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Chapter	1.	Introduction	to	inverse	problem	
	
1)	Direct	and	inverse	problem	
	
Let	be	"an"	unknown	quantity.	
	
Some	examples:	a	temperature,	a	resistance	but	also	the	geological	composition	
in	3D	of	the	subsoil,	retrieved	in	order	to	find	oil	(more	than	one	data...)	
	
The	precise	value	of	this	quantity,	named	q in	the	following,	will	remain	
unknown,	because	there	is	always	some	uncertainty	in	the	measurement	
process.		The	objective	of	this	course	can	then	be	defined	as:	How	to	use	at	best	
all	the	available	knowledge	to	give	the	most	precise	information	on	q This	
available	knowledge	consists	in:		
	
-	the	measurements,	N	data	in	the	following	named	D=	d1,......,dN	
	
-	a	model	of	the	measurement	process.	For	example,	we	know	in	optics	how	an	
image	is	formed	with	a	microscope,	if	we	have	determined	the	impulse	response	
of	this	microscope.	
	
-	 any	 information	on	q	 known	before	 the	measurement	process,	 called	a	priori	
information.	
	
We	are	leaded	to	distinguish:	
	
The	direct	problem:	Making	a	model	of	the	measurement	process.	Example:	how	
is	formed	by	a	microscope	the	image	of	an	object?	
	
The	inverse	problem:	What	can	we	infer	on	q  (the	object)	from	the	measurements	
(the	numbers	forming	the	recorded	image)?	
	
The	general	answer	to	the	inverse	problem	can	be	formulated	as:	
	
Build	 a	 probability	 law	 on	 q,	 from	 all	 the	 available	 information	
(measurements,	 model	 of	 measurement,	 a	 priori	 information).	 This	
probability	law	is	called	a	posteriori	(after	the	measurements).	
	
2)	Bayes	theorem	
	
	
Let	us	resolve	a	small	exercise	to	understand	the	above	notions.	
	
It	is	known	that	at	a	given	date,	3%	of	a	population	is	infected	with	hepatitis:	
If	the	person	is	sick,	then	the	test	is	positive	with	a	95%	probability.	
If	the	person	is	not	sick,	then	the	test	is	positive	with	a	10%	probability.		
	
A	person	is	randomly	tested	in	the	population	and	the	test	is	positive.	How	likely	
is	the	person	tested	to	be	sick?	
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A	priori	information:	Pprior(sick)=3%	
	
Model	of	the	measurement:		P(positive|sick)=	95%.		P(negative|	sick)=10%	
	
We	use	here	conditional	probabilities:	the	vertical	bar	means	"given".	We	admit	
also	that	the	test	gives	always	an	answer	(someone	who	is	not	tested	positive	is	
tested	negative).	
	
Answer	to	the	inverse	problem:	P(sick|positive)?	
	
Of	course,	P(sick|negative)	is	also	a	very	important	result!		
	
The	solution	of	the	inverse	problem	uses	the	Bayes	theorem,	which	is	recalled	in	
the	following.	
	
Bayes's	theorem:	
	
In	the	compound	probability	formula,	A	and	B	can	be	interchanged,	hence:		
	
P(A⋂B)=	P(A|B).P(B)=	P(B|A).P(A)	
	
that	you	can	write:	
	
P(A|B)=	(P(B|A).P(A))/(P(B))	
	
or,	in	the	context	of	the	inverse	problem,	by	naming	D	the	data	d1,......,dN:	
	
P(q|D)=	(P(D|q).Pprior(q))/(P(D))	
	
In	our	example:	
	
P(sick|positive)=(P(positive|	sick).Pprior(sick))/(P(positive))	
=(0.95	.	0.03)/(0.95	.	0.03	+	0.10	.	0.97)=0.23	
	
The	 result	 could	 seem	 low:	 the	 test	 seemed	 rather	 good.	 Actually,	 the	a	 priori	
information	is	here	essential:	if	Pprior(sick)=10%,	the	result	becomes	0.62.	This	a	
priori	 information	is	nevertheless	often	difficult	to	assess	(think	to	the	result	of	
the	exercise	 if,	 instead	of	 testing	a	person	randomly	 in	 the	population,	you	test	
someone	who	volunteers....).	
	
Is	 the	 test	 not	 useful?	 It	 depends...	 To	 answer	 it	 is	 worth	 to	 calculate		
P(sick|negative)=0.0017.	 	 If	 you	have	a	 cheap	 innocuous	 treatment,	 it	 could	be	
interesting	 to	 treat	 12%	of	 the	 population,	 including	 almost	 all	 the	 ills.	 On	 the	
contrary,	if	you	have	no	treatment	or	if	the	treatment	has	some	secondary	effects,	
the	test	can	be	only	used	as	a	first	indication	of	illness	and	must	be	confirmed.	
	
Second	example	using	densities	of	probabilities		
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We	want	to	measure	the	speed	v	of	a	cyclist	on	a	climb	(towards	the	summit!)	with	
a	counter	with	an	uncertainty	±	2	km/h	
	
Model	of	the	measurement	
	
The	probability	law	(density)	p(d|v)	is	Gaussian	or,	better,	a	small	percentage	of	
the	probability	is	assigned	to	outliers	(failed	counter):		
																																																
	
	
	
	
	
	
	
	
	
	
	
	
Data	
	
p(	v|d	)	if	d0=	15	km/h	(A)?	
p(	v|d	)	if	d0=	=	80	km/h	(B)?	
	
Of	course,	 in	(B),	 the	result	 is	not	correct:	 the	measurement	process	has	 failed.	
Because	computers	have	no	"common	sense"	(despite	all	the	present	discourses	
on	artificial	intelligence),	we	should	define	a	procedure	that	takes	into	account	the	
possibility	of	failure.	
	
A	priori	information	
	
Because	of	the	climb,	the	following	graph	reflects	what	we	know	about	the	cyclist's	
speed	before	its	measurement.	
	
	
	
	
	
	
	
	
	
	
	
We	use	in	the	following	a	continuous	version	of	the	Bayes	theorem:	
	

p(𝜃|𝑑) ∝ 	p(𝑑|𝜃)	𝑝*+,-+(𝜃)	
	

p	priori	(v)	

v	40	km/h	

p	prior	(v)	

v	40	km/h	

d,	km/h	v-2	 v+2	v	

p(d|v)	



	 5	

Compared	to	the	discrete	version,	equality	has	been	replaced	by	an	operator	∝	
which	means	"proportional	to"	and	the	denominator,	which	should	be	p(𝑑),	has	
been	 "forgotten".	 Indeed,	 from	 the	 point	 of	 view	 of	 the	 experimenter,	𝑑 ,	 and	
therefore	p(𝑑) ,	 are	 constants,	 which	 are	 taken	 into	 account	 in	 the	 form	 of	 a	
proportionality	coefficient.	 If	necessary,	 this	proportionality	coefficient	shall	be	
determined	bearing	in	mind	that,	for	any	random	variable	(r.v.	)	X,		
	
∫ 𝑝(𝑥)0
10 𝑑𝑥 = 1.		
	
