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Abstract

Laser spectroscopy was used for studying single charge-tunable InAs quantum dots

(QD). The spectroscopy system consisted of a high resolution microscope combined

with a solid immersion lens, a grating spectrometer and an in-situ detector to study

the homodyne signal of the resonant laser and the QD. Low density QD samples

were fabricated, which allowed spectral isolation of individual QDs. A modulation

technique was used for noise rejection.

Resonant absorption spectroscopy was used for directly probing transitions be-

tween ground and excited QD states. Lineshapes and signal strength were linked to

life and coherence times of QD states. A theoretical model was developed combining

coherent and non coherent processes in a master equation. Positively and negatively

doped sample structures enabled spectroscopy of negatively, neutral and positively

charged excitons.

The relaxation time of hole spin ground states in a single QD was probed using

resonant excitation in a magnetic field parallel to the growth direction. Optical selec-

tion rules enable control over hole spin orientation. Hole spin relaxation times were

studied from zero to five Tesla, with relaxation times of different QDs ranging from

200 µs to 1 ms. No significant influence of the external magnetic field on the hole

spin relaxation time was found. A hole spin initialisation fidelity close to 100 % was

achieved.

Readout of resonantly created QD states was realised via a new microscope sys-

tem. This darkfield microscope utilised spatial and polarisation filtering techniques to

suppress the excitation laser by up to six orders of magnitude. Both filtering devices

were included in the standard microscope, making it a highly practical and versatile

system. Collected QD emission exceeded the resonant laser background by a factor

of 100 for an unsaturated X1− transition.

Pump-probe spectroscopy of the 3-level biexciton system was carried out, with the

back scattered signal collected in reflection allowing spectral filtering via a grating

spectrometer. The recorded probe spectrum revealed Autler-Townes splittings for

high pump laser intensities, demonstrating the coherent superposition of QD exciton

states. Swapping the pump probe geometry revealed weak quantum interferences.

Spectroscopy of hole spin ground states in an in-plane magnetic field created a

coherent superposition of hole spin ground states via a Λ-system. The resulting

quantum interference between hole spin states resulted in the creation of a dark state.

This experiment is known in quantum optics as coherent population trapping. The

extracted lower bound of the hole spin coherence time was ≥1 µs with greater than

40 % probability, demonstrating the enormous potential of hole spins in QDs for

quantum information processing as well as for quantum optical experiments.
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Chapter 1

Introduction

Quantum dots (QD) are semiconductor islands with dimensions between 1 and 100

nm, which is close to the De Broglie wavelength of carriers inside a semiconduc-

tor. As a result, carriers confined to a QD exhibit atom-like discrete energy levels.

Due to this similarity with the quantised states of an atom, QDs are often referred

to as artificial atoms. It is this atom-like behaviour which makes them a powerful

testbed for quantum mechanics in the solid state as well as offering unique possibilities

for applications. Combining these artificial atoms with the highly advanced field of

semiconductor technology, one can observe a wide range of quantum mechanical phe-

nomena. This resulted in charge tunable QDs [1], the QD laser [2], QD single photon

sources [3] and entangled photon pair generation [4]. One of the next benchmarks

which will potentially propel the QD field even further is the discovery of coherent

states inside a QD [5, 6]. Coherent spin states in single QDs might be possible due

to the strong quantisation, caused by the small size of QDs. This should strongly

suppress spin dephasing caused by phonons via spin orbit coupling [5, 7]. A part of

this thesis will focus on the measurement of hole spin coherence times. A review of

the QD field can be found in [8–10].

1.1 Motivation

The field of quantum mechanics extended the classical view of the physical world be-

yond things imaginable before its discovery. As a result, findings and predictions were

highly controversial from the beginning. A famous example is the principle of non-

locality, which was opposed by Einstein, one of the founders of quantum mechanics

[11]. Just as Einstein and colleagues were proven to be wrong in this case by the vio-

lation of Bell’s inequality [12], it is the outcome of experiments which finally validate

or disprove the interpretations of physics. This can serve as a directive why especially

in quantum mechanics it is of great importance to have a multitude of testbeds at

one’s disposal.

1



1.1. Motivation

The quantum mechanical nature of physics becomes dominant when matter in-

teracts with an environment of characteristic length close to the matter’s De Broglie

wavelength. This De Broglie wavelength is given by

λ =
h

p
, p = ~k. (1.1)

In this equation, h is Planck’s constant, p is the particle’s momentum, ~ the reduced

Planck’s constant (~ = h
2π

) and k is the angular wave number. One classic example of

this wave-particle duality is the observation of electron scattering on a nickel crystal

[13], creating a diffraction pattern similar to x-rays.

Semiconductor materials owe their properties directly to this scattering effect. Un-

like single atoms, semiconductors have an inherent translation symmetry, originating

from their crystal structure, which is characterised by the lattice constant. Free car-

riers traveling through such an ordered material now ‘see’ different lattice constants,

depending on their propagation angle relative to the lattice symmetry axis. As a

result, certain combinations of angles and De Broglie wavelengths (characterised by

the vector ~k) result in strong scattering of the carrier on the crystal planes. These

scattering events are what governs the characteristic properties of semiconductor ma-

terials, as they lead to bands of forbidden combinations of energy and ~k-direction,

called band gaps (energy Eg). From these basic considerations it is already apparent

that semiconductors and quantum mechanics go hand in hand. An introduction to

the field of semiconductors can be found in [14].

When a QD of low Eg is surrounded by material of high Eg, the semiconductor

analogue of a potential well is formed, one of the most well-known examples in quan-

tum mechanics. Once a carrier is trapped inside a QD, energy and spin of a single

carrier can be manipulated optically [15] or electrically [16], but it is not only these

new physical properties which make semiconductor QDs so attractive. The boom of

semiconductor technology is driven by the production of smaller and smaller feature

sizes. As a result, more and more complex structures can be realised in small chips.

