate the relaxation
oscillations frequency at each current.

For the model in Eq. 3.1, it is possible to analytically calculate the AC if the time
scales of the delay time and of the oscillator parameters are separable. The experimental
conditions have been chosen such that adapt to this model requirement and the com-
parison of both will reflect the properties behind the clearly separated autocorrelation
signatures (e.g. in Fig. 2.5).

The expression of the autocorrelation function of the variable x(t) is

r(k) =
⟨x(t + k)x∗(t)⟩

⟨|x|2(t)⟩
.

The shapes of the AC delay echoes can be explicitly calculated for consecutive win-
dows of length τ . A detailed derivation of the model’s analytic AC equations can be
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found in [109]. The AC shape for the first interval [0, τ [ is

r0(k) = e(−Λ+iω)k + γe(Λ+iω)(k−τ) . (3.2)

The two terms in Eq. 3.2 represent clearly separated peaks due to the large value of
the delay time τ . Close to the origin (k ≈ 0) the second term is approximately zero,
the same is true for the first term for k → τ . The AC central and first delay peaks
are modulated with the characteristic frequency ω. The envelope of the AC |r0(k)|
decays (and increases) exponentially with Λ for k ≈ 0 and k → τ , respectively. This
decay/growth rate is given by

Λ =
√

α2 − β2 . (3.3)

The decay therefore depends on the real part α of the characteristic dynamics and on
the magnitude β of the feedback. The amplitude of the first delay peak is proportional
to the factor γ, given by

γ =
βe−iϕ

Λ + α
. (3.4)

The first delay echo at k = τ has a phase shift equal to the feedback phase −ϕ.

In the interval [τ, 2τ [ the autocorrelation follows the solution

r1(k) = γ∗−1e(−Λ+iω)(k−τ) + γ2e(Λ+iω)(k−2τ) +
(
γ − γ∗−1

)
e(−α+iω)(k−τ) . (3.5)

Thus, the first delay echo is asymmetric, with the right side broadened with respect to
the left side. Moreover, the highest peak position is not at k = τ , but is slightly shifted
to longer lag times. The magnitude of this shift depends on the model parameters, as
will be explained in section 3.6.1.

The AC can be calculated in the consecutive delay intervals, [nτ, (n + 1)τ [, giving
the following general expression

rn(k) = γ∗−ne(−Λ+iω)(k−nτ) + γn+1e(Λ+iω)(k−(n+1)τ)+(
γn

n∑
m=0

(
γ−1βe−iϕ(k − nτ)

)m
m!

− γ∗−n
n∑

m=0

(
γ∗βe−iϕ(k − nτ)

)m
m!

)
e(−α+iω)(k−nτ) .

(3.6)

The modulation of the nth peak still corresponds to the characteristic frequency ω. Each
delay peak is more asymmetrically broadened than the previous one, and the maxima
are shifted further away from k = nτ . Interestingly, multiple characteristic features
observed in the experimental AC of chaotic feedback lasers are also depicted by this
simple linear model, e.g., the frequency, damping, shift and broadening of the delay
echoes. Nevertheless, some nonlinear properties are reflected in the model via the noisy
drive .
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3.4 Comparison of the Autocorrelation Functions of the
Laser and the Linear Model

The suitability of the LM to describe the measured intensity AC is tested by means of
fitting the analytic expressions of the AC to the experimental data.

Equation 3.2 represents the analytic solution of the AC in the interval [0, τ [. This ex-
pression from the model is fitted to the experimental data using a least-squares method.
It is important to note that all model parameters are present in the expression of r0(k).
Consequently, all the information needed to compare the model AC with the experimen-
tal AC can be extracted simply from the fit in the interval [0, τ [. From the right side
of the central peak, in the interval [0, τ

10 ], the parameters Λ and ω are extracted. From
the left side of the first delay echo peak, in the interval [τ − τ

10 , τ ], the parameters β
and ϕ are extracted. The window size of τ

10 has been chosen because it covers the AC
oscillations (either at the right side of the central peak or at the left side of the first
delay echo) for most of the experimental conditions.

Figure 3.4 shows the comparison between experimental AC and the LM analytic ex-
pressions for three different FB strengths. The bias current was chosen to be 16 mA for
constant in all panels. The plotted data corresponds only to one bias current. This is
to illustrate the characteristic behavior found for other currents in this laser. Further-
more, as it has already been demonstrated in chapter 2, the scenarios explained for this
current can be translated to other bias currents by properly rescaling the experimental
parameters. The top panels (3.4a, 3.4b, and 3.4c) correspond to 27.5 dB of rescaled
attenuation1. Panels 3.4d, 3.4e, and 3.4f (set of panels with green curves) correspond to
19.1 dB of rescaled attenuation. Finally, panels 3.4g, 3.4h, and 3.4i (with orange curves)
correspond to a rescaled attenuation of 6.3 dB. The solid lines and the dashed lines
in every panel depict the experimental AC and the fitted analytic curves, respectively.
The set of panels on the left side depict the central AC peak, while the central panels
and those on the right side respectively depict the AC at first and second delay echoes,
respectively.

The model AC accurately reproduces the experimental AC for low feedback strength
conditions (panels 3.4a, 3.4b, and 3.4c). The fact that only the first interval [0, τ [ has
been used for the fit further supports the validity of the model to reproduce the full
first, second and successive AC delay echoes. The quality of the fit suggests that this
approach captures dominant features of the time series corresponding to linear response
properties. Therefore, this approach allows for an appropriate description of the complex
dynamics as well as qualitative and even quantitative insight into physical properties of
the system, as it will be further explained in section 3.6.

However, not all experimental conditions are fitted by the model with equal accu-
racy. For the intermediate FB conditions (with the model AC highlighted in green) the
feedback regimes corresponds to strong chaos (for a more detailed explanation see sec-
tion 2.1.1). More specifically, this experimental condition corresponds to the minimum
of the AC invariant curve in Figure 2.7. The central peak is very well fitted. However,

1For the complete definition of rescaled attenuation, see chapter 2
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Figure 3.4: Experimental AC (solid lines) and their corresponding fitted curves (dashed lines). Panels
(a), (b) and (c) respectively depict the central peak, the first and the second delay echoes for a current
of 16 mA and a rescaled attenuation of 27.5 dB. Panels (d), (e) and (f) depict the central peak, first and
second delay echoes for a current of 16 mA and a rescaled attenuation of 19.1 dB. Finally, panels (g),
(h) and (i) depict the identical information for the same bias current and a rescaled attenuation of 6.3
dB.

the experimental AC modulation on the right side of the first and second delay echoes
present a clear excess of damping when compared to the model prediction.

For the highest FB strength conditions (panels 3.4g, 3.4h, and 3.4i), both the global
AC decay and the phase of the modulation at successive delay echoes seem to be well
fitted. The global AC decay among successive delay echoes is small, as expected for
experimental conditions in a regime of weak chaos. Nevertheless, the peak modulation
frequency seems to be erroneously fitted. The model only contains one frequency, mean-
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while the experimental AC seems to be composed of at least two different interfering
frequencies (as deduced from the inspection of the AC peaks). Additional analysis must
be performed in order to gain further insights on the origin of the described fit errors.

3.5 Limits of Validity of the Linear Approximation

The experimental AC shape varies with the operating conditions and with the feedback
parameters. The potential applicability of the presented model to different experimental
conditions requires the quantitative evaluation of its suitability to reproduce the AC
of real lasers. In this section, the error resulting from the fit process is numerically
evaluated and discussed.

We quantify the quality of the AC fit using the least-squares error:

∆ =
1

max(yi)

√∑n
i=1[yi − fi(ā)]2

n
,

where f and y respectively represent the data of the model and the experimental au-
tocorrelations. The set of parameters obtained from the fit is denoted by ā. Errors
have been calculated independently for the different delay echoes, in windows centered
around each peak structure. The widths n of the integration windows were chosen as ten
times the inverse of the decay rate Λ of the central envelope. This integration window
includes all the significant oscillations around each AC peak structure, but makes sure
that the windows corresponding to different delay echoes never overlap. Finally, given
the diversity in AC maxima, the errors have been normalized by the maximum height
of the AC at their correspondent peak structure.

Figure 3.5 depicts the normalized fit error ∆ for the central peak and the successive
two first delay echoes of the 16 mA exemplary bias current. In the three panels of
Fig. 3.5 the accuracy of the fit degrades with increasing feedback strength. Another
visible effect, that could be partly related to our fit procedure, is that the fit error is
systematically larger at the first delay echo than at the central peak (and at the second
delay echo than at the first one). Furthermore, the fit errors depicted in panels 3.5b
and 3.5c show clear maxima at intermediate values of the rescaled attenuations (with
the maximum at 19.1 dB). These maxima appear in the region of strong chaos, at the
conditions of maximum nonlinear mixing between characteristic frequencies as described
in section 2.4.1. Inspecting again panels 3.4d, 3.4e, and 3.4f, one can observe that the
experimental AC is well fitted for the central peak structure and the left side of the
first and second delay echoes. However, the fit does not reproduce correctly the right
sides of these two delay echoes. This disagreement is common for intermediate feedback
strengths for all the analyzed bias currents. Moreover, the significant peaks in the fit
errors for intermediate feedback strengths suggests that the behavior of the laser deviates
the most from linearity around this region, that coincides with the transition region from
weak to strong chaos.
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Figure 3.5: Normalized fit error ∆ of the experimental AC versus the rescaled attenuation. Panel (a)
depicts the fit error for the central peak. Panels (b) and (c) depict ∆ in the first and second delay echoes
of the AC, respectively.
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Figure 3.6: Power spectral densities contained in each AC peak of the (a) experimental AC and (b)
model AC resulting from the fit. The brown curves depict the PSD of the central peak. The red
and orange curves correspond to the first and second delay echoes PSD, respectively. The corresponding
rescaled attenuation is 19.1 dB. The vertical dashed line in each panel indicates the relaxation oscillations
frequency of the solitary laser for this bias current (16 mA).
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The origin of the large error for the intermediate range of feedback strengths is
illustrated in Fig. 3.6, where the power spectral densities (PSD) contained in each AC
peak are depicted. These PSD are calculated from the Fast-Fourier transform (FFT)
amplitudes of the different experimental AC peaks in panel 3.6a and model AC peaks in
panel 3.6b. The discrepancy between linear model and experimental AC originates from
the fact that multiple dominant frequencies are actually present in a delayed feedback
laser system. This becomes evident in the bimodality exhibited at the PSD of the first
and second delay echoes, a signature of the coexistence of two distinct frequencies that
compete in the feedback dynamics. In contrast, the PSD calculated from the model
never exhibit a second frequency because only one frequency, ω, appears in the analytic
solutions of the LM.
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Figure 3.7: Power spectral densities contained in each AC peak of the (a) experimental AC and (b)
fitted AC from the model. The brown curves depicts the PSD of the central peak. The red and orange
curves correspond to the first and second delay echoes PSD, respectively. The corresponding rescaled
attenuation is 6.3 dB. The vertical dashed lines indicate the relaxation oscillations frequency of the
solitary laser for this bias current (16 mA).

An additional illustration of this multiple frequency caused misfit can be observed
from the detailed inspection of the fit for the highest feedback conditions. Figure 3.7
depicts the PSD for the FB strength of 6.3 dB. As expected for a higher feedback strength
scenario, the PSD are flatter and with a higher frequency bandwidth. Here, the bimodal
spectra are present in all three peaks of the experimental AC. On the contrary (and
coinciding with panel 3.6b), the model PSD has only a single frequency peak, shifted
approximately 1 GHz away from the relaxation oscillations frequency of the solitary
laser. The fitted frequency approximately corresponds to the higher frequency in the
experimental AC, as can also be deduced from the direct inspection of panels 3.4g, 3.4h,
and 3.4i. Despite the failure to properly fit the oscillations frequency, the model correctly
reproduces other characteristics from the experimental AC, like the decay and the phase
at the successive delay echoes.

Altogether, the presented analysis on the quality of the fit further supports the
application of this procedure to extract the LM parameters from the various bias and
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feedback conditions that we can address in our experiment.

3.6 Parameters Extraction from the Fit of the Autocorre-
lation Function

In this section, the parameter of the analytic expressions of the model are extracted
from the fits to the AC of the SL at different experimental conditions. From the right
side of the central peak, the parameters of the damping (Λ) and the frequency (ω) are
extracted. Once these two parameters are known, from the left side of the first delay
echo the modulus of the feedback strength (β) and the phase (ϕ) are extracted.
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Figure 3.8: Plot of the rescaled parameters fitted from the right side of the central peak. Panel (a)
depicts internal frequency [ ω

2π
]. Panel (b) depicts the decay (including the effect of the FB term) [Λ].

The different bias currents are associated with each curve as follows: circles (I = 13mA), squares (I =
14mA), triangles (I = 16mA), and crosses (I = 18mA).

In Figure 3.8 the extracted model parameters of the central peak are plotted versus
the rescaled feedback attenuation. The extracted parameter values are also rescaled
together with attenuation. The parameters ω and Λ, with units of ns−1, have been

rescaled dividing by a factor
√

I
Ith

− 1. The rescaled parameter curves for different bias

currents collapse onto each other, indicating that the linear model correctly fits the
self-similar AC curves.

The extracted frequency ω
2π approximately corresponds to the dominant frequency

component in the radio-frequency spectral density of the laser, as pointed out in Figs.
3.6 and 3.7. In fact, it approaches the relaxation oscillation frequency for high values of
the rescaled attenuations. The increase in feedback strength results in an enlargement
of the dynamical bandwidth for most conditions [36, 39]. As a consequence, the decay
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of the central peak of the AC is faster, which is reflected in a higher damping Λ.
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Figure 3.9: Plot of the rescaled parameters fitted from the right side of the central peak. Panel (a)
depicts the feedback strength [β]. Panel (b) depicts the feedback phase [ϕ]. The different injection
currents are associated with each curve as follows: circles (I = 13mA), squares (I = 14mA), triangles (I
= 16mA), and crosses (I = 18mA).

Figure 3.9 depicts the parameters, β and ϕ. The latter parameter is related to the
shift in position of the AC maximum at first delay echo. The extracted phase and the
corresponding shift in the position of the AC maximum with respect to the delay time
decreases for an increasing feedback strength, as will be explained in more detail in
section 3.6.1. The linear model’s feedback strength β is extracted from the height of
this maximum via the second term in Eq. (3.2). However, it does not grow proportional
to the AC height, but depends on the ratio β/α as can be deduced from Eq. (3.4).
Analogously to Fig. 3.8, these two parameters also exhibit similarity properties when
plotted with respect to the rescaled attenuation.

A significant exception to the similarity behavior is found in the plot of the rescaled
frequencies ( ω

2π ) in panel 3.8a. The fitted frequencies for different bias currents are
found to diverge for intermediate to high feedback strengths. The underlying reason
for this effect is the presence of two frequencies in the experimental AC, as has been
discussed in section 3.5. Therefore, one can conclude that an extended linear model
containing two frequency components with a different damping could overcome this issue
for intermediate to strong feedbacks. However, in the context of the present work, the
simplest form of the linear model is maintained, because it sufficiently reproduces most of
the experimental features and allows for analytic solutions of the AC. Furthermore, the
presence of the second dominant frequency does not seem to have a significant influence
on the remaining parameters extracted from the fit as can be seen in Figures 3.8b and
3.9.



58 CHAPTER 3. PROPERTIES OF THE AC OF A LASER WITH FEEDBACK

α 
[n

s-1
]

10

100

Rescaled Attenuation [dB]
30 25 20 15 10 5 0

Figure 3.10: Plot of the rescaled internal decay α for different bias currents: circles (I = 13mA),
squares (I = 14mA), triangles (I = 16mA), and crosses (I = 18mA).

Finally, the rescaled version of the internal decay parameter is plotted in Fig. 3.10.
This model parameter is calculated from two already known other parameters (Λ and
β) using Eq. 3.3. The internal decay parameter α can be related to the damping rate of
the relaxation oscillations [109,110]. Similarly to the scenario depicted for Λ, the faster
decay of the central peak of the AC for higher feedback strengths is again reflected in
higher values of the damping α.

3.6.1 Time Delay Extraction

The delay time is a key parameter to be determined in experimental delay systems
[111–119]. If the intensity AC shows peaked structures around multiples of the delay
echo, one may ask if the delay time can be precisely obtained from the experimental AC
and/or if the linear model is of any help to determine the delay time.
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Figure 3.11: Rescaled drift of the maximum AC height at first delay echo respect to the precise
delay time (75.25 ns) for the full set of experimental conditions. The dots denote the deviation directly
measured from the position of the peak and the squares correspond to the shift predicted from the model
extracted parameters, i.e. ϕ/ω. The dashed red line indicates position of the delay time, that has been
offset to zero.

Figure 3.11 shows how well the position of the maximum AC height at first delay
echo approximates the time delay (see section 3.2 for a description of the method used
to extract the delay time with independence of the laser dynamics). The experimentally
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determined position (dots in Fig. 3.11) is depicted together with the position calculated
from the LM fitted parameters (squares in Fig. 3.11). In a first approximation, the
experimentally measured maximum of the first delay echo is only a precise indicator of
the delay time for high feedback strengths. In the other cases, its position deviates from
the precise delay time. Indeed, this shift is in all cases well approximated by the position
of the maximum AC height derived from the LM, that is shifted towards larger delay
times an amount equal to ϕ/ω.

From the detailed inspection of the LM expressions, one can deduce that the delay
echoes are shifted due to the combination of two different effects: the modulation phase
of the delay echoes due to the presence of the coupling phase −ϕ, and a shift caused by
the internal time scale of the system α−1. This latter one corresponds to the shift of the
envelope at the delay echoes (it is present even in absence of the internal oscillations).
Thus, the analytical expression for the shift of the envelope of the first delay echo can
be derived:

kshift =
1

α− Λ
ln

2α

Λ + α
=

1

2α

(
1 +

1

8

β2

α2
+ O(

β4

α4
)

)
.

Interestingly, this shift does not only depend on the internal parameter α, but also
on the coupling strength β. However, for sufficiently weak coupling the envelope shift is
indeed proportional to the inverse internal damping rate.

From the comparison between both sets of points in Fig. 3.11, one can conclude that
the shift of the maxima at first delay echo originates to a large extent from the AC phase
shift ϕ. Therefore, the shift of the envelope contributes only little to the shift of the AC
peak at the delay echo. As a consequence, the linear model can help in the estimation
of the real delay time.

3.7 Summary and Discussion

In this chapter, analytic solutions for the AC of a stochastic LM with delay have been
compared to the intensity AC of a SL in the long delay limit. The experimental AC
has been approximated by the LM expressions in a wide range of injection currents and
feedback strengths, illustrating how the properties of the AC relate to the dynamical
regime of the delayed feedback laser.

In a step previous to the comparison of the experimental AC with the LM, the delay
time of the fiber-based external cavity has been determined by means of the injection of
square pulses of light.

The comparison between experimental data and analytic model expressions has been
made via fitting the experimental AC with the analytic solutions in the first delay interval
[0, τ [. The fit allows for the extraction of the model parameters that can therefore be
related to semiconductor laser parameters, e.g., the relaxation oscillations frequency and
damping. Furthermore, it has been shown that the relation of model parameters ϕ/ω
precisely reproduces the shift in time of the maximum of the AC at first delay echo.

The model captures the nonlinear properties of the dynamics through the noise
term. Consequently, nonlinear mappings or properties like correlation dimension or
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Lyapunov spectrum are not properly captured by the model. Nevertheless, the model
properly reproduces most of the properties observed in the experimental AC. In fact,
the main limitations to fit the experimental AC with the linear model seem to be related
to the necessity to include a second frequency in the model. There are two possible
physical origins for this second frequency depending on the dynamical regime. For low
feedback strengths, it can originate from to the presence of anharmonics of the relaxation
frequency in the undamped relaxation oscillations regime. For intermediate and strong
feedbacks, it can be due to the competition between the relaxation oscillation frequency
and the frequency shift introduced by the feedback, which can be of the same order [109].
The linear model could have easily been extended to multiple characteristic frequencies
or colored noise, which would lead to more accurate approximations of the experimental
conditions. However, the focus has been kept on the most simple case because analytic
expressions for the AC can be obtained for such a model and also because it reproduces
most of the observed experimental AC features.

In the context of delay-coupled systems, it has been shown that the AC properties
of a single delay-coupled system serve as a predictor to the AC properties of delay-
coupled systems [5, 65]. For that reason, if the relationship between AC properties and
dynamical regime has a broad validity in nonlinear dynamical systems with delay, the
insights obtained by the linear model can also serve as a tool to interpret the dynamical
regimes found in delay-coupled systems.



Chapter 4

Chaos Synchronization in
Delay-Coupled Semiconductor
Lasers

4.1 Introduction

Chaos synchronization (CS) is one of the most prominent phenomena that can emerge
from delay-coupled nonlinear systems. This is partly because chaotic dynamics has be-
come the paradigm of unstable and non-predictable behavior in nature. The aperiodic
chaotic dynamics is reflected in the divergence of originally nearby phase-space trajec-
tories characterized by a positive Lyapunov exponent. CS is therefore a counterintuitive
phenomenon because it implies that two or more chaotic systems follow interrelated
(or even identical) phase-space trajectories. Nevertheless, CS has been demonstrated in
many systems and the conditions needed for coupled chaotic systems to accomplish it
are well studied [47,48].

Furthermore, CS has evolved into a broad field that comprises a variety of typolo-
gies, e.g., generalized, phase, anticipated, identical, or cluster synchronization. The
corresponding phenomena, fundamentals and applications have been widely studied in a
variety of systems ranging from brain dynamics and neural networks [120–123] to popu-
lation dynamics [124,125], electronic circuits [48,126–129] and lasers [51,52,54,130,131].
Extensive reviews have been dedicated to the properties of chaos synchronization, see
e.g. [132,133].

In delay-coupled lasers, there have been many works devoted to the study of the
CS properties in the aforementioned kinds of synchronization. The synchronization
of unidirectionally coupled chaotic SL was demonstrated in seminal works from the
numerical [54,134] and experimental [51,131] points of view. The previously mentioned
types of CS are also are also illustrated in SL, e.g., generalized synchronization [51,54,65,
131,134,135], identical synchronization either via a an active relay [136,137] or a passive
relay [138–140], leader-laggard synchronization [20], and zero-lag synchronization [141].

In the present chapter, the CS phenomenon is explored in two configurations with
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two different objectives in mind. First, we study the relation between consistency of the
dynamics and synchronization in a drive-response configuration. Second, we demon-
strate the existence of the identical synchronization state in a bidirectional coupling
scheme and we also analyze its robustness. These two different synchronization schemes
are schematically illustrated in figures 4.1 and 4.2.