We	first	formulate	the	direct	problem	by	taking	into	account	the	fact	that	we	know	
the	measurement	d0,	which	appears	as	a	constant,	and	we	don't	know	the	true	
value	v,	which	becomes	the	variable.	
For	each	value	of	v,	one	obtains	a	law	p(d|v),	function	of	d,	which	depends	only	of	

.	 Hence,	 for	 the	 effective	measurement	 d0,	 it	 is	 possible	 to	 draw	 p(d0|v),	
function	of	v:	
	
	
	
	
	
	
	
	
	
	
	
Hence,	 by	multiplying	 by	 pprior(v)	 and	 normalizing,	 one	 obtain	 the	 a	 posteriori	
laws:	
	
										(A)	d0	=	15	km/h		 	 	 	 	 (B)	d0	=	80	km/h		
	
	
	
	
	
	
	
	
	
	
	
	
We	see	that,	in	(A)	there	is	no	great	difference	between	p(d|v)		and	p(v|d).	On	the	
other	hand,	in	(B),	the	a	posteriori	law	is	equal	to	the	a	priori	law:	the	measurement	
has	no	gained	information	on	the	cyclist	speed.	
	
3)	Summary	and	introduction	to	chapter	2	
	

d v-

d,	km/h	v-2	 v+2	v	

p(d|v)	

v	,	km/h	d0-2	 d0+2	v=	d0	

p(d0|v)	

p(v|d)	

v	(km/h)	15	13	 17	 40	

p(v|d)	

v	(km/h)	40	
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We	can	summarize	this	chapter	by	the	following	table	
	
	
	
	

	
	
	
	
Actually,	it	could	be	useful	to	give,	rather	than	the	full		p(𝜃|𝐷),	two	numbers,	i.e.	
the	mean	of	the	law	and	an	uncertainty	range	given	by	the	standard	deviation.	This	
is	the	purpose	of	chapter	2.	
	
	 	

World	 Model	 Experimenter	
q true	(but	unknown)	 random	variable	
measurements			 noisy:	random	variables	 done:	known	values	
problem		 direct:	 the	 physical	

model	 of	measurements	
determines		p(𝑑|𝜃)	

inverse:	find			p(𝜃|𝐷).	
The	 direct	 problem	
should	be	solved	before	
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Chapter	2:	Estimation	
	

1)	Introduction	
	
In	the	model	world,	q	is	a	true	but	unknown	parameter	of	a	probability	law.	
	
Example:	 let	 us	 perform	 N	 measurements	𝑑, of	 q.	 In	 the	 model	 world	𝑑5	 is	 a	
random	variable:	
	

𝑑, = 𝜃 +	𝑒𝑟𝑎𝑙,, 𝑖 = 1, . . . . , 𝑁 
 

The	 random	 error	𝑒𝑟𝑎𝑙,	obeys	 a	 Gaussian	 distribution	 with	 zero	 mean,	 which	
means	 on	 the	 one	 hand	 that	 the	 measurement	 process	 is	 under	 control	 (see	
paragraph	 5),	 on	 the	 other	 hand	 that	 the	 measurement	 process	 is	 without	
systematic	error.	
Indeed,	the	systematic	error	is	by	definition	the	part	of	the	error	that	is	found	in	
all	measurements,	 therefore	 the	mean	of	 the	error.	The	measurements	𝑑5	have	
therefore	all	the	same	mean	θ.	
	
The	purpose	of	 estimation	 is	 to	 construct	 from	 the	measurements	and	a	priori	
information	a	new	random	variable	𝜃? ,	called	estimator	of	𝜃.	
	

𝜃@ = 𝑇(𝑑B, . . . , 𝑑C	, 𝑎	𝑝𝑟𝑖𝑜𝑟𝑖	information)	
	
with	the	objective	of	𝜃? 	as	close	as	possible	of	θ.	
	
Example,	the	arithmetic	average:	
	

𝜃@ = 𝑑̅ =
1
𝑁N𝑑,

C

,OB

	

	
This	 example	 shows	 us	 that	 an	 estimator	 is	 a	 random	 variable,	 just	 like	 the	
measures	from	which	it	is	derived.	However,	it	is	easy	to	show	(do	it!)	that,	if	the	
measurements	 are	 all	 independent	 one	 of	 each	 other,	 the	 variance	 of	 the	
arithmetic	mean	is	𝜎Q/𝑁.	𝑑̅	is	thus	of	expectation	θ,	just	like	the	measurements	�i,	
but	fluctuates	less	around	θ,	because	of	a	standard	deviation	divided	by	√𝑁	.	
	
2)	General	properties	
	
Consistent	(asymptotically	unbiased)	estimator:	
	
An	estimator	is	said	consistent	or	asymptotically	unbiased	if:	
	

𝑙𝑖𝑚C→0𝜃@ = 𝜃 
	
Unbiased	estimator:	
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An	estimator	is	unbiased	if:	
	

𝐸(𝜃@) = 𝜃 
	
Any	 reasonable	 estimator	 is	 asymptotically	 unbiased:	 if	 we	 have	 an	 infinite	
number	of	measures,	we	completely	know	the	law	of	probability	and	therefore	the	
true	value.	For	example,	it	has	been	shown	that	the	arithmetic	mean	tends	towards	
the	true	mean	for	a	very	large	number	of	measures	(weak	law	of	large	numbers).	
On	the	other	hand,	there	are	good	estimators	that	are	biased.	Indeed,	an	unbiased	
estimator	has	a	variance	greater	than	or	equal	to	a	limit	𝜎WQ,	known	as	the	Cramer-
Rao	limit.	This	limit	is	given	by	a	somewhat	barbaric	formula:	
	

𝜎WQ =
1

𝐸 XY 𝜕𝜕𝜃 𝑙𝑛(𝑝(𝜃
@𝑎𝑛𝑑	𝜃))\

Q
]
	

	
The	denominator	of	this	expression	is	called	the	Fisher	information	I(𝜃).	Note	that	
the	expectation	involves	an	integral	over	𝜃@	in	the	model	world.	
	
	
An	unbiased	estimator	of	variance	𝜎WQ	is	said	to	be	efficient	or	minimum	variance	
unbiased,	and	is,	of	course,	the	best	unbiased	estimator.	On	the	other	hand,	there	
are	sometimes	biased	estimators,	which	have	therefore	a	mean	different	from	the	
true	value	(this	difference	is	called	bias),	whose	variance	is	much	lower	than	the	
Cramer-Rao	limit.	They	may	then	be	"better"	than	the	efficient	estimator,	where	
the	sense	"better"	will	be	defined	in	paragraph	6,	devoted	to	Wiener	filtering.	
	
	
3)	Estimators	of	mean	
	
Two	are	in	common	use:	
	
-	Arithmetic	average		𝑑̅ = B

C
∑ 𝑑,C
,OB 	

	
One	 immediately	demonstrates,	 if	 the	error	 is	Gaussian	and	 the	measurements	
independent,	that	𝑑̅	follows	a	Gaussian	law,	of	variance	σ2/N	and	mean	θ.	
	
-	Median.	The	measurements	are	ordered	from	the	smallest	(d1)	to	the	largest	(dN).	
The	median	is	then	defined	as	d(N+1)/2	if	N	is	odd,	(dN/2	+d(N+1)/2)/2	if	N	is	even.	
	
Median	 is	 much	 less	 sensitive	 than	 mean	 to	 outliers	 (N.B.:	 if	 the	 series	 of	
measurements	includes	outliers,	the	error	is	no	longer	a	Gaussian	r.v.,	unlike	in		
the	remaining	of	the	chapter).	We	can	compare	the	two	estimators	on	an	example:		
measurements	of	the	period	of	a	pendulum	made	on	the	chronometer	by	first	year	
students:	
	
T	(seconds):	10.62	10.38	10.34	10.35	10.40	10.36	
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A	graphical	representation	of	the	data	is	very	useful	to	conclude.....	
	