This trend was predicted by Moore’s Law in the 1960s [17]. It has been remarkably

accurate until this day, but at some point the density of transistors will reach the limit

where classical electronic laws will break down. Due to this fact, quantum mechanical

devices not only promise a new class of device, they are also the only way to overcome

a certain threshold in device feature sizes.

1.1.1 Physics of quantised systems

A direct consequence of the particle-wave duality is the evolution of quantised systems

for trapped carriers. The steady state physics of such a system is dictated by the time

2



1.1. Motivation

Figure 1.1: A carrier trapped in an infinitely deep potential well. a) shows the
evolution of quantised states, characterised by the quantisation number n. b) shows
the energies of allowed quantum states, given by equation (1.4). Excitations, e.g.
via photons, can drive transitions between different energy levels (straight arrows).
The excitation source energy has to match the transition energy (e.g. ~ω12 = E(n =
2) − E(n = 1)). Higher energy states relax after their lifetime into the next lower
state via rate Γ. This rate gives the excited state relaxation time T1 = Γ−1.

independent Schrödinger equation:

Ĥ ~ψ(~r) = E~ψ(~r),

Ĥ = p̂2

2m
+ V̂ (~r) = − ~2

2m
∇̂2 + V̂ (~r),

(1.2)

where Ĥ is the Hamilton operator, ~ψ(~r) is the eigenfunction solving the Schrödinger

equation, E is the eigenfunction’s energy, p̂ and ∇̂ are the momentum and nabla

operator and V̂ (~r) is the potential energy operator. Properties of eigenfunction ~ψ(~r)

are mainly dictated by the characteristics of potential V̂ (~r), with V̂ (~r) for the classical

quantum mechanical example of an infinitely deep quantum well shown in Fig. 1.1 a).

Here, the solution of ~ψ(~r) for a carrier trapped by V̂ (~r) is a wave function, which has

to satisfy the confinement symmetry. Inside this infinitely deep square potential well

with dimension L, the particle’s eigenfunction and hence the De Broglie wave vector

is given by
~ψ(~r) = A sin(~kn~x)
~kn = n·π

L
, n = {1, 2, 3, . . .},

(1.3)

where A is a normalisation factor and the non-zero integer n represents the state

number. Unlike in classical systems, wavelengths have to satisfy the condition of

equation (1.3), hence all wavelengths with non integer values of n are forbidden. The

energy structure of such a trapped carrier is shown in Fig. 1.1 b), with energies given

by the energy-wave vector relation

E =
~2k2

2m
, (1.4)

3



1.1. Motivation

where m is the carrier’s mass. A transition between energy levels can be driven by

photons which match the energy difference between initial and final state. Excited

states can relax into the lower energy states with a rate Γ.

Representation of quantum states

Other than describing quantised states by their true physical nature (e.g. the wave

function), a complete characterisation can be given via their quantum numbers. Using

the example of the infinitely deep potential well, the energy (or wavelength) of a state

is completely described by the integer n. Depending on the nature of the quantum

mechanical system, a different set of numbers has to be used for a complete description.

In the case of electrons of an atom, these numbers are the principal quantum number

(n), the angular momentum (l), the magnetic momentum (mL) and the spin projection

number (ms = ±1
2
). The system is then completely defined by the quantized state

vector

| ψ〉 =| n, l,mL,ms〉. (1.5)

This representation is called the Dirac notation, represented by the ket vector | ψ〉. It

offers a very practical way to describe individual quantum states. Each state in the

Dirac notation has a corresponding complex conjugate, represented by the ket vector

| ψ〉∗ = 〈ψ | (1.6)

If vector | ψ〉 is an eigenfunction obtained by solving equation (1.2), all states | ψn〉
are orthogonal, leading to

〈ψn | ψm〉 =
∫
ψ∗nψmd

3~r = δnm

δnm = 1, n = m

δnm = 0, n 6= m

(1.7)

However practical the notation using quantum numbers is, it is important to keep

in mind that it still describes a wave function.

Selection rules for transitions

An additional advantage of the Dirac notation is it intuitively illustrates which tran-

sitions between different states are allowed. A photon for example carries energy as

well as one quantum of angular momentum. Accordingly it can drive a transition

between different quantum numbers n, but only for transition where the angular mo-

mentum difference between initial and final state is 1. Phonons (lattice vibrations)

on the other hand do not carry angular momentum, accordingly they cannot directly

couple to transitions between states of different angular momentum. These are the so

called selection rules, which every transition between quantum states has to satisfy.

4



1.1. Motivation

Figure 1.2: Geometrical representation of a two level quantum system. The system’s
quantum state is given by a point on the sphere’s surface, pointed to by the state
vector ψ. Coherent and complex superpositions of the system can be realised, which
is the major difference between a classical bit and a two level quantum bit.

Superpositions of quantum states

Similar to classical vectors, quantum mechanical state vectors can be added to form

a superposition. One common example is a two level system, with the states

| 0〉 = c0

(
0

1

)
, | 1〉 = c1

(
1

0

)
, (1.8)

where the probability amplitudes ci are complex. Due to the analogy with the two

states of a binary system, such a two level system is also called a qubit.