Figure 4.1 depicts the coupling scheme used in our first experiment. This scheme
is commonly referred in the literature as an open-loop coupling configuration. In this
drive-response configuration, the light of the delayed feedback SL (with feedback strength
and feedback delay time κf and τf , respectively) is coupled into the second SL with a
coupling strength κc and a coupling delay τc (the last parameter does not affect the
synchronization quality, it only affects the relative lag between the two coupled laser
signals).

L D1 L D2

Figure 4.1: Scheme of the open loop coupling configuration studied in detail in section 4.3. This setup
is an adaptation, originally by Heiligenthal et al [59], of the Abarbanel’s original setup for delay-coupled
systems. The identical synchronization state existed when the coupling and feedback parameters were
identical.

Here, we are interested in the problem of measuring the consistency properties of a
laser subject to delayed optical feedback [103]. In this context, consistency characterizes
the property of whether a similar drive results in a similar response [142]. In our exper-
iment, CS is used as an indirect measurement of consistency. We compare the outputs
of the drive and the response lasers when they are injected with the same delayed signal
(generated from the drive laser). This method is the analog in delay-coupled systems to
the procedure described in [143] (also known as Abarbanel test) to test the existence of
generalized synchronization. In our experiment, if the response of the drive laser to its
own delayed feedback is fully consistent, the response of the replica to the same drive
will be consistent as well and both will exhibit complete/identical synchronization.

The second coupling scheme studied in this chapter is illustrated schematically in Fig.
4.2. Here, we are interested in the existence and robustness of the identical synchroniza-
tion state in this bidirectional coupling configuration. The correct characterization and
understanding of those problems is key for applications like secure-key exchange (see
chapter 5).

In the bidirectional coupling scheme, the emergence of identical synchronization (un-
der the proper operating conditions) is related to the presence of a relay element between
both lasers. The relay can either be active (e.g. a third laser [136]) or passive (e.g. a
semitransparent mirror [138]). In our case, it is a passive relay built in a semitransparent
mirror configuration as depicted in Fig. 4.2.
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L D1 L D2

Figure 4.2: Scheme of two semiconductor lasers delay-coupled via a passive relay. In the configuration
as depicted, the relay is symmetrically placed between both lasers. The feedback strength is κf and the
feedback delay time is τf . The coupling strength and delay time are κc and τc, respectively.

4.1.1 Chapter Outline

In this chapter we present the results of our investigations on the synchronization prop-
erties of two different coupling scenarios. The description of the experimental setups
used to implement the two couplings can be found in the methods section 4.2.

In section 4.3, CS in a unidirectional coupling configuration is used as an indirect
method to measure the consistency of the response of a laser to its own delayed optical
field. We proceed by measuring and comparing the autocorrelation function (AC) of the
drive laser and with the cross-correlation function (CC) of the drive and the response
lasers. We find that the AC is a suitable tool to predict under which conditions a SL
will synchronize when coupled to other lasers.

The results on the bidirectional coupling configuration are presented in section 4.4.
In this section, beyond proving the existence of isochronous CS of the intensity dynam-
ics of both lasers at sub-nanosecond time scales, the stability (i.e. robustness) of this
synchronized state is studied in detail. In order to do this, the cross correlation function
(CC) is used as an indicator of synchronization. With the help of this indicator, the
stability of the synchronized solution is studied under different operating conditions,
including the analysis of its dependences with bias current, feedback strengths, and in
asymmetric coupling scenarios. In particular, the effect of frequency detuning is ana-
lyzed in section 4.4.1 and the effect of noise on the synchronization stability is analyzed
in section 4.4.3. Finally, in section 4.5, the results we have presented along this chapter
are summarized and their impact for applications of CS is discussed.

4.1.2 Contributions to the Work in the Present Chapter

The first part of the results presented in this chapter, where the open-loop coupling
configuration is analyzed, are based on experiments carried out by me. The experiment
was suggested by Thomas Jüngling, and the discussion of the results have been done in
collaboration with Miguel C. Soriano, Thomas Jüngling, and Ingo Fischer.

The second part of the chapter, devoted to study the bidirectional coupling scheme,
includes results already published in: J. Tiana-Alsina, K. Hicke, X. Porte, M. C. Soriano,
M. C. Torrent, J. Garćıa-Ojalvo, and I. Fischer, “Zero-lag synchronization and bubbling
in delay-coupled lasers”, Physical Review E, 85, 026209 (2012).

The experiments shown in section 4.4.1 were done by K. Hicke and me. Those
experiments shown in section 4.4.3 were mainly done by J. Tiana-Alsina in collaboration
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with K. Hicke and me.

4.2 Experimental Methods

The lasers used in this chapter are discrete-mode (DM) lasers. These laser devices have
already been described in section 2.2 and appendix A. The particularity of the employed
devices is that they have been hand-picked from a set of DM lasers that originally
came from the same wafer. This selection has been done with the intention of using
devices with the most similar properties possible for the synchronization experiments.
The analyzed properties are: threshold current, emission frequency, external differential
quantum efficiency, and wavelength-temperature dependence.

4.2.1 Experimental Setups for Synchronization Experiments

The experimental setup used to study the synchronization properties in the open-loop
coupling configuration is depicted in Figure 4.3. This setup has been realized by em-
ploying standard telecommunications fiber components.

Figure 4.3: Scheme of the experimental setup for the open-loop unidirectional coupling configuration.
LD1: drive laser diode, LD2: response laser diode, Circ: optical circulator, PC: polarization controller,
Att: variable optical attenuator, Att[10dB]: fixed 10dB optical attenuator, Spl: one by two intensity split-
ter with indicated intensity splitting ratios, →: optical isolator, SOA: semiconductor optical amplifier,
and PD: photodiode.

The main objective of the experiment with the open-loop coupling setup is to study
the possible relations between the emitted intensities of the delayed feedback laser and
of the injected laser for different operating conditions. The design of the unidirectional
coupling in this setup allows us to scan the coupling-dependence by simply tuning the
attenuator inside the feedback loop. There are two polarization controllers symmetrically
located in order to control the polarization state of the light injected into each laser diode.
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The function of the 10 dB attenuator included in the detection path of LD2 is to equalize
the powers arriving to the two SOA, avoiding the asymmetric SNR that would result
from the amplification of two signals with different powers. These differences in SNR
would cause undesired artifacts in the calculated cross-correlations.

Figure 4.4 depicts the experimental setup used in the two mutually delay-coupled
lasers experiment. In this particular coupling configuration, each laser is delay-coupled
to the other laser and to itself via delayed feedback. The central element distributing
the coupling fields to each laser is a passive relay. The role of the passive relay is
played by a semi-transparent mirror-like configuration realized via a single-pass fiber-
loop mirror [138–140]. The light coupled back into every laser is a superposition of both
optical fields, the self-feedback and the coupling from the other laser. The polarization
controllers (PC) control the polarization state of the propagating fields to ensure that
we are coupling both lasers via the dominant TE component of the optical field.

In the characterization of the setup we observed that the degree of correlation be-
tween both lasers intensities is very sensitive to the PC configurations. However, the
total birefringence accumulated along the successive components is reasonably constant
within time windows of days (at least in the laboratory controlled conditions) and the
configuration of the PCs can be kept fixed during the experiment runs.

Figure 4.4: Scheme of the experimental setup for the mutually delay-coupled configuration. LD1

and LD2: laser diodes, Circ: optical circulator, PC: polarization controller, Spl: intensity splitter with
indicated intensity splitting ratios, →: optical isolator, SOA: semiconductor optical amplifier, and PD:
photodiode.

The external cavity delay time (τ) is related to the fiber path (l) via τ = l
v , with

v being the light propagation velocity in the fibers. Due to the symmetric positioning
of the mirror, both external cavity delay times are identical and the synchronization
dynamics will occur with zero temporal offset between both lasers.
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4.2.2 Cross-Correlation Analysis

We use the normalized CC as a tool to quantify the synchronization between the two
coupled lasers in the two coupling configurations studied along this chapter. This math-
ematical function provides insights on the correlation between the signals of both lasers
on different time scales. The better the two lasers are synchronized, the closer the CC
value will be to 1.

The CC is computed from the normalized intensity time series in order to avoid
contributions from slow or DC offsets and from different amplitudes that can introduce
undesired artifacts in the results. For this purpose, each experimental time trace is
shifted to zero mean power and normalized by its corresponding standard deviation. It
is important to mention that the time-dependent intensities have been detected using
an AC-coupled fast photodetector and a 16 GHz analog bandwidth oscilloscope. The
formula used to calculate the normalized CC is the following:

CC(∆t) =
⟨[I1(t) − ⟨I1⟩][I2(t + ∆t) − ⟨I2⟩]⟩√
⟨[I1(t) − ⟨I1⟩]⟩2⟨[I2(t + ∆t) − ⟨I2⟩]⟩2

(4.1)

where ∆t is the time lag of one time series with respect to the other, I1 and I2 are the
normalized intensities. The angled brackets indicate the time averaging over t, always
performed with time series longer than 50 times the typical external cavity delay time
(τ) in our experiments.

4.3 Correlations and Synchronization of Unidirectionally
Coupled Lasers in Open-Loop Configuration

In this section, the dynamics of a delayed feedback SL (drive laser) and the dynamics of
a unidirectionally coupled second SL (response laser) are compared. This configuration
represents the simplest extension of the single laser subject to delayed optical feedback
(extensively analyzed in chapters 2 and 3) to a network of two elements where the
properties of CS and consistency can be studied.

This coupling scheme may exhibit two possible CS scenarios [144]: identical synchro-
nization and generalized synchronization. A third obvious possibility is the absence of
any synchronization between the two coupled units, that may occur e.g. if there are
large coupling asymmetries or mismatches between the two coupled systems. Identi-
cal CS appears exclusively when the drive and the response lasers share exactly the
same characteristics, including the feedback/coupling strengths κf = κc. This restric-
tive condition limits the identical synchronization to a very small region in parameters
space. Identical synchronization is characterized by equal state variables of the systems,
i.e., x2(t) = x1(t − τc + τf ). This phenomenon is sometimes also referred to as an-
ticipated synchronization [145–147]. In contrast, generalized synchronization can occur
even in the presence of significant asymmetries between the two coupled systems1 or if

1The nonlinear nature of the systems implies that even small asymmetries can be significant.
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the identical synchronization manifold is unstable. In the generalized synchronization
scenario, the outputs of the two lasers are not identical. The state variable of the re-
sponse laser is typically an unknown function of the state variable of the drive laser, i.e.,
x2(t) ≃ F(x1(t− τc); t).

In our experiment, we use the correlation between the intensities of the two lasers
to quantify the degree of synchronization, and compare it to the AC of the drive laser.
From now on, we use the term AC to denote the autocorrelation of the intensity of the
drive laser (AC1), and CC to denote the cross-correlation between the drive and the
response laser (CC1→2). We focus on the coefficients of AC and CC that represent the
previously described types of CS. The amplitude of CC(τf −τc) (central peak) represents
the degree of correlation between the drive and the response lasers to the same delayed
feedback signal. Therefore, it is related to the consistency of the response of a single
delayed feedback laser via generalized synchronization. Conceptually, the two lasers are
two replicas of the same system that are subject to the same drive, a scenario that
corresponds to the Abarbanel test [143] in the version for delayed feedback systems
as proposed by Heiligenthal and coauthors [59]. The other depicted coefficient is the
amplitude of the CC at first delay echo (CC(−τc)), which is compared to the amplitude
of the AC at first delay echo (AC(−τf )) because both coefficients represent the nonlinear
transformation of each SL to the delayed feedback/coupling field [148].

Figure 4.5 illustrates the dependences of these AC and CC coefficients on the feed-
back/coupling attenuation. The two figures depict data from two different pump cur-
rents: I = 1.2Ith in Fig. 4.5a and I = 1.5Ith in Fig. 4.5b. Since the attenuator is
situated before the fiber splitter, the feedback and coupling attenuations vary in exactly
the same amount of dB. Any possible initial difference between feedback and coupling
attenuations (that we have accurately matched) would be reflected in an offset between
AC and CC curves on the attenuations axis. The gray squares in both figures depict
the AC at first delay echo (AC(−τf )). We will not extend in the description of the
dependence of this coefficient on the feedback attenuation because it is identical to the
dependences already observed and extensively described in chapters 2 and 3. The CC at
first delay echo (CC(−τc)) is plotted with red triangles. The CC and the AC at first de-
lay echo present the same dependence on the attenuation with very similar amplitudes,
which indicates that both lasers are performing the same nonlinear transformation to
the delayed feedback field.

The blue circles in Fig. 4.5 depict the CC at central peak. The amplitude of this
coefficient represents the level of consistency of the response of the two lasers to the same
drive. Certainly, a direct identification of the level of consistency requires the specific
knowledge of the sub-Lyapunov exponent [103]. This exponent characterizes the stability
of the response of a SL to its delayed feedback. In particular, a negative sub-LE is related
to weak chaos, whereas a positive sub-LE results in strong chaos (for an introduction to
strong and weak chaos regimes see section 2.1.1). In the context of SL, the properties of
weak and strong chaos are directly related to consistency2. An inconsistent response of

2In [103], the exact same optical drive was repeated twice and consistent or inconsistent responses of
the laser were found depending on the pump parameter. The authors related the consistency of response
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Figure 4.5: Comparison of the CC(−τc + τf ) (blue circles) with the CC(−τc) (red triangles) for two
distinct bias currents in the unidirectional coupling scheme: (a) I = 1.2Ith, and (b) I = 1.5Ith. The
curve AC(−τf ) (gray squares) is plotted for comparison with the results discussed in chapters 2 and 3.

the laser to its own chaotic delayed signal is referred to as strong chaos, whereas a fully
consistent response corresponds to weak chaos. In consequence, the amplitude of the
CC peak in our experiment is a direct indicator of the level of consistency of the lasers.

In Fig. 4.5a, all the correlation coefficients closely follow the same dependence on
the feedback attenuation with very similar amplitudes. In the context of the results
presented in chapter 2, it is clear that the common minima region corresponds to the
region of strong nonlinear mixing between the relaxation oscillations frequency (fS

RO)
and the maximum feedback induced frequency shift (∆ffb) as it has been extensively
discussed in chapter 2. This region on the attenuations axis can now be directly related
to strong chaos because it coincides with the minimum region in the amplitude of the
central CC peak. Given the coincidence of the amplitudes of the AC at first delay echo
and the central CC peak, the dynamical properties of a delayed feedback laser can be
used to predict the synchronizability of this laser in a network of delay-coupled lasers.
In consequence, the region with low amplitudes of the central CC peak must be avoided
in applications that rely on CS between the coupled lasers.

The different panels in Figure 4.6 show the comparison between AC and CC for two
different attenuations in Fig. 4.5a (see Figure caption for detailed explanation of the
figure contents). To facilitate the comparison, the colors of the curves match with those
in Fig. 4.5a. The amplitude of the central CC peak, that corresponds to the level of
consistency, is depicted in Fig. 4.6a (attenuation of 0 dB) and in Fig. 4.6b (attenuation
of 10.91 dB). In our experimental coupling configuration we have matched the delays,
i.e., τf ≃ τc. Consequently, the amplitude of this CC peak (CC(0)) reflects the level
of consistency. The closer the central peak of the CC is to AC(0) of the drive laser,

to weak and strong chaos. This strong form of consistency (when the dynamical system converges
towards the same response to an input), is closely related to generalized synchronization.
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the more identical dynamics exhibit both lasers. In a perfect identical synchronization
scenario the amplitude of this CC peak would be 1 and both correlation measurements
would coincide AC(∆t) = CC(∆t−τc+τf ). In this sense, the conditions depicted in Fig.
4.6a presents a higher consistency response than the conditions depicted in Fig. 4.6b.
The small asymmetry between the minima in the CC central peaks is probably caused
by an initial asymmetry in the feedback and coupling strengths, causing the feedback
strength to be slightly higher than the coupling strength.

The AC and the CC at first delay echoes (Figures 4.6c and 4.6d) reflect the nonlinear
transformation of the delayed feedback field by the SL. Under this experimental condi-
tions, at I = 1.2Ith, the AC and the CC at first delay echoes follow similar dependences
than the CC at central peak. The difference between the four panels is in the ampli-
tudes of the peaks. Figures 4.6b and 4.6d depict the correlations for the attenuations
with the corresponding minima amplitudes, which is reflected in lower amplitudes of the
correlations modulations.

The correlations depicted in Figure 4.6 correspond to two different attenuations for
the same pump current, I = 1.2Ith. Under this pumping condition, the synchronization
scenario corresponds to generalized synchronization. The amplitude of the central CC
peak is never higher than the amplitude of the CC at first delay echo. Interestingly,
the synchronization scenario changes for the pump current of I = 1.5Ith, depicted in
Figure 4.5b. Identical synchronization dominates at this injection current, which is
reflected in a larger amplitude of the central CC peak than the amplitude of the peaks
at first delay echo. It is important to note that the parameter conditions for identical
synchronization state are very restrictive. Figure 4.7 depicts exemplary conditions of
identical synchronization between drive and response lasers. The amplitude of the central
CC peak coefficient is close to 1, which is the unambiguous signature of identically
synchronized dynamics.

Different factors may limit the height of the central CC peak at different pump
currents and attenuations. Noise is a decisive factor in the limitation of the correlation
amplitudes. If the signal has low amplitude at detection, the low SNR will limit the
height of our correlation measurements (see section 2.4.1 for a detailed characterization
of the effects of SNR on the AC amplitude). This effect is particularly important at low
pump currents and intermediate to low feedback attenuations. This is the most probable
factor limiting the amplitude of the CC coefficients curves in Fig. 4.5a, but it barely
affects the data in Fig. 4.5b. The other main source of noise in our experiment is the
inherent laser emission noise (e.g. spontaneous emission). This effect is an important
limiting factor of the correlation amplitudes at high feedback strengths and high injection
currents. In the context of identical synchronization, the effect of laser emission noise is
related to the phenomenon of attractor bubbling, which causes unpredictable episodes
of loss of synchronization. Bubbling is introduced and characterized in detail later in
this chapter (section 4.4.3).

We have discussed in the context of Figure 4.6 how noise can lower the amplitudes
of the correlation peak related with the level of consistency. Nevertheless, the relation
between the amplitudes of the CC at central peak and at first delay echo for all the
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Figure 4.6: Two different points on the AC and CC curves for the injection current of I = 1.2Ith. The
feedback attenuations of the different selected points correspond to 0 dB in panel (a), and 10.91 dB in
panel (b). Panels {(a), (b)}: The dark gray solid curves show to the AC(0) and the dashed blue curves
depict the CC(−τc + τf ), i.e., the level of consistency. Panels {(c), (d)}: The light gray solid curves
show to the AC(−τf ) and the dashed red curves depict the CC(−τc), i.e., the nonlinear transformation
of the delayed feedback field by the SL.

values on the attenuations axis in Fig. 4.5b suggests that the dynamics is dominated
by identical synchronization. This finding is in good agreement with the corresponding
results in [103].

At this point, in order to gain insight into the relation between correlation and
synchronization, it is desirable to go beyond time averaged correlations and to look
at the time-resolved behaviors. The synchronization dynamics is characterized via the
calculation of sliding-window correlations. In figure 4.8a and 4.8c we depict time windows
of sliding correlations for the two bias conditions and, in panels 4.8b and 4.8d, the
histograms of these sliding correlations3. The dynamics depicted in Fig. 4.8 correspond

3The histograms are calculated over 2 MSamples and are normalized such that the integral over the
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Figure 4.7: Exemplary experimental conditions of identical synchronization in the unidirectional cou-
pling configuration. Panel (a): the blue dashed curve shows the central CC peak (CC(−τc+τf )) and the
dark gray solid curve shows the AC(0). In panel (b): the red dashed curve depicts the CC at first delay
echo (CC(−τc)) and the light gray curve shows the AC at first delay echo (AC(−τf )). The injection
current is I = 1.5Ith and the feedback attenuation corresponds to 15.09 dB.

to different regions in the weak chaos regime.
For the computation of the sliding correlations, the correlation coefficients are cal-

culated over a sliding window of 1 ns width. This sliding window is calculated with a
resolution of four sampling steps (0.1 ns). The resulting traces reflect the time-dependent
correlation values.

Genuine desynchronization events can be now distinguished from lower-correlation
states via significant difference between the sliding central CC peak and the sliding AC
peak. The effect of losses of synchronization is visible in Figures 4.8a and 4.8c. Par-
ticularly interesting is the situation illustrated in Fig. 4.8a. The three curves suffer
from fast episodic drops (not necessarily coincident in time). However, the blue curve
(that corresponds to the identical synchronization coefficient) is typically higher than
the other two correlation coefficients. The corresponding histograms of the coefficients,
depicted in Fig. 4.8b, indicate an interesting feature. While the correlation coefficients
at first delay echo have PSD approximately centered at their most probable correlation
heights, the central CC peak coefficient (associated to identical synchronization) exhibits
a bimodal distribution. The most probable value is at high correlations (as expected
for identical synchronization), and the other maximum coincides with the peak of the
histogram of the AC at first delay echo. This result indicates that when the identical
synchronization state is momentarily lost, the correlation most probably drops to values
characteristic of the AC at first delay echo, i.e., of the nonlinear transformation of the
delayed feedback signal by the SL. In contrast, the histograms plotted in Figure 4.8d
are all peaked around 0.8, indicating the overall high correlations expected for unper-
turbed identical synchronization. It is clear that this dynamics (undamped relaxation

bins is 1. The value for each bin is the corresponding probability.
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Figure 4.8: Sliding correlations and their corresponding normalized probability density functions (PDF)
for the bias current of I = 1.5Ith and attenuations of 0 dB (panels (a) and (b)), and 15.09 dB (panels
(c) and (d)). The blue, red and gray curves show the sliding functions of CC(−τc + τf ), CC(−τc), and
AC(−τf ), respectively.

oscillations) is more structured than the dynamics corresponding to Fig. 4.8b. Fur-
ther understanding of the role that play fast desynchronization events in the stability
of the identical synchronization state require complementary numerical investigations
characterizing the influence of noise and parameter mismatches.