4)	Estimators	of	variance	
	
A)	Known	mean:	
	
		𝜎Q_ = B

C
∑ (𝑑, − 𝜃)QC
,OB 		

	
B)	Estimated	mean:	
	
			𝜎Q_ = B

C1B
∑ a𝑑, − 𝑑̅b

QC
,OB 	

	
If	 the	 multiplicative	 coefficient	 was	 1/N	 and	 not	 1/(N-1),	 	𝜎Q_ 		 would	 be	 the	
arithmetic	 mean	 of	a𝑑, − 𝑑̅b

Q
,	 just	 as	 the	 true	 variance	 is	 the	 (true)	 mean	 of	

(𝑑, − 𝐸(𝑑))Q.	 	We	understand	the	need	to	use	1/(N-1)	when	thinking	about	the	
case	where	we	have	only	one	measurement.	So	𝜎Qis	indeterminate,	which	seems	
correct	since	we	have	no	idea	of	the	dispersion	of	the	measurements,	represented	
by	the	variance.	Using	1/N	would	give	zero	variance,	which	is	clearly	incorrect.	In	
fact,	 the	 𝑑, − 𝑑̅ 	are	 not	 independent,	 unlike	 the	 𝑑, .	 For	 example,	 for	 N=2	
measurements,	𝑑B − 𝑑̅	=-a𝑑Q − 𝑑̅b	

	
5)	 Why	 the	measurement	 errors	 are	 often	 (not	 always!)	 modeled	 by	 a	
Gaussian	law?	

	
The	answer	is	a	consequence	of	the:	
	
		Central-limit	theorem	or	strong	law	of	large	numbers	
	
Let	X1,...,	Xi,	.....,	XN			N	independent	random	variables,	of	respective	expectation	

mi	and	with	the	same	variance	s2,	but	not	necessarily	with	the	same	probability	
distribution.	We	have:	
	

𝑙𝑖𝑚
𝑁 ⟶∞e

∑ (𝑋, −𝑚,)5
,OB

√𝑁𝜎Q
g ∼ 𝐿𝐺(0,1)	

	
In	fact,	the	"same	variance"	condition	is	not	exactly	necessary.	It	is	sufficient	

that	the	variances	have	the	same	order	of	magnitude.	
	
This	theorem,	which	we	will	admit,	applies	to	a	measurement	process	of	good	

quality,	 said	 under	 control,	 where	 all	 important	 causes	 of	 error	 have	 been	
eliminated.	 The	 residual	 uncertainty	 is	 due	 to	 a	 large	 number	 of	 independent	
causes,	of	various	origins	and	of	comparable	weight.	The	measurement	error	is	
then	expected	to	be	a.	Gaussian	r.v.,	whatever	the	probability	law	of	each	residual	
error.	
Note	 that	 a	 Gaussian	 statistics	means	 the	 absence	 of	 outliers.	 Indeed,	 for	 a	

Gaussian	law,		𝑃(|𝑑5 − 𝜃| > 5	𝜎) < 101p.		This	is	in	agreement	with	the	notion	of	
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process	 under	 control:	 an	 outlier	 comes	 from	 an	 important	 error	 source	 and	
happens	if	the	process	is	not	under	control.	
	
	
6)	Confidence	intervals	
	
In	the	experimenter	world,	we	would	like	to	translate	the	a	posteriori	law	p(𝜃|𝐷)	
in	a	more	 intuitive	way,	by	giving	an	 interval	where	𝜃	lies	with	a	probability	of	
95%.		In	the	model	world,	this	is	easy:	if	the	process	is	under	control,		𝑑̅	follows	a	
Gaussian	law,	of	variance	σ2/N	and	mean	θ,	which	allows	us	to	write:	𝜃 − B.qp	r

√C
<

𝑑̅ < 𝜃 + B.qp	r
√C

	at	95%	of	confidence.	Two	reasons	prevent	us	to	simply	write	in	the	
experimenter	world:	
	
𝑑̅ − B.qp	r

√C
< 𝜃 < 𝑑̅ + B.qp	r

√C
	.	

	
First,	this	expression	assumes	p(𝜃|𝐷) = 𝑝a𝑑̅s𝜃b,	which	is	true	only	if		𝑝*+,-+(𝜃) =
𝐶𝑠𝑡𝑒.	
	
Second,	𝜎	is	not	known,	but	estimated.	
	
As	 for	 the	 first	 assumption	 (constant	𝑝*+,-+(𝜃)),	 this	 is	 a	 reasonable	 one	 for	 a	
controlled	 measurement	 process,	 where	 the	 measurement	 error	 is	 low	 and	
Gaussian.	The	uncertainty	range	is	then	low	enough	to	consider	that,	within	this	
range,	the	probability	density	of	θ	before	measurements	is	a	constant.	Of	course,	
if	we	have	an	explicit	expression	of	𝑝*+,-+(𝜃),	we	must	renounce	this	assumption	
and	calculate	pa𝜃s𝑑̅b	with	𝑝*+,-+(𝜃).	
	
As	for	the	second	reason,	if	𝑝*+,-+(𝜃)=	Cste,	

wx1y
zr{_/√C

follows	a	so-called	Student	law	

with	N-1	degrees	of	freedom,	where	θ	is	the	random	variable.	The	range	around	
the	 arithmetic	 mean	 where	 θ	 has	 a	 95%	 chance	 of	 being	 found	 can	 then	 be	
determined:	this	range,	called	the	confidence	interval,	is	given	by	𝑑̅ ∓ 𝛼 r~

√C
,	where	

α	depends	on	N:		
	
N:				3					5						1	0							20						40			
α:	4.3		2.8				2.3							2.1					2.0			
	
Thus,	 from	40	measurements,	Student's	 law	merges	with	a	Gaussian	 law.	For	a	
very	small	number	of	measures,	however,	there	is	a	chance	of	underestimating	the	
standard	deviation,	which	gives	a	greater	chance	that	the	true	value	deviates	from	
the	 arithmetic	mean	 of	 more	 than	 two	 estimated	 standard	 deviations,	 as	 it	 is	
evident	on	the	graph	on	the	next	page.	
	
Warning:	Using	2	or	α	has	hardly	any	consequences	as	soon	as	you	make	at	least	
ten	 measurements.	 However,	 it	 should	 not	 be	 forgotten	 that	 the	 estimated	
standard	deviation	of	θ	from	the	arithmetic	mean	is	not	the	estimated	standard	
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deviation	 of	 the	 measures	 𝜎� ,	 but	 r~
√C

!	 That's	 the	 point	 of	 repeating	 the	
measurements!	 ...and	 we	 will	 not	 forget	 either	 that	 this	 division	 by	 √𝑁 	is	
intimately	linked	to	the	assumption	of	independence	of	the	measurements.	If	this	
assumption	 is	 not	 fully	 verified,	 the	 size	 of	 the	 confidence	 interval	 may	 be	
underestimated.		
	
	
	
	
	

	
	
7)	Recursive	estimators	
	
To	avoid	memory	consumption,	the	estimator	is	updated	after	each	measurement.	
The	simplest	example	is	the	recursive	form	of	the	mathematical	average:		
	

𝑑5xxx =
𝑑5 + (𝑛 − 1)𝑑51Bxxxxxx

𝑛 	
Clearly,	only	the	three	values	that	 form	this	equation	must	be	kept	 in	memory,	
instead	of	N	with	the	non-recursive	definition	of	the	arithmetic	average.	
	