Unlike a classical system, a quantum system allows coherent superpositions be-

tween its two states. Such a superposition can for example be created via coherent

optical coupling between both states, here between | 0〉 and | 1〉. Since probability

amplitudes of states | 0〉 and | 1〉 are generally complex, a two level system is geo-

metrically represented by a three dimensional Bloch sphere, shown in Fig. 1.2. The

state vector ψ moves along the surface of the sphere, with its tip defining the system’s

position in Hilbert space. Generally, the state vector is given by

| ψ〉 = cos(θ/2) | 0〉+ eiϕ sin(θ/2) | 1〉, (1.9)

with angles θ and ϕ, also called mixing angles, defined in Fig. 1.2. An excitation

source coupling states | 0〉 and | 1〉 would result in a constant rotation of state vector

| ψ〉, with the mixing angles given by θ = ΩOpt · τ and ϕ =0. Here, ΩOpt describes

the coupling strength between source and the transition, while τ is the interaction
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1.1. Motivation

duration. If states | 0〉 and | 1〉 correspond to Zeeman split spin states (|↑〉 and |↓〉
in ~z-basis), an external magnetic field applied along the ~z-axis provides one way to

rotate the state vector around ~z. In that scheme, an optical pulse would set θ = π
2
.

The now perpendicular magnetic field would result in a spin precession frequency of

~ΩM = g · µB · B (also see chapter 3.1.2). Again, the result would be a rotation

according to ϕ = ΩM · τ .

Similar to the superposition of an optical wave, superpositions of quantum mechan-

ical wave functions are sensitive to the loss of phase. Phase of quantum mechanical

wave functions can generally be lost due to interactions with a reservoir like collisions

with other carriers or nearby spin baths [18] as well as phonons [18–21]. The strength

of such interactions is characterised by the dephasing rate, which is the inverse of

the dephasing time T2. The big difference between relaxation and dephasing is that

relaxation always moves population and destroys phase, while dephasing processes

are limited to only loss of phase. For the case of a continuous rotation of state vector

| ψ〉, this results in an exponential damping of the superpositions, until oscillations

disappear for T2 � τ and the state vector remains at | ψ〉 = 1√
2
(| 0〉+ | 1〉). For

the situation where the environment changes slower than T2 but faster than the ex-

perimental integration time (∆T ) the ensemble dephasing rate T ∗2 is measured. For

spins in a magnetic field varying slowly compared to T2, but fast compared to ∆T

this results in the experiment averaging over all occurring ΩM . As a consequence

T ∗2 < T2. One way to avoid this effect and to measure T2 for T2 � ∆T is a Hahn echo

experiment [16].

For the case of a qubit, every quantum gate operation (similar to binary AND

for example) can now be represented by some rotation around mixing angles θ and

ϕ, which has been demonstrated on single electron spins in a QD [22]. The big

difference between a classical bit and a qubit is that information stored in a register

with N components grows exponentially with N for the case of a qubit, but only with

2N in the classical case [23].

It is that multitude of non-classical physics which makes a quantum mechanical

system inside a semiconductor so attractive. An isolated quantum state in a semicon-

ductor would serve as an ideal test bed for interactions on a single wave function scale

in a solid state environment. Such a system would also enable new classes of electronic

or optical devices, which utilise the non-classical physics of isolated quantum states.

1.1.2 Functionality of semiconductor devices

As mentioned before, the figure of merit for a quantum system is size. Solid state

technology has shown remarkable performance in this area. Layers with single atom

thickness (monolayers, ML) are readily achieved. The resolution of post processing

6



1.1. Motivation

Figure 1.3: Band gap of a semiconductor. a) shows a schematic of a typical semi-
conductor band gap, with the minimum splitting between conduction (top band) and
valence band (bottom band) given by Eg (image by J. Noel [28]). The density of
states is shown in part b), no states are allowed inside the band gap. Doping changes
this by creating isolated states inside the band gap, shown in c) for n-type doping.

techniques are expected to reach 22 nm by 2011-2012 [24] and Intel aims to reach 11

nm by 2015 [25].

Electro-optical properties

Electro-optical properties of semiconductors are dictated by the material band gap.

A band gap diagram schematic for a bulk semiconductor (e.g. GaAs) is presented

in Fig. 1.3 a). The wavy line in the top section of the graph is the lower edge

of the conduction band, with a global minimum at wave vector orientation [0,0,0].

The lower section of the graph shows the valence band, which has two parabolic

potentials: one belongs to the heavy hole (small curvature) and one to the light hole

(large curvature). In a semiconductor, holes represent the absence of an electron

in the otherwise filled valence band. The origin of heavy and light holes in III-V

semiconductors (GaAs) directly stems from the material’s atomic structure. While

the anti-bonding conduction band consists of atomic s-orbitals, the bonding valence

band is constructed of atomic p-orbitals. As a result, these different orbitals result

in different degeneracies at ~k =0. An s-orbital is non degenerate, while p-orbitals are

three fold degenerate: the ml = ±1 states are an admixture of px and py orbitals,

ml =0 consist mainly of pz. Similar to isolated atoms, the coupling between spin

and the orbital angular momentum results in a splitting between the three different

valence band states. These three states are the heavy hole (HH), light hole (LH) and

split-off hole (SOH) states. The usually big energy splitting between the SOH and

the lower valence band edge (0.1 - 1 eV,[26]) makes the SOH irrelevant for this thesis

and is also not shown in Fig. 1.3 a). The different curvature of HH and LH bands is

expressed in their different effective mases (m∗), which can be calculated by a model

developed by E. O. Kane [27].
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1.1. Motivation

The splitting between the global minimum of conduction and valence band is called

the band gap energy (Eg). One speaks of a direct band gap if this minimum is at the

same ~k orientation for both bands (GaAs) and of an indirect band gap otherwise (Si).

