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Chapter	1)	Probabilities,	conditional	probabilities,	independence	
	
I)	Intuitive	concept	of	probability	
	
A	probability	is	associated	with	the	"chance"	that	an	event	will	occur.	
	
For	example,	when	rolling	a	die,	you	have	a	1	in	6	chance	of	rolling	a	5,	which	is	a	
probability	P(5)=1/6.	
	
....or	lotto,	the	probability	of	getting	the	grid	3,7,	9,18,	21,	24	is	about	1/(14	106			)	
	
Note	1:	the	probability	of	obtaining	the	1,2,3,4,5,6	grid	is	identical,	which	is	not	
intuitive	for	everyone	
	
Note	2:	A	grid	has	six	check	numbers.	There	is	no	notion	of	order	between	these	
numbers.	On	the	other	hand,	with	the	drawing,	 the	balls	are	drawn	one	by	one	
(without	 discount),	 thus	 in	 a	 precise	 order.	 We	 conclude	 that	 a	 winning	 grid	
corresponds	to	several	distinct	draws	(How	many?).	
	
In	these	two	examples,	a	probability	Pi	is	associated	with	an	elementary	event	i.	
When	rolling	a	single	die,	there	are	6	elementary	events,	corresponding	to	each	
side,	and,	for	an	untapped	die	Pi	=1/6	for	i	from	1	to	6.	
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The	 lotto	example	 is	 less	 trivial:	 one	 can	choose	as	elementary	event	a	grid	 (6	
numbers,	 without	 repetition,	 between	 1	 and	 49	 in	 any	 order),	 or	 a	 draw	 (6	
numbers	ordered,	without	repetition,	between	1	and	49).	
	
To	ensure	that	a	die	is	not	rigged,	roll	it	a	large	number	of	times	and	ensure	that	
the	proportion	of	results	is	approximately	equal	to	1/6	for	each	side.	The	intuitive	
idea	of	probability	is	thus	associated	with	that	of	frequency,	calculated	on	a	very	
large	number	of	repetitions	of	the	experiment.	
	
The	 notion	 of	 probability	 does	 not	 always	 cover	 the	 notion	 of	 "chance	 of	 an	
outcome	 in	 an	 experiment	 to	 be	 performed".	 It	 can	 translate	 incomplete	
knowledge	acquired	using	the	results	of	an	experiment	already	carried	out.	One	
example,	which	we	will	take	up	again,	is	the	following	(see	also	TD2):	
	
We	know	that	at	a	given	date,	3%	of	a	population	has	hepatitis.		Screening	tests	for	
the	disease	are	available:	
If	the	person	is	sick,	then	the	test	is	positive	with	a	95%	probability.	
If	the	person	is	not	sick,	then	the	test	is	positive	with	a	10%	probability.		
	
A	person	randomly	selected	from	the	population	is	tested.	
What	is	the	probability	of	a	person	being	sick	if	their	test	is	positive?		
	
In	this	example,	the	test	result	does	not	indicate	whether	the	person	is	ill	(or	not).		
On	the	other	hand,	we	can	translate	all	the	knowledge	acquired,	by	the	test	but	
also	before	the	test,	by	a	probability	for	the	person	tested	to	be	sick.	
	
II)	Some	definitions	
	
The	mathematical	theory	of	probability	widely	uses	the	language	of	sets.	This	is	
defined	as:	
	
Universe	Ω	:	All	elementary	events	
Example	1:	Draw	a	die	Ω={1,2,3,4,5,6}	
	
Example	2:	The	lotto.	There	are	two	possible	universe	choices:	the	set	of	grids,	or	
the	set	of	ordered	prints.	
	
This	second	example	shows	that,	for	a	given	practical	problem,	the	universe	is	not	
necessarily	imposed.	But	it's	always	the	first	thing	to	define.	
	
Part	of	Ω	:	this	is	a	set	A	of	elementary	events	included	in	Ω	
Example	:	A={all	values	>3	following	a	roll	of	the	die}={4,5,6}	
A	is	called	an	event	(not	elementary	if	Card(A)≠1)	
		
Probability:	application	of	all	parts	of	Ω	on[0	1]	such	that	:	
-P(Ω)=1	
-	if	A1,......,An	are	separated	parts	in	Ω	(parts	with	a	null	intersection	between	any	
two	parts,	also	called	incompatible	events),	then		
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These	properties	of	probability	are	called	Kolmogorov	axiomatics.	
	
Some	immediate	properties	are	deduced	from	this	axiomatic:	
	
𝑃(⊘) + 𝑃(Ω) = 𝑃(Ω) ⟹ 𝑃(⊘) = 0 

	
More	generally,	𝑃(𝐴̅) = 1 − 𝑃(𝐴), 𝐴̅	is	the	complementary	part	of	A	(realized	if	A	
is	not	realized).	
	
P(A	⋃	B	)=	P(A)+	P(B)-P(A⋂B)	
	
Indeed,	three	separate	parts	can	be	defined:	A⋂B,	C=A-	A⋂B,	D=	B-	A⋂B	
We	have	immediately	A	⋃	B=	C	⋃	D	⋃	A⋂B.		
Now,	P(C)=P(A)	-P(A⋂B),	P(D)=P(B)	-P(A⋂B)	from	where		
P(A	⋃	B)=P(A)-	P(A⋂B)+	P(B)-	P(A⋂B)+	P(A⋂B)	
	
III)	Combinations	of	equiprobable	elementary	events	
	
If	 all	 elementary	 events	 (elements	 of	 Ω)	 are	 equiprobable,	 the	 probability	
associated	with	each	of	them	is	obviously	1/	Card(Ω).	The		probability	associated	
with	a	part	A	of	Ω	is,	no	less	obviously,	Card(A)	/	Card(Ω).	
Card(Ω)	 the	 number	 of	 possible	 events	 and	 Card(A)	 the	 number	 of	 favorable	
events.	
	
P(A)=(Number	 of	 elements	 in	 A)/(Number	 of	 elements	 in	 Ω)=	 (Number	 of	
favorable	cases	)/(Number	of	possible	cases)	
	
Example	1.	The	 successive	 letters	of	 the	word	CHIENNE	are	drawn	at	 random.	
What	is	the	probability	of	getting	the	word	CHIENNE?	
	
We	thus	have	at	the	beginning	eight	letters,	including	two	E	which	we	will	number	
E1	and	E2,	and	two	N	numbered	N1	and	N2.	
	
Universe:	set	of	possible	ordered	prints.	There	are	8	ways	to	shoot	the	first	letter,	
then	7	ways	to	shoot	the	second	letter,	etc.,	that	is	8!	possible	cases.	The	inversion	
of	N1	and	N2	gives	a	different	draw.	
	
Favorable	cases:	the	word	CHIENNE	in	order.	However	N1	N2	and	N2	N1	
are	both	in	favor.	Ditto	for	the	E.	Giving	4	favorable	cases	and		
P(CHIENNE)=4/8!	
	
Example	2:	The	lotto.	The	choice	facilitating	the	calculation	is	to	take	as	universe	
the	ordered	draws	of	6	numbers	among	49:	Card(Ω)=49×48×..×44=	49!/43!	



	 4	

	
Number	of	favorable	cases:	number	of	ordered	draws	corresponding	to	a	grid	of	6	
numbers,	or	6!	
	
Let	P(A)=1/𝐶678 ,	with	𝐶*9 ≜

*!
9!	(*<9)!

		,			𝐶*9	is	the	binomial	coefficient,	and	≜	will	be	
used	in	this	course	in	the	sense	of	"equal	by	definition".	
	
IV)	Conditional	Probabilities	
	
Let's	go	back	to	a	TD1	exercise:	3	French	clubs	have	qualified	for	the	quarter-finals	
of	the	Champions	League.	What	is	the	probability	that	two	French	clubs	will	meet?	
	
