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Introduction 
 
Light is composed of photons: «  wave-corpuscle duality 
 
You have heard about it: Einstein proposed to explain the photoelectric effect by 
introducing quanta of light, photons of energy hn. 
 
The simplest form of duality: probability of (detecting a photon) µ beam intensity. 
 
More precisely, for a monochromatic light of frequency n: 

        (1)  

h :  quantum efficiency, the probability of generating a photoelectron, knowing that a 
photon is impinging on the sensor. S: surface of the detector, powered on at t=0 and off 
at t=t1. Unities: I in W/m2 and hn in Joules 
 
Points not covered in this course: the precise mechanism of the interaction of matter 
and radiation. We will limit ourselves to remind that the energy of the photon must be 
sufficient to excite an atom and make an electron "jump" in the conduction band. For 
example, for a silicon CCD camera, h passes from 95% for a wavelength of  0.8 µm to 
5% around 1µm and much less beyond (the transition towards zero quantum efficiency 
is not sudden at non-zero temperatures, because thermal agitation can help an electron 
to cross the gap). 
 
Covered points:  
 
- to a constant intensity, corresponds a constant probability of photon arrival  ® to the 
absence of classical fluctuations corresponds a random arrival time of photons, 
therefore quantum fluctuations  ® definition of coherent states by photon statistics. 
 
- Is it possible to suppress these quantum fluctuations? The answer can be yes if we 
take into account the conditional probabilities: probability of (detecting a photon | 
another photon has been detected). | means "knowing or "given"". These conditional 
probabilities are not described by Eq. (1) and allow us to hope for light that fluctuates 
less than constant intensity, and therefore specifically quantum, where the detection of 
one photon leads to a lower probability of detecting another; we will speak of squeezed 
light. In these states, the classical electric field does not provide all the statistical 
information on photons. 
 
- Do photons exist outside detection (quantified nature of the interaction of matter and 
radiation)? We will see that these conditional probabilities can occur before detection, 
particularly at the level of a beamsplitter. 
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Examples :  
- interference with one photon 
- twin photons (if one is detected, the other is always present) and entanglement: the 
two photons behave in the same way, even at a distance 
- the beam splitter: classical behavior and behavior in the presence of twin photons. 
- teleportation of a quantum state 
- quantum cryptography. 
 
Knowledge assumed to have been acquired: 
 
-the harmonic oscillator, creation and annihilation operators 
- the Heisenberg's point of view (operators propagate and are applied to the input wave 
functions). 
 
Table of Contents 
 
Chapter 1: The beam splitter: semi-intuitive approach 
Chapter 2: Quantification of the electromagnetic field: photons. 
Chapter 3: Coherent States. The beam splitter: quantum approach. 
Chapter 4: Squeezing of noise. 
Chapter 5: Quantum Cryptography and Teleportation 
Chapter 6: (From his lectures2) Seeing photons without destroying them: 
Haroche's experiments. 
 
This handout covers only the first four chapters. Reference 4 is a good introduction to 
quantum cryptography. For teleportation, please refer to BR p. 387-397 
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Chapter 1: the beam splitter: semi-intuitive approach 
 
I) Classical approach of coherent states 
 
I.1) Introduction and classical definition  
 
coherent state! monomode plane wave: A(t)= Cste 
 
In practice, the best approximation is a very monochromatic laser beam with a Gaussian 
transverse distribution. The theoretical frequency width of a laser can be as small as 1 
Hz/10, rather 1kHz in practice. 
 
I.2) Statistics followed by the photons 
 
P(1 photon (detected) from t to t+dt) µ|A|2dt 
 
|A|2dt << 1 and independent events  Þ P(2 photons detected from t to t+dt)»0 
 
This is the definition of a Poisson law. Let <N> be the mean number of detected photons 

during Dt (non infinitesimal): <N>=E(N)=  

 

        (2) 

 
Demonstration: see chapter 3. 
 
Variance: <DN2>=<N2>-<N>2. If dt is sufficiently small, N is 0 or 1 and hence equal to 
N2. Moreover (< N2 >@<N>) >> <N>2.  Hence <DN2>@<N>. This property, 
demonstrated on the infinitesimal dt, remains valid over any interval Dt: the events are 
independent, so the variances are added, as are the means. 
 
Coherent state ÞPoisson statistics of photons ÞVariance=mean. 
 
Of course, variance=mean is only possible for a number of discrete events and makes 
no sense for a continuous quantity. 
 