Semiconductors are materials with a non zero band gap, which is smaller than ≈3 eV,

above this value it is referred to as an insulator. The number of states available in a

small energy window is given by the density of states, g(E). It is defined by

g(E) =
1

V

∂N

∂E
(1.10)

using N as the number of states inside a volume V . For the parabolic energy-wave

vector relation in a bulk material (E = (~k)2

2m∗ ), one can show that

g(E) =
(2m∗)3/2

2π2~3
(E − E0)1/2 (1.11)

where E0 is the reference energy at the bottom of the band and m∗ the effective

mass. The density of states for a bulk, direct band gap and un-doped semiconductor

material is shown in Fig. 1.3 b).

An optical transition can now excite an electron from the filled valence band into

a free state of the conduction band. The excited electron-hole complex is generally

referred to as an exciton, which typically recombines optically after a certain lifetime.

As introduced in section 1.1.1, transitions between quantum state have to satisfy

selection rules. The spin of carriers in III-V semiconductors is given by

〈↑| ŝ |↑〉 = −1
2

〈↓| ŝ |↓〉 = +1
2

(1.12)

for conduction band electrons (s-states of host material: ml = 0) and

〈⇑| ŝ |⇑〉 = −3
2

〈⇓| ŝ |⇓〉 = +3
2

(1.13)

for the HH states of the valence band (p-states of host material: ml = ±1). Spin

of the LH states is ±1
2
, but due to the large HH-LH splitting in InAs quantum dots

[5, 15, 18, 29], transitions involving these states are irrelevant for work presented in

this thesis. Optical transitions between initial (| ψi〉) and final (| ψf〉) states, are now

dictated by the angular momentum of the photon:

σ+/− : 〈ψi | ŝ | ψi〉 − 〈ψf | ŝ | ψf〉 = ±1

πx/y : 〈ψi | ŝ | ψi〉 − 〈ψf | ŝ | ψf〉 = 0.
(1.14)

Here, excitation via a circular (linear) polarised photon is presented by operator σ̂+/−

(π̂x/y). The angular momentum of circular polarisation is ±1, for linear polarisation
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1.1. Motivation

it is zero since this polarisation state is a superposition of circular polarised states.

Optical excitation/recombination only provides energy, almost no momentum can

be transfered to the crystal lattice for relevant photon energies. As a consequence

optical excitation and emission is strongly suppressed in indirect band gap materials,

unless it is assisted by phonons.

Without excitation, effectively no free carriers can move around in undoped and

dislocation free semiconductor materials at low temperatures (for kb · T � Eg, kb is

Boltzmann’s constant, T the system’s temperature). By adding an extrinsic dopant

which can act as a donor or acceptor of electrons, one can create additional states

inside the semiconductor band gap, shown for the case of donor doping (negatively

doped) in Fig. 1.3 c). Doping can move free states close to one of the bands, enabling

population of these band by techniques other than optical excitation (e.g. due to

thermal energies).

Advantages and disadvantages compared to atomic vapour

Quantum optical experiments have been pioneered in atomic vapour in the 1970s, with

Gibbs demonstrating optical Rabi oscillations [30] and Kimble et al. demonstrating

photon antibunching [31]. The use of atoms in quantum optics comes with a number

of advantages as well as disadvantages. With their shell structure, they represent

the most natural basis for studying quantum mechanics. Even and uneven atomic

numbers mean that atom nuclei spin are either an integer or half-integer, which enables

experiments on bosons [32] as well as fermions [33]. Most of these experiments were

conducted using atomic vapor. Atoms in an atomic vapor beam undergo collisions

between each other, which introduces a source of dephasing. Trying to store atomic

vapor or ions in a located space is experimentally challenging and requires a complex

assemble of magnets and optical traps. Nevertheless, once such an atomic system

is isolated from its environment, coherence times of several seconds can be achieved

[34]. Another central feature of a system consisting of isolated atoms is its degeneracy.

This is advantageous from a measurement point of view: all atoms react the same,

hence their degeneracy results in an interaction cross section magnified by the overall

number of atoms. From a technological point of view it complicates addressing a single

atom. The creation of devices based on atomic vapor, which might have possibilities

as applications, has however so far largely proven unrealistic.

Semiconductor devices can offer a solution to some of these problems. They come

in a solid package which is easy to handle. Due to the flexibility of a designed system,

their properties (e.g. energy scales) can be altered and adapted to applications, which

is not possible for atoms. Also, post fabrication contamination does not play a big

role, since usually the active semiconductor regions are buried inside the device. Fur-

thermore, once a quantum mechanical system is realised in a semiconductor, it can
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1.2. Quantum optics

easily be integrated with all the existing technological possibilities. This includes easy

connection to the ‘outside’ world, manipulating electronic structures using doping and

control over circuit feature sizes on an unprecedented scale. One can imagine that

a big proportion of quantum optical applications would somehow involve or benefit

from changing the resonance energy via an electric field (DC Stark effect). Tuning

atom transitions in practical devices would face a real challenge. As an example: the

DC-Stark shift of the 6S←7S transition in Cs is 3·10−7 µeV/(kV
cm

)2 [35], while a QD

exciton exhibits a Stark shift of around 3 µeV/(kV
cm

)2 [36].

Embedding devices which are based on the phase of a quantum mechanical wave

function inside a solid material of course comes with several problems. In particular,

strong coupling to vibrational modes of the crystal (phonons) [7, 20] and to the

magnetic moment of host nuclei [5, 21] lead to fast dephasing and represent huge

stumbling blocks on the way to a well isolated quantum mechanical system inside

a semiconductor. These couplings to the solid state environment are the challenge

which semiconductors and namely QDs have to overcome.