To	avoid	counting	possible	cases	and	favorable	cases,	we	can	 first	calculate	 the	
probability	that	one	of	the	French	clubs,	let's	name	F1,	meets	a	French	club.	There	
are	7	possible	opponents	including	2	French	and	this	probability	is	2/7.	We	still	
have	to	consider	the	case	where	F1	meets	a	foreign	club.	Then	F2	has	one	chance	
out	of	5	 to	meet	F3,	one	of	 the	 remaining	5	possible	opponents.	1/5	 is	not	 the	
probability	that	F2	meets	a	French	club	(this	probability	is	of	course	2/7)	but	the	
probability	that	F2	meets	a	French	club	knowing	that	F1	meets	a	foreign	club.		
If	an	element	of	Ω	is	formed	by	a	list	of	four	matches	(no	matter	of	the	order	of	the	
matches	and	the	order	of	opponents	in	a	match),	Ω	has	thus	been	broken	down	
into	two	separate	parts	whose	union	is	equal	to	Ω	(it	is	the	definition	of	a	partition	
of	Ω).	
C={elements  where F1 meets	a	French	club }.										P(C)=2/7	
B=	{ elements  whereF1 	meets	a	foreign	club}.													P(B)=5/7	
	
Let	be	A	the	part	of	Ω	where	two	French	clubs	meet	
	
P(A|B)	 reads	 P(A	 knowing	 B)	 and	 is	 defined	 as	 (P(A⋂B)	 in	 case	we	 take	 B	 as	
universe).	Clearly,	coming	back	to	the	universe	Ω=C	⋃	B,	we	have		
P(A⋂B)=	P(A|B).P(B)	(Formula	of	compound	probabilities).	
	
We	will	use	this	equality	as	definition	;	the	conditional	probability	of	A	knowing	B,	
noted	P(A|B),	is	defined	by	:	P(A|B)≜(P(A⋂B))/(P(B)).	
	
Let's	take	our	example	again:		
P(A)=	P(C)+P(A⋂B	)=	P(C)+P(A|B).P(B)=2/7+1/5∙	5/7=3/7		
	
Bayes's	theorem:	
In	the	compound	probability	formula,	A	and	B	can	be	interchanged,	hence:		
	
P(A⋂B)=	P(A|B).P(B)=	P(B|A).P(A)	
	
that	you	can	write:	
	
P(A|B)=	(P(B|A).P(A))/(P(B))	
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This	formula,	very	simple,	is	at	the	origin	of	a	whole	section	of	probability	theory	
and	estimation,	called	Bayesian	theory.	An	overview	is	given	by	using	the	example	
given	in	the	introduction:	
It	is	known	that	at	a	given	date,	3%	of	a	population	is	infected	with	hepatitis:	
If	the	person	is	sick,	then	the	test	is	positive	with	a	95%	probability.	
If	the	person	is	not	sick,	then	the	test	is	positive	with	a	10%	probability.		
	
A	person	is	randomly	tested	in	the	population	and	the	test	is	positive.	How	likely	
is	the	person	tested	to	be	sick?	
P(sick|positive)=(P(positive|	sick).P(sick))/(P(positive))	
=(0.95.0.03)/(0.95.0.03+0.10.0,97)=0.23	
	
This	number	may	seem	small.	It	illustrates	the	importance	of	information,	called	
a	priori,	which	gives	the	probability	of	being	sick	before	the	measurement,	here	
3%.	The	test	increases	this	probability	in	the	event	of	a	positive	result,	but	this	
probability	 remains	 very	 different	 from	what	 a	 reasoning	 based	 solely	 on	 the	
reliability	 of	 the	 test	 could	 give.	 This	 information	 should	 be	 estimated	 with	
caution.	For	example,	think	about	what	you	should	think	of	as	P(sick)	if	you	are	
only	testing	people	going	to	a	health	center....	
	
	
	
Total	Probability	Formula		
	
The	probability	of	being	positive	was	calculated	by	dividing	Ω	into	sick	and	not	
sick,	i.e.	by	partitioning	Ω.	This	approach	is	general	
	

𝑃(𝐵) =)𝑃
&

(B|A&)𝑃(A&)	

	
where	the	Ai	form	a	partition	of	Ω	:	separate	parts	whose	union	is	equal	to	Ω	
	
	
V)	Independence		
	
Definition	1:	A	and	B	are	independent	if	and	only	if	P(A|B)=P(A)	
	
In	other	words,	restricting	the	universe	to	B	does	not	change	the	probability	of	A.	
	
An	alternative	definition	immediately	derived	from	the	above	definition	will	often	
be	used:	
	
P(A|B)=P(A)⟹P(A	and	B)=	P(A|B).	P(B)=	P(A)	P(B)	
	
Definition	2:	A	and	B	are	independent	if	and	only	if	P(A	and	B)=P(A)	P(B)	
	
Independence	 is	 a	very	 common	assumption,	 the	practical	 realization	of	which	
must	be	carefully	verified.	Is	it	so	obvious	that	getting	a	coin	toss	does	not	affect	
the	next	flip?	
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A	more	important	example,	and	more	difficult,	is	the	following	one:	one	notes,	in	
a	manufacture,	that	all	the	measurements	made	at	9	am	are	close	to	1	m	and	that	
all	those	made	at	4	pm	are	close	to	1.02	m,	for	a	perfectly	known	reason:	the	pieces	
expand	with	the	temperature,	higher	in	this	workshop	at	4	pm	than	at	9	am.	Are	
the	measurements	of	two	successive	pieces	independent?		
Although	these	measurements	are	very	close,	compared	to	the	dispersion	of	all	
the	 measurements	 over	 the	 day,	 the	 answer	 can	 be	 considered	 positive:	 the	
probability	of	obtaining	a	given	result	on	the	second	piece	is	not	influenced	by	the	
result	obtained	on	the	first	piece,	but	only	by	the	temperature	(or	the	time	of	day).			
But	the	conclusion	is	reversed	if	we	use	probabilities	to	translate	an	incomplete	
knowledge:	 if	we	measure	 two	 successive	pieces,	without	 knowing	 neither	 the	
time	nor	the	temperature,	the	measurement	of	the	first	piece	gives	an	indication	
on	the	value	of	the	second	piece.	In	this	example,	the	conclusions	are	opposite	if	
the	universe	is	defined	at	one	time	of	the	day	or	over	the	entire	day.	
We	can	also	use	the	concept	of	causality,	which	we	were	careful	not	to	use	until	
now,	to	reformulate	the	problem.		If	the	probabilities	of	measuring	a	given	value	
on	two	successive	pieces	are	not	independent,	it	is	because	they	are	influenced	by	
a	common	cause:	the	temperature	T	at	a	given	time.	The	Reichenbach's	principle	
stipulates	 that,	 if	 T	 is	 the	 sole	 cause	 of	 the	 dependence	 of	 the	 lengths	 of	 two	
successive	 pieces	 LN	 and	 LN+1,	 then	 the	 conditional	 probabilities	 obey	 the	
definition	 2	 of	 independence:	 P(LN	 and	 LN+1|T)=	 P(LN	 |T)	 .	 P(LN+1|T).	 Using	
causality	in	this	way	is	obviously	equivalent	to	restricting	the	universe	to	pieces	
measured	at	a	given	time	(at	a	given	temperature).	
	