While	we	have	in	this	example	a	strict	equivalence	between	the	recursive	and	the	
non	recursive	definition,	some	new	features	can	be	gained	from	recursivity.	For	
example,	a	numerical	low-pass	filter	is	obtained	by	computing:	
	

𝜃@ = (1 − 𝑏)	𝑦5,𝑤𝑖𝑡ℎ	𝑦5 = 𝑑5 + 	𝑏	𝑦51B	
	
Where																									𝑏 = 1 − 𝜖,			0 < 𝜖 ≪ 1	
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It	 can	 be	 shown	 (exercise	 using	 the	 Z	 transform),	 that	 this	 filter	 is	 the	
numerical	equivalent	of	an	analogic	low-pass	RC	filter,	with	𝑏 = 𝑒𝑥𝑝(−∆𝑡/𝜏),	with	
𝜏 = 𝑅𝐶	the	time	constant	and	∆𝑡	the	sampling	step.	
	
8)	Wiener	filtering	
	
Wiener	filtering	is	an	important	example	where	a	biased	estimator	works	better	
than	its	unbiased	counterpart.	
	
Let	be,	in	the	Fourier	domain,	a	signal	(object)	𝑂(𝜈),	depending	of	the	frequency	
𝜈,	on	which	is	applied	a	low-pass	filter,	of	transfer	function	𝜏(𝜈).	The	output	of	the	
filter	 (or	 image)	 can	 be	 written	 as:	 𝐼(𝜈) = 𝜏(𝜈)𝑂(𝜈) + 	𝑁(𝜈) ,	 where	 𝑁(𝜈)	
represents	a	Gaussian	additive	noise	of	spectral	density	〈𝑁(𝜈)Q〉	with	〈𝑁(𝜈)〉 = 0	
	
In	 general,	𝜏(𝜈) ≈ 1 	for	 low	 frequencies	 and	𝜏(𝜈) ≈ 0 	at	 high	 frequencies.	 The	
problem	 we	 consider	 is	 "How	 to	 retrieve	 at	 best	 	𝑂(𝜈) 	from	 the	 output	 (the	
image)?".	In	the	absence	of	noise,	a	simple	multiplication	of	the	measured	𝑆(𝜈)	by	
1/	𝜏(𝜈)	would	work.	However,	the	noise	is	multiplied	by	the	same	coefficient	and	
will	have	catastrophic	effects	on	the	retrieval	if	1/	𝜏(𝜈)	is	too	large,	as	it	will	be	at	
high	frequencies.	
	
Hence,	we	are	looking	for	a	coefficient	a(𝜈) ≤ 1/𝜏(𝜈),	such	that	𝑂(𝜈)� = a(𝜈)𝑆(𝜈)	
would	be	as	close	as	possible	of	O(𝜈).	More	precisely,	we	want	to	minimize	the	
expectation	of	the	quadratic	error	(we	will	omit	from	now	the	explicit	mention	of	
the	frequency	dependence):〈(𝑂@ − 𝑂)Q〉	minimum	i.e.:	
	
〈(𝑂@ − 𝑂)Q〉 = 〈𝑂Q(1 + 𝑎Q𝜏Q) + 𝑎Q𝑁Q − 2𝑎𝜏𝑂Q − 2𝑎𝑁𝑂 − 2𝑎Q𝜏Q𝑁𝑂〉	𝑚𝑖𝑛𝑖𝑚𝑢𝑚	

	
We	further	assume	that	the	output	noise	is	independent	of	the	object,	〈𝑁𝑂〉 = 0,	
hence:	

〈(𝑂@ − 𝑂)Q〉 = 〈𝑂Q(1 + 𝑎Q𝜏Q − 2𝑎𝜏)〉 + 〈	𝑎Q𝑁Q〉	
is	minimized	if:	
	

𝜕〈(𝑂@ − 𝑂)Q〉
𝜕𝑎 = 0 = 〈𝑂Q〉(2𝜏Q𝑎 − 2𝜏) + 2𝑎〈	𝑁Q〉	

giving:	
	
𝑎 = �〈�{〉

�{〈�{〉�〈	C{〉
= B

�
B

B� 〈	�{〉
�{〈�{〉

= B
�
		 B
B� �

���
		

	
where	SNR	represents	the	signal-to-noise	ratio	in	the	output	signal.		
	
Two	remarks:	
	
1)	 Note	 that	we	 use	 in	 this	 calculation	 the	 spectral	 density	 of	 the	 object	〈𝑂Q〉 ,	
meaning	that	we	have	some	a	priori	information	on	the	statistical	properties	of	
this	object,	even	if	we	don't	know	his	exact	structure	(retrieving	this	stucture	is	
the	goal	of	this	calculation).	
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2)	 The	 estimator	 is	 biased:	 because	〈𝑁(𝜈)〉 = 0 ,		〈�(�)
�(�
〉 = 𝑂(𝜈).	 To	 diminish	 the	

quadratic	 error,	 we	 have	 introduced	 some	 bias:	 〈s𝑂(𝜈_ )s〉 < 〈|𝑂(𝜈)|〉 .	 In	 other	
words,	not	only	the	mean	value	of	 the	noise	matters.	A	noise	of	zero	mean	can	
nevertheless	dominate	the	retrieved	object.	
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Chapter	3.		Karhunen	Loève	Transform	or	Principal	Component	
Analysis	

	
1)	Purpose	and	general	description	
	
The	 same	 mathematical	 methods	 are	 employed	 on	 a	 set	 of	 data	 in	 which	
redundant	information	is	coded,	with	two	goals,	linked	but	different,	which	give	
at	least	two	different	names	to	the	methods.	
	
-	Karhunen	Loève	Transform	(KLT):	compression	of	information	by	eliminating	
redundancy.	
	
-		Principal	Component	Analysis	(PCA):	studying	the	redundancy.	
	
Another	name	of	these	methods	is	"factorial	analysis	of	correspondences".	It	is	a	
bit	less	employed,	at	least	in	the	physical	and	technical	domain,	and	will	be	left	
aside	in	the	following.	
	
Let	us	give	two	generic	examples	of	use	of	KLT	and	PCA.	
	
Example	1	 (KLT):	We	consider	a	 set	of	K	aerial	 images	of	 the	 same	 landscape,	
obtained	by	using	different	color	filters.		The	images	are	different	but	share	some	
common	information.	If	these	images	come	from	a	satellite,	it	would	be	important	
to	minimize	the	transmitted	information	and	we	consider	the	following	problem:	
is	it	possible	to	transmit	a	reduced	set	of	M	images,	M<K,	plus	some	coefficients,	
which	allow	the	original	images	to	be	retrieved	with	a	negligible	information	loss.	
	
Example	2	(PCA):	Some	students	receive	marks	in	different	matters	(to	be	specific,	
between	0	and	20,	as	in	France).	Is	it	possible	to	retrieve	their	marks	from	fewer	
"super	marks",	meaning	 for	example	that	 their	physics	and	mathematics	marks	
are	more	correlated	than,	say,	the	physics	and	music	marks.	
	
In	both	examples,	the	same	mathematical	method	will	be	employed.	Only	the	goal	
is	different,	information	compression	(KLT)	or	study	of	correlations	(PCA).	
	
2)	Mathematical	description	of	the	Karhunen	Loève	Transform	
	
Each	 of	 the	 K	 images	 is	 formed	 by	 N	 pixels,	 meaning	 that	 a	 pixel	 j	 can	 be	
represented	by	a	point	in	a	K	dimensional	space.	Reducing	the	dimensionality	to	
L	will	be	possible	if	the	cloud	of	points	is	contained	in	a	L	dimensional	space,	with	
some	small	random	noise	in	the	remaining	dimensions.	
	