1.2 Quantum optics

Quantum optics is the field which describes interactions between light and matter,

based on the framework of quantum mechanics. It goes all the way back to the

origin of quantum mechanics, when Max Planck successfully described the emission

of a black body using quantised emission [37]. Electronics is based on quantised

carriers of charge (electrons and holes in semiconductors). Quantum optics is based

on the quantised emission of energy, carried by the photons. The classical system

for studying quantum optical effects are atoms and ions. They provide the ultimate

quantised systems, but come with experimental challenges. Trapping gases, or even

single ions is challenging. A single QD embedded in a semiconductor chip solves this

problem while also providing easy tuning of QD resonances via the Stark effect [38].

1.2.1 Quantum optical effects and applications

The quantized nature of matter and light manifests itself in several different phenom-

ena. They range from direct observations of non-classical light, the entanglement of

photons to effects caused by coherent superpositions of quantum states via optical

excitation.

Photon antibunching

Photon antibunching directly describes the quantised nature of light. A flux of pho-

tons, originating from a single atom, comes with a time delay always greater than zero
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1.2. Quantum optics

between each individual photon. This results in a sub-Poissonian counting distribu-

tion. Behavior like this cannot be described classically, where the limit of a perfectly

coherent emitter still emits according to Poissonian statistics. Studies of the tempo-

ral photon distribution are conducted via an autocorrelation function g2(τ). There, a

stream of photons is split in half by a beam splitter with each output beam imping-

ing on a single photon detector. One detector serves as a start, the other as a stop

signal for timing electronics. The timing electronics stores the number of time delays

between start and stop (τ) and the graph is normalised at τ →∞. For antibunched

emission, g2(0) is less than one while it drops to zero for a true single photon source.

This was first demonstrated for the emission of a Cs atom [31].

Photon entanglement

Entanglement is a quantum mechanical phenomena in which a certain property of two

or more particles are linked together. One example is a quantum mechanical system

emitting two photons per relaxation cycle. The relaxation cycle can be such that both

photons are either πx or πy polarised. Other than measuring the photon polarisation

directly, there can be no way to determine their polarisation, the relaxation cycle

must be degenerate in all other dimensions. Both photons are subsequently sepa-

rated in space. Polarisation measurements of both photons will now be correlated,

even for simultaneous measurements of both spatially isolated photons. This thought

experiment led to the famous Einstein-Podolsky-Rosen paradox.

When two qubits are entangled, one can also realise teleportation, first demon-

strated in 1997 [39]. One entangled state in a two qubit system is the so called Bell

state:

| ψ〉 =
1√
2

(| 00〉+ | 11〉),

which corresponds to the two entangled photons example used before. Both photons

are either in the Πx-state (| 00〉) or in the Πy-state (| 11〉). This state was realised in

single QDs using the biexciton decay [4].

Quantum interferences

Quantum interferences are a phenomenon caused by a superposition of quantum me-

chanical wave functions. Such a superposition was already introduced in a two level

system (see section 1.1.1). This can be expanded to an arbitrary three level system,

where two states are optically coupled to one common state by two coherent sources.

For isolated transitions, each individually would have a linewidth Γ0 dictated by its

lifetime. When both excitation sources interact with the system simultaneously, they

produce a superposition of all three states, resulting in new eigenstates. As a result,

these new eigenstates can alter the overall lineshape of the transitions. Character-

istic linewidths of these quantum interferences can be much narrower than for the
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1.2. Quantum optics

Figure 1.4: Optical spectrum of a Λ-system. a) shows a schematic of a Λ-system,
which consist of two ground states coupled to a common excited state. b) shows the
absorption spectrum of the probe laser with an on resonance pump. At zero probe
laser detuning, the coherent optical coupling results in a superposition of the system
into | ψ〉 = α | 1〉 + β | 2〉, which is a dark state. The dark state linewidth can
be significantly smaller than the transition linewidth. Simulation parameters were:
transition linewidths ~Γ0 =1 µeV, Ωcouple =1 µeV, Ωprobe=0.4 µeV and T2 =1 µs.

unperturbed transitions [40].

This is just one example for optically created quantum interferences. In fact, there

are many manifestations of quantum interference effect, like Fano interferences [41].

Generally, these effects occur in every system where quantum states are coherently

coupled.

Coherent population trapping

One prominent system for observing particularly dramatic quantum interferences is

the Λ-system, shown in Fig. 1.4. Here, two coherent lasers couple two ground states

to a common excited state, resulting in the creation of new eigenstates. A typical

experiment would have the coupling laser on resonance with the | 2〉 ↔| 3〉 transition,

while the probe laser is tuned through | 1〉 ↔| 3〉. A simulation of a typical probe

laser spectrum is shown in Fig. 1.4 b). Here, a transition linewidth of ~Γ0 =1 µeV,

a pump and probe laser coupling strength of ~Ωcouple =1 µeV and ~Ωprobe =0.4 µeV,

respectively. The ground state coherence time was taken to be T2 =1 µs. When both

lasers are on resonance the typical Lorentzian absorption signal of the transition is

dramatically altered, with the absorption contrast dropping to zero.

This dip in absorption contrast at the transition centre is caused by the formation

of a dark state. It consists only of a superposition of both ground states (| ψ〉 = α |
1〉+ β | 2〉). Since there is now no contribution of the excited state this state cannot

be excited or relax optically, hence its lifetime is only determined by the coherence

time of both ground states involved. This gives this phenomenon the name coherent

population trapping (CPT). There are two values characterising this dark-state: the

first is its visibility, which is the dip amplitude divided by the transition maximum

absorption contrast and is mostly dictated by the ground state coherence time and
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the coupling laser intensity. The other is the dark state linewidth, which is given by

the transition life time and the coupling laser intensity.

1.2.2 Application of quantum optics

Several applications are fundamentally based on quantum optical effects. A few ex-

amples will be presented in the following section.

Quantum cryptography

Photon antibunching is essential for communication based on quantum cryptography.