	

Chapter	2)	Discrete	random	variables	
	
I)	Introduction	and	definition	
	
Let	us	take	again	the	example	of	the	dice.	The	fact	that	each	side	has	a	numerical	
value	has	no	importance	in	the	reasoning	followed	so	far.	You	could	have	had	a	
drawing	 on	 each	 side,	 for	 example	 an	 animal,	 and	 got	 P(dog)=P(cat)=1/6.	
Similarly,	you	can	roll	two	dice	and	get	P(dog,	cat),	rather	than	P(1,5).	
On	 the	 other	 hand,	 the	 numerical	 values	 of	 the	 faces	 are	 essential	 if	 we	 are	
interested	 in	 the	 probability	 of	 the	 sum	 of	 two	 dice.	 An	 S	 result	 is	 obtained	
between	2	and	12,	with,	for	example,	P(S=2)=	1/36,	but	P(S=6)=5/36.	Unlike	most	
cases	 considered	 so	 far,	 the	 different	 values	 of	 S	 are	 not	 equiprobable.	 The	
calculation	is	done	by	determining	the	number	of	elementary	events	associated	
with	 a	 value	 of	 S.	 These	 elementary	 events	 form	 a	 part	 A	of	 5	 elements	 in	 the	
universe	 Ω	 of	 the	 ordered	 results	 of	 the	 roll	 of	 two	 dice	 (36	 elements).	 This	
example	suggests	the	following	definition	of	a	discrete	random	variable:		
	
Definition	1	(mathematical)	of	a	discrete	random	variable	(r.v.):	
	
A	discrete	r.v.	is	an	application	that	associates	a	part	A	of	Ω,	and	the	corresponding	
probability,	with	a	number	of	R	(often,	but	not	always,	of	N	for	discrete	r.v.).	
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With	this	definition,	a	random	variable	is	neither	variable	nor	random.	If	we	take	
again	 our	 example,	 the	 result	 of	 a	 draw	of	 two	 dice	will	 however	 give	 for	 S	 a	
number	 between	 2	 and	 12,	 therefore	 variable,	 and	 random	 since	 the	 value	
obtained	is	due	to	chance.	Hence	a	second	definition:	
	
Definition	2	(experimental)	of	a	discrete	random	variable	(r.v.):	
	
(The	result	of)	a	r.v.	is	the	numerical	result	of	a	random	experiment.	
	
In	the	example	of	the	sum	of	two	dice,	the	possible	results	were	in	finite	number	
(the	numbers	 from	2	to	12).	We	will	see	cases	where	a	non-zero	probability	 is	
associated	with	all	values	of	N.	But,	of	course,	if	the	r.v.	X	takes	its	values	from	N,	
we	have	(∑ 𝑃(𝑋 = 𝑛)D

*+E 	)		=1.	
	
II	Basic	examples	
	
Bernouilli's	Law:	
	
A	Bernouilli's	r.v.	can	only	take	two	values,	1	and	0,	with	a	respective	probability	
p	and	(1-p):	P(X=1)=p,	P(X=0)=1-p.	
	
For	example,	we	can	model	the	heads	or	tails	by	associating	X=1	to	heads	and	X=0	
to	tails,	with	p=1/2.		A	second	example	can	associate	X=1	with	a	die	roll	giving	a	6,	
with	a	probability	P=1/6,	and	X=0	for	any	other	value,	with	the	probability	5/6.	
	
Binomial	Law	:	
	

It	is	the	sum	of	N	independent	Bernouilli	r.v.:	𝑌 = ∑ 𝑋&G
&+, 	

	
	
Example	:	Y	is	the	number	of	tails	when	drawing	a	series	of	100	tails	or	heads.	It	
has	been	shown	in	exercise	that	𝑃(𝑌 = 𝑘) = 𝐶G9	𝑝9	(1 − 𝑝)G<9	
	
Poisson	Law	
	
Let	be	a	time	interval	Δt.	We	consider	a	random	process	generating	discrete	events	
independent	of	each	other	with	a	probability	of	generating	an	event	constant	
over	time.	Let	us	consider	in	Δt	a	time	interval	dt	small	enough	that:		
P(1	event	during	dt)=λ	dt/Δt<<<1.	λ	is	a	parameter	without	unit,	which	we	will	
see	later	that	it	is	the	expectation	number	of	events	during	Δt.	Then,	we	can	neglect	
the	probability	that	two	or	more	events	occur	during	dt	and	the	law	Y	followed	by	
the	number	of	events	k	during	Δt	is	written	as	the	sum	of	a	large	number	n=Δt/dt	
of	Bernouilli's	laws	of	probability	p=λ	dt/Δt.	Although	n⟶∞	and	n⟶0,	np=	𝜆	is	a	
finite	number	not	zero.	
	
This	is	a	binomial	law,	hence	𝑃(𝑌 = 𝑘) = 𝐶*9	𝑝9	(1 − 𝑝)*<9	
	
but		
𝑝 → 0 ⟹ (1 − 𝑝) ≃ 𝑒𝑥𝑝(−𝑝) ⟹ (1 − 𝑝)*<9 = 𝑒𝑥𝑝(−𝑛𝑝)𝑒𝑥𝑝(𝑘𝑝) ≃ 𝑒𝑥𝑝(−𝑛𝑝)			
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Indeed	k	is	a	finite	integer	and	𝑘𝑝 → 0,	unlike	np=	λ.		Moreover:	
	

𝐶*9	𝑝9 =
𝑛(𝑛 − 1). . . (𝑛 − 𝑘 + 1)

𝑘! 	𝑝9 =
(𝑛𝑝)9(1 − 1/𝑛). . . (1 − (𝑘 − 1)/𝑛)

𝑘! ≅
𝜆9

𝑘!	
	
Hence	the	final	result:	
	

𝑃(𝑌 = 𝑘) =
𝑒𝑥𝑝(−𝜆)𝜆9

𝑘! 	
	
III	Moments	of	a	discrete	r.v.		
	
Expectation	or	true	mean:	
	
The	expectation		E(X)	of	the	r.v.	X,	which	can	take	the	values	𝑥&,	is	defined	as:	
	

𝐸(𝑋) ≜	< 𝑋 >	≜ )𝑃(𝑋 = 𝑥&)
&

		𝑥&	

Variance:	
	
The	variance	V(X)	is	defined	by		
		

𝑉(𝑋) ≜ 𝐸((𝑋 − 𝐸(𝑋))W) = 	)𝑃(𝑋 = 𝑥&)
&

		(𝑥& − 𝐸(𝑋))	W	

The	 last	 equality	 is	 not	 obvious.	 Indeed,	 one	 uses	 𝑃(𝑋 = 𝑥&)	, whereas	 the	
definition	 leads	 to	 use	𝑃(𝑌 = (𝑥&−𝐸(𝑋))W	) .	 But,	 we	 find	 in	 the	 sum	 on	 i	 the	
different	probabilities	corresponding	to	a	value	of	Y.		
In	developing	this	last	equality,	we	show	(to	lighten	writing,	we	note,	if	there	is	no	
ambiguity,	𝑃(𝑥&)	for	𝑃(𝑋 = 𝑥&))	:	

𝑉(𝑋) =)𝑃(𝑥&)
&

𝑥&	W − 2	𝐸(𝑋)\)𝑃(𝑥&)𝑥&
&

] + 𝐸(𝑋)W)𝑃(𝑥&) = 𝐸(𝑋W) −
&

𝐸(𝑋)W	

	
	
Standard	deviation:	
	
The	standard	deviation	sX	is	defined	as:		𝜎_ = `𝑉(𝑋).	Very	often	the	variance	will	
be	noted	using	the	standard	deviation:	𝑉(𝑋) = 𝜎_W.	
	