 
 
 
II Beam splitter and photons 
 
II.1) One incident coherent beam 
  
 
Transmission coefficient: T=|t|2=0.5 
Reflection coefficient: R=|r|2=0.5 
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Iin= Cste(t) ÞIr= It=0.5 Iin= Cste(t) 
 
Constant output intensities Þ Poisson photon statistics  
 
 For each incident photon, the beamsplitter flips a coin to decide if this photon is 
transmitted or reflected. This random behaviour of the beamsplitter leads to a division 

by  of the signal-to-noise ratio  . 

 
II.2) Two incident coherent beams 
 
Ev and Ein have a phase relationship 
 with each other (for example because issued 
from the same laser) and will interfere  
constructively or destructively on  
the outputs according to their phases. However, 
energy conservation requires that a 
 bright fringe on t is always associated with  
to a dark fringe on r, which imposes a  
phase relationship between the coefficients of   
transmission and reflection in amplitude 
 tin, tv, rin, rv., i.e.:   
 

    (3) 

 
...which requires that the sum of the terms in square brackets must be zero, i.e.: 
 

      (4) 
 
where j stands for the phase values. A solution is: tin=tv=rv= ,  
rin=- , 
giving, at the outputs: 

        (5) 

 
Ein and Ev in phase, constructive interferences on  T, destructives on R 
Ein and Ev with a p phase shift, constructive interferences on  R, destructives on T 
 
II.2) Two entangled photons at the input (MW p.646, BR p.105) 
 
The incident state is a pair of entangled photons, with the wavefunction: 
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, meaning that a photon is present in v if and only if a photon is present 
in in. 
 
In other words, photons can be (are usually) produced randomly, but always in pairs 
in,v.  Among the possible methods, some of which use radiative cascades of an excited 
atom. Let us take for example the Spontaneous down conversion (SPDC) in non-linear 
optics, where a pump photon of frequency wp is annihilated and gives rise to two signal 
and idler photons, of frequency ws and wi ,ws and wi , ws + wi= wp  . The conversion is 
random, but energy conservation requires the emission of pairs of photons: 
 
P(1 signal photon | 1 idler  photon) =1 .      (6) 
 
Of course, this state is purely quantum, since a classical field cannot describe 
conditional probabilities. 
 
It can be shown (see Chapter 3) that the probability amplitude associated with an output 
possibility is the product of the probability amplitudes for each process. There are 4 
possibilities: 
 
- 2 reflected photons :     amplitude  rin rv = -1/2 ® |1t, 1r>  
- 2 transmitted photons:     amplitude  tin tv =   1/2 ® |1t, 1r>  
photon v transmitted, photon in reflected,             amplitude  rin tv = -1/2 ® |0t, 2r> 
photon in transmitted, photon v reflected,              amplitude  rv tin =  1/2 ® |2t, 0r> 
 
giving :     (7) 
 
The first term being zero, we conclude that the photons both exit on the same path, with 
a probability 1/2 for each of the paths (N.B.: this "intuitive" calculation leads to a non-
standardized wave function, contrary to Chapter 3). 
 
In the 1987 Hong-Ou-Mandel experiment, coincidences with a temporal resolution of 
about a hundred nanoseconds were detected: if the two photons of a pair arrive with a 
slight shift, much less than this resolution, on the beamsplitter, they do not interfere and 
emerge randomly on one or the other of the channels, giving rise to coincidence if they 
leave on different channels, which occurs with every other chance. On the other hand, 
if the two photons arrive together, they exit on the same path, which results 
experimentally in a drop in of coincidences to 0 in the absence of parasitic coincidences, 
due either to electronics or to the arrival of two pairs in the detector's resolution window. 
The width of this "coincidence dip", of the order of a hundred fs, gives access to the 
width of the photon's wave function, proportional in SPDC to the inverse of the 
frequency width of the pair emission process, which is itself related to the phase 
matching conditions (see the non-linear optics course). In this original experiment, the 
arrival delay was obtained by modifying the optical paths. In more recent versions of 
the experiment (see for example J. Beugnon et al, Nature 4628, April 2006, p.779), the 
width of the wave function due to an atomic transition is about ten nanoseconds, i.e. 
much higher than the resolution of the detector. We can then record directly in time the 
interference of the wave functions of the two photons, produced here by two distinct 
atoms, trapped by laser and excited simultaneously.  
 

in v|1  , 1y =

(1/ 2 1/ 2) 1 ,1 1/ 2 2 ,0 0 ,2out t r t r t ry µ - + é - ùë û
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Chapiter 2: Quantification of the electromagnetic field: photons 
(reference:  "Photons et atomes", p.9 to 37 : CC) 

 
I) Position of the problem  
 
Maxwell's equations are partial differential: all points in space are connected. In 
contrast, in the spatial frequency domain, the field can be expressed as a superposition 
of independent plane waves. Moreover, a monochromatic plane wave is the equivalent 
of a harmonic oscillator. 
 