In conclusion, CS has been studied in the context of the consistency testing scheme
proposed by Heiligenthal and coauthors in [59]. We have found that in dependence of the
pump current, our experimental dynamics exhibit characteristics of generalized synchro-
nization or of identical synchronization. Remarkably, in the generalized synchronization
scenario as discussed in our results, the different correlation coefficients follow similar
behaviors. Particularly interesting is that the minima coincide for both measurements,
the CC and the AC. This finding permits the clear distinction between synchronizable
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(weak chaos) and non-synchronizable (strong chaos) scenarios via the knowledge of the
AC properties of the single delayed feedback laser. Furthermore, we find that the central
CC peak has higher amplitudes than the correlations at first delay echo in the scenario
where identical synchronization is dominant. A result that is in good agreement with
consistency measurements [103]. Moreover, in a time-resolved characterization of the
correlations we have found that the identical synchronization exists even at high feed-
back strengths, in contrast to what is observed in the averaged picture in Fig. 4.5b. The
effect that lowers the average amplitude of the correlation coefficients is the presence of
episodic losses of synchronization on a fast time scale.

4.4 Synchronization of Two Mutually-Coupled Semicon-
ductor Lasers with a Passive Relay

In order to characterize the coupling dynamics in the bidirectionally-coupled lasers ex-
periment, the parameter space of each laser has been widely scanned to identify matching
operating conditions. The dependence of the emission wavelength or the threshold cur-
rent on the temperature are illustrated in appendix A. In the current experiment, we
take profit from these characterizations to work with the smallest possible mismatches
in parameters (e.g., the wavelengths match with a precision better than 0.1 nm). We
then study under which conditions identical synchronization can be observed and how
robust it is.
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Figure 4.9: Intensity time traces of LD1 and LD2. Both lasers are pumped at I = 1.02Ith. The
zero-frequency detuning condition has been achieved by tunning the laser temperatures to 21.08 ° C and
22.00° C, respectively.

In chapter 2 we explained the important role of the relaxation oscillations frequency
for the bandwidth of the observed intensity dynamics. For our lasers, these character-



74 CHAPTER 4. CHAOS SYNCHRONIZATION

istic frequencies are in the order of a few GHz, smaller than the fast photodiodes and
oscilloscope bandwidths. The bandwidth of our detection scheme therefore allow us to
resolve the full sub-nanosecond intensity dynamics of the lasers. The intensity dynamics
of LD1 and LD2 is recorded in two distinct channels of the real-time oscilloscope with a
sampling rate of 40 GSamples/s.

Figure 4.9 shows a 7 ns time window of two intensity time traces resolving the
sub-nanosecond intensity dynamics of both lasers. Temporal offsets caused by a length
difference between the two detection lines have been carefully compensated for. Each
intensity time trace has been normalized by subtracting its mean and dividing it by
the standard deviation. Therefore, both time traces are centered around zero. We can
observe sub-nanosecond chaotic oscillations of the intensity for both lasers. Remark-
ably, both intensity time traces follow almost identical behavior, demonstrating excel-
lent isochronous synchronization. The observed differences between both time traces are
close to the detection noise limit.

A first characterization of the synchronization quality can be obtained from a syn-
chronization plot, i.e., by plotting the normalized output intensity of LD2 as a function
of LD1. Figure 4.10 depicts 5600 samples covering a time interval of 140 ns. One can
observe that the density of points is well-centered around the diagonal.
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Figure 4.10: Synchronization plot depicting the normalized intensities of LD1 versus LD2 of the time
series partly shown in figure 4.9.

A linear regression analysis of the distribution of these 5600 points shows that most of
the samples are situated along the diagonal line with a regression coefficient of 0.86±0.01.
Given the experimental conditions, such correlation properties can be associated with
good synchronization.

In section 4.2.2 the cross-correlation was introduced as a key indicator to quantify
the quality of the synchronization. In the context of this bidirectional coupling scheme,
the CC analysis of the intensity dynamics of both lasers provides important insights into
the main time scales of the dynamics and the related physical processes.
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Figure 4.11: Cross-correlation function of the intensity time traces of LD1 and LD2. The maximum
of the CC occurs at zero-lag and its value is 0.87. Both lasers are pumped at 1.10Ith and the laser
temperatures are controlled to 21.40° C and 22.00° C, respectively. This corresponds to zero-frequency
detuning conditions.

Figure 4.11 depicts the cross-correlation function of the intensity dynamics of LD1

and LD2 for an injection current of 13 mA. The dynamics is characterized by LFF
behavior under this experimental conditions. Each time trace has a length of 106 samples
(25 µs). The maximum time lag shown in this figure is of the order of 2 µs to show
the behavior of the CC far from the central peak, corresponding to the isochronous
synchronization. The first characteristic that can be seen is the decay of the maximum
of the CC with the increase of the time-lag. This decaying envelope decreases to almost
zero for time-lags larger than 1µs. The coupling time in our delay-coupled system is
τ = 73.125 ± 0.025ns and, therefore, the envelope approaches zero at roughly ∼ 14 τ .
This means that there is hardly any correlation between the two time series for lags
greater than 14 times the external cavity round trip time. Moreover, one can observe
a slightly rising plateau present at positive and negative time-lags close to 1 µs. These
times correspond to the characteristic low-frequency fluctuations (LFF) slow time scale
(∼ MHz).

Noteworthy, a closer look at the CC central peaks provides valuable information on
the fast time scales and on the quality of the synchronization. Panel 4.12a depicts the
CC of the two intensity time series partially shown in Fig. 4.9. The time series length
used to calculate the CC is 1.6 · 105 samples (4µs). The different peaks visible at both
sides of the central peak are situated at lags that are multiples of the delay time. One
can observe that the side peaks are roughly situated at τ ≃ 73ns and 2τ ≃ 146ns.

Panels 4.12b, 4.12c, and 4.12d correspond to the magnified CC regions indicated via
the corresponding colored braces in panel 4.12a. Panel 4.12c shows the zero-lag central
CC peak. Its strong left-right symmetry reflects the symmetric experimental coupling
conditions. The structures in panels 4.12b and 4.12d respectively illustrate the delay
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Figure 4.12: Cross-correlation function of the intensity time traces of LD1 and LD2. The parameters
are the same as in figure 4.10. The CC coefficient at zero-lag is 0.94. The three colored braces indicate
the regions around the first delay echoes that are magnified in the lower panels. Panels (a), (b) and (c)
respectively depict the −τ , 0, and τ delay echoes.

echoes at −τ and τ . These recurrent structures of the CC (typical for the majority of
delay systems) around multiples of the delay time are no longer individually symmetric,
but they are mirror symmetric to the other. The fast decorrelation of each structure
reflects the strong damping of the relaxations oscillations in this coupling scenario due
to the chaos.

4.4.1 Influence of Spectral Detuning

Up to now, we have demonstrated that identical zero-lag CS can be achieved and is
stable for long times in our bidirectional coupling configuration. In addition to these
findings, we are interested in studying the robustness of the isochronously synchronized
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state towards possible mismatches in the system. Here, the influence of optical frequency
detuning on the synchronization dynamics is analyzed. For this purpose, the emission
wavelength of one of the lasers is detuned with respect to the emission frequency of
the other laser, which is maintained fixed as the reference. The relative detuning in
frequency is achieved by changing the temperature of that laser4.
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Figure 4.13: Dependence of the CC at zero-lag on the nominal frequency detuning between the solitary
lasers. The values correspond to an injection current of I = 1.02Ith. The dashed area contains the
injection-locking region.

Figure 4.13 depicts the maximum of the CC at zero-lag for the two lasers in de-
pendence of the detuning. The relative frequency detuning is varied by changing the
temperature of LD1 while keeping the temperature of LD2 fixed. For each step in tem-
perature of ∆T = 0.25 ° C, the CC at zero-lag is measured. We define the detuning to
be positive when the detuned laser exhibits a higher solitary emission frequency than
its counterpart. The value of the CC at zero-lag is used to establish a threshold for
stable synchronization. We identify a region of distinctive good synchronization where
the CC value is higher than 0.8. This region, that extends from -11 GHz to 8 GHz
in frequency detuning, coincides with the injection-locking region, i.e., the range of fre-
quencies wherein the emission of both lasers lock to one single frequency. For frequency
detunings outside of this region, the correlation experiences an abrupt drop. This CC
drop is not symmetric for negative and positive detuning values.

The intensity dynamics of the lasers exhibit different behavior in the different detun-
ing regions. Inside the locking region (Fig. 4.14a), the two intensity time traces exhibit
high correlation of the characteristic sub-nanosecond chaotic fluctuations. In contrast,
in the large detuning region (Fig. 4.14b), the time traces are not synchronized, their
fast chaotic fluctuations show long periods of completely uncorrelated behaviors. A more
detailed investigation on the influence of spectral detuning can be found in [149].

4The wavelength versus temperature dependence is explored in the appendix A
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Figure 4.14: Experimental time traces for detuning values (a) inside and (b) outside the injection-
locking region. The respective detuning values are -0.78 GHz and -25.95 GHz.

4.4.2 Isochronous Synchronization Regime

After we have analyzed the effects of the detuning in optical frequencies, we investigate
the role of the injection current on the synchronization of the mutually delay-coupled
lasers. For this experiment, the laser temperatures have been chosen to realize zero-
frequency detuning conditions at each different bias current. The careful selection of the
lasers implies very similar threshold currents and λ(I, T ) characteristics. Therefore, we
modify the injection current equally in both lasers to account for the symmetric situation
in this measurement.
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Figure 4.15: Dependence of the zero-lag CC coefficient on the bias current. The bias current is scanned
from I = 1.02Ith to I = 1.45Ith. The values correspond to the zero-frequency detuning region.
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Figure 4.15 depicts the zero-lag CC coefficient for different bias currents. It can be
observed that this coefficient decreases monotonously with the increase of the injection
current. This monotonous decay is not obvious to explain since it covers two different
dynamical regimes. The bias currents up to 14 mA result in dynamical behaviors in
the LFF regime. Increasing the pump currents result in a transition towards the fully-
developed coherence collapse regime, without identifiable low-frequency structures.

One possible origin of the decay in the zero-lag CC coefficient is an increase of
desynchronization events for higher bias currents. This is discussed in detail in the
following section. Therefore, our goal is to study the emergence of desynchronization
events in the zero-frequency detuning scenario.

4.4.3 Noise-Induced Desynchronization Events: Bubbling

So far, we have shown the dependence of correlations related to isochronous synchroniza-
tion on frequency detuning and injection current. We will now investigate the robustness
of isochronous synchronization for the zero-frequency detuning case. From theoretical
studies [150, 151] we know that synchronization is usually characterized by transversal
stability of the attractor of the coupled system. However, transversal stability is not
enough to characterize the synchronization behavior. Invariant manifolds within the
chaotic attractor can become transversally unstable. When in the vicinity of these in-
variant manifolds, noise can induce excursions away from the synchronization manifold.
We identify these noise-driven desynchronization events as bubbling events. The sad-
dle point solutions of the two delay-coupled lasers with a passive relay represent the
transversely unstable solutions [151].

Figure 4.16a depicts the time traces of LD1 and LD2 pumped at 12 mA for zero-
frequency detuning conditions. The time trace of LD1 has been shifted up to visualize
both time traces. The two lasers exhibit LFF dynamics with apparently well synchro-
nized behavior, even though their intensities are not fully resolved in this figure. The
desynchronization events can be investigated by calculating the intensity difference be-
tween time traces [151]. In order to distinguish real desynchronization events in the
chaotic trajectory from noise in the detection we perform an analysis summing the inten-
sity difference over finite time intervals. Equation 4.2 defines the procedure to calculate
the integrated intensity difference time trace:

∆I(t) =

t+∆s
2∑

k=t−∆s
2

|I1(k) − I2(k)|
∆s⟨|I1(k)| + |I2(k)|⟩∆s

, (4.2)

where ∆s is the averaged time interval and the brackets represent the mean value over
this interval. Consequently, Eq. 4.2 represents the sum of the normalized intensity
difference over the chosen time interval. This sum is calculated at each time step of the
corresponding intensity time traces.

The resulting integrated intensity difference is depicted in Fig. 4.16b for ∆s = 4 ns.
The integration over ∆s allows for the identification of the major desynchronization
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Figure 4.16: (a) Intensity time traces and (b) Integrated intensity difference, ∆I, of LD1 and LD2

pumped at I = 1.02Ith (12 mA). Temperature of LD1 is 21.08 ° C and temperature of LD2 is 22.00 ° C.

events highlighting them from the rest of the well synchronized time series. We can
then distinguish real desynchronizations from detention noise dominated decorrelation.
In Figure 4.16b, the integrated intensity difference ∆I follows regular oscillations that
resemble the underlying LFF structures. After each dropout takes place, ∆I shows
a minimum and smoothly increases during the next LFF cycle. This behavior was
also observed in other experimental studies and the low absolute levels of ∆I indicate
synchronized behavior. [152]. In addition, the presented data shows one large peak with
a clearly differentiated height from the baseline variations. This event, that appears at
∼6700 ns, coincides in time with one characteristic LFF intensity dropout and, due to
its high ∆I value, can be classified as a real desynchronization event.

Interestingly, the presence of desynchronization events (those regions where ∆I val-
ues approach to 1) raises in proportion when the bias current is increased. Figure 4.17
illustrates this effect by depicting data at 13 mA. Figure 4.17a depicts the time traces
of LD1 and LD2 for a pump current of 13 mA. Similarly to panel 4.16a, the time trace
of LD1 has been shifted up to visualize both time traces. Figure 4.17b depicts the cor-
responding 7500 ns window of the integrated difference time trace for ∆s = 4ns. Under
this higher bias current conditions, five abrupt high ∆I peaks are clearly distinguishable
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Figure 4.17: (a) Intensity time traces and (b) Integrated intensity difference, ∆I, of LD1 and LD2

pumped at I = 1.10Ith (13 mA). Temperature of LD1 is 21.40 ° C and temperature of LD2 is 22.00 ° C.

in Fig. 4.17b. From the direct comparison of this trace and the intensity time traces
of the lasers (Fig. 4.17a), it is evident that these peaks are again related to the LFF
characteristic intensity dropouts. Therefore, in LFF dynamics (under zero-frequency
detuning conditions) the desynchronization events are related to the power dropouts.

Remarkably, not all the dropouts at this bias current have an associated abrupt
increase in ∆I. In panel 4.17a, there is a dropout around 3300 ns that has no corre-
sponding change in its integrated intensity difference in panel 4.17b. This observation
implies that, despite their frequency decreases for increasing bias currents, there still
exist some LFF dropouts that have no desynchronization events associated with them.
Figure 4.18 illustrates the time traces of LD1 and LD2 near different dropout regions for
the same data plotted in Fig. 4.17. Panel 4.18a depicts the LFF dropout without loss in
synchronization. In contrast, panel 4.18b shows a typical LFF dropout with an associ-
ated desynchronization event. In the latter panel, it can be observed that the time trace
of LD2 shows an intensity dropout. After one delay time (τ ≃ 73.1 ns), LD1 experiences
the dropout too and isochronous synchronization is recovered. As both time traces are
uncorrelated for a time interval τ , the integrated intensity difference ∆I correspondingly
grows during this period of time, as it is observed in panel 4.17b.
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(a) (b)

Figure 4.18: (a) Experimental LFF dropout without loss of isochronous synchronization. (b) Exper-
imental LFF dropout with loss of isochronous synchronization. The duration of the desynchronization
event corresponds to the delay time, τ ≃ 73.1ns. The data in both panels correspond to different instants
in the same time trace. The injection current is 13 mA (1.10Ith) and temperatures of LD1 and LD2 are
21.40 ° C and 22.00 ° C, respectively.

(a) (b)

Figure 4.19: Synchronization plots depicting the normalized intensity of LD1 versus intensity of LD2

of the time series shown in figure 4.18 for the cases of: (a) dropout without loss of isochronous syn-
chronization (regression coefficient of ∼0.57), and (b) dropout with loss of isochronous synchronization
(regression coefficient of ∼0.18).

Figure 4.19 shows the synchronization plots corresponding to the data depicted in
Fig. 4.18. Each figure is composed of 5600 points of the time trace of LD2 versus the
time trace of LD1. Panel 4.19a corresponds to a dropout where both time traces drop
simultaneously, while panel 4.19b corresponds to a dropout with loss of correlation be-
tween the time traces during the dropout. The red dotted lines drawn in both panels are
guides to the eye that indicate the identical synchronization conditions. We observe that
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in panel 4.19a both intensity time traces fall approximately on the diagonal, exhibiting a
moderate correlation value (∼0.57). In contrast, the correlation between both intensity
time traces in panel 4.19b is much lower (∼0.18).

Different physical mechanisms lead to the synchronous and to the τ -lagged dropouts.
We know that two identically synchronized lasers in a symmetric coupling-configuration
with relay follow identical dynamical trajectories to that of a equivalent single delayed
feedback laser. Therefore, it is reasonable to consider that the isochronous dropouts have
been caused by the underlying deterministic chaotic dynamics. In contrast, we cannot
determine the origin from those dropouts that occur first at one laser and, one delay time
after, at the other laser (they can either have deterministic or stochastic origin). Only
a fraction of the power dropouts are associated with a loss of synchronization, and this
fraction increases with the injection current as it is illustrated with Figures 4.16 and 4.17.
We take profit of identical synchronization together with an event based analysis of the
desynchronization events to demonstrate the possibility of determining the deterministic
nature of specific events in the dynamics of a semiconductor laser subject to time-delayed
optical feedback in the LFF regime [82].
Certainly, a detailed study on this subject goes beyond the scope of this chapter. Further
detailed information can be found in the following publication: K. Hicke, X. Porte,
and I. Fischer, “Characterizing the deterministic nature of individual power dropouts
in semiconductor lasers subject to delayed optical feedback”, Physical Review E, 88,
052904 (2013).

The complete picture of desynchronization events in our delay-coupled system im-
plies a further analysis of bubbling for higher injection currents. The low-frequency
fluctuations can be observed in our delay-coupled lasers for bias currents up to 14 mA.
As we have already shown, in this dynamical regime bubbling mostly occurs during
power dropouts. Moreover, the characteristic time of the desynchronization intervals is
close to the external cavity delay time τ . The main difference between the three injec-
tion currents analyzed in the LFF regime is that the characteristic inter-dropout time
interval decreases as the injection current is increased.

For pump currents above 14 mA, in the fully developed coherence collapse regime,
we find that the fingerprint of desynchronization events appears much more frequently.
Panel 4.20a illustrates that the broadband chaotic dynamics at 15 mA does no longer
reflect identifiable dropouts. The conclusion that can be drawn from the careful in-
spection of those intensity time traces in combination with the intensity difference ∆I
depicted in panel 4.20b is that desynchronization events become much more frequent in
the coherence collapse regime. Furthermore, the typical duration of such events is also
shorter.

Figure 4.21 depicts a closer view to one representative desynchronization event in the
coherence collapse regime. We can see that both time traces follow good synchronized
behavior until 5.5 ns, when they desynchronize for approximately 3 ns. After this interval
they re-synchronize again. This 3 ns desynchronization window is much shorter than the
characteristic desynchronization intervals in the LFF regime (of the order of τ ≃ 73.1ns).
Furthermore, another particularity of the desynchronization events in coherence collapse
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Figure 4.20: (a) Intensity time traces and (b) Integrated intensity difference, ∆I, of LD1 and LD2

pumped at I = 1.27Ith (15 mA). Here, ∆s has been set to 1 ns, in contrast with the 4 ns used in the
LFF regime dynamics. Temperature of LD1 is 21.37 ° C and temperature of LD2 is 22.00 ° C.

regime is that their characteristic inter-events time decreases down to sub-ns. These
particularities characterize the synchronization in the coherence collapse regime as fast
alternations between periods of well synchronized behavior and short desynchronization
intervals.

In order to quantify the synchronization robustness as a function of the injection
current, we have analyzed the integrated intensity difference ∆I for different injection
currents in the zero-detuning scenario. Figure 4.22 depicts the dependence of the prob-
ability density function (PDF) of ∆I for different injection currents. For the first three
values of the bias current, both lasers exhibit intensity time traces in the LFF regime,
while in the latter three currents both lasers operate in the fully developed coherence
collapse regime. The distributions for the LFF dynamics cases are peaked with sig-
nificant heights at low values of ∆I. In contrast, the distributions corresponding to
coherence collapse dynamics tend to shift towards higher values of ∆I (which means
worse average synchronization) and become broader as the bias current increases. This
behavior is complementary to the previously obtained tendency of the cross-correlation
coefficient at zero-lag shown Fig. 4.15, where this coefficient decreases monotonously
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Figure 4.21: Exemplary desynchronization event in coherence collapse. The characteristic desynchro-
nization duration time for this operating conditions is of the order of a few nanoseconds, much shorter
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Figure 4.22: Normalized probability density functions of the integrated intensity difference ∆I for
the zero-detuning conditions at different bias currents. The time series length used to calculate those
histograms is of 20µs.

with the increase of the injection current. Nevertheless, the maxima of the histograms
remain in the low side of ∆I for the currents up to 15 mA, meaning that the time the
systems are synchronized remains significant.
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4.5 Summary and Discussion

In this chapter, different aspects of synchronization between delay-coupled chaotic sys-
tems have been studied. Two distinct coupling configurations that involve two SL each
are investigated. In both scenarios the SL are coupled via their optical fields. In order to
quantify the synchronization, we have mainly used the cross-correlation function (CC)
of the intensity time traces of both lasers.

In the first part, an open-loop coupling configuration is used to study the interrelation
between the intensity dynamics of a delayed feedback laser and its synchronization to
a second laser. The phenomenon of CS in the unidirectional coupling configuration is
therefore used to measure the degree of consistency of the delayed feedback laser. We
have found that in dependence of the pump current, our experimental dynamics exhibit
characteristics of generalized synchronization or of identical synchronization.

We have demonstrated that the cross-correlation values between the delay-coupled
response and drive lasers follow a similar dependence than the AC of the delayed feed-
back drive laser. In particular, it is remarkable the coincidence in the position on the
attenuation axis of the maximum nonlinear mixing region for the AC and the CC co-
efficients. The resulting AC dependences on distinct parameters can be extrapolated
to synchronization dependences (strong and weak chaos) in delay-coupled lasers. An
interesting aspect of this result is that it has been obtained for non-identical (but very
similar) coupled systems, meaning that our approach is valid even if small asymmetries
and/or mismatches are present.

Consistency is a key ingredient for the implementation of neuroinspired information
processing systems like reservoir computing. Our results in the identical synchronization
scenario are directly related to consistency properties and are in good agreement with
previous consistency measurements [103]. In addition, we have shown in a time-resolved
characterization of the correlations that identical synchronization exists (for short pe-
riods of time) even at high feedback strengths, in contrast to what is observed in the
averaged cross-correlation coefficients.