Centered	moments	centered	of	order	n:	
	
They	are	defined	by:	𝜇* ≜ 𝐸((𝑋 − 𝐸(𝑋))*)	
	
So	𝜎_W = 𝜇W.	
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	IV)	Joint	and	marginal	laws,	sum	of	r.v..,	product,	(in)dependence	
	
IV.1)	Expectation	of	a	sum	
	
Let	us	return	to	the	example	of	the	sum	of	two	dice	and	look	for	E(S)=E(N1+N2),	
where	N1	denotes	the	r.v.	which	can	take	the	values	1	to	6,	with	P(n)=1/6,	n∈
{1,...,6}.	
Going	back	to	the	definition,	we	have:	
	
	< 𝑆 >	= ∑ 𝑃(𝑠&),W

de+W 		𝑠&	
	
But	 P(si)	 is	 a	 relatively	 complicated	 law,	whereas	 <N1>,	or	<N2>,	 is	 calculated	
immediately	because	P(n)	has	only	one	possible	value:	<N1>=<N2>=3.5.	We	will	
show	that	<S>	is	simply	given	by	the	sum	of	<N1>	and	<N2>.	We	need	to	use	the	
notion	of	joint	probability:	
	
Definition	:	
	
Let	be	two	r.v.	X	and	Y,	taking	the	values	xi	and	yi	respectively.	The	joint	probability	
Pij	is	defined	by	:		
	
Pij	=	P(X=	xi	and	Y=yj)	
	
Reminder:	in	general,	Pij≠	P(X=	xi).	P(Y=yj),	unless	X	and	Y	are	independent.	
	
Theorem	:	E(X+Y)=E(X)+E(Y)	
	
This	theorem	is	valid	whether	X	and	Y	are	independent	or	not.	
	
Demonstration	:		

𝐸(𝑋 + 𝑌) =))𝑃&f
f&

.		(𝑥& + 𝑦f) =)𝑥&
&

)𝑃&f
f

+)𝑦f
f

)𝑃&f
&

	

	
But	(total	probability	formula):		

𝑃(𝑋 = 𝑥&) = )𝑃
f

(𝑋 = 𝑥&		et	𝑌 = 𝑦f) =)𝑃&f
f

	

In	this	context,	P(X=x_i)	is	called	the	marginal	law	of	X.	
Hence:	
	

𝐸(𝑋 + 𝑌) =)𝑥&
&

	𝑃(𝑋 = 𝑥&) +)𝑦f
f

𝑃(𝑌 = 𝑦f) = 𝐸(𝑋) + 𝐸(𝑌)	

	
IV.2)	Expectation	of	a	product	
	

𝐸(𝑋𝑌) =))𝑃&f
f&

.		(𝑥&𝑦f)	

If	X	and	Y	are	independent,	Pij=	P(X=	xi	).	P(Y=yj)	
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Then,	only	in	this	case:	
	

𝐸(𝑋𝑌) =))𝑃(𝑥&)𝑥&
f&

𝑃(𝑦f)𝑦f =)𝑃(𝑥&)𝑥&)𝑃(𝑦f)𝑦f
f&

= 𝐸(𝑋)𝐸(𝑌)	

	
IV.3)	Variance	of	a	sum	.		
	
V(X+Y)=E((X+Y)2)-(E(X)+E(Y))2=E(X2)+E(Y2)+2E(XY)-E(X)2-
2E(X)E(Y)=V(X)+V(Y)+2(E(XY)-E(X)E(Y))=	V(X)+V(Y)+2	COV(X,Y)		
	
where	the	last	equality	defines	the	covariance	between	X	and	Y	:	
	
COV(X,Y)≜	E(XY)-E(X)E(Y)	=E[(X-E(X))(Y-E(Y))]	
	
If	X	and	Y	are	independent,	COV(X,Y)=0.	The	reverse	is	not	always	true.		
Two	cases	are	particularly	remarkable:	
	
1)	X	and	Y	independent	:	V(X+Y)=V(X)+V(Y)	
	
2)	Y=X:	V(2X)	=	4	V(X)	
	
More	generally,	let	be	c	a	real	constant,	V(cX)=c2	V(X)	
	
This	last	formula	is	better	understood	at	the	level	of	standard	deviations:	
sc�=	c	s�.	The	standard	deviation	represents	the	dispersion	of	the	variable	and	c	
represents	a	change	in	scale.	
	
V)	Esperance	 (or	mean)	and	variance	of	Bernouilli,	binomial	and	Poisson	
laws	
	
Bernouilli's	Law:	
	
A	Bernouilli	r.v.	X	of	parameter	p	has	a	mean:		
	
<X>=p.1	+(1-p).0=	p.	
	
and	a	variance	:	
	

𝑉(𝑋) 	= 	𝑝		(1 − 𝑝)W + (1 − 𝑝)(0 − 𝑝)W = 𝑝 − 𝑝W	
	
This	can	also	be	established	by	noting	that	X2=X	since	X=	0	or	1.	Hence	:	
	

𝑉(𝑋) = 𝐸(𝑋W) − 𝐸(𝑋)W = 𝑝 − 𝑝W	
	
	
Binomial	law:	
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It	 is	 the	sum	of	n	 independent	Bernouilli's	r.v	of	parameter	p.	Hence,	using	the	
formulas	on	the	variance	and	mean	of	a	sum:		
	
<X>=n	p	
	
V(X)=n	(p-p^2)	
	
N.B:	variances	can	only	be	added	because	the	laws	are	independent.	
	
Poisson	law:		
	
It	is	a	binomial	law	with	n⟶∞, 𝑝 → 0	,		np=	𝜆	finite,	hence	
	
	 	 	 	 <X>=n	p=λ	
	

𝑉(𝑋) = 𝑛	(𝑝 − 𝑝W) = 𝜆	
	
We	can	also	reason	in	the	following	way:	
	
Mean	
	
on	dt	:	E	(X)=P(1).1=	λ	dt/Δt	
	
Indeed,	P(2	or	more)	is	negligible	
	
on	Δt,	we	add	n=Δt/dt	laws	of	means	λ	dt/Δt,	which	gives	a	sum	of	means	equal	to	
λ.	λ	is	therefore	the	mean	of	the	Poisson's	law,	i.e.	the	mean	number	of	events	over	
the	interval	Δt.	
	
Variance	
	

on	dt	:	E(X2)-E(X)2=E(X)-	E(X)2=	𝜆 lm
no
− p𝜆 lm

no
q
W
≃ 𝜆 lm

no
	

	
We	 used	 the	 fact	 that	 X	 can	 only	 be	 0	 or	 1,	 hence	 X2=X,	 and	 the	 fact	 that	 λ	

dt/Δt<<<1,	which	allows	p𝜆 lm
no
q
W
	to	be	neglected	

	
on	Δt	:	the	n	Bernouilli's	laws	are	independent	(the	independence	of	events	is	the	
fundamental	hypothesis	of	Poisson's	law),	 from	which	we	can	add	variances	as	
well	as	means,	which	gives	V(X)=λ.	
	
A	Poisson	r.v.	has	a	variance	equal	to	its	mean	
	
N.B	This	result	only	makes	sense	because	the	possible	values	are	numbers	without	
units.	 In	 the	next	 chapter,	devoted	 to	 continuous	r.v.,	 the	accessible	values	will	
most	 often	 be	 physical	 quantities	 with	 units,	 and	 the	 variance	 will	 be	
homogeneous	to	the	square	of	the	mean.	
	
VI	Weak	law	of	large	numbers	
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Position	of	the	problem	
	
Can	we	give	a	precise	content	to	the	intuitive	idea:	the	frequency	of	realization	of	
a	given	event	is	close	to	its	probability	if	we	repeat	the	experiment	a	large	number	
of	times?	For	example,	if	you	flip	a	coin	10	times,	the	probability	of	finding	4	to	6	
heads,	or	a	"frequency"	between	0.4	and	0.6,	is	65.6%.	If	100	flips	are	made,	the	
probability	 of	 finding	 40	 to	 60	 heads	 is	 96.5%:	 the	 experimental	 frequency	
approaches	the	theoretical	probability	of	0.5.	It	may	be	noted,	however,	that	while	
frequency	fluctuations	decrease	as	the	number	of	flips	increases,	fluctuations	in	
the	number	of	flips	increase.	For	example,	for	10	flips	P(5	heads)=24.6%,	while	
for	100	flips,	P(50	heads)=8.0%.	
Note	also	that	the	frequency	of	the	heads	can	be	calculated	using	the	arithmetic	
average	𝑋	of	the	N	flips	(X=1	for	heads,	0	for	tails)	:	𝑋r = ,

G
∑ 𝑋&G
&+, 	

	
Warning:	 do	 not	 confuse	 the	 arithmetic	 average	 𝑋r 	with	 the	 true	 mean,	 or	
expectation,	E(X)=<X>.	For	a	coin	toss,	 the	true	mean	 is	a	parameter	of	 the	r.v.,	
with		value	of	exactly	1/2.		
	