If we show that a plane wave obeys the same classical equations as a harmonic oscillator, 
we can quantify it in a totally similar way and the energy levels of the harmonic 
oscillator, separated each other by hn, will correspond to a number of photons. 
 
II) Modal decomposition of the electromagnetic field, equations of motion 
 
II.1) Equations of motion 
 
In an isotropic environment without charge and currents, the electromagnetic field is 
transverse and there are two Maxwell equations left: 
 

        (8) 

      
 
These nonlocal equations (because of the gradient operator) become local after a 
Fourier Transform on the space variables :       
 

 

Let be . Then (10) ± writes, by using (since 

) and w=k .c: 
 

         (11) 

 
(11) is a system of two uncoupled equations, unlike (9) and (10). For each , two 
polarization directions can be defined in the orthogonal plane to . Without loss of 
generality, we will assume polarized along  (we will see later that the two 
polarization directions correspond to two distinct modes), and we define the normal 
variables:  
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     (12) 

 
where is a normalization factor that will be defined later. obeys the 
equation of a harmonic oscillator with a=x+j(p/mw), giving:   
 

      (13) 

 
The variables a and b of equations (12) are not independent. Indeed: 
 

 (14). 
 
It is therefore possible to reconstruct the fields from only one of these variables. For 
example, for  :  . 

In order to express the energy in number of photons, we assume ,  which 

allows the energy of the transverse field H to be written in the form: 
 

 
(15) 
 
N.B. 1): in order that the integral takes into account all possible modes, the two possible 
polarizations should be considered for each mode. 
N.B 2): The order of a and a* has, of course, no importance in this classical expression. 
A symmetrical form (15) has been written in order to prepare the quantification. 
 
II.2) Modal decomposition 
 
Continuous integrals (15) can be directly quantified by using commutators equal to Dirac 
pulses. The simpler solution of decomposition in discrete modes will be used here. We 
plunge the field into a cube of side L. The limiting conditions lead to L=nx,y,z l, n integer, 

i.e. . The normal variables become: 

  integer numbering the mode. 
 
III) Quantification 
 
The electric field has just been decomposed into a sum of harmonic oscillators. It is 
quantified in the same way: 
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 and   

 
where [] designates a commutator. 
 
The field becomes an operator, which can therefore be expressed as: 
 

   (16) 

 
The terms with a positive frequency, in  with operators ai, appear in , while those 
with a negative frequency corresponding to operators  appear in . 
 

The Hamiltonian writes:   (17) 

 
IV) Eigenstates of energy, photons 
 
Let us define, as for the harmonic oscillator, the number state ni called here a Fock state 
with ni photons, eigenvector of : ,  positive or zero integer, and: 
 

    (18) 
 
We can thus fill the different modes with photons by repeated applications of the operator 
created from vacuum: 

      (19) 

 
we are thus led to the definition of the photon: 
 
 photon ! elementary excitation of a mode of the quantized electromagnetic field 
 
Just like the harmonic oscillator, the Hamiltonian applied to an empty mode gives an 

energy . While this has consequences, there is no question of directly detecting the 

energy of the vacuum (in obvious contradiction with energy conservation). It can be noted 
in this regard that a measurable quantity such that the number of photons corresponds to 
what will be called the normal order: the operators to the left of the operators. . 
 
 

Chapter 3:  Coherent states and quantum treatment of the beamsplitter 
 
I) Definition of a coherent state (MQ complement GV)  
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We want to find the quantum state  that reproduces at best the properties of the plane 
wave of amplitude  in mode i. The mean of the operator field applied to this mode must 
give the classical amplitude, and the mean number of photons must correspond to the 
classical intensity (expressed as a number of photons per spatio-temporal mode). So we 
look for such as: 

 where  is the mean number of photons per mode. 