In the second experiment, we have investigated the synchronization properties of a
system of two delay-coupled SL with a passive relay. The coupling and the feedback
originate from the same fiber-loop mirror. We have reported sub-nanosecond chaotic
oscillations with isochronously synchronized identical dynamics. We have measured the
CC characteristics for two different scenarios. Namely, an asymmetric scenario where
both lasers are detuned with respect to each other in their optical frequencies, and a
symmetric scenario (with zero-frequency detuning). In the latter scenario, the robustness
of the identical synchronization state is studied as a function of the pump current (that
is equal for both lasers in every measurement).

In the frequency detuning experiment, both lasers exhibit good synchronization char-
acteristics inside a certain injection-locking region. We have demonstrated that the
maximum CC coefficient for detuning values beyond the locking range decays drasti-
cally. However, there is an asymmetry for the CC in the limits of the locking range for
positive and negative detuning values. This asymmetry could be caused by the way the
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emission frequencies are detuned. The procedure in the present experiment is to detune
the frequency of only one of the lasers by changing its temperature. As we discuss in
detail in appendix A, a change in temperature also causes a modification in the laser
threshold current and, consequently, influences the emission power of the detuned laser.
In principle, a change in the emission frequency of the detuned laser where the power
would be maintained could avoid this asymmetry in the locking range, i.e., every change
in temperature at the detuned laser should be followed by a change in the injection
current to maintain the power unchanged. Thus, to prove this ideas will require further
detailed investigations.

In the zero-frequency detuning experiment, the evolution of the zero-lag CC coef-
ficient is studied with respect to the injection current. For low injection currents, the
CC coefficient is very high, indicating high quality of the identical synchronization state
in the LFF dynamics. A time-resolved analysis of the synchronization at low injection
currents reveals the simultaneity between desynchronization events and power dropouts
(in the LFF regime). Interestingly, only a fraction of the power dropouts are associated
with a loss of synchronization, and this fraction increases with the injection current.
We know that two identically synchronized lasers in a symmetric coupling-configuration
with relay follow identical dynamical trajectories to that of a equivalent single delayed
feedback laser. We take profit of this fact together with the individualized analysis of
the desynchronization events to demonstrate the possibility of determining the deter-
ministic nature of specific events in the dynamics of a semiconductor laser subject to
time-delayed optical feedback [82]. Specifically, we study on an individual event basis
the power dropouts in the LFF regime, identifying an upper fraction of those events that
likely have deterministic origin (and this fraction decreases with the injection current).

The dependence of the zero-lag CC coefficient with respect to the injection current
is studied. We have observed a decrease of this coefficient for increasing values of the
injection current (see Fig. 4.15). An accurate analysis of the robustness of the synchro-
nization has given us a possible explanation for this behavior. We have observed how
desynchronization events can be observed during power dropouts in the LFF dynamics.
However, when the injection current is increased, the dynamics of the coupled system
evolves towards the coherence collapse regime. This significant transition of the dynam-
ical behavior occurs between the currents of 14 mA and 15 mA, but it is not clearly
reflected in the maxima of the CC at zero-lag. The temporal characteristic structure
of the LFF regime can no longer be identified beyond 14 mA, and the desynchroniza-
tion events become more frequent in time (even though shorter in duration) as it is
depicted in Fig. 4.20. Here, the plot of the average desynchronization depicted in Fig.
4.22 presents complementary behavior with respect to the CC, i.e., when the CC at
zero-lag increases, the mean average desynchronization decreases and vice versa (see
Fig. 4.22 and Fig. 4.15). In our high-coupling strengths scenario, we relate the over-
all synchronization quality with the occurrence of desynchronization events attributed
to the bubbling phenomenon [153]. The noise-induced instability differentiate bubbling
from other well known sources of desynchronization caused by the loss of stability of
the chaotic attractor itself [151]. Examples are the transverse instability occurring for
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rather small coupling strengths or the scenario of blow-out bifurcations, present when
there is a mismatch in parameters [149,154].

The characterization of bubbling in the mutually delay-coupled system is not com-
plete. It would be interesting to more accurately study the nature of bubbling in the
coherence collapse regime. The influence of frequency detuning on the robustness of
synchronization is also an open question. Furthermore, the characterization of syn-
chronization robustness under zero-detuning conditions is essential to find the optimal
conditions for chaos communications. If two coupled lasers are modulated in current,
the synchronization between both lasers can be momentarily lost either due to power
differences in the modulation or by noise-induced instabilities. The study of the noise-
induced losses is fundamental because they might lead to a significant increase of the
BER, if the protocol does not take them into account. The results presented in this
chapter suggest that there is no dynamical regime that totally avoids bubbling and, con-
sequently, bubbling is a problem inherent to delay-coupled systems in the presence of a
passive relay. Moreover, the occurrence of bubbling events cannot be predicted because
it is a noise-induced phenomenon. This has direct implications in chaos communications
systems that rely on identical chaos synchronization, that must implement communica-
tion protocols robust against bubbling. This point will be discussed in detail in chapter
5.

Further investigations on the setup of two mutually-coupled semiconductor lasers
with a passive relay could focus on different aspects of the setup. For example, the
variation of the ratio between the mutually-coupling and the self-coupling strengths or
the study of the effects of a mismatch between the delay times for both lasers. These
variations have already been studied from numerical and analytical points of view [149,
154]. These works showed interesting behaviors like the suppression of coupling-induced
instabilities for small delay mismatches away from simple commensurate ratios [152,154],
or the increase of bubbling under coupling mismatch conditions.



Chapter 5

Bidirectional Secure Key
Exchange using Chaotic
Semiconductor Lasers

5.1 Introduction

Privacy and security of communications is a fundamental topic of everyday importance
in, e.g., digital money transactions or personal identifications on the Internet (see section
1.1 for a more extended discussion). Nowadays, privacy of communications is mainly
guaranteed via software-based cryptography [40]. Two different approaches roughly
divide the software-based cryptosystems in symmetric and asymmetric cryptociphers.

In the category of symmetric cryptociphers we can find those systems that use the
same key for ciphering and for deciphering a message. An example of this approach is the
one-time pad first proposed by Gilbert Vernam [155] and demonstrated to be absolutely
secure by Claude E. Shannon [156]. In essence, this kind of systems can be thought of as
a safe in which the message is locked by Alice1 with a key. In a correct implementation,
the key must be at least as long as the message itself. A copy of this key is used by Bob
to unlock the safe and recover the message. Thus, it is essential for Alice and Bob to
possess the common secret key. This key must be shared in some way, which is actually
the weakness of this approach.

The other cryptosystem paradigm, the public-key cryptography, comes in to solve
the problem of key sharing. This approach is mainly based on asymmetric algorithmic
procedures for ciphering and deciphering the messages [157]. When it was first proposed
by Diffie and Hellman in 1976, it represented a radical break with any other previous
cryptosystem [40]. The reason is that instead of trying to maintain the key in secrecy,
this approach suggested to publicly share the encrypting information. The asymmetry
of the process originates from the decryption side.

1We use here the names Alice and Bob for the sender and the receiver, respectively. These names are
commonly used in literature. Similarly, we name Eve to the hypothetical eavesdropping adversary.
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Figure 5.1: Scheme of Public-Key Exchange Cryptosystem.

The basic scheme for such cryptosystems is represented in Figure 5.1. We illustrate
the algorithm with the example of Alice to send Bob a message:

1. Alice generates a public-key and store it in a trusted public server (Certification
Authority). Actually, all the users of this communications system must indepen-
dently generate their own public-keys and store them in the trusted public server.

2. They also generate a corresponding private-key that, as its name indicates, is not
shared.

3. Alice takes Bob’s public-key, encrypts the message with it, and sends the message
to Bob.

4. Bob receives the message (encrypted with Bob’s public-key) and decrypts it with
his own private-key.

The use of two distinct keys for encryption and decryption defines this cryptosystem.
In a simplistic approximation, this system can be thought of as a mailbox (one for each
user) in which anybody can insert a letter. But only the legitimate owner of the mailbox
can recover the stored letters, because only he or she has the key needed to open the
mailbox. The crucial idea is that it must be (computationally) easy to encrypt a message
with the public-keys, but very difficult to decrypt the ciphered message without the
knowledge of the private-key.

Beyond the concept, the implementation of such cryptosystem requires two additional
elements, namely a mathematical object that fulfills the explained asymmetric ciphering
and a trustful infrastructure that can take care of the public-keys management.

In any secure communication, the users need to know the public-keys of their coun-
terparts in order to cipher the messages with them. If the exchange of public-keys is
done in private, an eavesdropper (Eve) could perfectly intercept the public-key and ex-
change it for one created by herself. Then, she could easily decrypt all eavesdropped
communications with her own private-key. This is the reason why Certification Author-
ities are needed. These authorities verify that the public-key do indeed correspond to
their legitimate users. If the users trust the certification authority, they can obtain from
it the other user’s public-keys and cipher their messages with them.

The first public-key exchange implementation with appropriate mathematical func-
tions was developed at the Massachusetts Institute of Technology in 1978. It is named
RSA after its creators (Ravi, Shamir, and Adleman), and it remains widely used to-
day [41]. The reason why this software-based cryptosystem is still considered safe is
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related to the mathematical complexity to break it. It uses mathematical objects called
one-way functions, i.e., it is very easy to encrypt the message with the public-key, but
fundamentally difficult to decrypt it without the corresponding private-key.

The security of the RSA algorithm relies on the computational difficulty to decompose
very large numbers into its prime factors. In essence, the private-key of Alice (or Bob)
consists of two prime numbers that can only be found by factoring its product, i.e., the
public-key. The “security rule” is actually quite simple, the bigger the number used as
public key, the more secure the communications are because it requires more time to find
out the prime numbers that compose it. The best known algorithms associated with the
prime numbers factorization face a complexity that grows exponentially with the size of
the integer number to factorize.

In general, for a given key length, symmetrical systems are more secure than their
asymmetrical counterparts. The symmetric one-time pad approach is the only secure (at
least according to Shannon’s information theory) software-based cryptosystem known to-
day. Its obvious main problem resides in secretly sharing the symmetric key. In practical
implementations, asymmetrical algorithms are used not so much for encryption (mostly
because of their low data rates, not because of their security), but rather for distribution
of session keys for symmetrical cryptosystems such as AES (the NIST ciphering stan-
dard) [157]. Therefore, public-key cryptosystems are convenient and have thus become
very popular over the last 20 years. The security of the communications on the Internet,
for example, is largely based on such systems.

However, this cryptosystem suffers from a major flaw, it has not been possible yet to
prove whether factorization is fundamentally difficult or not. A change in the complex-
ity of factoring big numbers could undermine the security of public-key cryptosystems
and, in consequence, of the most popular actual telecommunications systems. This
threat could come either from the world of mathematics in the form of some advanced
factorization algorithm or from the world of physics in the form of, e.g., quantum com-
puters [42,158]. Some of the tasks that quantum computers could do with unprecedented
efficiency include factoring giant numbers and high-speed searching in large lists. These
properties are of fundamental importance for the (lack of) security of the respective
state-of-the-art asymmetric and symmetric algorithmic cryptosystems. Therefore, an
enhancement of nowadays algorithmic security schemes is highly desirable. In this re-
spect, hardware-based cryptosystems, based on the physical layer of communications,
represent an attractive option.

Remarkably, a possible solution to the threat of a quantum computer could come from
the quantum world too. Quantum-key distribution is a powerful approach to achieve an
absolutely secure cryptosystem [159].

The original (and still very powerful) concept of quantum-key distribution is based
on a symmetrical one-time pad protocol [160]. The two counterparts, Alice and Bob,
use a quantum channel to transmit a random sequence of quantum bits (also referred as
qbits) that conform the key. Actually, in most implementations what Alice sends to Bob
are individual photons with random polarization states. Bob has a set of two possible
bases to measure the polarization state of the photons. He selects one base at random
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for each photon and performs the measurement. There exists a degree of uncertainty
in those photons measured with the wrong base, consequently Alice and Bob discuss
publicly which photons were correctly measured. This represents no drawback from
the security perspective because the values of the correctly measured photons are not
unveiled. The photons that have been incorrectly measured are discarded from the key.
Once the key is built up, the information of the full message is classically encrypted with
this key as a one-time pad. It is important to mention that the information carriers are
quantum, not the communication channel, that can either be free space or optical fibers.

The strength of quantum cryptography resides in the foundations of Quantum Physics,
in particular the axiom stating that measurements in quantum mechanics perturb the
system. In other words, by physical principle, Eve cannot take any information from
the system without introducing perturbations to the measured states that would reveal
her presence2. Alice and Bob can check whether there has been eavesdropping on their
one-time pad by testing a few of the digits that conform the key. In half of those situa-
tions, the qbits intercepted by Eve will be discovered to be uncorrelated from Alice and
Bob’s.

The possibility to determine if there is eavesdropping in the channel is what con-
fers to quantum cryptography an unprecedented level of security. However, more than
three decades after its first conception, it still remains a very challenging technique that
requires further development in quantum optics to be competitive at telecommunica-
tions standards. Noise and attenuation in the quantum channel are the most significant
factors that reduce its efficiency and limit its range and secure-data rate.

Classical Key Distribution Schemes

In the last decade, there have been proposed a number of classical encrypted-key distri-
bution systems that complement the quantum approach as alternatives to the software-
based cryptosystems [139,164–168]. In these classical systems, some physical parameter
is randomly modulated by the counterparts to generate a number of possible states. Some
of the combinations are ideally non-detectable by eavesdroppers and, consequently, can
be used to build the key. The generated key is then used to cipher the messages between
the two counterparts.

These systems base their secrecy on the impossibility to fully extract certain physical
quantities. Despite of the obvious disadvantage that these systems cannot easily quantify
their level of secrecy, unlike the in principle absolutely secure quantum cryptosystems,
they present the advantage of an easier implementation mostly based on state-of-the-art
optical or electrical telecommunications components. Classical systems present other
advantages in front of their quantum counterpart like larger tolerances to noise and
longer reachable distances between the two communication partners (Alice and Bob).

The description of some significant examples will be useful to illustrate the state-of-
the-art of classical key-distribution systems. Kish [164] proposed a scheme based on the

2Although the security of the operating principle of quantum-key distribution is assured by the
laws of physics, its practical implementations may present loopholes as it has been found in the recent
past [161–163].
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use of Johnson-noise between electrical resistors to publicly exchange an encrypted key.
The physical quantity that defines the state of the channel is the mean-square voltage
noise (or current noise amplitude). This system has been demonstrated in a 2000 km
range at a bit rate of 0.1 bit/s and with a 99.98 fidelity3 of the resulting key [169].
Another system, proposed by Scheuer and Yariv [165] considered the possibility to build
a private key from the selection of the frequency-dependent mirrors at both ends of
an ultralong fiber-laser cavity. This scheme has demonstrated ranges exceeding 200km
with potential key establishing rates of hundreds bits per second and fidelities for the
generated keys of 99.4% (see e.g. [170–172]). Another photonics-based cryptosystem
was proposed by Yoshimura and coauthors [167]. This scheme is based on correlated
physical randomness between commonly driven remote optical scramblers. The authors
demonstrated the possibility to exchange an encrypted key at a rate of 128 kbit/s through
a 120 km optical fiber link. Finally, Kanter, Kopelowitz and Kinzel proposed a scheme
based on the phenomenon of chaos synchronization between two bidirectionally-coupled
systems [166]. The public-exchange of a key required the use of private commutative
filters and the addition of extra nonlinear transformations to the exchanged signals.
The complexity of the procedure is rewarded from the security perspective because it
maps the task of a passive eavesdropper onto an NP-complete problem, Hilbert’s tenth
problem.

5.1.1 Chapter Outline

In this chapter we present a cryptosystem based on the symmetric exchange of a secret
key between two partners. Our classical key exchange protocol is based on identical chaos
synchronization. The key is built up from the synchronized bits occurring between two
current-modulated bidirectionally-coupled SL with self-feedback.

The experimental methods particular to this experiment are presented in section
5.2. The protocol followed to generate the secret key is presented in section 5.3.1. The
setup used in this experiment is in essence identical to the setup presented in section
4.2, however, in this experiment we have included slight modifications that are detailed
in section 5.3.2. The performance of the key exchange protocol is demonstrated in
section 5.3.3. Finally, the security and the advantages and limitations of our approach
in comparison with the other classical key distribution schemes are extensively discussed
in section 5.4.

5.1.2 Contributions to the Work in the Present Chapter

This chapter presents the experimental implementation of a scheme first proposed (and
demonstrated numerically) by Vicente, Mirasso and Fischer in [139]. Interestingly, the
development of an experimental implementation has faced some exciting and unexpected
challenges studied in the time lapse between the original publication and our present
results.

3In this context, fidelity is defined as 1 minus the bit error ratio.
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The experiment has been realized by me in collaboration with D. Brunner and M. C.
Soriano. In addition, D. Brunner has designed the custom mounts for the laser diodes
and has contributed to the setup design and precise delay times measurements. M. C.
Soriano and I. Fischer contributed to the original design of the experimental setup and
to the characteristics of the modulated bits sequences. D. B., M. C. S. and I. F. have
been involved in the improvement of the experiment and in the discussion of the results.

5.2 Experimental Methods

The lasers used in this chapter are discrete-mode (DM) lasers. These laser devices and
their characteristics have already been described in section 2.2 and in appendix A. The
devices employed in synchronization experiments present the particularity that they
have been hand-picked from a set of similar lasers that were originally manufactured
on the same semiconductor wafer. This selection process has the intention of using
devices with the most similar possible properties for the synchronization experiments
(see appendix A). The properties analyzed to determine the similarity between lasers are
the threshold current, emission frequency, external differential quantum efficiency, and
wavelength-temperature dependence. In particular, the respective threshold currents at
zero-frequency detuning conditions are ILD1

th = 11.98 ± 0.01 mA and ILD2
th = 11.83 ±

0.01 mA.

It is important to note that there is a difference between the mountings of the devices
used in this experiment and those used in chapter 4. We have used devices sub-mounted
in packages that will allow us to modulate the DM lasers up to GHz modulation fre-
quencies. Instead of the butterfly packaged DM lasers that were used previously, we
use TO-canned (TO-56 package) DM lasers. The modulation bandwidth allowed by the
TO-56 are in the multi-GHz range, meanwhile for the butterfly packaged lasers the 3 dB
modulation cut-off is at 400 MHz.

We have designed a custom printed circuit board (PCB) to mount the TO-56 pa-
ckaged lasers. The role of the PCB is to precisely connect the laser to the external
biasing. The output pins of the TO-56 laser package are soldered to the PCB that
has an SMA connector directly attached to its output. The SMA output is therefore
connected to a bias-tee that couples the DC and the AC biasing contributions. Given
that this experiment relies on the direct bias modulation of the lasers, it is required to
characterize their response for different modulation frequencies. This characterization
will give us the frequency dependence of the combination of Bias-tee, PCB and laser
mount.

The modulation response of the two devices used in this experiment is plotted in
Figure 5.2. The different curves represent the amplitude of the response at different bias
currents. The applied AC modulation has fixed amplitude and a scanning-frequency
step of 100 MHz.

Both panels present some important common characteristics. Two regions can be
distinguished in the modulation responses of both lasers, i.e., below and above 1 GHz.
Below 1 GHz, all curves monotonously decrease in amplitude together. The bandwidth



5.3. ENCRYPTED-KEY DISTRIBUTION SCHEME 95
P

o
w

e
r 

[d
B

]

−30

−25

−20

−15

−10

−5

0

Frequency [GHz]

0 1 2 3 4

 13 mA
 14 mA
 16 mA
 25 mA

(a)
P

o
w

e
r 

[d
B

]

−30

−25

−20

−15

−10

−5

0

Frequency [GHz]

0 1 2 3 4

 13 mA
 14 mA
 16 mA
 25 mA

(b)

Figure 5.2: Amplitude response to direct bias-current modulation of the TO-56 packaged lasers versus
modulation frequency. Panels (a) and (b) respectively depict LD1 and LD2, where each laser corresponds
to a different communication partner. The different curves in both panels illustrate different laser bias
currents. The TO-56 packaged laser diodes are mounted on a custom-designed PCB board and connected
to the signal generator through a bias-tee. For modulation, fixed amplitude harmonic signals have been
scanned in frequency.

in our experiment arrives up to 500 MHz (maximum data-rate of 1 Gbit/s). Within
this frequency region, the amplitude response decreases less than 2.3 dB (0.92 dB are
unavoidably caused by the bias tee), therefore representing good operating conditions.

Above 1 GHz, the curves at different bias currents experience different and more ir-
regular responses. There even exist some strongly deviating points. Among the different
factors that contribute to the difference between these curves, the relaxation oscillation
frequencies are the most important one. The characteristic frequency of the relaxation
oscillations of these lasers increases proportional to the square root of the bias current
respect to threshold, i.e., ∝

√
I − Ith. The bandwidth increase effect caused by larger

relaxation oscillations is visible in the response peaks of the bias current curves. How-
ever, the presence of standing wave effects (induced by e.g. spurious capacitances) may
cause undesired drops in the amplitude response curves. This is an important effect to
be considered in modulation schemes that utilize multiple frequencies above 1 GHz.

5.3 Encrypted-Key Distribution Scheme

We implement in experiment a private communications scheme that harnesses the phe-
nomenon of identical chaos synchronization between two SL. The lasers are delay-coupled
via a semitransparent mirror (see scheme in Figure 4.2). In our scheme, the binary infor-
mation is bidirectionally exchanged between both lasers through the common communi-
cation channel with delay. The bits sequences are continuously injected into each laser
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unit via small AC modulation of its bias current. Since the amplitude of the messages
is kept small, the modulation information is hidden within the chaotic carrier (as in the
chaos encryption schemes [52–54]). Two combinations of the bits, that leave the identi-
cal synchronization state unperturbed, cannot be distinguished from the synchronization
error and can be used to publicly negotiate a secure key [173,174]. The scheme is secure
as long as only the two communications partners are able to extract the information
encoded in the key.

5.3.1 Simultaneous Bidirectional Key Exchange Protocol

In the system we study, the two lasers are identically synchronized in the absence of
modulation. Both lasers are then modulated with independent pseudo-random bit se-
quences. For the scheme to work, the relative modulation states in every clock-cycle
must determine whether the lasers remain in the identical synchronization state or not.
If the bit injected into the two lasers do not coincide (modulation states {-1, 1} and {1,
-1}) there will occur a modulation-induced loss of synchronization. In contrast, when
the bits do coincide (modulation states {-1, -1} and {1, 1}), the synchronization state
is unperturbed. To sum up, at least half of the possible combinations will induce loss of
synchronization, meanwhile the rest will not.