Let	us	define	the	average	of	the	image	i,	with	i	between	1	and	K:	
	

𝐼�  =
1
𝑁N𝐼,¡

C

¡OB

	

We	define	also	the	covariance	between	the	image	k	and	the	image	l:	
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𝐶¢£ =
1

𝑁 − 1N(𝐼¢¡

C

¡OB

− 𝐼¢ )(𝐼£¡ − 𝐼£ )	

The	 correlation	 coefficient	𝑟¢£	is	obtained	by	normalizing	 the	 covariances	using	
the	variances	𝐶¢¢ 	and	𝐶££:	
	

𝑟¢£ =
𝐶¢£

z𝐶¢¢z𝐶££
, −1 ≤ 	 𝑟¢£ ≤ 1	

	
All	the	following	calculations	can	be	made	by	using	either	the	covariances	or	

the	correlations.	This	second	choice	is	equivalent	to	first	normalizing	each	image	
by	its	standard	deviation.	This	is	possible	but	not	compulsory:	do	we	decide	that	
each	 image	 conveys	 the	 same	 quantity	 of	 information,	 whatever	 its	 contrast	
(standard	deviation)?	In	the	second	example,	do	we	want	that	all	matters	have	the	
same	importance,	even	if	a	teacher	gives	marks	on	all	the	scale	between	0	and	20,	
while	a	second	teacher	gives	as	lowest	mark			7	and	as	highest	14?	In	some	cases,	
there	is	no	choice:	if	you	want	to	correlate	the	number	of	children	of	a	family	and,	
say,	 the	 size	of	 their	home,	you	must	use	 the	 correlation	 coefficients,	 since	 the	
units	of	the	random	variables	are	different.	
In	the	following,	we	will	use	covariances.	
	
Let	us	define	a	rotation	of	the	coordinates	axes	in	the	K-dimensional	space:	
	

𝑰 − 𝑰x = 𝚽𝒀	
	
Where	I	is	the	matrix	of	the	images	(N	lines,	K	columns)	and		𝚽	a	K	x	K	rotation	

matrix	between	orthonormal	bases.		
For	such	a	rotation	matrix,	we	have		𝚽1𝟏 = 𝚽𝑻,	which	allows	us	to	write	the	

transformed	image	matrix	as:	𝒀	 = 𝚽𝑻	(𝑰 − 𝑰	 ).	
	
We	are	looking	for	the	rotation	allowing	the	reconstruction	𝑰𝒕𝒓𝒖𝒏𝒄𝒂𝒕𝒆𝒅	as	close	

as	possible	of	𝑰	with	M<K	images.	For	the	image	i,	we	want	to	obtain:	
	

𝐼,¡±+²5³´±µw =					 𝐼�	  +	∑ Φ,¢𝑌¢¡¸
¢OB 		

	
such	that:	
	
		𝑒Q(𝑀) = ∑ ∑ a𝐼,¡ − 𝐼,¡±+²5³´±µwb

QC
¡OB

º
,OB 				minimum.	

	
Some	simple	calculations	lead	to:	
	
		𝑒Q(𝑀) = ∑ Φ¢

»º
¢O¸�B 𝐶𝑜𝑣(𝑰)Φ¢	

	
where	Φ¢	is	the	kth	vector	of	𝚽	.	This	quadratic	error	is	minimum	if	𝚽𝑻	transforms	
𝑰	in	𝒀	with	a	diagonal	covariance	matrix:	
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𝐶𝑜𝑣(𝒀) = ½
𝜆B 0 0
0 ⋱ 0
0 0 𝜆º

À	

	
which	 implies	 that	 the	 K.L.	 images	 Y	 are	 uncorrelated	 (which	 does	 not	 mean	
independent	if	the	random	parts	are	not	Gaussian).	The	eigenvalues	are	ranked	in	
descending	order.	
	
∑ ÁÂÃ
ÂÄÅÆ�
∑ ÁÂÃ
ÂÄ�

		is	the	percentage	of	lost	information.		

	
In	many	practical	cases,	there	is	a	value	of	M	for	which	this	percentage	drops	quite	
abruptly	to	almost	0,	meaning	that	the	original	data	lie	in	a	M	dimensional	space.	
Because	of	that,	to	retrieve	the	original	images	it	is	sufficient	to	conserve	M	K.L.	
images,	 i.e.	M.N	numbers,	plus	 the	K	numbers	 forming	𝑰x	and	 the	K2	 coefficients	
forming	𝚽.	 	If	N	is	large,	as	usual	for	an	image,	the	gain	in	compression	(i.e.	not	
transmitted	information)	is	almost	equal	to	(K-M)	N	numbers.	
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Chapter	4.	Hypothesis	testing	
	

1)	Introduction	
	
1.1)	Definition	
	
Hypothesis	testing	means	taking	a	decision	with	respect	to	a	given	hypothesis.	
	
Example:	 	 are	 data	 compatible	 with	 𝜃 = 𝜃W ?	 If	 yes,	 we	 cannot	 reject	 the	
hypothesis		𝜃 = 𝜃W.	
	
However,	we	have	not		proved	𝜃 = 𝜃W,	in	any	case.	
	
A	 small	 sub-example	 to	 understand:	 are	 the	 measurements	 𝑑̅ = 0.5, r~

√C
= 1	

compatible	 with	𝜃 = 0?	 This	 is	 a	 question	 in	 the	 experimenter	 world	 and	 the	
answer	is	given	by	the	following	reasoning	in	the	model	world:	𝑖𝑓	𝜃 = 0, 𝑃(−2 <
𝑑̅ 	< 2) ≈ 95%	.	Hence,	since		𝑑̅ = 0.5	is	comprised	in	the	confidence	interval,	we	
cannot	reject	𝜃 = 0	.			
	
Two	important	remarks	should	be	immediately	added:	
	
First,	many	other	values	of	q  are	compatible	with	the	data,	which	is	an	evident	
demonstration	that	we	have	not	proved	our	hypothesis.	But,	we	can	reject	safely	
𝜃 = 4.	See	however	the	second	remark	just	below.	
	
Second,	the	result	is	given	in	the	experimenter	world,	while	the	reasoning	is	done	
in	the	model	world.	This	is	not	logically	consistent,	and	actually	there	is	always	an	
implicit	 assumption	 on	 the	 a	 priori	 distribution	 of	 q. Most	 often,	 this	 implicit	
assumption	is	a	constant	prior,	which	is	more	or	less	correct	for	a	small	Gaussian	
error.	 In	other	cases	where	the	a	priori	distribution	 is	not	constant,	hypothesis	
testing	leads	to	absurdities.	For	example,	let	us	come	back	to	our	illness	test	where	
3%	of	the	population	is	ill.	A	positive	test	is	not	compatible,	at	a	confidence	of	90%,	
with	 a	 health	 person.	 This	 is	 troubling	 because	 P(health|positive)=0.77.	 This	
example	shows	clearly	that,	when	choosing	between	two	alternative	hypotheses,	
hypothesis	testing	implicitely	assumes	an	equal	a	priori	probability	between	these	
hypotheses.	Do	not	use	hypothesis	testing	if	such	assumption	is	false.	
	
1.2)	Types	of	tests		
	
The	most	common	tests	can	be	divided	in	three	categories:			
	
-	Are	data	compatible	with	a	value	(mean,	standard	deviation)?	
-		Are	data	compatible	with	a	probability	distribution	(Gaussian,	for	example)?	
-	Could	two	samples	come	from	the	same	population?	
	
In	 the	 third	 category,	 we	 have	 used	 two	 definitions.	 Population:	 ensemble	 of	
objects	 statistically	 equivalent	 with	 respect	 to	 a	 quantitative	 criterion;	 only	
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chance	 gives	 different	 values	 to	 different	 objects.	 	 Sample:	 randomly	 chosen	
subset	of	a	population.	
	
The	next	paragraphs	describe	 two	 important	examples	of	 tests	 in	 the	 two	 first	
categories.	The	third	type	of	test	will	not	be	treated	in	this	course.		
	