     (20) 
 
The eigenvector of ai with the eigenvalue  is solution, i.e. the state verifying 

. It will be the definition of the coherent state in mode i. 
 
II) Properties 
 
II.1) Photon number 
 
The index  i will be omitted in the following. From (20)  and the hermitian conjugate of  
(18), it comes: 
 

   (20) 

 
If we know the amplitude of  projected on , we can deduce the amplitude of 

 projected on . The recurrence relationship is initiated by noting that the vacuum 

state  is both a coherent and a Fock state. By applying n times (20), we find the 

amplitude of  on , which gives: 
 

      (21) 

 
K ensures the normalization of  :  
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giving, as expected, a Poisson distribution. 
 
II.2) Variance 
 
Since the number of photons is Poissonian, the variance is equal to the mean. This 
property can also be established directly:  
 

      

(24) 
 
III) states transmitted by a beamsplitter 
 
III.1) One incident coherent beam 
  
 
 
Are we allowed to simply write the output state as:  

 (or  for reflection)? 
 
We'll see that the answer is almost correct here  
(there is however an obvious problem of normalization), but 
only because the system is linear. Such simple reasoning  
can be dangerous in quantum optics. On the other hand, quantification has transformed 
the fields into  operators. It is therefore often easier and safer to deduce from the classical 
field propagation equations the operators' equivalent propagation equations, and therefore 
to adopt the Heisenberg's point of view, by ultimately having the output operators act on 
the input wave functions. The operators' propagation equations differ from the classical 
equations only in one respect...... 
 
The classical equations lead here to   
When calculating the commutator, we realize that  
this result is not correct:  
 
However, the field quantification was made by introducing operators  
ai on the mode i with unity commutator. Something is lacking…. 
 
Actually, the field in the output mode must be written as the  
superposition of a transmitted and a reflected field,  
 even if this field acts on the vacuum.       
         
It is easy to verify that the commutator of    

 is unitary.  
The reasoning that "forgets" the vacuum and the correct reasoning 
give the same mean number of output photons: 
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 (25) 

 
On the other hand, a computation like (24) shows that  only if we use the 
correct form of aout. This computation is rapid by using the fact that the commutator of 
aout is unitary, or a bit more tedious by starting from . However, this 
second way (do it!) evidences the variance terms which come from vacuum fluctuations. 
In the terms of the intuitive representations of chapter 1, this is the vacuum that ensures 
flip coin of photons at the beamsplitter! 
 
III.2) An incident entangled state 
 
A) Correspondence Schrödinger's point of view Heisenberg's point of view (BR p.80) 
 
While classical optics can determine how operators propagate, the same cannot be said 
for wave functions. Very often, determining is difficult, especially if the number of 
photons varies (amplifiers). In other words, we can easily find the mean values 

because Aout is easily calculated by correspondence with 

the classical equations, but can be of a frightening complexity. Let us take the case 

of a matrix of 8x8 photodetectors, on which can arrive from 0 to 5 photons. is the 
superposition of the probability amplitudes for each of the 664 possibilities.  
However, there is one exception, when the system only includes linear elements, which 
do not create photons (an absorption is modelled by a beamsplitter). Indeed: 
 

 (26) 
 
Let us write the input wavefunction  on the Fock basis: 

 (27) 
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Examples : 
 
beamsplitter (out1 is the name of the output where in is transmitted and out2 is the output 
where in is reflected. t and r are assumed real):  

     (29) 

 
(29) can be directly established, by solving the system, or by applying the principle of 
reversibility of light 
 
 
 example 1:  
 

 (30) 

 
 
example 2: entangled state 
 

 (31) 

 
 (7) of chapter 1 is retrieved, but this time with a correct normalization factor! 
 
  
 
 

Chapter 4: Squeezing  
 
 
I) Introduction: classical measurement of phase and amplitude fluctuations (BR p.206-
207). 
 