In principle, the bits are masked in the chaotic waveform, i.e., the modulation should
not be distinguishable from the chaotic waveform4. In some instances, the sign of each
partner’s bits could be guessed from the powers difference if both lasers have been
modulated with different states. On the contrary, for identically modulated bits, an
eavesdropper cannot identify the relative modulations from the powers difference because
it remains zero (the synchronization state has not been perturbed). In consequence, the
secure key can be publicly negotiated from the synchronized bits. The combination of
both pseudo-random bit sequences will result in identical modulation states half of the
times. Therefore, this protocol allows the public exchange of an encrypted key at rates
up to half the modulation bit rate, e.g., for our experimental implementation up to 500
Mbit/s (1 Gbit/s pseudo-random bit sequences).

5.3.2 Particularities of the Experimental Setup

Public-key exchange using mutually coupled SL was first proposed in [139]. In the
referred work, the feasibility of the protocol was numerically demonstrated. The authors
used a rate-equations approach to simulate the mutually coupled SL and evaluate the
security of the scheme. However, a number of degrees of freedom like the coupling
phases or the spontaneous emission (one of the most prominent noise sources in SL),
were simplified or not taken into account in the original reference. In contrast, an
experimental implementation of this scheme cannot simply ignore these issues, but must
evaluate their impact and even find solutions for some of them. In this section, the
adaptations to the scheme and the experimental setup will be explained.

4In section 5.4 we will explain how this requirement can be relaxed in practical implementations and
still be able to reach a sufficient level of security.
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Figure 5.3 depicts the setup that we have used in this experiment. It is conceptually
identical to the one explained for the bidirectional coupling experiment in chapter 4.
However, two modifications have been included here with respect to the one presented
in the previous chapter: the use of polarization maintaining (PM) fiber components and
the introduction of a length mismatch between the two coupling paths.

Figure 5.3: Scheme of the experimental setup for the SKE experiment. LD1 and LD2: laser diodes,
Circ: optical circulator, PC: polarization controller; Att: variable optical attenuator, δl: fiber extension
(2 meters), Spl: one by two intensity splitter with indicated intensity splitting ratios, →: optical isolator,
SOA: semiconductor optical amplifier, and PD: photodiode. Both lasers are biased through a bias
tee with separated DC and RF ports. The red lines in the coupling path represent components with
polarization maintaining fiber connections.

In this particular coupling configuration, the semitransparent mirror is not equidis-
tantly placed between both lasers. Indeed, one of the coupling paths has a fiber extension
of length δl. We have intentionally included this difference between the coupling paths
because it introduces two important advantages. First, the counter-propagating beams
arriving at both lasers from the coupling mirror do not interfere coherently. In conse-
quence, possible interferometric effects in the coupled cavity are avoided [175]. These
effects, when not controlled, cause variations of the relative coupling phases with conse-
quent presence of periods of destructive interference. This phenomenon results in slow
time-scale oscillations of the synchronization quality that could cause high loss of syn-
chronized bits in our public-key exchange protocol. Such phenomenon is not dramatic
in well-controlled laboratory conditions, but it is a dramatic nuisance if one desires to
implement this scheme in a real technological platform. The scenario with asymmetric
coupling delays has a second and more pragmatic advantage, it relaxes the requirements
for practical implementations of our SKE scheme. In fact, for asymmetric positioning of
the mirror, identical synchronization occurs with a temporal offset given by the difference
of the corresponding delay times, ∆τ = τc2 − τc1 .

As long as any other detuning in parameters is kept small enough, the stability and
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(a) (b)

Figure 5.4: (a) Long-term quality of the identical synchronization state in the scenario where the relay
is asymmetrically placed. The depicted data corresponds to the sliding cross-correlation in a window of
1.75 µs. The details on its calculation can be found in section 4.3. The bias current is I = 1.01Ith. Panel
(b) focuses on the time window of the first 40 ns. The dashed horizontal line has been plotted only as a
guide to the eye, it indicates a sliding correlation value of 0.95.

overall quality of the identical synchronization state are not affected by the distance
between the coupled lasers or by the relative positioning of the mirror [154]. Figure
5.4 illustrates the quality and stability of the identical synchronization state with two
intervals of the same sliding cross-correlation time series. The sliding cross-correlation
coefficient at the corresponding ∆τ is most of the time beyond 0.9 (the time-averaged
cross-correlation is 0.949), with sporadic drops to values below 0.8. The persistent high
values of the sliding cross-correlation coefficient are better resolved in the magnified
time window of Fig. 5.4b. A detailed view of the synchronized dynamics and of the
characteristic desynchronization events is shown in Figure 5.5.

The desynchronization events identifiable in Fig. 5.5b can either be induced by short
periods of destructive interference between the coupling phases [149] or by attractor bub-
bling5. These effects were not considered in the original numerical demonstration of the
scheme [139]. However, even if our coupled system experiences desynchronization events
unrelated to the key-exchange protocol itself, but to the mentioned dynamical effects
(or even to hypothetical communication disruptions), the generation of a secure-key is
still possible. The reason is that Alice and Bob maintain only those states that result
in synchronized bits, therefore the only effect of these unpredictable desynchronization
events will be that of reducing the rate at which the key is generated. This point is of
major importance for the robustness of our public-key exchange protocol.

An additional particularity of this setup resides in the elements that compose the
coupling loop. Those elements, represented with red connections, are polarization main-
taining (PM) fiber components. The use of PM fiber components in the coupling path
facilitates the alignment of the polarizations of the different fields that propagate in the

5Attractor bubbling phenomenon has already been introduced and extensively characterized in section
4.4.3.
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(a) (b)

Figure 5.5: Two exemplary intervals of the same time series. The experimental conditions are identical
to those of Figure 5.4. Panel (a) shows a window with no desynchronization events. Panel (b) depicts
two examples of the characteristic desynchronization events present under this experimental conditions.

coupling cavity. For this purpose, both polarization controllers (PC) are tuned such
that the linear polarization state of the field emerging from each laser diode is coupled
as a linear polarization state to the 3 dB coupler before the fiber loop mirror. The
reason is that this coupler is a fast axis blocked PM component, what allows us to align
both incoming fields to the same linear polarization state. The reverse linear-to-linear
transformation (when the light propagates back from the 3 dB coupler to the lasers) is
automatically fulfilled.

Here again, the control of the polarizations alignment is a perfectly feasible task in
laboratory conditions for all the fiber setups presented in this thesis. However, field
implementations may suffer of variable environmental conditions and, in consequence,
of variations of the polarization state of light. In this sense, the use of PM fibers to
build up the fiber-loop mirror has an additional advantage compared to conventional
fibers. The power after the coupler (that is a fast axis blocked component) could be
monitored by a feedback control loop to compensate for polarization misalignments.
Obviously, this implies the substitution of some elements: the 3 dB coupler before the
fiber-loop mirror must be a 2-by-2 component (one of the outputs would be used to
monitor the average output power) and the polarization controllers should be substituted
by electrically tunable ones. These substitutions would have no other impacts on the
performance of the setup.

5.3.3 Proof of Concept

Now, we demonstrate experimentally our key exchange scheme. The mutual coupling
path among the lasers is the channel used to bidirectionally communicate the bit se-
quences. The information is encoded by simultaneous modulation of the bias currents of
LD1 and LD2 at 1 Gbit/s. The modulation consists of two independent pseudo-random
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bit sequences of 6000 bits each.

For the correct implementation of our key exchange scheme, the modulations that we
apply to both lasers must be properly time shifted. The reason is that both lasers receive
the delayed feedback and coupling signals with a mismatch ∆τ , and they are identically
synchronized with this time offset. A time mismatch between the modulations and ∆τ
will create systematic losses of detection samples from every bit. In consequence, both
lasers must receive their modulation signals with a clock skewed by ∆τ . However, the
solution to this problem is nontrivial because this time shift cannot be obtained simply
from the detected time traces. The traces depicted on the oscilloscope combine ∆τ with
other time differences originated in the modulation and detection paths.

C
ro

s
s
-C

o
rr

e
la

ti
o

n
 (

L
D

1
,L

D
2
)

0.65

0.7

0.75

0.8

Deskew added to LD1 [ps]

5000 5200 5400 5600

Figure 5.6: Modulation skew measurement using a correlation method. The dots represent the averaged
maximum cross-correlation coefficients for different time shifts of the modulations. The red dotted curve
is a Gaussian fit to the experimental points.

We have developed a simple method by which we obtain the optimum time shift that
synchronizes the clock of the modulation signals to the coupling-delay mismatch. The
process consists in modulating the two SL with the same modulation. This modulation
sequence is a pseudo-random binary sequence in order to avoid any periodicity. Then,
both sequences are relatively skewed until the conditions that maximize their intensities
cross-correlation are found. The two copies of the pseudo-random bit sequence will
synchronize their arrival to each laser only when their relative time shift is exactly ∆τ .
The cross-correlation between the two lasers decreases otherwise. In particular, we skew
one modulation sequence in steps of 100 ps and extract the maximum cross-correlation
coefficient. The results of such scan are depicted in Figure 5.6. The values that have
been plotted represent only the set of points that are already close to the expected value.
Each point is the average of 10 independent measurements and the error bars represent
their respective standard deviations. The red curve is a fit of the calculated points that
indicates an optimal time shift of 5.35 ns. With this procedure we can fine tune the
modulation clock between both lasers, avoiding the systematic loss of a fraction of every
bit.
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Figure 5.7 illustrates the message decryption process. Figures 5.7a and 5.7b depict
two portions of the transmitted messages, that consist in non-return to zero pseudo-
random binary sequences. The modulated bits are either 1 or -1, that are conceptually
equivalent to modulation with 1 and 0. However, {-1, 1} represents a modulation with
zero-mean, which is important in experiments to avoid possible high-pass filtering effects
for long chains of bits. The difference between the transmitted messages is plotted in
Fig. 5.7c. The appropriate lag ∆τ has been added to m2(t), as previously discussed
in this section. Figure 5.7d depicts the reproduction of the messages difference via the
subtraction of both SL powers.

Figure 5.7: secure-key exchange proof of concept. Panels (a) and (b) illustrate the original encoded
bit sequence (modulation difference). Panel (c) represents the subtraction of the messages after the
appropriate time lag has been compensated for. In panel (d), the modulation difference (gray line) is
reproduced by the difference in lasers’ powers (black line). The modulation amplitude is 0.08Ith. The
difference in powers has been filtered with a cutoff frequency of 1.2 GHz.

Figure 5.7d is the most fundamental plot to understand our key exchange proto-
col. We can observe that the combinations of differently modulated bits induce loss of
synchronization. In these cases, the sign of the individual bits can be extracted from
the power difference. Only those bits that have a modulation difference of zero do not
perturb the identically synchronized state. Therefore, the modulations that result in a
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zero bit difference can be used to negotiate the secure key.

5.4 Security Analysis of Our Scheme

In every communications system that claims to guarantee privacy of communications, the
level of security must be analyzed. Our scheme proposes the exchange of an encrypted
key via a fiber optical channel. Fiber-based systems present a number of advantages that
facilitate the long-range communications between the partners. However, an eavesdrop-
per may also find eases for tapping the partners’ communications. In particular, Eve
can split the coupling channel and subtract a fraction of the light coming from each side.
We have shown that when both lasers are encoded with the same bit and the intensity
differences due to modulation are sufficiently small, Eve cannot extract information on
which are the bits that have been sent. In consequence, both partners can agree to dis-
card the bits that are different from each other and keep only the mutually synchronized
ones.

For the encryption to be sufficiently strong, it should not be possible to extract
information on the bit sign from the time series. From the information theoretical point
of view, this is assured if Eve has a probability of 0.5 to correctly guess each bit. In fact,
this is the value of probability related with no information leak from the modulated bits.

The key generated in our protocol is encrypted through chaos masking. The effect of
the current modulation on the output intensity is small as compared to the amplitude
of the chaotic oscillations. Unfortunately, this scheme suffers from a drawback, at least
when implemented in experiments. Our key-exchange protocol is meaningful only when
the lasers are pulled out of synchronization by means of modulation. In this sense, the
modulation amplitude cannot be arbitrarily small, it has a lower boundary. However, as
soon as the modulation amplitude is enough to pull the lasers out of synchronization, a
fraction of the bits are also statistically identifiable. The amplitude of each bit is still
masked inside the chaotic fluctuations, but the sign of the bits (whether the bit is -1 or
1) is partly identifiable from the integral of the bit intensity6. Indeed, the concealment
of the key decreases gradually with the increase of the modulation amplitude.

Figure 5.8 illustrates with experimental data the information that can be extracted
from statistical analysis of the bits. The histograms of the bits integrals (a total of 3000
bits per histogram) are plotted for LD1 (Fig. 5.8a) and LD2 (Fig. 5.8b). The integrals
of the intensity are evaluated for time windows corresponding to the bit length (in our
experiment the duration of each bit is 1 ns). It can be seen that the maxima of the
two histograms (in both panels) are clearly separated. If this effect is not compensated
for, there exists an information leakage from the individual bits that compromises the
encryption of the key. Here, we follow a similar reasoning to when the ideal level of
security was discussed. If the histograms corresponding to the bits -1 and 1 would fully
overlap, no information could be extracted from the individual bits. The probability for

6Here, we assume that Eve is able to synchronize her clock with the partners’ clock, and consequently
extract the maximum amount of statistics from each modulated bit with a matching laser. Of course,
this represents a worst-case scenario.
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a given bit to be a -1 would be the same than the contrary. Therefore, Eve could extract
no information at all from the individual bits amplitude, neither from their integrals.

Figure 5.8: Histograms showing the integrals of the modulated bits for (a) LD1 and (b) LD2. Here,
the bias current is I = 1.01Ith and the modulation amplitude is ∆I = 0.03Ith, where Ith is the solitary
laser threshold. The red curve represents the bit -1 and the green curve the bit 1. Further information
on the calculation of these curves can be found in the main text.

To overcome the disadvantage of having partially exposed bits, we can apply a
method that has been demonstrated advantageous in other classical key distribution
systems. We can use privacy amplification in order to enhance the security of our par-
tially exposed raw key [176]. This method can be applied with effectiveness to systems
where the fidelity of the generated raw key is high, which is particularly true in most clas-
sical key distribution systems. Here, fidelity refers to 1 minus the fraction of erroneous
bits in the raw key [169].

In our particular scheme, we will not use those individual bits that are too exposed.
For this purpose, we need to define an upper boundary for the probability of every bit to
be correctly identified by Eve. We then sieve only those bits that fulfill our requirement.
When this is done, an algorithm for privacy amplification can be used to purify the
generated raw key, i.e., the key that is partially exposed. This process always has a
cost in terms of encrypted-key generation rate, but allows us to arbitrarily enhance the
security of the final key.

In Fig. 5.8, the is normally distributed in a first approximation, although the his-
tograms present many irregularities in their shapes. We have fitted each histogram with
a Gaussian distribution in order to smoothen the probability distribution function. The
criteria we have chosen here is that the probability in favor of any of the values is never
higher than 0.75. This imposes boundaries that are indicated as vertical dashed lines in
Figs. 5.8a and 5.8b.

Of course, not all the bits that are inside the probability boundaries will conform the
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raw exchanged key, but only those that combine in both lasers to a synchronized state.
Again, from the time series we need to determine whether they are synchronized or not.
This classification can be done using the synchronization error, as it is usual in chaos
communications schemes [177]. Figure 5.9 depicts the accumulated synchronization error

that is calculated via the following expression:

√
<I1−I2>2

bit

<I1+I2>2
bit

. This measurement gives us

a good contrast between synchronized and unsynchronized bits.

Figure 5.9: Synchronization error between the modulated bits. The bias current is I = 1.01Ith and
the modulation amplitude is ∆I = 0.03Ith. The blue curve represents the synchronized bits, meanwhile
the orange and the gray curves represent the unsynchronized bits of different sign. Further information
on the calculation of these curves can be found in the main text.

In Fig. 5.9, the histogram depicted in blue corresponds to the bits of the synchro-
nized states. The other two histograms correspond to the unsynchronized modulation
combinations (detail on the curves indicated in the figure label). It is noteworthy that
the data corresponding to the synchronized bits exhibit not only a smaller synchroniza-
tion error, but also a smaller variance in their distribution than the unsynchronized
bits. Here, in order to smoothen the irregularities we have fitted the histograms again.
This time we have used a Gamma distribution function to fit the histograms because
in the calculation of the synchronization error the intensities are squared. Alternative
approaches to smoothen the histograms data could use other functions or varied the bin
widths.

We fix a threshold criterion to determine whether the combined bits of both lasers
lead to a synchronized state or not. We put the threshold where the unsynchronized
states probability distribution functions have half the height of the synchronized states.
With this criterion we accept for the key all the bits that have a synchronization error
below the vertical dashed line in Fig. 5.9. The ratio of unsynchronized versus synchro-
nized bits inside this region gives us the fidelity of the generated key, that for the data
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depicted in Fig. 5.9 is 0.93.

The combination of both criteria as explained in Figs. 5.8 and 5.9 gives us the raw
key generated in our scheme under the mentioned experimental conditions. The rate at
which this raw key is generated reaches up to 87 Mbit/s. This value represents ≲ 20%
of the synchronizable bits rate7. Under this conditions, the average cross-correlation of
the intensity dynamics (without modulation of the bias current) is beyond 0.94. Other
experimental conditions give raw key generation rates in the same order of magnitude
only if the synchronization quality is similarly good.

We have investigated different bias currents and different amplitudes of modulation
ranging from {1.01 − 1.5}Ith and {0.02 − 0.08}Ith, respectively. In our experiment, the
highest cross-correlation values were obtained for bias currents close to the solitary laser
threshold and high values of the feedback/coupling strength. When the synchronization
quality decreases, the raw key bit rate drops rapidly below 50 Mbit/s, e.g., for a cross-
correlation coefficient of 0.84, the raw key is already generated at 28 Mbit/s. The
reason of this fast deterioration of the performance of our scheme is that the quality of
synchronization determines the degree of overlap between the blue and the other curves
in Fig. 5.9. The other factor that strongly influences the performance of our scheme
is the modulation amplitude. For low modulation amplitudes, the histograms similar
to those shown in Fig. 5.8 will strongly overlap and a majority of the bits will be
masked in the chaotic waveforms. On the contrary, for high modulation amplitudes, the
histograms will separate away from each other and a high number of individual bits will
be too exposed to conform the raw key.

A raw key generation rate of 87 Mbit/s is high in comparison with the other classical
key generation schemes mentioned in section 5.1. Indeed, it surpasses the state-of-
the-art quantum-key distribution cryptosystems [178]. However, this value cannot be
considered the rate at which a properly ciphered key is exchanged. The reason is that a
part of the bits that conform this key are exposed and its concealment is compromised.
Even more, in contrast with the quantum-key distribution systems that can identify
whether the distributed key is eavesdropped, we have no mechanisms to find out the
exposition of our exchanged key. A fraction of the individually modulated bits will
have a probability to be identified up to 0.75, meanwhile the average probability is
0.64. We need privacy amplification [179] in order to enhance the encryption of the
raw exchanged key. However, it is important to correct the possible differences in the
key retained by Alice and Bob before privacy amplification can be applied (here, the
fidelity of the raw key is 0.93). One possibility to correct the errors in the key is to
use a procedure known as “information reconciliation” [180] through an authenticated
public channel. Other methods to increase the fidelity of the exchanged key could imply
particular parameters of our experiment, like reducing the injected bit rate or modifying
the modulation scheme.

Following the arguments exposed by Horváth, Kisch and Scheuer in [176], privacy
amplification can be applied to classical key distribution schemes with good results as

7Please note that the key exchange rate must be compared to half the modulation rate, given that
only a 50% of the bits will represent synchronizable states.
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long as the fidelity of the raw key is sufficiently high. In this work, the authors analyze
the effect of privacy amplification on the security of different classical key distribution
schemes. The information leak from the raw key can be reduced down to an arbitrarily
low value with the simple iterative application of a privacy amplification algorithm. The
algorithm used by the authors consists of replacing the original key by a shorter one (with
half the length of the original key) whose bits are the product of the XOR operation
between couples of successive bits of the original key [181]. By means of this procedure
we can target the desired upper bound of Eve’s probability to correctly guess the bits of
the key. In some of the classical key distribution schemes introduced in section 5.1, the
number of iterations of the privacy amplification algorithm are 2 for the Johnson-noise
scheme by Kish [164] and 3 for the Scheuer-Yariv’s ultra-long fiber laser scheme [165]. In
our case, given the average probability of 0.64, it would be enough to iterate three times
the privacy amplification algorithm to reduce the probability for Eve below 0.50003 and
have a resulting secure key generation rate of 11 Mbit/s.

The analysis of the security of our classical key distribution scheme is not complete
if we only consider the information leaked from the bits of the key. Another type of
attacks, known as invasive attacks, must also be considered. One example of this type
of threat is the so named man-in-the-middle attack. In a simplified version, Eve cuts the
communication channel and impersonates the legitimate partners. Eve is then receiving
the information (with a matching laser) and emitting its own generated bit-sequences,
causing the establishment of a non-secure key between both partners. In fact, in this
scenario Eve knows an error free version of the key. Security against this attack can
be obtained broadcasting the coupling signal in as many public channels as possible
[164, 176]. Both legitimate partners can therefore detect any invasive manipulation on
the channel signal and discard the related bits if necessary.

5.5 Discussion and Summary

We have experimentally demonstrated a scheme that allows to negotiate an encrypted
key through a public channel. The scheme is based on the phenomenon of identical
chaos synchronization emerging between two bidirectionally-coupled SL. Both lasers are
mutually coupled through a passive relay, that in our experiment is implemented by a
fiber-loop mirror. The key is generated from the synchronized bits, that are concealed
from eavesdropping through chaos encryption.

The operating principle should work and maintain its exchanged-bits rate no matter
the coupling distance between the lasers. The reason is that the relay element shares the
coupling between both laser units (constantly feeding both lasers). Once the commu-
nication is set and the information from the relay begins to arrive to the partners, the
key-build up process begins. The desynchronization-resynchronization time does not de-
pend on the distance to the other laser and is of the order of the high-bandwidth chaotic
dynamics. In our laboratory experiment, we have demonstrated raw key exchange rates
above the 80 Mbit/s for bit modulations at 1 Gbit/s.

The security aspects of our scheme have been studied. In particular, the possibility
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to use privacy amplification indicates that we can always sift a more secure key with a
user-defined level of information leakage. Obviously, there exists a trade off between the
number of iterations of the privacy amplification algorithm (with a half shortening of the
key for each iteration) and the security of the resulting key. Even after reinforcing the
exchanged key privacy, this scheme allows us to exchange a private key with high-enough
bit rates (11 Mbit/s) to be used as a one-time pad for secure private communications.