Quantum cryptography utilises the fundamental nature of a quantum mechanical

measurement process. It states that each measurement process imperatively changes

the state of the system. If now a communication line between a sender and receiver is

based on single photons, an eavesdropper cannot intercept the communication without

increasing the transmission error rate. Due to this, an intercepted transmission can

always be identified as insecure. When the quantum encrypted message is a key to

encrypt a longer string of information, this key can be discarded in the case of an

intercepted transmission, and only safe keys are used. This scheme is called quantum

key distribution [42]. It is essential that the transmission is based on a true single

photon source. Otherwise additional photons can be diverted and measured without

influencing the result of the photon detected by the receiver.

Quantum key distribution is already commercially available [43, 44], but systems

rely not on truly antibunched sources but on heavily attenuated lasers. Quantum

dots have been shown to be true single photon emitters. Single photon emission was

demonstrated using pulsed optical excitation [3] as well as pulsed electrical triggering

[45].

Slow light

One idea to utilise the dramatic change in the real part of the refractive index inside

the CPT dark state (see Fig. 1.4) is to produce slow light. This change results in an

ultra slow group velocity:

vgroup =
∂ωp
∂kp

=
c

n+ ωp(∂np/∂ωp)
, (1.15)

where vgroup is the group velocity, ωp and kp are the vacuum angular frequency and

wave vector, c is the vacuum speed of light. One important feature here is that while

the change in the real refractive index is at maximum at the CPT-dip centre, the

absorption is zero. Experiments already reported a slow down of light group velocity

to only 17 m/s [46] using a Bose-Einstein condensate of Na atoms.
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1.3. Quantum dots

Figure 1.5: a) shows an AFM scan of uncapped InAs QDs on a GaAs surface. Quan-
tum dots are loosely distributed on the surface and seem to be very uniform in size
and shape. Image by Brian Gerardot. b) shows an X-STM image of a QD cross
section. The image size is 50 nm by 40 nm. The bright areas correspond to a high
InAs concentration. Image by Murat Bozkurt and Paul Koenraad.

1.3 Quantum dots

Self assembled QDs used throughout this thesis are InAs islands surrounded by a

GaAs matrix. Example images of self assembled InAs QDs on a GaAs substrate are

shown in Fig. 1.5 a), with a cross section through an individual QD in part b). One

can make out individual atomic layers in image b) which indicates the absence of

dislocations inside the QD. The dark area below the QD shows the strain field inside

the surrounding material, while layers above the QD belong to a superlattice.

1.3.1 Quantum dot growth

Semiconductor quantum dot growth takes advantage of a self assembly process. Self

assembly of QDs is based on growing semiconductor layers of different lattice constant

(GaAs:5.65
◦
A, InAs:6.06

◦
A) on top of each other. Their lattice mismatch causes strain

between both layers which results in additional strain energy. After reaching a critical

thickness this strain energy is minimised by reducing the contact area between both

layers. As a result the top layer forms little islands. This island formation critically

depends on the top layer thickness. For InAs QDs on top of a GaAs substrate, this

transition is in the narrow region between one and two mono layers of InAs. Another

strict requirement for semiconductor growth in general is on the purity of source

materials. A typical dopant density of electrically conducting layers in QD samples

used in this thesis is 4·1024 m−3. Using the lattice constant of GaAs, this gives a ratio

of 5·10−4 dopant atoms per host material atom. It is obvious that source impurity has

to be far below this dopant per host atom ratio for a precise control of the material’s
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Figure 1.6: QD growth via Stranski-Krastanov. a) shows a schematic of a typical
MBE-chamber. Attached to a rotatable platform is a GaAs wafer. Evaporation
sources accurately deposit different materials on top of the substrate. Surface analysis
is provided by RHEED. b) shows different steps of QD growth. InAs is deposited
slowly on top of GaAs. For a InAs thickness below 1.5 mono layers (ML), the wetting
layer forms. At around 1.5 ML of InAs, the strain between InAs and GaAs layers due
to lattice mismatch relaxes by forming InAs islands. Dislocations form for more than
2 ML of InAs.

electronic properties. The back ground doping density of QD samples used in this

thesis is ≈ 1018 m−3.

Growth of semiconductor QDs used throughout this thesis is based on molecular

beam epitaxy (MBE). A generalised scheme of QD growth using MBE is shown in

Fig. 1.6. Source materials are orientated around a sample substrate, which is attached

to a rotatable platform. This whole setup is incorporated inside a vacuum system. A

weak beam of source material is created by heating the source chambers. Sources are

selected using a shutter at the front of the source chambers. For producing a uniform

layer thickness, the substrate can be rotated during growth.

The self assembly process of quantum dot formation is illustrated schematically in

Fig. 1.6 b). When the critical InAs thickness is reached, islands of InAs spontaneously

form on top of the GaAs, these are the QDs. While the strain energy between both

layers minimises due to the QD formation, this process increases the surface energy. A

balance of both processes defines size and shape of QDs [47]. When InAs evaporation
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continues, QDs grow in size until they reach a thickness where dislocations start to

form in the QDs [48]. The target thickness of InAs is around 1.5 ML, where QDs are

very uniform in size and shape and without dislocations [48].

A final annealing step decreases the QD confining potential, which shifts the QD

emission to around 950 nm or 1.3 eV. A typical density of QDs using these parameters

is around 1010 cm−2 [48], which corresponds to around 100 QDs per µm2. This is too

high to isolate easily a single QD using a diffraction limited optical microscope. For

controlling the QD density, substrate rotation is stopped during QD growth, leading

to a high QD density close to the InAs source. Quantum dot density almost drops

to zero at the side opposite to the source. The transition region somewhere in the

substrate middle is then used to find the appropriate density.