The electric field, as a quantity measurable by means of an interferometric device, has 
an uncertain value. For example, for a coherent state, uncertainty on amplitude is due 
to photon noise, but uncertainty on phase can also be measured 
 
Classically, we write , i.e. if et 

 :   (32) 
or, in complex notations:  (we will see later the purpose of this new 
notation) 
It is possible of measuring the phase uncertainty by homodyne detection: 
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The amplitude of the local oscillator writes: , while the field 
to be measured is given by: . 
 The field on the photodiodes is given by: 

 

leading to an intensity difference            (33) 

 
The key point of the following is that the fluctuation terms on the field and on the local 
oscillator have the same order of magnitude. Quantum computation would be 
immediate (see TD2). A more traditional, although not entirely, way of seeing it is to 
notice that the standard deviation on intensity is equal to |DX| |a|, giving a signal-to-
noise ratio of |a|2/(|DX| |a|)=|a|/ |DX|. However, this signal-to-noise ratio is proportional, 
for a coherent state, to the root square of the photon number, i.e. proportional to |a|. In 
other words, two coherent states have field fluctuations of equal amplitude, even if these 
states have very different amplitudes (and therefore intensity fluctuations of different 
magnitude).  
 
Hence:                (34) 
 
The phase with respect to the measured field of the  local oscillator, , is adjustable. 
Hence (33) writes, by taking in account (34):  
 

           (35) 
 
In (35), the time dependence of fluctuations is explicitly indicated to emphasize that the 
first term is a continuous background term: it is easily eliminated by filtering. You can 
then access to (t) or  or any combination of the two by adjusting the 
phase of the local oscillator. 
 
The variance of this intensity difference writes: 
 

LO 0 1 2=E LO LOX j Xa +D + D

in 1 2= in inX j Xa a +D + D

1 2
1 1( ),   ( )
2 2D LO in D LO ina a a a a a= + = -

( )2 2 * *
1 2

2 2
LO in LO inD DI

a a a aa a
-

+-
= =

.LO in in LO LO inX Xa a a a>> ÞD >> D

LOj

( )0 0 1 2cos( ) ( )cos( ) ( )sin( )in LO in LO in LOI E E X t X ta j j j- » + D +D

1inXD 2 ( )inX tD

 

 

 

ain to be measured

local oscillator  
 

adjustable phase 

 

T=0.5 

_ D1 
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   (36) 

 
We will see in TD 2 that all the above reasoning can be extended to the quantum case. 
A key point is that all the ports of the second beamsplitter are occupied: an empty port 
has not been forgotten. Also (36) allows measuring the quantum properties of in (it can 
be quantum vacuum!), see TD2. 
The following page presents the first experimental realization of vacuum squeezing: we 
will see in TD2 that, if the squeezed vacuum is not vacuum at all (it is composed of 
pairs of photons with a calculable mean, last question of TD2), it fluctuates "less" than 
vacuum, in the sense that the fluctuations on the appropriate quadrature, measured as 
in (36), are lower than those obtained for . 

   allows the interferometer to be calibrated to the "shot noise limit" (SNL) 
(trace (i) in Figure 9.29 (a) on the following page). By varying the phase of the local 
oscillator (abscissa of this same figure), we obtain with squeezed vacuum the curve (ii): 
squeezing is obtained for the phases where this curve passes below the SNL.  

( )2 2 2 22 2
0 1 2cos ( ) sin ( )in LO in LOI E X Xj j-D = D + D

0ina =

0ina =
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        Figure 9.29 
 
 

BR p. 266-267
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TD 1 Quantum optics master 1 Polarization entanglement. (MW p.648) 
 
A process, like a radiative cascade radiative of an atom or spontaneous down conversion in a 
c2 crystal, produces entangled pairs of photons with a non separable wavefunction:   
 

 

 
1x et 1y (2x et 2y) stand for two directions of polarization, orthogonal each other and orthogonal 
to the propagation direction. The photons 1 and 2 can be far away, because of propagation in 
two different directions after their simultaneous emission. Polarizers and detectors are supposed 
to be of unity quantum efficiency. 
 
1) What is the probability P(1x:+) of detecting the photon 1 behind a polarizer along x ?  
 
2) A photon 1 is detected along x. What is the probability P(2y:+ | 1x:+) of detecting a photon 
2 along y ? (N.B.  | means here "given") 
 
3) The polarizer 1 is rotated of an angle  with respect to x. What is the probability 
of detecting the photon 1? 
 
Suggestion: associate to the projected classical field  an 
annihilation operator a1 of the same form (what is its commutator?) and compute the mean 
number of photons . 
 
4) Show that the joint probability of detecting 1 along  and 2 along is given by:  

 

Suggestion: compute . 
 