Interestingly, some challenges remain to be solved for the field implementation of
this scheme. The fact that the bias current modulation is visible in the amplitude of a
significant number of the bits is one of the most important challenges, since it causes the
requirement of privacy amplification and consequently the loss of a significant part of the
raw key bits. A possible solution could come from the use of a phase modulation scheme.
This possibility could conceal better the individual bits, leaving the bit rates unaffected
or even improving them by means of external electro-optic phase-modulators with mod-
ulation bandwidths far beyond the tens of Gigahertz. Therefore, the limitation to the
modulation bandwidth would come from the resynchronization time, which is typically
shorter than a nanosecond. However, the main technological challenge for this scheme
resides in the possibility to extend it to field implementations with long-fiber connec-
tions. The use of standard long fiber links represents a nontrivial problem because the
signals therein are subjected to amplification, dispersions rectification and routing, what
implies unpredictable variations in the propagation delays. The fundamental question
is therefore the impact on the quality of the synchronization or even the possibility for
this identically synchronized state to exist under such described field conditions. This is
a matter of further investigations on the technological side of this system. Besides these
technological aspects, the scheme proposed in this chapter has been shown to be robust
working over several weeks without extra realignments and it offers a viable solution if
a static fiber channel is dedicated to the communication link.



108 CHAPTER 5. SKE USING CHAOTIC SEMICONDUCTOR LASERS



Chapter 6

State-Dependent Delay Dynamics
in Semiconductor Lasers

6.1 Introduction

In this thesis, so far we considered systems with a constant delay. There are, however,
different classes of delay systems in which the delay time is not constant. For example,
in time dependent delay systems an external modulation changes the delay time of the
system [182]. Actually, even more intriguing dependences of the delay time can be found
in other type of systems. These systems are known as state-dependent delay (SDD)
systems. In such systems, there exists a fundamental interrelation between the state of
the system and the delay time. The effective delay is intrinsically determined by the
state of the system and the latter one depends on the delays active at each time interval.
Therefore, in this type of systems the changes in delay times emerge in a self-organized
fashion.

A variety of important technological and technical systems can be described with
a SDD formalism, some examples are Internet traffic [183], space communication [184],
control theory [185], economics [186], turning processes [187], and deep drilling [188].
Furthermore, a number of ecological and biological systems can also be described by
this approach, like predator-prey systems [189] or neural systems [190]. Other examples
where SDDs play a crucial role are in the dynamical evolution of age-structured biological
or physiological processes such as erythropoiesis [191,192] or state-dependent population
growth [193]. Given the high number of possible applications, models of dynamical
systems with state-dependent delays have found considerable interest in mathematics
and control theory. Varied and complex phenomenology has been found in these models
although they are demanding to tackle mathematically [184,194,195]. The reason is that
state-dependent delays impose challenging problems in the mathematical analysis of the
equations, as well as the numerical determination of solutions.

Despite of their relevance and interesting properties, up to today there exist almost
no experimental implementations that meet the function of benchmark where to develop
the studies in this field. There exist, for example, implementations on Boolean phase
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oscillators programmed within a FPGA [196]. However, the state-dependent delay there
played mainly the role to vary the effective coupling strengths. Therefore, direct mea-
surement of the SDD dynamics in systems with controllable parameters is interesting
and may have relevance for a variety of scientific fields.

Here, we present a real-world photonic implementation of a dynamical system ex-
periencing two different delay times depending on the state of the system. The delay
time does not change continuously with the dynamical state, it exhibits discrete jumps
between the two delay times. Although this system is conceptually simple, not much is
known about their dynamical properties, in particular in the chaotic domain. A simpli-
fied scheme of this configuration is depicted in Figure 6.1. It is worth noting that this
represents only one of the simplest configurations of many SDD feedback or coupling
motifs that can be imagined and realized. Our configuration comprises an oscillator
f(x) with its dynamics described by a variable x(t). In dependence of x(t), the state-
dependent switch routes the dynamics to either one or another feedback branch with
corresponding functions g1(x) and g2(x) and delay times τ1 and τ2, respectively. The
scheme belongs to a class of SDD systems described by:

ẋ(t) = f(x(t)) +

2∑
k=1

χk(x(t− τk))gk(x(t− τk)), (6.1)

with χ1(x(t)), χ2(x(t)) ∈ {0, 1} and χ1(x(t))·χ2(x(t)) = 0. The functions χ1(x(t)), χ2(x(t))
represent here the switch S(x(t)). Interestingly, due to the position of the switch, at any
moment the oscillator obtains feedback either from branch 1, from branch 2, from both
branches or from none of them. The position of the switch, i.e. whether it is situated
before or after the delay loops, will determine the accessible dynamical states.

f(x)
τ1 τ2

g2(x)

g1(x)

S(x(t))

Figure 6.1: Scheme of the state-dependent delayed feedback configuration. An oscillator described
by the function f(x) and the dynamical variable x(t) is directed to one or another branch via a switch
depending on the state x(t). The two feedback branches are respectively described via functions g1(x)
and g2(x) and the delay times τ1 and τ2.

In this experiment, we replace the usual fiber loop mirror (see experimental setups
presented in chapters from 2 to 4) with fixed delay by two feedback loops with mutually
exclusive spectral reflection properties. Both loops have different lengths that result in
different delay times, τ1 and τ2. Those delays are long compared to the characteristic dy-
namical time scales of the laser. We act on the spectral characteristic of the state1. The

1It is preferable to act on the spectral characteristic of the state rather than its amplitude, since
amplitude nonlinearities are related to only very small relative changes of the delay times.
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spectral characteristics are associated to the amplitude dynamics through the amplitude-
phase coupling (the α parameter [35]). In this sense, the use of spectrally selective mirrors
is a very convenient and flexible mechanism to choose different delay loops depending
on the corresponding optical spectrum of the laser emission. Such system has recently
attracted the interest of different research groups. Slowiński, Krauskopf and Wieczorek
theoretically studied their relative equilibria structure and stability [197, 198]. In a
recent experiment, the combination of the two frequency-selective feedback loops was
investigated in terms of controlling the frequency oscillations of the laser light [199].

6.1.1 Chapter Outline

In section 6.2, the experimental setup and the characteristics of our implementation of
SDD are presented. In particular, those related with the filters positioning and charac-
terisation. The experimental results are presented in section 6.3. This section is divided
in three parts. In the first part, the stationary spectral characteristics of this experimen-
tal system are studied and the conditions for the dynamics to occur in separated filters
are highlighted. In the latter two parts, the real-time intensity and optical spectrum dy-
namics in each filter are investigated. From the aforementioned analysis, the existence
and characteristics of state-dependent delay dynamics are demonstrated.

The experimental results are compared to numerical modeling in section 6.4. The
model that is explored depicts qualitatively the same properties than the experimental
system. In particular, the statistics of the residence times at each filter, analyzed in
detail in section 6.5, are found to have similar behaviors.

6.1.2 Contributions to the Work in the Present Chapter

A large part of the results presented in this chapter have been published as: J. Mart́ınez-
Llinàs, X. Porte, M. C. Soriano, P. Colet, and I. Fischer, “Dynamical properties induced
by state-dependent delays in photonic systems”, Nat. Commun. 6, 7425, (2015).

The state-dependent delay configuration was originally designed by I. Fischer. The
planning and execution of the experiments have been done by me under the supervision
of M. C. Soriano and I. Fischer. The theoretical analysis and numerical simulations were
performed by J. Mart́ınez-Llinás and supervised by P. Colet. All previously mentioned
authors have been involved in the discussion of the results.

The experimental detection of the optical frequency dynamics presented in this chap-
ter has been implemented by me following the method originally developed by D. Brun-
ner and published as: D. Brunner, X. Porte, M. C. Soriano, and I. Fischer, “Real-time
frequency dynamics and high-resolution spectra of a semiconductor laser with delayed
feedback”. Sci. Rep. 2, 732; DOI:10.1038/srep00732 (2012).

6.2 Experimental Methods

In this experiment, we have employed a discrete-mode (DM) quantum-well semiconduc-
tor laser emitting at 1543 nm with a threshold current of Ith = 12.00 mA. With and
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without external optical feedback, the laser exhibits single-longitudinal mode behavior
with a side-mode suppression ratio larger than 35 dB and a longitudinal mode separation
of 150 GHz. The temperature and current of the laser are stabilized to an accuracy of
0.01 K and 0.01 mA, respectively. Further information on this type of laser devices can
be found in section 2.2.

Figure 6.2: Scheme of the experimental setup for the state-dependent delays experiment. LD: laser
diode, Circ: optical circulator, PC: polarization controller, Spl: one/two by two intensity splitter with
indicated intensity splitting ratios, →: optical isolator, FBG: fiber Bragg gratings, SOA: semiconductor
optical amplifier, PD: photodiode, and HR-OSA: high-resolution optical spectrum analyzer.

Figure 6.2 depicts the experimental setup, that has been implemented employing
standard telecommunications components. The laser is subject to delayed optical feed-
back from two distinct cavities. Each feedback cavity contains an independent fiber-
loop mirror closed by a fiber Bragg grating (FBG) that acts as the frequency-selective
reflector. Therefore, both feedback paths have different lengths with disjunct spectral
reflection ranges. About 75% of the light from FBG2 and 25% of the light from FBG1

are merged and fed back to the laser diode, resulting in an effective ratio of feedback
strengths of 4.38 dB. The light propagates linearly through the delay loops, while the
laser represents the nonlinear element in this experiment. The polarization controllers
are used to independently align the polarization for each feedback cavity.

The experimental setup design allows for direct detection of the light reflected from
each individual FBG, besides of the light emitted by the LD. About 10% of the light
reflected from each FBG is coupled out for detection. Therefore, two semiconductor
optical amplifiers (SOA) are needed to amplify the light reflected from each FBG before
detection. The measurements of the dynamics are performed using a 13 GHz bandwidth
detector for the total intensity dynamics and two 20 GHz detectors for the filtered
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dynamics. The dynamics is recorded using a 16 GHz analog bandwidth oscilloscope
with a sampling rate of 40 GS/s.

The two FBG filters are grating structures of 1 mm length photo-imprinted in stan-
dard single-mode fiber (SMF28). Their maximum reflectivities are typically > 90%
and the measured reflection bandwidths are 4.63 ± 0.02 GHz and 5.69 ± 0.02 GHz for
FBG1 and FBG2, respectively. In the present experiment, the reflection bandwidths
of the FBG, their spectral positions and relative amplitudes have been precisely mea-
sured with the combination of a super-luminescent diode and a high-resolution optical
spectrum analyzer (that corresponds to the element labeled as HR-OSA in the setup
depicted in Fig. 6.2) with 10 MHz resolution [38]. Figure 6.3 depicts the position of
the FBGs in the present experiment. An important advantage of employing FBGs is
that they allow for tuning of their reflection frequencies without essential modification
of any of their other characteristics, like reflectivity and reflection bandwidth. For this
purpose, both FBGs have been fixed to independent translation stages in order to tune
them to the desired reflection frequencies by means of stress. The frequency dependence
on length changes is δf/δL = 1.1 ± 0.1 GHz/µm, and the maximum tuning range is
250± 60 GHz. The respective center frequencies of FBG1 and FBG2 have been detuned
−4 ± 0.01 GHz and −11 ± 0.01 GHz with respect to the solitary laser frequency, that
is fSLD = 194350 GHz. Therefore, there is no spectral overlap between the reflection
bandwidths of the two FBGs, neither with respect to the fSLD.

Figure 6.3: Fiber Bragg Gratings. The blue and orange curves respectively represent FBG1 and FBG2.
The vertical dashed line indicates the emission frequency of the solitary laser, fSLD.

The injection port has been used to precisely measure the external-cavity round trip
times by means of the injection of light pulses. This technique was already described in
detail in section 3.2. The only difference present in the actual implementation is that we
must detune the emission frequency of the injection laser in order to correctly measure
the reflection from each FBG. With this method, we have measured the delay times of
the two cavities as τ1 = 106.075 ± 0.025 ns and τ2 = 121.625 ± 0.025 ns.
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6.3 Experimental Results

The combination of the SL (the nonlinear element) with the FBGs acts as the state-
dependent switch. First, the results from such combination are discussed in the context
of the experiment. Later on, in section 6.4, we will compare the obtained spectral and
dynamical features with numerical modeling results.

Optical Spectrum

First, we study the averaged optical spectrum of the laser emission when subject to
delayed feedback from the two filtered cavities. Figure 6.4 exhibits the dependence
of the optical spectra on the injection current (the parameter that is varied). In this
measurement, the injection current is scanned until 1.5Ith, here only the range close to
the solitary laser threshold is shown.

Figure 6.4: Dependence of the optical spectrum on the pump current of the laser. The frequency
axis is centered to the value of the solitary laser frequency, fSLD = 194350 GHz. FBG1 and FBG2 are
detuned from the solitary laser frequency by −4±0.01GHz and −11±0.01GHz, respectively. The dashed
horizontal line in panel (a) indicates the highest current for which the two spectral bands corresponding
to the filters are separated by a gap larger than 10 dB. Panels (b) to (e) show representative spectra at
different values of the pump current axis: (b) 0.96Ith, (c) 1.01Ith, (d) 1.04Ith and, (e) 1.07Ith.

The optical spectra are depicted for pump currents ranging from 4% below the soli-
tary laser threshold to 10% above. The first depicted spectrum is below threshold
(0.96Ith) because the optical feedback from the external reflectors reduces the threshold
current of the laser. The horizontal dashed line in Fig. 6.4a indicates the highest bias
current for which we consider the delay dynamics to be state-dependent. For currents
below 1.08Ith, we consider the two filters isolated because there is a spectral gap larger
than 10 dB between them. Above 1.08Ith, this gap gradually disappears and the sig-
natures from the filters cannot be considered spectrally separated anymore. Panels (b)
to (e) illustrate some representative points on the pump current axis. We note that
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the spectra close to threshold exhibit comparable spectral amplitudes2 and bandwidths
in both filters and, therefore, one can expect that they will contribute similarly to the
global dynamics.

Intensity Dynamics

In order to proof whether this system exhibits SDD dynamics or not, the real-time
intensity dynamics must be analyzed. The experimental setup has been intentionally
designed to allow for direct detection of the light reflected from each individual FBG
with independence of the light emitted from the laser. Figure 6.5 depicts the time series
of the laser emission and the intensity in the two respective feedback loops for a pump
current of I = 1.01Ith.

Figure 6.5: Experimental time series for the pump current of I = 1.01Ith. Panel (a) depicts the intensity
dynamics emitted by the laser. Panels (b) and (c) respectively show the filter-resolved intensity dynamics
for FBG1 and FBG2. Two measurements are plotted in panel (d): the contrast function (gray dots) and
the contrast function of the 1 GHz low-pass filtered intensity dynamics (red dots). All the intensities
have been plotted in arbitrary units.

The total intensity dynamics is depicted in Fig. 6.5a. Panels 6.5b and 6.5c show
the filter-resolved dynamics for FBG1 and FBG2, respectively. These latter time se-
ries demonstrate the state-dependent nature of the dynamics, with alternating periods
of emission in the frequency bands corresponding to FBG1, FBG2 or in none of both
filters resulting in no feedback. Only by visual inspection of these panels it becomes
clear the complementary nature of the total dynamics, based on mostly exclusive con-

2The relative amplitudes of the two spectral components are affected by the coupling ratio of the
coupler at which the spectra are measured.
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tributions either from FBG1 or FGB2. To quantify this further, the signature of this
state-dependent delay dynamics is visualized in Fig. 6.5d using a contrast function. This
contrast function is defined as:

C(t) =
P ∗
1 (t) − P ∗

2 (t)

P ∗
1 (t) + P ∗

2 (t) + ε
,

with P ∗
i (t) = max [(Pi(t) − Pi,o), 0], i = 1, 2 and ε being infinitesimal. The parameter

ε is introduced to avoid indeterminations of the form zero divided by zero, since the
powers in both filters can become zero simultaneously. In order to properly define the
contrast function, the origin of noise in the detected time series has been characterized.
We can clearly attribute the origin of noise to detection noise (originated mainly in the
amplification stage at the SOAs), which is symmetric around the actual physical value.
Therefore, an offset Pi,o can be subtracted from every FBG time series based on the
noise characterisation. Fig. 6.5d depicts the contrast functions obtained from the fully
resolved (gray dots) and the 1 GHz low-pass filtered (red dots) intensity time traces,
respectively. From both time traces of the contrast function, the switches between the
states can be clearly recognized. In the contrast function corresponding to the fully
resolved intensity time series, one can also see the fluctuations due to the influence of
detection noise. Those fluctuations are mostly removed by the low-pass filtering because
they do not actually represent switches between states. This is the reason why in Fig.
6.5d the contrast function of the low-pass filtered time series is much smoother.

The dynamics of our system changes when the injection current is increased. Fig-
ure 6.6 illustrates the SDD dynamics for two higher injection currents, I = 1.04Ith
and I = 1.07Ith. The increase of the injection current results in dynamics exhibiting
faster transitions between the different filter states, with correspondingly shorter resi-
dence times. The contrast functions for these switches show even more distinct switches
between the different filter states with similar contribution to the dynamics from both
filters.

The pump current limit of I = 1.08Ith discussed in the context of Fig. 6.4 is related
to the increase of the bandwidth of the laser dynamics. The increase of the injection
current ultimately results in an enhancement of the bandwidth of the laser dynamics, due
to the increase of the relaxation oscillations frequency. This resulting spectral overlap
causes the loss of a clear distinction between two separate states and therefore establishes
a practical limit to our SDD dynamics region.

The switching properties between the two filter states can be further characterized
with the calculation of the cross-correlation function. Figure 6.7 depicts the cross-
correlation function of P1 and P2 (blue curve) and of the low-pass filtered versions of P1

and P2 (light-red curve). The dashed horizontal lines indicate their corresponding cross-
correlation coefficients at the origin. We obtain Cc = −0.4 for the unfiltered time traces
and Cc,f = −0.65 for the filtered ones, supporting that the intensity dynamics in the
two filters is mostly anti-correlated. One factor limiting the amplitude of the coefficient
for the filtered cross-correlation is the time that the system spends at those feedback
states where both filters are either simultaneously reflecting or none is reflecting.



6.3. EXPERIMENTAL RESULTS 117

(i)

(ii)

Figure 6.6: Experimental time series for the pump currents of (i) I = 1.04Ith, and (ii) I = 1.07Ith.
The respective panels correspond to identical measurements: (a) intensity dynamics emitted by the laser,
(b) and (c) filter-resolved intensity dynamics for FBG1 and FBG2, respectively, (d) contrast function
(gray dots) and contrast function of the 1 GHz low-pass filtered intensity dynamics (red dots). All the
intensities are plotted in arbitrary units.
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Figure 6.7: Cross-correlation of the signals of both filters for a bias current of I = 1.07Ith. The blue
curve represents the correlation between P1 and P2, while the light-red curve depicts the cross-correlation
between the low-pass filtered version of P1 and P2. The respective dashed horizontal lines indicate the
value of the cross-correlation coefficients at zero-lag.

To sum up, under the conditions described in this section (and due to the chosen
geometry), our experimental system belongs to the class of systems described by the
state-dependent delay Eq. 6.1.

Optical Frequency Dynamics

The contrast function between both filters has proven to be a useful tool to demonstrate
and study SDD dynamics in our experiment. However, this function only contains infor-
mation of the intensity dynamics. In [200], it was demonstrated that additional valuable
information can be extracted from the combination of intensity and frequency dynamics
in delayed feedback lasers. The additional physical dimension that provides the real-time
measurement of the optical frequency extends the comparison between experiment and
numerical modeling. In addition, the use of the optical frequency measurement (with
a narrow linewidth optical reference source) for time-averaged spectroscopy allows to
extract optical spectra with an unprecedented resolution [200].

The main goal is to study the optical frequency dynamics (from now on only “fre-
quency dynamics”) in combination with the intensity dynamics to extract new and
valuable information of our SDD system. In order to detect the optical frequency, we
use a measurement based on balanced coherent optical detection. Measurements based
on coherent detection have their origins in radio communications. In this process (also
known as heterodyning), a local carrier mixes with the received RF signal to generate a
product term. The product contains a sum and a difference terms of the signal and the
local oscillator frequencies. With the help of low pass filtering (that eliminates the sum
frequency component), the received RF signal can be demodulated from the difference
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term.
In our system, the incoming optical signal corresponds to the laser diode (LD) subject

to feedback from two distinct frequency selective cavities, and the local oscillator is a
reference CW semiconductor laser (LR). The combination of those two sources occurs
in a two-by-two optical coupler. Furthermore, a photodiode (which is a square-law
detection device) mixes the signal and the local oscillator. Figure 6.8 depicts the setup
used for coherent detection. This scheme reproduces the same experimental system as
Fig. 6.2 (grayed out in Fig. 6.8), with additional elements in the detection path. A
CW laser diode (with DFB structure) is used as reference stable source to heterodyne
with the target optical frequency dynamics. This laser (LR) is directly connected to an
optical isolator, suppressing undesired optical feedback and thereby avoiding complex
dynamical behavior resulting in artifacts in the heterodyne spectrum. In order to control
the correct frequency alignment of LR we have split a part of its light for detection in
the HR-OSA. In order to calibrate the respective optical frequencies, the output of LR
and LD are combined in a 3 dB coupler (not explicitly drawn in Fig. 6.8, its inputs
are indicated with two green labeled ports) before their detection with the HR-OSA.
We have set the optical frequency of LR to the solitary emission frequency of LD. The
optical polarization of LR is aligned to LD using a polarization controller. This step is
of fundamental importance to maximize the power contained in the heterodyne signal.

Figure 6.8: The scheme of the experimental setup for the SDDs experiment is similar to the depicted
scheme in Fig. 6.2. The novel element in this setup is the laser diode used as reference source (LR).