Electrons are fired with high energy at a shallow angle onto the substrate during

growth, their diffraction is recorded using some kind of imaging device (e.g. CCD

camera). Observing this kind of high energy electron diffraction (RHEED) reveals a

change in the surface pattern in the diffraction image. This way the transition from

a plane surface to the irregular surface topology with QDs can be monitored.

Lithographically defined QDs

Other examples of QDs are lithographically defined QDs. This scheme relies on elec-

trodes applied above a highly conductive two dimensional electron gas (2DEG), with

a schematic shown in Fig. 1.7 a). Layers of different semiconductor material are grown

via MBE and electron beam lithography producing the electrodes. The 2DEG below

the AlGaAs layer provides confinement perpendicular to the device surface. Gate

electrodes are aligned on top of the 2DEG such that they are oriented around a circu-

lar region (see Fig. 1.7 b)). They induce a local potential minimum via the Coulomb

interaction which acts as a potential well for electrons. Both mechanisms combined

provide confinement in all three spatial dimensions. The number of electrons inside

the potential well can be controlled via the bias applied to the gate electrodes. Part

b) of Fig. 1.7 shows the first lithographically defined lateral QD device providing

controlled confinement of single electrons [49]. Charging events (changing numbers

of electrons occupying the QD) manifest themselves via a change in IDOT while the

confinement potential is altered.

This class of device already demonstrated the outstanding performance of solid

state quantum dots in many areas. They demonstrated control over single electron

spins [50], coherent rotations of a single electron spin [51] as well as a measurement

of T electron2 via spin echo techniques [16]. However, they also come with several disad-

vantages, some of which directly tied to the fundamental layout of these devices. One

is that the potential minimum for carriers is produced via the Coulomb interaction.

As such they can only provide confinement for one species of carrier (electrons or
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Figure 1.7: a) Schematic of a lithographically defined QD. Electrodes combined with a
highly conducting 2DEG provide confinement in all dimensions. b) Image of a lateral
confinement QD by Ciorga et al. [49]. This device is the first allowing confinement of
only a few electrons, down to an empty QD.

holes). This is due to the opposite charge between carriers resulting in a potential

minimum for one and a potential maximum for the other carrier species. Accordingly

no excitons can be confined to these QDs and a direct coupling between QD state and

photons is impossible. Another disadvantage is that until now no lithographically de-

fined QDs were successfully integrated with a positively doped 2DEG, limiting them

to spectroscopy of electrons.

1.3.2 Confining potential and phonon interaction in self as-

sembled QDs

As mentioned before, QDs act as a potential well inside a semiconductor environment.

This semiconductor environment provides a number of interactions which can cause

dephasing and relaxation of quantum states. One major source of relaxations in

semiconductors are phonons [7, 18–21, 52–54]. The relaxation mechanism is driven by

fluctuating electric fields which originate from lattice vibrations via the piezo electric

effect. It directly causes a mixing of QD orbital states and as a result leads to

dephasing and relaxation of QD exciton states [55]. Direct coupling of phonons to

carrier spin is not possible. Indirect interaction however is provided via the spin orbit

coupling. Spin orbit coupling results in a mixing of spin and orbital states, thus

coupling between phonons and orbital wave functions ultimately leads to coupling

between phonons and carrier spins. As a result phonons induce relaxations of carrier

spins [7, 18, 21]. A strong confinement potential is therefore of central importance

for exciton and spin relaxation, since larger quantisation energies strongly suppress

the phonon induced mixing of orbital wave functions [7, 20, 53, 56, 57]. Studies on
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Figure 1.8: a) simple simulation of quantisation energy against QD size, assuming
a parabolic potential. b) simulation of the phonon density at 4K. Combining both
graphs clarifies the importance of QD size for suppressing interactions with phonons.

relaxation rates of Zeeman split electron spins for different confinement energies using

lithographically defined QDs give a demonstration of this mechanism [58].

Figure 1.8 a) shows the relation between QD size and the quantisation energy of

electron and heavy holes, using an effective mass of m∗electron =0.0625·me m
∗
hole =0.45

·me. A confinement potential equivalent to the quadratic potential of a harmonic

oscillator was assumed in this simulation [59]. Different experiments agree with this

interpretation for the lower QD states [36, 60, 61]. The quadratic confinement energy

dependency was calculated defining the QD size as the extrapolated crossing point

of the QD confinement potential with the GaAs energy. This ignores the effects of

softening of the confinement potential at the InAs/GaAs transition. For QDs with

≈20 nm size, this quantisation energy is around 130 meV for electrons and around 50

meV for holes. Figure 1.8 b) calculates the Bose-Einstein distribution (FBE(E)) at 4

K for different energies. To get the final number of phonons per volume at energy E,

FBE(E) has to be multiplied by the phonon density of states gphon(E). This density

dramatically drops off for phonon energies above 1 meV, dropping by more than two

orders of magnitude for an increase from 1 to 2 meV. It has to be emphasised that

values shown in Fig. 1.8 are based on simplified models and are only used to illustrate

the influence of QD size. They do not take exciton-exciton Coulomb energies as well

as other coupling effects inside QDs into account.

Figure 1.9 shows properties of the QD confinement potential. A band gap diagram

is shown in part a) with the smallest band gap energy Eg quoted for InAs (0.354 eV)

and GaAs (1.42 eV). The schematic shows the band gap for wave vectors ~kx and ~kz.

The asymmetric shape of the QDs plays an important role in the QD shell structure.

While QDs have a lateral size of between 15 and 25 nm, their height is much smaller,

only between 2 and 5 nm [48, 62]. This anisotropy has several influences on possible
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1.3. Quantum dots

states in QDs. In the conduction band, it means that the electron pz shell is pushed

above the QD confinement energy, or is at least far detuned from the px and py states.