2)	Statistical	control	of	quality	
	
2.1)	Reception	quality	control	
	
A	customer	receives	a	bundle	of	N	pieces	and	has	defined	tolerance	limits	on	the	
mean	(not	on	the	individual	pieces!).	He	wants	to	be	sure,	at	a	given	risk	of	2,5%,	
that	the	mean	is	actually	within	the	tolerance	limits.	A	lot	of	pieces	fabricated	with	
a	mean	outside	the	tolerance	limits	must	be	rejected	with	a	probability	P>97.5%.	
	
To	be	specific,	let	us	consider	that	q must	be	greater	than	99	or	smaller	than		101,	
(customer	 or	H1	 hypothesis)	 in	 some	unity.	 If	q≤99 or	q≥101, the	 lot	must	 be	
rejected	with	P>97.5%.	
	
On	the	other	hand,	the	supplier	pretends	q=100	If	this(null)	hypothesis	is	true,	the	
lot	must	be	accepted	with	P>95%.	1-P	is	the	first	kind	risk.	
	
Note	that	the	customer	is	much	less	demanding	than	the	supplier.	Because	of	the	
statistical	fluctuations,	this	is	compulsory.	We	are	looking	now	for	a	rule	allowing	
the	customer's	and	supplier's	demands	to	be	both	fulfilled.	We	assume	a	Gaussian	
fabrication	and	draw	the	following	graph.	
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The	black	curve	corresponds	to	the	p.d.f.	 	of	the	dimension	of	the	pieces	for	H0,	
q=100	(supplier	hypothesis).	The	red	curves	correspond	to	the	maximum	risk	of	
acceptation	with	 q outside	the	tolerances	for	the	customer	i.e.	q=9���� q=101.	
We	want	 to	 define	 a	 decision	 rule:	 the	 lot	 is	 accepted	 between	 two	 limits.	We	
immediately	 see	 that	 accepting	 the	 lot	between	 the	blue	 limits	allows	both	 the	
supplier	and	the	customer	risks	to	lie	at	the	above	given	limits.	All	the	probability	
densities	 curves	 are	 Gaussian	with	 a	 standard	 deviation	 of	 0.25=(101-100)/4.		
This	only	value	ensures	the	right	risks	for	both	the	supplier	and	the	customer.	The	
customer's	risk	is,	for	example,	the	integral	of	the	left	red	curve	in	the	acceptation	
region,	i.e.	at	the	right	of	the	low	acceptation	threshold,	99.5.	The	supplier's	risk	is	
the	integral	of	the	black	curve	outside	the	acceptation	region,	on	both	sides.	
	
In	practice,	it	means	that	we	have	to	take	a	lot	of	N	pieces		
such	that	 r~

√C
= 0.25.	

	
2.2)	Statistical	mastering	of	production	
	
While	of	great	historical	importance,	the	method	developed	in	the	preceding	

paragraph	has	some	important	drawbacks.	In	particular,	a	drift	of	the	true	mean	
could	lead	to	the	rejection	of	the	pieces,	with	painful	consequences	for	both	the	
supplier	and	the	customer.	In	this	paragraph,	we	are	looking	for	rules	that	allow	
the	 machine	 to	 be	 adjusted	 before	 any	 risk	 of	 production	 rejection.	 However,	
another	 important	 requirement	 is	 the	 necessity	 of	 avoiding	 no	 necessary	
adjustments:	an	adjustment	has	a	cost.		
The	proposed	approach	consists	in	two	separate	steps:	
Step	1:	is	the	production	capable,	i.e.	can	fulfill	the	customer	tolerances	on	the	

individual	pieces?	
Step	2:	is	the	fabrication	stable,	without	drift	of	either	the	mean	or	the	standard	

deviation?	This	second	step	does	not	use	tolerances:	even	if	largely	compatible	
with	a	production	within	the	tolerances,	a	drift	must	be	evidenced.	The	graphs	
below	 show	 two	 examples	 of	 drift,	 concerning	 the	 mean	 and	 the	 standard	
deviation.		
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In	 both	 cases,	 no	 size	 value	 is	 outside	 the	 tolerances.	 However	 the	 drift	 is	
significant	and	must	be	evidenced	in	order	to	decide	corrective	actions	before	any	
risk.	
	
In	more	details,	the	step	1	is	fulfilled	by	defining	the	capability:	
	
Capability:	𝐶*¢ = 𝐼𝑛𝑓	 Ìw

x1»Í	,»Î1wx

Ïr
Ð		𝑇,:	low	tolerance	limit		𝑇Ñ	:	high	tolerance	limit.	

	
𝐶*¢ 	must	be	greater	than	1,33.	Note	that	𝜎	is	the	standard	deviation	of	the	pieces	
(not	of	the	arithmetic	average	as	above).	
	
Once	we	know	that	the	fabrication	is	capable,	we	pass	to	step	2	by	computing	the	
arithmetic	average	and	estimated	standard	deviation	on	successive	samples.	The	
fabrication	 is	 stable	 if	 the	 variation	 of	 these	 values	 can	 be	 attributed	 to	
randomness:	tables	allow	the	hypothesis	of	stability	to	be	rejected	with	a	given	
confidence	level	(of	course,	the	stability	can	never	be	proved:	see	the	introduction	
of	the	chapter).	The	use	of	these	stables	is	left	to	exercises.	
	
3)		Fit	test:	c2 test	
	
In	 this	 course,	 the	 c2 test	 will	 be	 introduced	 as	 an	 important	 example	 of	 the	
category	 of	 hypothesis	 test:	 is	 the	 data	 behavior	 compatible	 with	 a	 specific,	
probability	law,	here	the	Gaussian	law?	
	
The	idea	is	to	compare	the	measured	frequency	to	the	expected	probability.		
	
More	precisely,	we	define	M	classes	Cj	with	bounds	[kj		,				kj+1].	

a	measurement	𝑑, ∈ 𝐶¡ ⇔	𝑘¡ ≤ 𝑑, < 𝑘¡�B		
	
	
We	experimentally	find	nj		elements	in	the	class	Cj.		The	limits	of	classes	are	defined	
such	that	nj	>	6.	The	total	number	of	data	is	𝑁 = ∑ 𝑛¡¸

¢OB 	
	Moreover,	 we	 calculate	 the	 arithmetic	 average	𝑑̅ 	and	 the	 estimated	 standard	
deviation	𝜎�	(see	chapter	2).		
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We	now	compare	to	a	Gaussian	distribution.	If	the	data	are	Gaussian,	we	can	find	
the	probability	of	inclusion	in	the	class	Cj:	
	

𝑃¡a𝐶¡b = 𝑃(𝑘¡ ≤ 𝑑, < 𝑘¡�B) = 𝑃(𝑑, < 𝑘¡�B) − 𝑃(𝑑, < 𝑘¡)	
	
The	probabilities	in	the	last	equality	are	directly	given	by	the	cumulative	density	
function	of	a	Gaussian	of	mean	𝑑̅	and	standard	deviation	𝜎�.	
	