For the heterodyne detection, the mixing between the signal of interest and LR is
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done in a two-by-two optical coupler (with -3 dB coupling ratios). The optical fields
emerging from the coupler are detected by two very similar 20 GHz bandwidth photode-
tectors. These photodetectors are square-law detection devices, therefore the intensities
at their two outputs are:

IA(t) = ℜ |EA(t)|2 = ℜ
∣∣∣∣(ELD + jELR)√

2

∣∣∣∣2 , (6.2)

IB(t) = ℜ |EB(t)|2 = ℜ
∣∣∣∣j(ELD − jELR)√

2

∣∣∣∣2 . (6.3)

To derive these equations, we use the expression of the transfer function of a two-by-
two optical coupler, which can be found in most books about fiber optic components,
e.g. [201]. The term ℜ represents the responsivity of the photodiodes and 1/

√
2 corre-

sponds to the ratio of the electric field amplitude coupled at each output of the 3 dB
optical coupler. The rigorous formulation of Eqs. 6.2 and 6.3 should imply different
responsivities for the two photodiodes (ℜA and ℜB) and different coupling coefficients
for the two outputs of the optical coupler (

√
ϵ and

√
1 − ϵ). However, the optical coupler

and the photodiodes that we use in this measurement have been specifically hand picked
from a variety of elements at our disposal due to their strong matching. Therefore, the
mismatches between the photodiodes responsivities and the power-coupling coefficients,
respectively δℜ and δϵ, are very small.

The explicit expressions of the optical fields of both lasers are ELD(t) = ALD(t)ejωLD(t)t

and ELR(t) = ALRe
jωLRt. Here, we consider ωLR and ALR of our CW reference laser

constants during the measurement periods. The arguments in favor of these approxi-
mations are twofold: the laser temperature and current are stabilized with fluctuations
smaller than the percent, and the influence of the relaxation oscillations in ALR is ne-
glected because of their strong damping. In consequence, equations 6.2 and 6.3 can now
be rewritten as:

IA(t) =
1

2
ℜ
[
|ALR|2 + |ALD(t)|2 + 2ALRALD(t)cos(2πdfLD(t)t)

]
, (6.4)

IB(t) =
1

2
ℜ
[
|ALR|2 + |ALD(t)|2 − 2ALRALD(t)cos(2πdfLD(t)t)

]
. (6.5)

Each photodiode intensity contains the two direct detection components (|ALD(t)|2 and
|ALR|2) and the heterodyne component. The detected difference frequency, defined as
dfLD(t) = fLD(t)− fLR, is the one related with the optical spectrum of LD. Meanwhile,
the sum component fLD(t) + fLR is eliminated (through low-pass filtering) by the RF
circuit that follows the photodiode because it still corresponds to the optical domain.

The heterodyne signals are recorded with an analog bandwidth of 16 GHz. In our bal-
anced coherent detection scheme (see Fig. 6.8), we access to the heterodyne component
through the subtraction of the output intensities, IA(t) and IB(t):

∆I(t) = 2ℜALRALD(t)cos(2πdfLD(t)t). (6.6)
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An additional advantage of this scheme is that significantly improves the signal-to-noise
ratio with respect to direct detection as a result of the mixing with the strong reference
laser.

The optical spectrum of LD (SLD) can be obtained from the fast Fourier transform
(FFT) of Equation 6.6:

SLD(f) =

(
∆Ĩ(f)

4πℜALR

)
∗̂ÃLD(f), (6.7)

where the variable f is the optical frequency, the symbol˜stands for a Fourier transfor-
mation of the corresponding variable, and the symbol ∗̂ depicts a deconvolution.

As proof of concept, in Figure 6.9 we compare the optical spectrum obtained using
the FFT of a long time window with the optical spectrum recorded with the HR-OSA.
The time traces for the heterodyne measurement were recorded at a sampling rate of 40
GSamples/s and with a total length of 8 MSamples (i.e. 200 µs). The maximum spectral
resolution with this method is determined by the signal detection bandwidth (16 GHz)
and the recorded samples length (8 MSamples), resulting in a theoretical limit of 2.5
kHz in our measurement. In practice, the (narrow) linewidth of the CW reference laser
is what physically limits the frequency resolution of our optical detection technique, in
our case ⪅ 1 MHz. It is worth noting that this value is one order of magnitude smaller
than the resolution of the HR-OSA.

Figure 6.9: Comparison of the optical spectrum detected with two different techniques. The blue trace
corresponds to the heterodyne technique and the red trace corresponds to the spectrum obtained with
the HR-OSA. The inset illustrates the modes of the filtered external cavities in a zoom of the heterodyne
spectrum. The bias current for the depicted conditions is I = 1.03Ith.

In Fig. 6.9, the blue and the red traces respectively depict the time averaged het-
erodyne spectrum and spectrum recorded with the HR-OSA. The abscissa depicts the
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frequency detuning in GHz respect to the solitary emission frequency of LD. Both spec-
tra are plotted on a logarithmic axis. The logarithmic expression of the heterodyne
spectrum has a different offset in dB with respect to the spectrum detected with the
HR-OSA. We have subtracted this bias to match the power spectral densities around
the filter FBG2. However, there is a mismatch in powers visible around FBG1. This
mismatch is due to the difference in detection powers between both filters signals at the
HR-OSA port, and coincides in magnitude with the expected 4.38 dB resulting from the
different coupling ratios of the 25/75 coupler (see Fig. 6.8).

Given the high resolution of our measurement technique, we can access the individual
modes of the filtered external cavities. The inset in Fig. 6.9 illustrates those modes in a
zoom of the heterodyne spectrum. It is important to note that the heterodyne spectrum
has been convoluted with a 1 MHz sliding average filter in order to smoothen the fast
noisy fluctuations around the modes. With dependence on the region that is inspected,
we can resolve the modes corresponding to FBG1 or the modes corresponding to FBG2.
Interestingly, the measurement of the modes frequency separation in each filter gives
different results, that correspond to the inverse of the delay time at the corresponding
cavity. The modes in the spectral region of FBG1 are separated ∆f = 9.44± 0.01 MHz,
that corresponds to an external cavity delay time of τ1 = 105.9 ± 0.1 ns. Meanwhile
those modes in the expected frequency region of FBG2 are separated ∆f = 8.23 ± 0.01
MHz, corresponding to an external cavity delay time of τ2 = 121.5 ± 0.1 ns. In both
cases the obtained result coincides (within the resolution of the measurement) with the
directly measured delay times.

By means of this heterodyne detection approach, it is also possible to extract the
dynamics of the laser frequency. In order to obtain the frequency dynamics of LD we
use a sliding version of Eq. 6.7:

SLD,t′(f) =

(
∆Ĩt′(f)

4πℜALR

)
∗̂ÃLD,t′(f). (6.8)

In Equation 6.8, the FFT is calculated on data windows of fixed size ∆t centered at
successive times t′. An optical snapshot spectrum is calculated for each time window of
length ∆t. Due to the nature of the sliding FFT (sFFT), temporal and spectral resolution
cannot be chosen independently, since spectral resolution is given by ∆ν = 1

2∆t . We chose
∆t = 1 ns, allowing for a resolution of ∆ν = 0.5 GHz.

Figure 6.10 depicts together the intensity dynamics and the frequency dynamics of
LD for the two pump currents already illustrated in Fig. 6.6. The full spectrogram
of the frequency dynamics is shown in panels (b) for both pump currents. This plot
gives us the information on how the SDD dynamics behaves in the frequency domain,
with fast switchings between FBGs of characteristic times shorter than any of the two
delay times. Moreover, the simultaneous plot of the filter-resolved intensity dynamics of
FBG2 (Fig. 6.10a) and the frequency dynamics (Fig. 6.10b) validates the latter through
the comparison of the time windows when FBG2 is active with those periods when the
frequency dynamics occurs at the spectral region of FBG2.
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(i)

(ii)

Figure 6.10: Experimental intensity and frequency time series for the pump currents of (i) I = 1.04Ith,
and (ii) I = 1.07Ith. The respective panels (a) and (b) correspond to identical measurements in both
experimental conditions. In panel (a) the intensity dynamics emitted by the laser is plotted in gray and
the filter-resolved intensity dynamics of FBG2 is plotted in blue. The full spectrogram of the frequency
dynamics is depicted in panel (b). The horizontal dashed line indicates the position of the dip between
both filters. The intensities have been plotted in arbitrary units and the power spectral density is
color-coded in dB scale.
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Consistently with the time averaged picture, the spectrogram of the frequency dy-
namics exhibits particularly low activity in the spectral region between the filters. At
any moment the spectral width is in the order of GHz, reflecting the bandwidth of the
irregular nanosecond intensity pulsations. In accordance with this spectral bandwidth,
many filtered external cavity modes contribute to the real-time optical spectra at each
time. Altogether, the joint extraction of the intensity and the frequency dynamics rep-
resents a proper tool towards an accurate reconstruction of the evolution of our SDD
system’s complex dynamics.

6.4 Numerical Modeling

In this section, we introduce a model for a semiconductor laser subject to feedback from
2 frequency selective external cavities, and compare its properties with the experiments.
The model is based on the Lang-Kobayashi [61] model already introduced in section 2.7.
The dynamics is analyzed through an extended version of this model which consists of
2 + 2 equations in its simplest form. The first two equations are for the slowly varying
complex amplitude of the electric field E(t) and the carrier number N(t), respectively.
The equation of the electric field is expressed in the reference frame of the solitary laser
frequency. The equations are:

Ė(t) =
1 + iα

2
[G(N,E) − γ]E(t) +

m∑
k=1

κke
iφkFk(t− τk)

Ṅ(t) =
I

e
− γnN(t) −G(N,E)|E(t)|2, (6.9)

where Fk(t) is the slowly varying complex amplitude of the filtered electric field that is
fed back to the laser after spectral filtering from filter k, γ = 0.2 ps−1 is the photon decay
rate, γn = 1 ns−1 is the decay rate for the carriers, α is the linewidth enhancement factor,
I is the injection current, e is the electron charge and τk, κk and φk are the feedback
delay time, the feedback strength and the accumulated phase of filter k, respectively.
The phases are set to φk = 0 because in the long-cavity limit, as considered here, the
phases do not play a significant role [5]. The Lang-Kobayashi approach is valid for
a single longitudinal mode of the internal cavity. As we already remarked in section
6.2, this model limitation is fulfilled in the experiment. We consider a nonlinear gain
G(N,E) = g N(t)−N0

1+s|E(t)|2 , where g = 1.5 · 10−8 ps−1 is the differential gain coefficient,

N0 = 1.8 · 108 the carrier number at transparency and s = 10−7 the gain saturation
coefficient. We define the dimensionless carrier number as n = (N − N0)g/γ − 1. The
threshold current of the solitary laser, Ith = eγn (N0 + γ/g), is 30.98 mA.

For ease of analytic and numerical tractability, we consider Lorentzian linear filters
[202, 203]. The respective center frequency and half width at half-maximum of these
filters are Ωk and Λk. Then, the extended Lang Kobayashi equations (6.9) are completed
with 2 equations, one for each filter,

Ḟk(t) = ΛkE(t) + (iΩk − Λk)Fk(t), k = 1, 2. (6.10)
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This simple model approach allows for qualitative comparison with the experiments
and for a detailed study of the underlying mechanisms that result in SDD dynamics.
We can chose parameters similar to the experiment, which give rise to similar physical
conditions and dynamical behavior. However, we do not expect a precise quantitative
agreement between theory and experiment because the Lorentzian filter profile does not
reflect the detailed filter characteristics of the Fiber Bragg gratings.

The numerical simulations of (6.9)-(6.10) have been performed for a set of pa-
rameter values that mimic the experimental conditions. We consider a laser with a
linewidth enhancement factor of α = 3 and two cavities with κ1 = κ2 = 40 ns−1,
Λ1/(2π) = Λ2/(2π) = 0.5 GHz, τ1 = 106.075 ns, τ2 = 121.625 ns, Ω1/(2π) = −5 GHz
and Ω2/(2π) = −15 GHz, for several values of the injection current.

The relative equilibria of the system (6.9)-(6.10) are external modes of the the fil-
tered feedback cavity, or filtered cavity modes (FCMs). Those modes represent rotating
wave solutions with constant frequency, carrier number and field amplitude. They can
be calculated analytically and their position and properties depend on laser and filter
parameters, as detailed in the methods section of reference [204]. As an example, Fig-
ure 6.11 shows the FCMs in the (ωi, n) plane. This structure of modes and anti-modes
represents the skeleton that vertebrates evolution of the dynamics.
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Figure 6.11: Filtered cavity modes in the (ωi, n) plane. These points represent the relative equilibria
solutions of the system of (6.9)-(6.10) with two filters. The black and red points illustrate the modes and
the anti-modes, respectively. The parameters are α = 3, I = 0.99Ith, Ω1/(2π) = −5 GHz, Ω2/(2π) = −15
GHz, κ1 = κ2 = 40 ns−1. Figure courtesy of J. Mart́ınez-Llinàs.

Remarkably, the parameters that match the experimental conditions represent op-
timal conditions to exhibit SDD dynamics also in the model. As shown in Fig. 6.11,
two separated islands of modes (one for each filter) are obtained for these parameter
values. Similarly to the experimental system, here the parameter explored to charac-
terize the dynamics is the injection current. For injection currents sufficiently below
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threshold, I/Ith < 0.99 the system gets trapped at the most stable FCM, with lowest
n and frequency close to the center frequency of the more detuned filter3. It is worth
noting that for large delays the switching regime can start even below the solitary laser
threshold. For injection currents close to the solitary laser threshold, in the interval
I/Ith = 0.99 − 1.1, the system exhibits switching dynamics between the two islands of
FCMs. These two separated regions correspond to the two solitary filters with different
delay times. Despite of the tails of the Lorentzian filter functions, the FCMs of the
system with two filters lie very close to the FCMs of the corresponding system with
a single filtered feedback. One can therefore conclude that the dynamics indeed will
exhibit state-dependent delay properties.
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Figure 6.12: Numerical time traces for the same parameters as in Fig. 6.11: (a) intensity of the electric
field, (b) P1(t) = |F1(t)|2, (c) P2(t) = |F2(t)|2, (d) filter contrast and (e) instantaneous optical angular
frequency of the electric field. In the last panel, the dashed lines indicate Ω1 (blue) and Ω2 (orange).
Figure courtesy of J. Mart́ınez-Llinàs.

Figure 6.12 shows an example of the dynamical behavior when both filters are active.
The intensity of the electric field is plotted in Fig. 6.12a, the intensity of the filtered
fields, P1(t) = |F1(t)|2 and P2(t) = |F2(t)|2, are respectively plotted in Figs. 6.12b and
6.12c. Similarly to the experimental figures showing different examples of the dynamics,
the filter contrast is plotted here in Figure 6.12d. In Fig. 6.12e, the corresponding in-

3The scenario described here neglects the role of noise in the simulations. The effect of adding noise
is to lower the threshold at which we have switching between the filters.
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stantaneous optical angular frequency (relative to the solitary laser frequency) is shown
as a function of time. The jumps between filters can be compared with the correspond-
ing periods of activity of each filter by eye. The center frequencies of the two filters
are plotted as dashed lines to illustrate the time intervals in which the trajectories os-
cillate around the relative equilibria of each filter. The time intervals during which the
trajectories are concentrated in one of the filters are typically shorter than the delay
times. Please note that the time-dependent spectrograms depicted in Fig. 6.10 contain
information complementary to the one plotted in the instantaneous frequency here.

For injection currents I/Ith > 1.1, the dynamical evolution of the system converges
to a global chaotic attractor, in which distinct jumps between the two different filters can
no longer be identified. The range of currents in which state-dependent delay dynamics is
found in numerical simulations has proven to be robust against changes in the parameter
values [204].

6.5 Switching Characteristics

Once we have demonstrated in experiments and in simulations the existence of regimes
where the dynamics can exhibit state-dependent delay switching, it becomes interesting
to further characterize those switchings. The time intervals during which the trajecto-
ries are concentrated in one of the filters are always shorter than the delay times, but
additional insights imply detailed characterization of the switching statistics.

Figure 6.13 depicts the experimental residence time distributions at each filter for
different bias currents. State-dependent switching is present in all the bias currents
depicted in Fig. 6.13. The residence times have been extracted from the contrast
function for 195 µs long time traces (with a sampling time of 0.1 ns) after filtering
with a cutoff frequency of 1 GHz. This filtering removes the fastest noisy oscillations,
unrelated to switches in delay states. In all panels one can recognize that the residence-
time distributions in this irregular switching regime show a maximum of switchings on
fast time scales of few nanoseconds or less. Nevertheless, for lower bias currents the
system exhibits higher typical residence times than for higher bias currents. Moreover,
the residence-time distributions approximately exhibit exponential tails that decay faster
for higher bias currents.

In Fig. 6.14, we compare the residence time distributions of experiment and modeling
for two different pump currents, corresponding to 1.0Ith and 1.1Ith. The experimental
results exhibited in panels (b) and (d) correspond to the respective curves in Fig. 6.13.
Remarkably, the most interesting insight from the comparison between experiment and
modeling is that the residence time distributions exhibit a similar decay. Another im-
portant similarity is that the residence times longer than the difference between the two
delay times (τ2− τ1 ∼ 15 ns) are very rare. The reason is that a switching between both
filters (with two different delay times) can either be caused by the dynamics within one
filter state, or by a previous filter jump being fed back into the laser. Perturbations
related with filter jumps will cause with high probability a change in the filter state,
and therefore in the delay. Equation 6.1 predicts that these induced events will occur in
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Figure 6.13: Residence-time distributions of different experimental bias currents. The residence-time
distributions in the filter states corresponding to the two delays are depicted in (a) for FBG1 and in (b)
for FBG2. Circles correspond to 1.0Ith, squares to 1.04Ith, triangles to 1.07Ith, and crosses to 1.1Ith.

intervals smaller than the difference in delay times, setting aside the spontaneous jumps
as less relevant phenomena.

Figure 6.14: Residence-time distributions. Numerical, (a) and (c), and experimental, (b) and (d),
residence-time distributions in the states corresponding to the two delays of τ1 and τ2. Circles correspond
to 1.0Ith and crosses to 1.1Ith. Panels (a) and (b) show the residence times in filter state 1 while (c) and
(d) correspond to filter state 2.
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6.6 Summary and Discussion

In this chapter, we have introduced a SL with feedback from two delay cavities that
displays a dynamical regime dominated by SDD dynamics. In this regime the system
switches in a self-organized fashion between two well-separated delays determined by the
state of the system itself.

In the experiment, the two delays are implemented as two fiber delay loops of diffe-
rent length. Each fiber-loop mirror is enclosed by a frequency selective Bragg filter. In
this system, the state-dependent delay dynamics results from the interplay between the
laser bandwidth, the central frequencies and the bandwidths of the filters. In particu-
lar, the two filters must reflect disjunct frequency bands, i.e., the overlap between the
filters has to be sufficiently small in order to clearly distinguish the two states. There-
fore, the frequency of the optical field (that is associated to the state of the system)
determines which of the two delays is active at a given time interval. Our system repre-
sents a well-controllable and reconfigurable experimental platform built from standard
telecommunications components in which the dynamics can be precisely measured.

In order to gain further insight into the properties of this system, a suitable numer-
ical model has been introduced and studied. The model consists of a rate-equations
description of a semiconductor laser subject to feedback from two frequency selective
external cavities. The filters selected in the model are Lorentzian-type filters. From the
modeling results presented in section 6.4 (see [204] for a more complete derivation and
characterization of the model), we can conclude that the phase space states of each filter
in the model are analogous to those appearing in a semiconductor laser with a single
delayed feedback (structures of modes and anti-modes). However, there will exist SDD
dynamics in two separated regions of the phase space only as long as the filters char-
acteristics fulfill the following requirements: the combination of filters bandwidth and
central frequencies separation must result in a filtered cavity modes structure basically
located in two separated regions in phase space.

The relative intensity difference of both filters (also referred as contrast function)
has been shown to be a suitable quantifier to identify SDD dynamics. Both in numerics
and experiments, SDD dynamics has been identified close to the laser threshold when
the delay times are chosen such that the longer delay corresponds to the more detuned
filter. Once the filter positions and the feedback strengths have been calibrated, the
observed dynamics are tailored by using the bias current. The dynamics varies as the
pump current is increased. When the bias current is below the solitary laser threshold,
there exist time intervals in which the feedback is mainly coming only from one of the
two filters. From the model perspective, these time intervals of feedback from a single
filter correspond to trajectories in phase space which remain around the filtered cavity
modes associated to a given delay loop. The observation of SDD dynamics requires not
too frequent jumps between the regions in phase space associated to the two delay loops,
as occurs for values close and slightly above the solitary laser threshold. In this sense, the
increase of the bias current leads to more frequent jumps (with the consequent increase
of the dynamics bandwidth) and causes mixing of the dynamics of the two states.
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In our study we have complemented the intensity dynamics with a measurement of
the frequency dynamics. This additional variable not only serves to confirm the SDD
nature of the dynamics, but represents a necessary tool to comprehend how the dynam-
ics self-organizes in different delay states. Further understanding of the mechanisms
governing this self-organization will drive future investigations.

Our approach represents a prototypical study of state-dependent dynamics. Overall,
it is a flexible platform that allows for a detailed experimental and theoretical exploration
of SDD systems and their possible applications. In fact, it opens major opportunities to
investigate different classes of SDD systems with different mathematical backgrounds.
These other systems could be implemented by varying the filters positions or by in-
creasing the number of filters. Another possibility would be to extend this system from
discrete delays to continuous dependences of the delay. A possible implementation of
this approach could use continuously chirped Fiber Bragg gratings.

The self-organized erratic switching between different delay states can be exploited in
technological applications. In particular, control systems and encryption systems could
benefit from such switching. In chapter 5, an encrypted-key exchange protocol that
utilizes chaos synchronization between delay-coupled systems was introduced. In such
system, the irregular switching of conditions is necessary to enhance the security of the
encrypted key [166]. Irregular jumps between states induced by SDD dynamics could
play this role without the need of externally controlled switching. From a control sys-
tems perspective, the self-organized switching between different delay loops potentially
performing different transformations provides new possibilities. This approach allows
the use of different control loops for multiple possible states or the implementation of a
control-loop dependence on how far the system is from a target state.

The work presented in this chapter represents the demonstration of SDD dynamics
in our system and its first characterization. Further work is required to convert SL
into an ubiquitous platform to test and tailor different classes of SDD dynamics, a
phenomenology of potential interest for a variety of applications.



Chapter 7

Concluding Remarks

In the present thesis, we have investigated the complex dynamics generated in semi-
conductor lasers when subject to delayed optical feedback or coupling, a topic situated
at the crossroads between photonics and nonlinear dynamics. From the applications
perspective, semiconductor lasers are particularly attractive because in more than half
century of existence, they have found applications in a huge variety of fields. Thus, they
have become ideal testbed platforms for the study of many nonlinear dynamics concepts
and their application through photonics.

An important milestone of the present thesis has been the innovation in the method-
ology used to characterize delay-coupled systems. In particular, the novel use of standard
techniques or well known phenomena to detect particular features of our systems. To
mention two examples, the implementation of a heterodyning technique to enable the
real-time detection of the optical frequency of a chaotic emitting laser and the use of
zero-lag synchronization in delay-coupled lasers to detect the signature of determinism
in particular dynamical events of the chaotic time series of a single delayed feedback
laser.