5) Deduce the probability  
 
Recall: P(A and B) = P(A|B). P(B)= P(B|A). P(A) 
 
6) The value of  is modified when the photons 1 and 2 are separated, in route to the polarizers.  
Is the   probability  modified? Give the answer in three ways (hoping to obtain three 
times the same result!): 
 
- with the help of question 3. 
- by using question 5 and (simply!) calculating . 
- by applying the causality principle issued from special relativity. 
 
 
 
 
 
   

1 1 2 2 1 1 2 2
1|  (|1 ,0 ,0 ,1 | 0 ,1 ,1 ,0
2 x y x y x y x yy > = > - >

1q 1(1 : )P q +

1 1 1cos( ) sin( )x yE E Eq q= +

†
1 1| |a ay y< >

1q 2q

P (1θ1 :+ et 2θ2 :+) = 1
2

sin2(θ1)cos2(θ2 )+ sin2(θ2 )cos2(θ1)− 2sin(θ1)cos(θ1)sin(θ2 )cos(θ2 )( )
=

1
2

sin2(θ1 −θ2 )( )
† †
1 2 2 1| |a a a ay y< >

2 1(2 :  | 1 : )P q q+ +

1q

2(2 : )P q +

2 1(2 :  | 1 : )P q q+ -
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TD 2: Quadratures, quantum vacuum and noise squeezing 
 

Let us define the quadrature operators:   

1) calculate the commutator [X1, X2] 
 
2) Classical correspondence: the operator  being associated to the envelope of a field 
with a time dependence in , to which time dependences are respectively 
associated X1 et X2? 

3) Vacuum energy: Compute the energy operator  with respect to . 

Deduce the value of , sometimes called vacuum energy (in photons 

per mode).   
 
4) Energy of the squeezed vacuum: A degenerate parametric amplifier obeys to the 
coupled equations: 

 

      

Find X1(z) et X2(z) versus X1(0) and X2(0). Calculate the mean number of photons 
obtained at the output of an amplifier of length z, in 'absence of injected signal. 

 
5) Energy of a squeezed coherent state: same question for a coherent state  injected 
in the amplifier. First take a real (which means an input field on the amplified 
quadrature), then a with an arbitrary phase:  . In both cases, give first the 
mean value of the energy operator, at the input then at the output of the amplifier. 
 
6) Variance of a coherent state: calculate the variances of the 

quadrature operators applied to a coherent sate. 
 
7) Extension 1 (easy): same question at the output of an amplifier with a coherent state 
at the input. 
 
8) Extension 2: variance of the photon number (tedious.... or using cleverness): calculate 

 at the output of an amplifier with a coherent state at the input. 
 

Some useful formulas:  

        

   sh(2a)=2sh(a)ch(a);                 

† †
1 2

1 ( ),   ( )
2 2

iX a a X a a= + = -

a
j te w-

2 2
1 2

2
X X+ † et a a

2 2
1 20 0
2

X X+

†

†

( )  ( )

( )  ( )

da z g a z
dz

da z g a z
dz

ì =ïï
í
ï =
ïî

a

i e ja a=

2 2
1 2 et X XD D

2ND

2 21 cos(2 ) 1 cos(2 )cos ( ) ,      sin ( )
2 2

j jj j+ -
= =

2 c (2 ) 1( )
2

h ash a -
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   TD3: Ramsey interferometer  
 
A two-level atom |g> and |e> interacts in two cavities R1 and R2 at resonance with a 
classical microwave field issued from a single source. The cavities are both set so that 
the atom performs a Rabi oscillation corresponding to a quarter turn on the Bloch 
sphere. The purpose of this TD is to show that the probability of detecting one of the 
levels at the output oscillates sinusoidally as a function of the phase shift of the 
microwave field between the two cavities.  
 
 
Cavity R1. The field E1 is taken as real phase reference, which allows, at resonance, 

the interaction Hamiltonian to be written as: ,  where is 

proportional to E1. 
 
1) show that the eigenvectors are written as  

, with which eigenvalues?  

 
2) If the atom is in the state |g> at t=0, which is its state at t1=p/2?  
 
Cavity R2. By taking into account the phase corrections due to the atom move, the 
field E2 in the second cavity writes , leading to an Hamiltonian 

. 

 
3) Show that the eigenvectors write: 

   

with which eigenvalues? 
 
4) What does become the atom state, entering in R2 in the state obtained after R1 (the 
phase reference taken for E2  allows ignoring the phase shift  of the atom state between 
R1 and R2)  after an interaction of duration t1 in R2? Show that the probability of finding 
the atom in the |g> state is: . 
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