The	 arithmetic	 average	 is,	 however,	 a	 new	 r.v.,	 	 for	 example	with	 values	 in	 {0	
0,1......,1	}	for	N=10.	Let's	calculate	its	mean	and	its	variance:	
	
	
E(𝑋r)=E(X)	(Obvious	demonstration,	using	the	expectation	value	of	a	sum)	
	

𝑉(𝑋r) =
1
𝑁W)𝑉(𝑋) =

𝑉(𝑋)
𝑁

G

&+,

	

	
where	we	used	the	fact	that	the	flips	are	independent.	
	
We	will	now	prove	an	inequality	that	links	the	variance	of	a	r.v.	to	the	probability	
of	the	difference	between	an	achievement	of	this	r.v.	and	its	mean	
	
Inequality	of	Bienaymé-Tchebytchev	
	
	
Let	X	be	a	r.v.	of	expectation	E(X)	and	variance	V(x)	and	 let	be	𝑥&the	result	of	a	
realization	of	X.	We	have:	
	

For	all	real	e>0,	P(|𝑥& − 𝐸(𝑋)| > 𝑒) ≤ u(_)
vw
	

	
	

For	example,	P(|𝑥& − 𝐸(𝑋)| > 2𝜎_) ≤ 1/4	
	
For	many	laws,	much	lower	limits	can	be	proven.	
	
Demonstration:	
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Let	be	a	real	e	>0.	By	definition,	𝑉(𝑋) = 	∑ 𝑃(𝑋 = 𝑥&)& 		(𝑥& − 𝐸(𝑋))	W	
	
Among	the	possible	𝑥&values	for	X	are	those	for	which	|𝑥& − 𝐸(𝑋)| > 𝑒	
is	verified.	Let	A	be	this	set.	
	

𝑉(𝑋) ≥ ) 𝑃(𝑥&)
ze∈|

(𝑥& − 𝐸(𝑋))	W ≥ 𝑒W \) 𝑃(𝑥&)
ze∈|

]	

	
	 However,	∑ 𝑃(𝑥&)ze∈| = 	𝑃(|𝑥& − 𝐸(𝑋)| > 𝑒)	
	
Hence	𝑉(𝑋) ≥ 𝑒W[𝑃(|𝑥& − 𝐸(𝑋)| > 𝑒)]						
	
Combining	this	inequality	with	the	fact	that	the	arithmetic	mean	has	a	variance	
proportional	to	the	inverse	of	the	number	of	experiments	results	in	the	weak	law	
of	large	numbers:	
	
Theorem	(weak	law	of	large	numbers):	Let	be	N	independent	r.v.	with	the	same	
law	of	probability	P(X)	and	of	expectation	E(X);	then:	

	 	
whatever	e>0,	P(|𝑋r − 𝐸(𝑋)| > 𝑒) → 0		𝑓𝑜𝑟	𝑁 → ∞		

	
Indeed	𝑋r	has	for	mean	E(X),	for	variance	V(X)/N	and	:	
	

P(|𝑋r − 𝐸(𝑋)| > 𝑒) ≤ u(_)
Gvw

		
	
Let's	take	the	example	of	100	flips:	
	

P(|𝑋r − 0,5)| > 0,1) ≤ u(_)
,EE	.E,,w

= 0,25	
	
We	saw	that	P(|𝑋r − 0,5)| > 0,1) = 0,035.	This	result	is	well	below	the	maximum	
indicated	by	the	inequality	of	Bienaymé-Tchebytchev.	
	
Despite	 its	 lack	 of	 "performance",	 this	 inequality	 nevertheless	 has	 the	 great	
interest	of	proving	that	frequency	tends	towards	probability	for	large	N.	
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Chapter	3)	Continuous	random	variables	and	normal	distribution	
	

I)	Continuous	random	variables	
	
Let	 us	 repeat	 the	 measurement	 of	 a	 quantity,	 for	 example	 the	 period	 of	 a	
pendulum.	We'll	get	a	measurement	chart.	
	
Example	:	T(s)	:	15.21	15.23	15.29	15.14	
	
and	 we	 will	 often	 try	 to	 model	 the	 random	 part	 of	 the	 measurement	 by	 a	
continuous	 r.v.	 ,	 with	 a	 non-zero	 probability	 over	 an	 interval.	 The	 cumulative	
density	function	F(x)	formalizes	this	intuitive	idea:	
	
Definition	of	the	cumulative	density	function	F(x):		
	

F(x) ≜ P(X < x), F(−∞) = 0, F(∞) = 1	
	

	
Although	more	important	for	a	continuous	r.v.	,	this	definition	is	also	valid	for	a.	
discrete	r.v.	
	
We	deduce	the	probability	for	a	continuous	r.v	to	have	a	result	over	an	interval:	
	

P(𝑥, < X < 𝑥W) = 		F(𝑥W) − 	F(𝑥,)	
	
But,	 unlike	 a	 discrete	 r.v.,	 we	 can't	 define	 a	 probability	 at	 a	 point.	 Indeed,	 the	
probability	 is	 spread	 over	 an	 interval	 (more	or	 less	 long)	 and	we	 feel	 that	 the	
probability	at	a	point	 is	zero	because	a	point	 can	be	seen	as	an	 infinitely	small	
interval.	
On	the	other	hand,	the	derivative	can	easily	be	defined	at	a	point	of	the	distribution	
function.	Hence:	
	
Definition	:	
	
The	probability	density	function	(p.d.f.)	p(x)	of	the	continuous	r.v.	X	is	defined	as:	
	

𝑝(𝑥) ≜ lim
�⟶E

�pz<�w�_�z�
�
wq

�
= l�(z)

lz
		

	
N.B.1:	this	notation,	introduced	here	for	its	simplicity,	is	ambiguous	if	several	r.v.	
are	considered.	For	example,	if	X	and	Y	are	two	continuous	r.v.,	the	two	distinct	
values		𝑝_(𝑥E)	𝑎𝑛𝑑		𝑝�(𝑥E)	should	be	distinguished	at	point	x0.	This	more	precise	
notation	will	be	used	if	necessary.	
	
N.B.2:	Contrary	to	a	probability,	the	p.d.f	generally	has	a	dimension,	inverse	to	that	
of	 the	 r.v.	 X.	 In	 the	 example	 that	 opens	 this	 chapter,	 T	 is	 in	 seconds	 and	 its	
probability	density	in	s-1.	
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Of	course,	if	you	define	the	r.v.	by	its	probability	density,	you	find	the	cumulative	
density	function	as	:		

𝐹(𝑥) = 	� 𝑝(𝑥′)
z

<D
𝑑𝑥′	

Hence,	immediately:		

� 𝑝(𝑥)
D

<D
𝑑𝑥 = 1	

	
It	 is	 very	 easy	 to	 generalize	 to	 continuous	 variables	 the	 results	 defined	 or	
demonstrated	 on	 the	 discrete	 r.v.	 by	 replacing	 probabilities	 by	 probability	
densities	and	sums	by	integrals	:	
	
Expectation	or	true	mean:		
	

E(X)=<X>=	∫ 𝑥	𝑝(𝑥)D
<D 𝑑𝑥	

	
The	 results	 on	 the	 expectation	 of	 a	 sum	 and	 the	 expectation	 of	 a	 product	 are	
identical	to	the	discrete	case.	
	