We	 then	 compute	 the	 distance	D2	 between	 the	measured	 frequencies	 and	 the	
expected	probabilities:	
	

𝐷Q =N
a𝑛¡ − 𝑁𝑃¡b

Q

𝑁𝑃¡

¸

¢OB

	

	
	
If	 the	 data	 follow	 a	 Gaussian	 distribution,	 D2	 follows	 a	 c2	 distribution.	 The	
corresponding	 confidence	 interval	 can	 be	 determined	 from	 tables	 or	 with	 a	
computer	routine.	We	can	either	conclude	that	the	data	are	compatible	with	the	
Gaussian	 hypothesis,	 if	D2	 is	 included	 in	 the	 interval,	 or	 that	 the	 data	 are	 not	
compatible	with	this	Gaussian	hypothesis.	Note	however	that	a	value	of	D2	smaller	
than	 the	 inferior	 limit	 of	 the	 interval	 means	 that	 the	 data	 follow	 perfectly	 a	
Gaussian	distribution,	without	the	fluctuations	we	were	expected.		It	could	seem	a	
bit	strange	to	conclude	that	the	data	are	not	issued	from	a	Gaussian	distribution.		
It	remains	that	such	a	distribution	has	a	low	probability	to	occur	if	the	data	are	
random.	Are	they?	is	in	this	case	the	good	question...	
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Chapter	5.	Inverse	problem	and	(least-squares)	regression	(fitting)	
	

1)	General	frame	
	

Data	(measurements)	𝑫 = Ö
⋮
𝑑;
⋮
Ù	at	abscissae	Ö

⋮
𝑥;
⋮
Ù	are	modeled	by	a	model	M	using	

K	parameters	𝑷 = (𝑝B, … , 𝑝º):	
	

𝑑, = 𝑀(𝑥,; 𝑝B,… , 𝑝º)	
	
Let	us	define,	as	in	chapter	1:	
	
-	the	direct	problem:	model	the	data	D	(find	M)	for	a	given	value	of	P	
	
-the	inverse	problem:	retrieve	P	from	D,	M	and	any	other	a	priori	information.	
	
In	some	case,	the	process	can	be	iterative,	i.e.	the	model	can	be	modified	because	
of	the	measurements.	
	
Example:	find	R	with	a	model	𝑈, = 	𝑅	𝐼,.	The	graph	of	the	data	is	the	following	one:		
	

	
Clearly,	 the	 linear	 model	 is	 not	 correct	 and	 the	 direct	 problem	 must	 be	
reconsidered.	
Warning:	all	 tests	of	 linearity	will	 show	 that	 the	 data	 on	 the	 above	 graph	 are	
compatible	with	a	linear	assumption,	while	a	look	on	the	graph	shows	they	are	not	
linear.	Make	a	graph	first!	
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2)	Why	using	least	squares?	
	
Using	 least	 squares	 is	 justified	 if	 the	 errors	 are	 Gaussian,	 for	 example	 for	 a	
measurement	under	control	(see	chapter	2	paragraph	5).	If	the	errors	do	not	obey	
a	Gaussian	statistics,	least	squares	fitting	can	give	poor	results.	In	particular,	least-
squares	 fitting	 is	 extremely	 sensitive	 to	 a	 (some)	 outlier(s).	 	 If	 outliers	 are	
suspected,	use	equivalents	of	 the	median,	 rather	 than	 least-squares	estimators.	
The	arithmetic	average	is	a	least-squares	estimator	and	is	sensitive	to	outliers	(see	
exercise	in	the	paragraph	3	of	Chapter	2).	
	
In	more	details,	measurements	𝑑, 	are	performed	at	abscissae	𝑥,.	Let	be	a	model	
𝑀º(𝑥,)	depending	on	(𝑝B, … , 𝑝º).	We	assume:	
	

𝑑, = 𝑀º(𝑥,) + 𝑛,	
	
where	𝑛,	is	a	centered	Gaussian	additive	noise,	independent	from	a	measurement	
to	another,	of	variance	𝜎,Q	which	can	depend	of	𝑥,.	
	
Hence,	we	have	in	the	model	world:	
	

𝑝a𝑑,s𝑀¢(𝑥,)b =
1

𝜎,√2𝜋
𝑒𝑥𝑝 Þ−

a𝑑, −𝑀¢(𝑥,)b
Q

2𝜎,Q
ß	

	

⇒𝑝(𝑫|𝑀¢) =á𝑝a𝑑,s𝑀¢(𝑥,)b
,

		∝ 			𝑒𝑥𝑝 â−N
a𝑑, − 𝑀¢(𝑥,)b

Q

2𝜎,Q,

ã	

	

which	means	that	𝑝(𝑫|𝑀¢)		is	maximum	if	∑
awÍ1¸Â(äÍ)b

{

rÍ
{, 	is	minimum.	

	
If	 𝑝*+,-+(𝑀¢)	 	is	 constant	 around	 the	 estimated	 parameters,	 this	 is	 also	 the	
maximum	of	𝑝(𝑀¢|𝑫)	.	This	is	a	reasonable	hypothesis	for	a	measurement	under	
control.	
	
3)	Linear	least	squares	with	two	parameters	a	and	b	:	yi=a	xi+	b	
	
We	suppose	that	there	is	no	uncertainty	on	x	(this	is	a	troubling	hypothesis...)	and	
that	the	uncertainty	on	the	ordinates	does	not	depend	on	x:		𝜎,Q = 𝜎Q	
	
Least	squares	solution:	𝑎 = ∑ äÍ(åx1åÍ)Í

∑ äÍ(ä̅1äÍ)Í
= ∑ åÍ(äÍ1ä̅)Í

∑ (ä̅1äÍ){Í
,																	b=𝑦x − 𝑎	�̅�	

	
The	uncertainty	on	the	coefficients	is	given	by:	
	
𝜎´Q =

r{_

∑ (ä̅1äÍ){Í
= 𝑎Q ÌB/æ

{

C1Q
Ð,																							𝜎çQ = 𝜎Q_ ÌB

C
+ ä̅{

∑ (ä̅1äÍ){Í
Ð			
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where:	-	𝜎Q_		is	estimated	by:																	𝜎Q_ = B
C1Q

∑ (𝑦, − (𝑎𝑥, + 𝑏))Q, 	
	
-	𝜌		is	the	correlation	coefficient,	given	by	all	calculators	and	computer	routines	
	
In	 these	expressions,	 the	division	by	N-2	can	be	understood	by	considering	the	
case	N=2:	there	is	no	deviation	between	the	data	and	the	fitted	straight	line,	and	
no	possibility	of	assessing	the	uncertainty.	
	
Confidence	interval	on	the	fitted	points:	
	
Let	be	𝑦′, = 𝑎𝑥, + 𝑏 = 𝑦x + 𝑎(𝑥 − �̅�),	we	have	:	𝜎åêÍ

Q = 𝜎Q_ ÌB
C
+ (äÍ1ä̅){

∑ (ä̅1äÍ){Í
Ð	

	
Note	that	this	uncertainty	is	lower	than	the	uncertainty	on	the	data,	because	of	
some	average,	at	best	near	�̅�.	It	is	easy	to	use	y'	for	interpolation	between	data.	On	
the	other	hand,	extrapolation	outside	the	data	range	is	almost	always	catastrophic.	
Do	not	extrapolate,	unless	you	are	a	meteorologist	(a	politician,	a	 journalist...),	
with	considerable	means	and	average	results.	
	
4)	Linear	least	squares:	matrix	formulation	
	
Let	 be	 N	 equations	 with	 K	 parameters,	 N>K,	 normalized	 by	 their	 standard	
deviation:	
	

⋮
𝑦,
𝜎,
⋮

=
1
𝜎,
a𝑝B𝑓B(𝑥,) + ⋯+ 𝑝º𝑓º(𝑥,)b	

	
This	system	of	N	equations	with	K	unknowns	can	be	written	in	a	matrix	form	as:	
	
Y=AP,	with:	 	 	 	
	 	 	 	 K	columns	

𝒀 = ì
⋮
åÍ
rÍ
⋮
í,	N	lines,												𝑨 = ì

⋮
⋯ ïð(äÍ)

rÍ
⋯

⋮

í Nlines	,									𝑷 = ½
𝑝B
⋮
𝑝º
À,	K	lines	

	
It	can	be	shown	that	the	least	squares	solution	𝑷	is	the	solution	of	the	system	of	K	
equations	with	K	unknowns	obtained	after	a	left	multiplication	by	𝑨𝑻:	
𝑨𝑻Y=𝑨𝑻AP	
	
Exercise:	apply	to	yi=a	xi+	b.	
	