This thesis is focused on the dynamical behavior of delay-coupled lasers from an
experimental point of view. First, we have studied the dynamics of the system built from
the the most basic configuration, a single laser with delayed optical feedback. It is known
since decades that this system exhibits a large variety of dynamical behaviors (depending
on its operating conditions) that range from CW emission to fully developed chaotic
dynamics. The detection of those dynamics using state-of-the-art telecommunications
technologies enabled us to experimentally characterize previously unknown features. In
particular, we have unveiled simple relationships between the characteristic time scales
of this system and the parameters that determine the biasing and feedback conditions.
These relationships define the dynamical regime of the laser.

The dynamics has been found to exhibit similarity properties as long as the com-
bination of system parameters leave the ratios between the characteristic time scales
constant. We have therefore developed a simple rationale to rescale the observed dy-
namics to different absolute conditions, but always maintaining the ratios between them
constant. Any targeted dynamics can be decelerated or accelerated by modifying the
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feedback and pump parameters in such a way that the characteristic time scales rela-
tions are kept unaltered. This opens the possibility to apply this approach in applications
where specific dynamics are required, but that face particular time-scale constraints.

Furthermore, this approach has been found valid for devices with different cavity
structures and different gain media. The only limitation is that the external coupling
needs to be classified as long cavity feedback, i.e., the time-scale related to the external
cavity roundtrip time must be much larger than the time scale related to the relaxation
oscillations frequency. Given that our approach has demonstrated broad validity with
independence of modelling, it actually represents an excellent tool to validate the suit-
ability of specific models to predict the dynamics of the corresponding laser devices. As
an example, numerical simulations with a rate-equations based model of a single-mode
laser with optical feedback confirm the scaling properties, at least within the range of
validity of the model.

Semiconductor lasers, when subject to delayed optical feedback, can exhibit pro-
nounced nonlinear dynamics. The effects of feedback and coupling on intrinsic laser
properties, like the relaxation oscillations frequency and damping, are usually not known
and are not easy to determine. We have found that the autocorrelation function, which
is a linear measurement on the intensity time series, provides information on those prop-
erties when it is compared to the analytic expressions of the autocorrelation function
of a stochastic model of a linear oscillator with delay. The physical motivation behind
this model is to consider that the laser system can under some circumstances be ap-
proximated as a damped linear oscillator, and to emulate all the dynamics and spectral
complex behavior caused by the delayed feedback as white noise. The fit of the ex-
perimental autocorrelation function (for a variety of experimental conditions) allows to
extract model parameters that can be related to laser parameters. Obviously, the model
only captures the linear properties of the dynamics. Still, the insights obtained from the
comparison between the linear model and the delayed feedback laser can serve as a tool
to interpret the dynamical regimes found in delay-coupled systems.

Second, we have studied the dynamics of coupled laser systems. In a unidirectional
coupling scheme (open-loop configuration), we have studied the interrelation between
intensity dynamics autocorrelation of the delayed feedback drive laser and its synchro-
nization to the response laser. We have demonstrated that the characteristic trend
followed by the magnitude of the τ -lagged autocorrelation coefficient is replicated in
the identical synchronization coefficient of the response laser. This result suggests that
consistency properties of the single delayed feedback laser can be used to predict fairly
well the synchronization behavior in delay-coupling configurations.

Next, we studied the phenomenon of isochronous identical synchronization in a sys-
tem of two mutually coupled lasers with self-feedback. This phenomenon is of particular
interest for us due to the implications it has for the key-exchange protocol we explore
in this thesis. That is why we have fundamentally characterized the feasibility of the
isochronous identical synchronization and its robustness before implementing any prac-
tical application. The frequency detuning has been explored as an important coupling
asymmetry, since identical synchronization is only possible inside the frequency locking
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region. Under the zero-frequency detuning conditions, the robustness of the identical
synchronization solution has been investigated for different pumping conditions.

If all the system asymmetries were reduced to a minimum, the two mutually coupled
lasers with a passive relay should behave identically, their dynamics should correspond
to that of a laser with delayed feedback. Nevertheless, effects related to the dynamical
regime like strong or weak chaos and the influence of noise distort the synchronized state.
In this sense, noise can induce transient desynchronization periods, also called bubbling
events, that we have found to be unavoidable in the experimental implementation of
this type of coupling configuration. Different dynamical regimes (explored through the
bias current parameter in our experiment) present different levels of influence of bub-
bling. The existence of bubbling has important implications for applications in chaos
communications.

From the application point of view, the phenomenon of identical chaos synchroniza-
tion emerging between two mutually-coupled semiconductor lasers through a passive
relay has been used to experimentally demonstrate a scheme that allows to negotiate an
encrypted key through a public channel. This key is generated from the synchronized
bits, that are concealed from eavesdropping through chaos encryption.

The key is generated at a rate that is independent (in principle) of the coupling
distance between both lasers since the information is continuously fed into every laser
from the passive relay element. This feature represents an advantage with respect to
other classical key-distribution systems that rely in sharing information between two
units placed at the extremes of the communication channel, and therefore the information
needs to travel an amount of time proportional to the length of the communication
channel for every bit generated.

We have also investigated the security aspects related to our scheme. In particular,
the possibility to use privacy amplification to sift a more secure key with a user-defined
level of information leakage. This process has an impact on the length of the exchanged
key. The more iterations of the privacy amplification algorithm we do, the shorter will
be the length of the final key. Even after reinforcing the key privacy so that Eve has
a probability below 0.50003 to correctly identify the exchanged bits, we are able to
experimentally exchange a private key at 11 Mbit/s, a high enough bit rate to be used
as a one-time pad for secure private communications.

In the last line of research presented in this thesis, we have studied the fundamental
properties of a semiconductor laser with feedback from two delay cavities that displays
a dynamical regime dominated by state-dependent dynamics. In this regime the system
switches in a self-organized fashion between two well-separated delays determined by
the state of the system itself. Our system is the first experimental and optical imple-
mentation of such kind of systems. It represents a well-controllable and reconfigurable
experimental platform built from standard telecommunications components in which the
dynamics can be precisely measured.

The insights gained from the experimental implementation of this system can be
complemented by means of the comparison with a suitable numerical model. The model
consists in a rate-equations description of a semiconductor laser subject to feedback
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from two frequency selective external cavities, where the frequency selective elements
are Lorentzian-type filters. Similarly to what we observed in the experiment, the com-
bination of filters bandwidth and central frequencies separation must result in a filtered
cavity modes structure basically located in two separated regions in phase space.

In the laser system with two mutually exclusive external cavities, once the filters
positioning and the feedback strengths have been calibrated, the observed dynamics are
tailored by using the bias current, both in experiment and numerics. The dynamics
varies as the pump current is increased. The limits in pump current and filters detuning
for which we can obtain state-dependent delay dynamics are explored.

The system that we have setup offers a platform to study state-dependent delay
dynamics. Overall, the detailed experimental and theoretical exploration of this sys-
tems opens the path to possible future applications in the many fields where state-
dependent equations can be used to describe the resulting dynamics. Furthermore, the
self-organized erratic switching between different delay states can be exploited in techno-
logical applications. In particular, control systems and encryption systems could benefit
from such switching. The irregular switching of conditions is necessary to enhance the
security of the encrypted key in secure-communications systems, where irregular jumps
between states induced by SDD dynamics could play this role without the need of exter-
nally controlled switching. This system offers many possibilities to be extended towards
filters with different characteristics or by increasing the number of filters, i.e., increasing
the number of delay states.

Altogether, we have gained new fundamental insights in the different systems with
delay-coupled interactions studied along this thesis that are useful for many applica-
tions. As an example, the finding that the dynamical properties of a laser subject to
delayed optical feedback can be adjusted and tailored (slowed down or accelerated) by
appropriately changing the delay time, feedback attenuation, and pump parameter is of
high relevance for applications like photonic information processing. Furthermore, our
fundamental insights related to consistency and to the properties of weak and strong
chaos in delay-coupled lasers (e.g. the identification of the physical mechanism that
generates strong chaos in semiconductor lasers) are very useful to clarify which dy-
namical regimes will be best to achieve high values of synchronization in systems of
delay-coupled semiconductor lasers. Thus, we have profited from those results to select
the optimal synchronization conditions in a system of two mutually-coupled lasers with
a passive relay. The high values of synchronization have enabled the implementation of
an encrypted-key exchange scheme.

In conclusion, along this thesis, fundamental and applied results in the field of semi-
conductor lasers optically coupled with delay have been presented. We have put special
emphasis on emerging complex behaviors like state-dependent delay dynamics, determin-
istic chaos and synchronization, demonstrating the flexibility of SL to access different
dynamical regimes and to accurately control their parameter conditions. The research
in photonics technology in the last decade indicates the decided evolution towards large-
scale photonic integration of components with complex functionalities and hybridization
with other platforms, like silicon and graphene. It is reasonable to predict that these
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steps will naturally build bridges between the photonic systems and the community of
complex networks. In this scenario to come, SL are in a privileged position regarding
the networks of delay-coupled elements. Those devices are ideal candidates to serve
as test-bed systems to study a variety of phenomena like, e.g., the role of the network
topology, the emergence of collective behavior in large networks, the role of diversity
between the coupled nodes, or the presence of extreme events. The insights gained with
SL can potentially be applied to other fields in which delay-coupled networks play a
role, like communication networks, critical infrastructure, biology, neuroscience, or eco-
nomics. Thus, offering many possibilities of symbiosis between complex photonics and
these other fields of science.
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Appendix A

Experimental Aspects

The majority of results presented in this thesis are of experimental nature. This appendix
is intended to give further insight into the properties of the elements that compose our
experimental setups: the semiconductor lasers and the optical fibers. We motivate why
we choose certain components, by linking them to the role they play in the experiment.

In the first section, we introduce the most frequently used laser sources in our ex-
periments and explain the particular features exhibited by these SL. The criteria for
the selection of the lasers in the experiments that involve chaos synchronization are
explained. In the next two sections, we explain the optical fiber components, the de-
tection devices and different measurements we perform with them. Finally, we list the
components and instruments used in the different experiments.

First of all, before introducing the individual elements in our setup, the laboratory
environment deserves attention. Our laboratory has been shielded against external elec-
tromagnetic waves by a surrounding Faraday cage, in order to shield the experiment from
wireless and radio frequencies which are in the same frequency range than the SL typical
relaxation oscillations dynamics (GHz range). These external fields could cause unde-
sired modulations and perturbations in the recorded measurements. This perturbations
would be particularly sensitive in experiments that involve synchronization phenomena.

A.1 Laser Sources

In the different experiments presented along this thesis, we have used a variety of laser
sources. As an example, we used three different types of lasers to test the validity of the
fundamental insights found on the dynamics of delayed feedback SL in chapter 2.

One of the main interests of the present thesis relies in the exploration of synchro-
nization of two mutually-coupled semiconductor lasers. Synchronization can only be
obtained if both SL are similar, typically matching in parameters by few percent. One
way to achieve almost identical properties and internal dimensions is to choose them
from the same semiconductor wafer. The SL used for our synchronization experiments
have been hand-selected to match. The chosen lasers exhibit single-mode emission and
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narrow linewidth. The lasers have been manufactured by Eblana Photonics1. The type
of lasers we use is named Discrete Mode Laser Diode (DMLD) [62]. They have a partic-
ular device structure based on a Fabry-Perot (FP) cavity with a small number of etched
structures along the laser cavity. These etched structures change the refractive index in
the cavity manipulating the FP cavity loss spectrum, resulting in a suppression of all
cavity modes except one.

Our DMLD are either butterfly or TO-56 packaged. The butterfly packaged devices
are mounted via modules that have an integrated temperature controller (TEC) with a
peltier element and a thermistor to set and control the laser working temperature. The
mounting of the TO-56 packaged lasers is described in 5.2. Both packagings are pigtailed
with a single-mode fiber (SMF) with angled end connector (FC/APC). The laser current
and temperature are controlled (Thorlabs PRO8000) with an accuracy of ±0.01 mA and
±0.01 C. Another characteristic of the laser packages is the absence of optical isolators
at the laser output. Commercial telecommunications SL packages typically have such
an optical isolator at the output to avoid back reflections that could destabilize the
CW emission. Obviously, since we will use these particular devices for optical coupling
purposes, optical isolators are not desired.

Basic Laser Characterization

The lasers used for the synchronization experiments in chapters 4 and 5 are very simi-
lar. We have characterized the following parameters in order to select the most similar
devices: optical frequency, lasing threshold, and external differential quantum efficiency.

Here, we illustrate how close these devices are giving further details on the depen-
dence of the emission wavelength on injection current and temperature.
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Figure A.1: Experimental optical spectrum of two DM laser diodes in zero-frequency detuning condi-
tions.

When we refer to the experimental conditions of zero-frequency detuning, we are

1Specific reference to components and instruments is listed in section A.4
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referring to a situation exemplary depicted in Figure A.2 Figure A.2 depicts an experi-
mental spectrum of a DM laser diode at I = 1.25Ith.

Figure A.2: Experimental optical spectrum of two DM laser diodes in zero-frequency detuning condi-
tions.

The two different quantum well semiconductor lasers are single longitudinal-mode
lasers in absence of feedback. The discrete-mode (DM) laser diode emits at 1543 nm [62],
and the distributed feedback (DFB) laser emitting at 1541 nm for the standard conditions
of temperature in that they are typically operated. Without external feedback, both
lasers emit in single-longitudinal mode with side-mode suppression ratios of more than
40 dB and respective longitudinal mode separations of 150 GHz and 142 GHz. The
linewidth enhancement factor of α ∼ 2 for the DM laser and of ∼ 3 for the DFB
laser using the Henning-Collins approach [63].

A.2 Feedback Experiments in Fiber-Based Setups

All experimental setups employed here are fiber-based with similar components to those
that compose the setup in Figure A.3. This section aims to provide information of the
fiber-based devices we use in our experiments.

Our setups are mostly composed of SMF components, specified for 1550 nm with
a tolerance of ±40 nm. This wavelength corresponds to optical communication wave-
lengths, the so called third window. It is the mostly used wavelength range for long-range
telecommunications, because it is the one that implies lowest losses. All components are
chosen in this window: laser sources, fiber components, and detectors. The fibers have
FC/APC connectors, i. e. the input and output ends of the fiber are cleaved at an
8 °angle, which minimizes undesired back-reflections from fiber connections. Particular
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L D Circ Att

Spl

P C

P D

Figure A.3: Scheme of the experimental setup. LD: laser diode, Circ: optical circulator, PC: polar-
ization controller; Att: optical attenuator, Spl: one by two intensity splitter with ℜ and (1-ℜ) splitting
ratios, →: optical isolator, and PD: photodiode.

fiber components we use in the experiments are couplers, polarizers, isolators, circula-
tors, polarization controllers, interferometers, and bragg-gratings. Our fiber couplers
have two input fibers and two output fibers like the one depicted in figure A.4:
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Figure A.4: Schematic picture of a fiber coupler.

Light from one input exits at both opposite outputs with a proportion that depends
on the coupling percentage. The fiber coupler depicted in fig. A.4 is a 90/10 coupler.
The light from anyone of the inputs is split in a proportion of 90 to 10 at the opposite
two outputs. Note that the couplers do not have a predefined directionality. One of the
most common methods for manufacturing fiber couplers can be fabricated fusing both
fiber cores at the contact point. This causes a coupling of the mode from the mode that
is propagating into the fiber to the other fibers in contact.

Input

Polarizer

Faraday

Rotator

Output

Polarizer

0º 45º45º

Figure A.5: Schematic picture of the internal parts of a fiber optical isolator.

Figure A.5 depicts the schematic structure of a fiber-based isolator. We can see that
fiber isolators are composed by two polarizers and one Faraday rotator. Light injected
in the forward direction is linearly polarized, shifted 45 °after the Faraday rotator and
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passes through the second polarizer without loss. The light propagating in the reverse
direction is isolated due to the 90 °shift respect to the input polarizer.

An optical circulator is another device that is based on the nonreciprocal polariza-
tion of an optical signal by Faraday effect. A basic optical circulator is a three-terminal
device as illustrated in Figure ... . where terminal 1 is the input port and terminal 2
is the output port, while the reflected signal back into terminal 2 will be redirected to
terminal 3 instead of terminal 1. Optical circulators have many applications in optical
communication systems and optical instrumentations for redirecting optical signals. One
example is the use with fiber Bragg gratings.
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Figure A.6: Schematic picture of a fiber optic circulator.

One particularity of fiber-based setups is the importance to control the polarization
of the propagating light. The polarization inside the fibers is changed by the birefrin-
gence, which is induced by stress and temperature changes. For this reason we use fiber
polarization controllers in our setup. Fiber polarization controllers (Thorlabs FPC560)
are designed to perform controlled polarization changes. They utilize stress induced bire-
fringence to change the polarization state of the light. Figure A.7 shows an schematic
view of a FPC. The number of loops in the three paddles are 1, 2 and 1 respectively.
This configuration allows for modifying the polarization to any state. The λ/2 plate can
either change the orientation of linearly polarized light or exchange the handedness of
circularly polarized light. The λ/4 plates interchange linearly to circularly polarized light
and vice versa. To be able to change from any polarization state of light to any other
we need to align the fast axis of the fiber properly by adjusting the paddles manually.

λ/4 λ/2 λ/4

Figure A.7: Schematic picture of a fiber polarization controller (FPC) with three paddles.
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A.3 Signal Detection

Semiconductor lasers subject to delayed optical feedback exhibit dynamics on different
time scales. For instance, low frequency fluctuations have typical frequencies in the
MHz range while the RO frequencies are in the order of GHz. The same wide range of
frequencies can be found in the optical spectra. The external cavity modes are typically
separated by hundreds of MHz and the laser diode modes are separated by hundreds
of GHz. The detection setup has to account for these multiple temporal and spectral
scales. Each one of the following devices measures different quantities and covers different
ranges:

• The optical power meter (Thorlabs PM30) is used to measure the optical power
the SL emits. It is composed by a slow p-i-n-photodiode with sensitivity in the
700-1800 nm window and a power resolution @ 1550 nm of ∼ 1 nW.

• The optical spectrum analyzer (Anritsu MS9710C) is a grating spectrometer that
measures the optical spectrum of the SL with enough precision (0.1 nm) to resolve
the longitudinal modes of the diode cavity, which are separated in our lasers by
≃ 1.2 nm. The detection bandwidth of the optical spectrum analyzer (OSA)
ranges from 600 to 1750 nm. The optical spectra have been measured with a high-
resolution Brillouin Optical Spectrum Analyzer (BOSA) with 10 MHz resolution
[38]. The BOSA combines high resolution with a broad scan range. Given that
the optical bandwidth of the laser easily increases by more than three orders of
magnitude under the influence of optical feedback [39, 200], this combination is
essential to detect the interaction between the delayed feedback dynamics and the
relaxation oscillations laser dynamics with good accuracy over a wide range of
feedback strengths.

• Fast photodiodes (Miteq DR-125G-A) with 13 GHz bandwidth detect the intensity
dynamics of the system. The output signal from the photodiodes is electrically
amplified before arriving to the oscilloscope or to the electrical spectrum analyzer.

• The electrical spectrum analyzer (Anritsu MS2667C) measures the frequency and
amplitude of the signal coming from the photodiode in the frequency domain. The
detection bandwidth of the electrical spectrum analyzer (ESA) ranges from 9 kHz
to 30 GHz. A DC block at the input of the ESA blocks frequencies ≤ 7 kHz.

• A high bandwidth oscilloscope (LeCroy SDA816Zi) detects the output signal from
the photodiode in the time domain. The oscilloscope bandwidth is 16 GHz and we
can measure simultaneously 4 channels at a sampling rate of 40 GS/s.

A.4 List of Instruments and Components

In this section we present the detailed references to the components and instruments
used in the experiments:
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1. Eblana EP1550-DM-BAK-001: DM Laser Diode

2. Toptica LD-1550-0050-DFB-1: DFB Laser Diode

3. Covega SOA-7345: Semiconductor Optical Amplifier

4. Thorlabs SLD1550S-A2: Super-Luminescent Diode

5. Thorlabs LM14S2: Butterfly Mount

6. Thorlabs PRO8000: LD Controller

7. Newport 8016: Modular LD Controller

8. Absys C-WD-AL-XX-H-2210-35-AP/AP: Fiber Coupler with XX% coupling ratio

9. FCIR-55-222-LLL-1: Polarization Insensitive Fiber Optic Circulator

10. Absys PII-55-P-D-2-22-LL-1: Fiber isolator

11. Thorlabs FPC560: Fiber Polarization Controller

12. Fibrepro PC1100: In-Line Polarization Controller

13. Eigenlight 420 WDM: Optical Attenuator / Power Monitor

14. EO-Space AZ-5K5-20-PFA-PFA-UV: (Lithium Niobate) Electro-Optic Intensity
Modulator

15. Thorlabs PM30: Optical Powermeter

16. Anritsu MS9710C: Optical Spectrum Analyzer

17. Aragon Photonics BOSA: High-Resolution Optical Spectrum Analyzer

18. Miteq DR-125G-A / Miteq SCMR-100K20G-30-15-10-FA: Fast Photodiodes

19. Anritsu MS2667C: Electrical Spectrum Analyzer

20. LeCroy SDA816Zi: High Bandwidth Oscilloscope

21. Tektronix AWG7122B: Arbitrary Waveform Generator

22. HP 83623A: Signal Generator / Sweeper

23. Mini-Circuits ZX86-12G-8+: Bias-Tee
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Abbreviations

• SL: Semiconductor Laser

• LD: Laser Diode

• LR: Reference Laser Diode

• FC/APC: Ferrule Connector/Angled Physical Contact

• AC: Autocorrelation Function

• FB: Feedback

• NL: Nonlinear

• SNR: Signal-to-Noise Ratio

• LK: Lang-Kobayashi Rate-Equations Model

• LFF: Low-Frequency Fluctuations

• URO: Undamped Relaxation Oscillations

• STD: Space-Time Diagram

• CW: Continuous Wave

• QW: Quantum-Well

• DM: Discrete-Mode (laser)

• DFB: Distributed Feedback (laser)

• QD: Quantum-Dot

• GS: Ground State (in QD lasers)

• ES: Excited State (in QD lasers)

• LM: Linear Model

• FFT: Fast-Fourier Transform
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• CS: Chaos Synchronization

• BER: Bit-Error Rate

• FBG: Fiber-Bragg Grating

• SDD: State-Dependent Delay
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