Variance:	
	

V(X)=𝜎_W = E((X−< X >)W) = ∫ (𝑥−< 𝑋 >)W	𝑝_(𝑥)
D
<D 𝑑𝑥	

	
The	 last	 equality	 is	 not	 obvious:	 according	 to	 the	 definition	of	 expectation,	we	
should	use,	with	Y=(X−< X >)W,	the	probability	elements	𝑝�(𝑦)𝑑𝑦.	We	will	admit	
that	using	𝑝_(𝑥)𝑑𝑥	is	correct.	One	can	understand	this	result	by	noting	that	 the	
probability	for	Y	to	be	equal	to	a	value	within	a	width	segment	dy	around	y	is	also	
the	probability	for	X-<X>	to	be	equal	to	a	value	within	one	of	the	segments	of	width	
dx	around	±√y.	
	
Just	like	the	discrete	r.v.,	we	show	that	𝜎_W = 𝐸(𝑋W) − 𝐸(𝑋)W.	
	

...and	we	define	 the	 centered	moments	of	order	n:	𝜇* = E((X−< X >)*),	 i.e.	
V(X)=	𝜇W	
	
	
	
Covariance	and	joint	laws:	
	
The	definition	of	covariance	is	identical	to	that	of	discrete	variables:	
	

Cov(X,Y)=E(XY)-E(X)E(Y)=∫ 𝑑𝑥 ∫ 𝑑𝑦	𝑥𝑦	𝑝_�(𝑥, 𝑦)
D
<D

D
<D 	−	E(X)E(Y)	

	
	
where	𝑝_�is	a	joint	probability	density	:	𝑝_�(𝑥, 𝑦) =

�w�(z,�)
�z��

	
	
where	F(x,y)=P(X<x	and	Y<y).	
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As	for	the	discrete	variables,	we	can	calculate	from	the	joint	probability	density	
the	marginal	laws	𝑝_(𝑥)	and	𝑝�(𝑦)	with		
	

𝑝_(𝑥) = � 𝑑𝑦		𝑝_�(𝑥, 𝑦),
D

<D
				𝑝�(𝑦) = � 𝑑𝑥		𝑝_�(𝑥, 𝑦)	

D

<D
	

	
As	for	the	discrete	r.v.,	we	have:	
	
V(X+Y)=	V(X)+V(Y)+2	COV	(X,Y)	
	
The	demonstration	is	identical	to	the	discrete	case.	
	
	
Probability	density	of	a	sum	of	independent	r.v.:	
	
Let	Z	=X+Y	be	the	sum	of	two	continuous	independent	r.v..	We	propose	to	find	a	
relationship	linking	pZ	to	pX	and	pY.	
	
Let's	set	the	value	of	X	to	x0.		We	have	p�(𝑧|𝑥E) = 𝑝�(𝑦 = 𝑧 − 𝑥E)	
	
Leading,	by	considering	all	possible	values	of	x	and	using	independence,	i.e.	p(X=x	
et	Y=y)=pX(x).	pY(y),	to:	

𝑝�(𝑧) = � 𝑝_(𝑥)𝑝�(𝑧 − 𝑥)	𝑑𝑥
D

<D
≜ 𝑝_(𝑧) ∗ 𝑝�(𝑧)	

	
where	 *	 means	 "convolution	 product".	 You	 have	 seen	 or	 will	 see	 that	 the	
convolution	product	of	two	functions	f	and	g	at	point	x	is	a	function	s(x)	defined	
by	:	

𝑓(𝑥) ∗ 𝑔(𝑥) ≜ 𝑠(𝑥) = � 𝑓(𝑡)𝑔(𝑥 − 𝑡)	𝑑𝑡
D

<D
	

	
	
II)	Normal	(or	Gaussian)	distribution	
	
This	law,	which	is	extremely	common	in	practice,	has	for	p.d.f.:		
	
	𝑝(𝑥) = 	𝐿𝐺(𝑚, 𝜎) = ,

¤√W¦
𝑒𝑥𝑝 (z<§)

w

W¤w
,	σ	positive	and	m	real	

	
It	is	easy	to	show:	E(X)=m,	V(X)= s2,		µn>2=0	
	
Some	values	of	the	cumulative	density	function	are	remarkable:	
	
F(m-1,96σ)=0,025,	F(m+1,96σ)=0,975	
	
The	 normal	 distribution	 LG(0.1)	 of	 mean	 0	 and	 standard	 deviation	 1,	 shown	
below,	is	called	the	reduced	centered	normal	distribution.	
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Sum	of	two	normal	distributions	
	
Let	be	X∼LG(m,σ)	and	Y∼LG(m',σ')	two	r.v.	following	independent	(here	∼	means	
"follows")	normal	laws,	then	one	shows:	
	

𝑋 + 𝑌 ∼ 𝐿𝐺(𝑚 +𝑚′, ©𝜎W + 𝜎′W)		
	
	
Moments	of	a	normal	law	
	
It	is	possible	to	show	that	all	the	moments	𝜇*are	null	if	n>2.		
	
Independence	of	two	normal	laws	
	
Two	normal	r.v.	are	independent	if	and	only	if	their	covariance	is	zero.	Reminder:	
for	any	law,	zero	covariance	is	a	necessary	condition	for	independence,	but	is	in	
general	not	sufficient.	
	
III	Central-limit	theorem	or	strong	law	of	large	numbers	
	
Let	X1,...,	Xi,	.....,	Xn			n	independent	random	variables,	of	respective	expectation	mi	
and	with	 the	 same	 variance	s2,	 but	 not	 necessarily	with	 the	 same	 probability	
distribution.	We	have:	
	



	 18	

𝑙𝑖𝑚
𝑛 ⟶ ∞¬

∑ (𝑋& −𝑚&)*
&+,

√𝑛𝜎W
­ ∼ 𝐿𝐺(0,1)	

	
In	fact,	the	"same	variance"	condition	is	not	exactly	necessary.	It	is	sufficient	that	
the	variances	have	the	same	order	of	magnitude.	
	
This	theorem,	which	we	will	admit,	has	multiple	applications.	Let	us	quote	some	
of	them:	
	
-	 a	Poisson's	distribution	 is	defined	as	 the	 sum	of	 a	 large	number	of	Bernouilli	
variables.	If	the	mean	of	Poisson's	distribution	is	greater	than	20,	one	can	consider	
that	 the	Poisson's	distribution	 tends	 towards	a	normal	distribution	of	variance	
equal	to	the	mean.	
	
-	consider	an	election	survey	conducted	on	1000	people.	If	each	person	has	the	
probability	p	to	vote	for	a	candidate	and	if	p	is	not	too	small,	the	proportion	of	
respondents	voting	for	that	candidate	is	a	r.v.	of	mean	1000	p	and	variance	1000	
p	(1-p).	
	
-	 in	 a	measurement	 process	 of	 good	 quality,	 said	 under	 control,	 all	 important	
causes	of	error	have	been	eliminated.	The	residual	uncertainty	is	due	to	a	large	
number	of	independent	causes,	of	various	origins	and	of	comparable	weight.	The	
measurement	error	is	then	expected	to	be	a.	Gaussian	r.v..	
	