A	 particular	 case	 is	 polynomial	 least	 squares	𝑓B(𝑥,)=1,	𝑓Q(𝑥,)=	𝑥,, 𝑓Ï(𝑥,)=	(𝑥,)Q ,	
and	so	on...The	resulting	matrix	is	ill	conditioned:	very	close	curves	can	be	issued	
from	a	very	different	set	of	coefficients.	This	is	not	a	problem	if	we	are	interested	
by	the	fitted	curve,	but	it	results	in	great	uncertainties	on	P.	Do	not	use	polynomial	
least	 squares	 to	 retrieve	 the	 coefficients	 of	 the	 polynomial.	 Orthogonal	
polynomials	should	be	rather	used.	
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5)	Linearized	least	squares	
	
As	an	example,	let	us	retrieve	a	and	t	 in	a	model	y=	a	exp(-t/t). This	non	linear	
model	can	be	linearized	as	ln(y)=	ln(a)	-t/t, with	parameters 	ln(a)	and	1/t.given	
by	linear	regression. 
 
In	practice,	the	results	are	not	so	good:	after	linearization,	the	variance	becomes	
no	 constant.	 Even	 weighting	 by	 the	 inverse	 of	 the	 standard	 deviation	
(proportional	 to	 the	 differential	 1/y)	 does	 not	 give	 good	 results,	 because	 the	
hypothesis	underlying	differentiation,	 i.e.	 small	 relative	noise,	 is	not	 fulfilled	at	
low	y.	
	
6)	Nonlinear	least	squares:	the	Gauss-Newton	method	
	
The	nonlinear	method	of	fitting	given	in	the	paragraph	below	is	one	of	the	many	
possibilities.	Even	if	not	used	to	retrieve	P,	the	formalism	employed	here	allows	
the	 uncertainties	 on	 the	 parameters	 to	 be	 assessed,	 which	 is	 of	 paramount	
importance.		
	
6.1)	Newton	method	
	
Before	to	expose	the	least	squares	method,	 let	us	recall	 the	Newton	method,	to	
retrieve	a	unique	parameter	p	for	a	unique	abscissa	x,	with	a	nonlinear	model	M:	
find	p	such	that	M(x,p)=y	where	M	is	a	nonlinear	function	of	p.	
	
If	M	is	not	"too"	nonlinear,	the	solution	of	0=f(p)=	M(x,p)-y	can	be	found	by	using	
the	Newton	algorithm.	

	
	
	
Let	be	pl	the	value	of	the	parameter	obtained	after	l	iterations.	We	obtain	pl+1	by	
calculating	 the	derivative	 f'(pl)	of	 f(p)	at	 pl	 	 and	writing	 (see	 the	above	graph):	
𝑓(𝑝£) = 𝑓′(𝑝£)(𝑝£ − 𝑝£�B).	
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This	method	converges	rapidly	 for	small	nonlinearities	but	 is	not	robust.	Other	
methods	exist,	 like	the	dichotomy	method:	find	p1	such	that	f(p1)>0	and	p2	such	
that	 	f(p2)<0.	Determinate	p3=(p1+	p2)/2.	 If	 f(p3)>0,	 calculate	p4=(p3+	p2)/2.	Else,	
calculate	 p4=(p3+	 p1)/2,	 and	 so	 on.	 At	 each	 iteration,	 the	 interval	 of	 possible	
solutions	is	divided	by	2:	slower	but	safer	convergence.	
	
6.2)	The	Gauss-Newton	method	
	
It	is	the	combination	of	the	Newton	and	the	least	squares	(Gauss)	method.	
	
Let	be	N	nonlinear	equations	with	K	parameters,	N>K:	
	

𝑦, = 𝑀º(𝑝B,⋯ , 𝑝º; 𝑥,), 𝑖 = 1,⋯ , 𝑁	
	

The	quantity	to	be	minimized	is	∑ aåÍ1¸Â(äÍ)b
{

rÍ
{, 	

	
At	each	iteration,	we	will	use	a	linearized	model.	
	

Let	be	𝑷𝒍 = ½
⋮
𝑝¡
⋮
À	obtained	at	the	lth	iteration.	

	
The	following	system	will	be	solved	in	the	least	squares	sense:	
	

𝑴𝑲(𝑿) − 𝒀 = 𝑴′(𝑷𝒍)(𝑷𝒍 − 𝑷𝒍�𝟏)	
	

With		𝑴′ = ù
⋮

⋯ ú¸(äÍ)
ú*ð

⋯

⋮

û	

	
As	in	paragraph	4,	the	mean	squares	solution	is	given	by:	
	

𝑴′𝑻(𝑴𝑲(𝑿) − 𝒀) = 𝑴′𝑻	𝑴′(𝑷𝒍 − 𝑷𝒍�𝟏)	
	
This	is	a	system	of	K	equations	with	K	unknowns	easily	solved	by	a	computer	(use	
a	specific	routine	and	not	a	matrix	inversion).	
	
The	 convergence	 is	obtained	 if	 the	model	 is	not	 too	nonlinear	and	 the	 starting	
point	not	too	different	of	the	solution.		
	
Uncertainties	on	the	parameters	
	
Even	if	you	have	obtained	the	final	set	of	parameters	by	another	algorithm,	you	
must	compute	𝑴′(𝑷𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏)	in	order	to	evaluate	the	uncertainty	on	𝑷,	given	by	
the	covariance	matrix:	
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𝑪𝑷 = !𝑴′𝑻𝑪𝑫1𝟏𝑴′"
1𝟏
	

	
If	the	data	are	independent	each	other,	the	covariance	of	the	data	𝑪𝑫 	is	diagonal:		
	

𝑪𝑫 = ½
⋱ 𝟎 𝟎
𝟎 𝜎,Q 𝟎
𝟎 𝟎 ⋱

À	

	
Even	small	uncertainties	on	the	data	and	a	good	agreement	between	the	data	and	
the	model	do	not	guarantee	small	uncertainties	on	the	parameters.	Indeed,	very	
different	sets	of	parameters	can	lead	to	(almost)	the	same	data	if	
	
1)	A	parameter	has	little	influence	on	the	data.	
	
2)	Less	evidently,	it	exists	a	strong	correlation	between	parameters.	An	extreme	
example	 is	 given	 by	 the	 model	 y=a.b	 x.	 Clearly,	 only	 the	 product	 a.b,	 can	 be	
retrieved	and	not	the	individual	parameters	a	and	b.	Consider	now	a	model	y=	a	
sin(b.x).	a	and	b	are	not	correlated,	...	except	if	|b.x|<<	1	whatever	x...	Fortunately,	
the	 correlation	matrix	of	 the	 parameters,	 obtained	 from	 the	 covariance	matrix		
𝑪𝑷,		(see	chapter	3	to	pass	from	covariances	to	correlations),	indicates	such	links.	
If	two	parameters	have	a	strong	(anti)	correlation,	it	is	compulsory	to	remove	one	
of	the	two.	In	the	model	y=a.b	x,	the	correlation	coefficient	between	a	and	b	is	equal	
to	-1:	an	increase	of	a	can	be	exactly	compensated	by	a	decrease	of	b.	
	
	
	
	