Chapter	4)	Notions	of	Estimation,	χ2	and	Student	laws,	confidence	intervals	
	
1)	Estimators:	definitions	and	general	properties	
	
Throughout	 this	 chapter	we	will	 consider	a	 simple	and	 repeated	measurement	
process.	 The	 value	 to	 be	 measured	 is	 a	 quantity	 θ,	 a	 single	 scalar	 in	 this	
introduction	 to	 estimation.	 In	 the	 measurement	 modeling,	 it	 is	 therefore	 a	
number,	having	a	determined	value.	Despite	repeated	measurements,	 the	exact	
value	of	this	quantity	will	remain	unknown	for	the	experimenter,	but	the	aim	of	
the	estimation	is,	on	the	one	hand,	to	give	the	closest	possible	value,	and	on	the	
other	hand	to	specify	as	much	as	possible	 the	uncertainty	range	within	we	are	
(almost)	sure	to	 find	θ.	 	Suppose	we	do	N	measurements	dn	of	θ,	which	can	be	
written	as:	
	

𝑑* = 𝜃 +	𝑒𝑟𝑎𝑙*, 𝑛 = 1, . . . . , 𝑁 
 

The	 random	 error	𝑒𝑟𝑎𝑙*	obeys	 a	 Gaussian	 distribution	with	 zero	mean,	which	
means	 on	 the	 one	 hand	 that	 the	 measurement	 process	 is	 under	 control	 (see	
above),	on	the	other	hand	that	 the	measurement	process	 is	without	systematic	
error.	
	Indeed,	the	systematic	error	is	by	definition	the	part	of	the	error	that	is	found	in	
all	measurements,	 therefore	 the	mean	of	 the	error.	The	measurements	𝑑*	have	
therefore	 a	 mean	 θ	 and	 we	 will	 assume	 that	 they	 all	 have	 the	 same	 (often	
unknown)	 variance	 𝜎W .	 We	 will	 further	 assume	 that	 all	 measurements	 are	
independent.	This	is	an	important	assumption,	not	always	verified	in	practice.		
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An	estimator	of	θ,	noted	𝜎W	is	constructed	from	the	measurements,	and	possibly	
from	the	information	known	before	the	measurements,	called	a	priori:	

		𝜃 = 𝑓(𝑑,, . . . . , 𝑑G, , 𝑖𝑛𝑓𝑜	𝑎	𝑝𝑟𝑖𝑜𝑟𝑖).		
	
Example,	the	arithmetic	average:	
	

𝜃 = 𝑑̅ =
1
𝑁)𝑑*

G

*+,

	

	
This	 example	 shows	 us	 that	 an	 estimator	 is	 a	 random	 variable,	 just	 like	 the	
measures	 from	 which	 it	 is	 derived.	 However,	 Chapter	 2	 has	 shown	 that	 the	
variance	of	the	arithmetic	mean	is	𝜎W/𝑁.	𝑑̅	is	thus	of	expectation	θ,	just	like	the	
measurements	dn,	but	fluctuates	less	around	θ,	since	with	a	standard	deviation	
divided	by	√N	.	
	
Convergent	(asymptotic	unbiased)	estimator:	
	
An	estimator	is	said	to	be	asymptotic	unbiased	if:	
	

𝑙𝑖𝑚G→D𝜃 = 𝜃 
	
Unbiased	estimator:	
	
An	estimator	is	unbiased	if:	
	

𝐸(𝜃) = 𝜃 
	
Any	reasonable	estimator	is	asymptotic	unbiased:	if	we	have	an	infinite	number	
of	measures,	we	completely	know	the	 law	of	probability	and	therefore	the	true	
value.	For	example,	it	has	been	shown	that	the	arithmetic	mean	tends	towards	the	
true	mean	for	a	very	large	number	of	measures	(weak	law	of	large	numbers).	
On	the	other	hand,	there	are	good	estimators	that	are	biased.	Indeed,	an	unbiased	
estimator	has	a	variance	greater	than	or	equal	to	a	limit	𝜎EW,	known	as	the	Cramer-
Rao	limit.	This	limit	is	given	by	a	somewhat	barbaric	formula:	
	

𝜎EW =
1

𝐸 °± 𝜕𝜕𝜃 𝑙𝑛(𝑝(𝜃𝑎𝑛𝑑	𝜃))³
W
´
	

	
An	unbiased	estimator	of	variance	𝜎EWis	said	to	be	efficient	or		minimum	variance	
unbiased	and	is,	of	course,	the	best	unbiased	estimator.	On	the	other	hand,	there	
are	sometimes	biased	estimators,	which	have	therefore	a	mean	different	from	the	
true	value	(this	difference	is	called	bias),	whose	variance	is	much	lower	than	the	
Cramer-Rao	limit.	They	may	then	be	"better"	than	the	efficient	estimator,	where	
"better"	is	defined	in	a	sense	that	will	not	be	specified	in	this	short	intro.	
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2)	Estimators	of	the	mean	
	
Two	are	in	common	use:	
	
-	the	arithmetic	mean	𝑑̅ = ,

G
∑ 𝑑*G
*+, 	

	
One	immediately	demonstrates,	if	the	error	is	Gaussian,	that	𝑑̅	follows	a	Gaussian	
law,	of	variance	σ2/N	and	mean	θ.	
	
-	the	median.	The	measurements	are	ordered	from	the	smallest	(d1)	to	the	largest	
(dN).	The	median	is	then	defined	as	d(N+1)/2	if	N	is	odd,	(dN/2	+d(N+1)/2)/2	if	N	is	even.	
	
The	median	is	much	less	sensitive	than	the	mean	to	outliers	(N.B.:	if	the	series	of	
measurements	includes	outliers,	the	error	is	no	longer	a	Gaussian	r.v.,	unlike	in		
the	remaining	of	the	chapter).	We	can	compare	the	two	estimators	on	an	example:		
measurements	of	the	period	of	a	pendulum	made	on	the	chronometer	by	first	year	
students:	
	
T	(seconds)	:	10.62	10.38	10.34	10.35	10.40	10.36	
	
A	graphical	representation	of	the	data	is	very	useful	to	conclude.....	
	
3)	χ2	distribution:	definition	
	
This	paragraph	provides	the	tools	necessary	for	the	study	of	variance	estimators,	
the	subject	of	the	next	paragraph.	
	
Let	 be	 X1,......,XN	 	 N	 Gaussian	 r.v.	 ,	 centered,	 reduced	 and	 independent.	 The	 χ2	
distribution	with	N	degrees	of	freedom	is,	by	definition,	the	law	followed	by	the	Y	
r.v.:	
	

𝑌 = 𝑋,W+. . . . . . . +𝑋GW 	
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One	shows	that	the	mean	of	such	a	distribution	is	N	and	its	variance	2N.	The	figure	
above	shows	the	distributions	for	N	from	1	to	8.	The	Gaussian	approximation	is	
excellent	for	N	≥20.	
	
4)	Estimators	of	variance	
	
A)	Known	mean:	
	
		𝜎Wµ = ,

G
∑ (𝑑& − 𝜃)WG
&+, 		

	
B)	Estimated	mean:	
	
			𝜎Wµ = ,

G<,
∑ ¶𝑑& − 𝑑̅·

WG
&+, 	

	
If	 the	 multiplicative	 coefficient	 were	 1/N	 and	 not	 1/(N-1),	 	𝜎Wµ 		 would	 be	 the	
arithmetic	 mean	 of	¶𝑑& − 𝑑̅·

W
,	 just	 as	 the	 true	 variance	 is	 the	 	 (true)	 mean	 of	

(𝑑& − 𝐸(𝑑))W.	 	We	understand	the	need	to	use	1/(N-1)	when	thinking	about	the	
case	where	we	have	only	one	measurement.	So	𝜎Wis	indeterminate,	which	seems	
correct	since	we	have	no	idea	of	the	dispersion	of	the	measurements,	represented	
by	the	variance.	Using	1/N	would	give	zero	variance,	which	is	clearly	incorrect.	In	
fact,	 the	 𝑑& − 𝑑̅ 	are	 not	 independent,	 unlike	 the	 𝑑& .	 For	 example,	 for	 N=2	
measurements,	𝑑, − 𝑑̅	=-¶𝑑W − 𝑑̅·	
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Theorem:	∑ (le<lr)w¸
e¹º

¤w
follows	a	c2	distribution	with	N-1	degrees	of	freedom,	of	mean	

N-1.	
𝜎Wµ 	thus	has	a	mean	𝜎W,	and	one	shows	that	it	is	the	efficient	estimator	of	𝜎W.	
	
The	demonstration	of	this	theorem	for	N=3	can	be	done	by	noting	that:	
	

	∑ ¶𝑑& − 𝑑̅·
W
= 	𝑃,W + 	𝑃WW»

&+, ,	with:	
	𝑃, = (𝑑, − 𝑑W)/√2,	𝑃W = (2	𝑑» − 𝑑, − 𝑑W)/√6		

	
	
We	can	easily	verify	that	P1	and	P2	are	Gaussian	(because	sum	of	Gaussian),	of	
variance	𝜎W ,	 and	 of	 zero	 covariance,	 which	 is	 equivalent	 to	 independence	 for	
Gaussian	distributions.	
It	will	be	admitted	that	this	demonstration	can	be	generalized	to	all	N	≥2	.	
	
𝜎Wµ 		has	a	mean	𝜎Wand	is	therefore	unbiased.	It	is	the	efficient	variance	estimator.	
On	the	other	hand,	the	estimator	of	the	standard	deviation	𝜎½ = `𝜎Wµ	is	biased,	but	
of	course	asymptotic	unbiased.	
	
5)	Student's	Law	
	
To	estimate	the	true	quantity	θ,	two	estimators	are	available:	
-	 the	 average	𝑑̅ ,	 which	 follows	 a	Gauss	 distribution,	 of	 unknown	mean	 θ	 	 and	
standard	deviation	σ/√N.	
-	 the	 estimated	 standard	 deviation	 on	 measurements	`𝜎Wµ ,	 i.e.	 an	 estimated	

standard	 deviation	 on	 the	 arithmetic	mean	©¤wµ

G
where	 (N-1)	𝜎Wµ/𝜎W follows	 a	c2	

distribution	with	to	N-1	degrees	of	freedom.	
	
Their	 quotient	 lr<¾

`¤wµ/√G
follows	 a	 law,	 called	 Student's	 law,	 with	 N-1	 degrees	 of	

freedom,	whose	figure	on	the	following	page	gives	the	graph	for	two	values	of		
N-1:	
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5	
	
		
	
We	see	that,	for	N-1=3,	the	probability	that	the	r.v.	is	greater	than	2	in	absolute	
value	 is	 clearly	 higher	 than	 the	 ≈5%	obtained	 for	 a	 Gaussian	 :	 for	 a	weak	N,	 a	
Student's	 law	 can	 be	 seen	 as	 a	 Gaussian	 whose	 standard	 deviation	 is	 poorly	
known,	 which	 makes	 more	 probable	 values,	 expressed	 in	 estimated	 standard	
deviations,	far	from	the	mean.	
	
6)	Confidence	intervals	
	
In	the	previous	paragraph,	the	sentence	" lr<¾

`¤wµ/√G
		follows	a	Student	distribution"	

refers	 to	 the	 modeling	 of	 measurements.	 In	 this	 model	 world,	𝑑̅ 	and	`𝜎Wµ )are	
random	variables	and	θ	a	precise	value,	even	if	unknown.	This	situation	does	not	
reflect	the	reality	of	the	experimenter:		for	him,	the	measurements	are	data	with	
perfectly	determined	values,	having	allowed	him	to	construct	mean	and	variance	
estimators,	which	have	also	determined	values.	On	the	other	hand,	he	can	only	
hope	to	determine	a	probability	distribution	on	θ,	whose	exact	value	will	remain	
unknown.		
It	is	tempting,	to	build	this	law	of	probability,	to	simply	consider	that	this	is	now	
q 	the	random	variable	in	 lr<¾

`¤wµ/√G
	 .		The	situation	is	analogous	to	the	example	given	

in	Chapter	1	to	illustrate	Bayes'	theorem.	The	true	value	here	is		q "being	sick	or	
not",	and	the	estimator	of	the	mean	has	replaced	the	test	result....but	it	is	just	as	
dangerous,	in	principle,	to	confuse	p¶𝑑̅À𝜃·	and	p¶𝜃À𝑑̅·.	In	order	to	link	these	two	
expressions,	let	us	write	Bayes's	theorem	for	these	probability	densities:		
	

p¶𝜃À𝑑̅· ∝ 	p¶𝑑̅À𝜃·	𝑝ÂÃ&ÄÃ(𝜃)	
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Compared	to	chapter	1,	equality	has	been	replaced	by	an	operator	∝	which	means	
"proportional	 to"	 and	 the	 denominator,	 which	 should	 be	 p(𝑑̅) ,	 has	 been	
"forgotten".	Indeed,	from	the	point	of	view	of	the	experimenter,	𝑑,	and	therefore	
p(𝑑̅),	are	constants,	which	are	taken	into	account	in	the	form	of	a	proportionality	
coefficient.	 If	 necessary,	 this	 proportionality	 coefficient	 shall	 be	 determined	
bearing	in	mind	that,	for	any	r.v.	X,		
	
∫ 𝑝(𝑥)D
<D 𝑑𝑥 = 1.		
	
We	therefore	have	the	equality	p¶𝑑̅À𝜃·	=	p¶𝜃À𝑑̅·	only	if	𝑝ÂÃ&ÄÃ(𝜃)=	Cste.		This	is	a	
reasonable	 assumption	 for	 a	 controlled	 measurement	 process,	 where	 the	
measurement	error	is	low	and	Gaussian.	The	uncertainty	range	is	then	low	enough	
to	 consider	 that,	 within	 this	 range,	 the	 probability	 density	 of	 θ 	 before	
measurements	 is	 a	 constant.	 Of	 course,	 if	 we	 have	 an	 explicit	 expression	 of	
𝑝ÂÃ&ÄÃ(𝜃),	we	must	renounce	this	assumption	and	calculate	p¶𝜃À𝑑̅·	with	𝑝ÂÃ&ÄÃ(𝜃)	
	
	If	𝑝ÂÃ&ÄÃ(𝜃)=	 Cste,	

lr<¾
`¤wµ/√G

follows	 a	 Student	 law	 with	 N-1	 degrees	 of	 freedom,	

where	θ	is	the	random	variable.	The	range	around	the	arithmetic	mean	where	θ	
has	a	95%	chance	of	being	found	can	then	be	determined:	this	range,	called	the	
confidence	interval,	is	given	by	𝑑̅ ∓ 𝛼 ¤Ç

√G
,	where	α	depends	on	N	:		

	
N:				3					5						10								20						40			
α:	4.3		2.8				2.3							2.1					2.0			
	
Thus,	 from	40	measurements,	Student's	 law	merges	with	a	Gaussian	 law.	For	a	
very	 small	 number	 of	 measures,	 however,	 there	 is	 a	 greater	 chance	 of	
underestimating	 the	 standard	deviation,	which	 gives	 a	 greater	 chance	 that	 the	
true	 value	 deviates	 from	 the	 arithmetic	 mean	 of	 more	 than	 two	 estimated	
standard	deviations.	
	
Warning:	Using	2	or	α	has	hardly	any	consequences	as	soon	as	you	make	at	least	
ten	 measurements.	 However,	 it	 should	 not	 be	 forgotten	 that	 the	 estimated	
standard	deviation	of	θ	from	the	arithmetic	mean	is	not	the	estimated	standard	
deviation	 of	 the	 measures	 𝜎½ ,	 but	 ¤Ç

√G
!	 That's	 the	 point	 of	 repeating	 the	

measurements!	 ...and	 we	 will	 not	 forget	 either	 that	 this	 division	 by	 √𝑁 	is	
intimately	linked	to	the	assumption	of	independence	of	the	measurements.	If	this	
assumption	 is	 not	 fully	 verified,	 the	 size	 of	 the	 confidence	 interval	 may	 be	
underestimated.		
	
	
	