The same is true for the light hole states of the valence band, which are also sensitive

to the confinement in growth direction. As a result, their energy is estimated to be

≥100 meV above the heavy hole states [5, 15, 18, 29]. Additional strain effects result in

a further increase of this energy offset [63]. The heavy-light hole splitting is indicated

in Fig. 1.9 a) with EHL. This splitting is of great importance for hole spin relaxation

times, since heavy-light hole mixing is the major source of hole spin relaxation in

quantum wells [52, 64]. Asymmetric shape and strain effects also have a big influence

on the effective mass of a heavy hole confined to a QD [65]. In the QD x/y-plane

(~kx) the effective mass of the heavy hole becomes smaller than for the light hole. A

schematic of an InAs QD confinement potential is shown in part b), with the band

gap energies of bulk GaAs and InAs given in a). E0 is the ground state energy, which

is lifted from the potential well minimum energy due to the ground state quantisation

(EQ = 1
2
· ~ω). The QD ground state energy is usually ≈1.3 eV, the electron and

hole quantisation energies are ~ωe ≈30 meV and ~ωh ≈15 meV, respectively. The

electron ionisation energy is EC ≈130 meV. Adding a second electron or hole to the

s-shell results in an additional Coulomb interaction term. The addition of an electron

increases the system’s energy by the electron-electron Coulomb interaction Eee ≈30

meV, plus the electron-electron exchange interaction Xee ≈2 meV, the second hole by

the additional electron-hole exchange interaction Xeh ≈0.35 meV [66]. This results in

an energy hierarchy of E0 > EC > ~ωe ≥ Eee > ~ωh > Xee > Xeh. Individual states

inside the quantum dots are labeled equivalently to the shell structure of atoms in c).

Due to the Pauli exclusion principle, each state can accommodate two carriers with

opposite spin.

1.3.3 Quantum states in quantum dots

Crucial for coupling between QDs and photons is confinement of the entire exciton.

Here lies the big difference between self assembled and lithographically defined QDs:

self assembled QDs represent a potential well for the conduction and valence band.

Characteristics of electrons and holes trapped inside the QD will be introduced in the

following section.

Zeeman effect on QD states

Hole and electron spin states are naturally degenerate at zero magnetic field. Hence

states with different spin quantum numbers still have the same energy, as long as all

other quantum numbers coincide. A magnetic field lifts this degeneracy and introduces
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1.3. Quantum dots

Figure 1.9: Electric potential of InAs QDs. a) shows a typical schematic for a III-V
semiconductor band gap. The minimum splitting between conduction and valence
band is given by Eg. An island of low Eg InAs (Eg =0.354 eV) surrounded by high
Eg GaAs Eg =1.42 eV represents a potential well like 3-d trap for carriers (see b)).
This results in formation of quantised energy levels inside the InAs island (QDs). c)
shows possible occupations of these levels, labeled according to the standard atomic
orbitals. The energy of the m=0 (pz) state is above the QD confinement energy due
to the tighter confinement in z-direction.

an energy shift depending on the carrier spin direction

EZeeman =
1

2
µB · (ĝj · σ̄j) · ~B. (1.16)

Here, EZeeman is the Zeeman energy shift relative to B =0 T, ~B the magnetic field

vector, µB is the Bohr magneton. The magnetic g-factor tensor ĝj is the Lande factor

of carrier j [67], with σ̄j being the spin Pauli matrix of carrier j. Spin eigenvalues are

±1
2

for electrons and ±3
2

for heavy holes. Along the QD symmetry axis, the tensor

ĝj only consists of diagonal elements [68]. Typical, experimentally extracted g-factor

values for a magnetic field perpendicular to the QD sample surface are ge =0.7 and

gh =0.9, while they are around ge =0.5 and gh =0.25 for an in plane magnetic field

[69].

Stark-effect on QD states

Similar to the Zeeman splitting of a static magnetic field, QD states also couple to

static electric fields. This effect is called the DC Stark shift. In QDs, this effect is

caused by a change in separation between electron and hole wave function due to the

additional electric field [36]. According to perturbation theory, the coupling between

the electric potential and the QD can be expanded in a power series

〈ψ | VStark | ψ〉 = 〈ψ(0) | VStark | ψ(0)〉+ 〈ψ(0) | VStark | ψ(1)〉+ . . . (1.17)

⇒ EStark = α0 · E + α1 · E2 + . . . , (1.18)
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1.3. Quantum dots

where the first term describes the permanent electric dipole moment, the second the

polarisability of the quantum state. In practice, only the first two terms are of rele-

vance. Results later presented in this thesis only report a linear Stark shift. Typical

values of sample used in this thesis are α0 ≈16 µeV/(kV/cm) n-doped structures and

α0 ≈-32 µeV/(kV/cm) for p-doped. The large difference between n and p-doped struc-

tures is likely to originate from a change in the electronic characteristics of the sample

structure, not from fundamental differences between the QD. One reason might be

an offset due to a different Schottky voltage (V0) caused by the different doping of

the back contact. The different signs also point in this direction. Strong quadratic

dependencies were observed on InGaAs quantum rings [36], with values of α1 ≈1

µeV/(kV/cm)2.

Carrier Coulomb interactions

Besides coupling of QD states to external fields, electron and holes also significantly in-

teract with each other. There is a whole series of Coulomb type interactions (electron-

electron, electron-hole, ...). Additionally, charges inside the QD result in the build

up of an image charge inside conducting areas in their surrounding. All these in-

teractions play a significant role in the emission spectra of single QDs. A detailed

model including these interaction can be found in [61, 66] and will also be included

in the experimental introduction section to explain emission spectra of n-doped QD

structures (see table 2.2).

Electron and hole wave functions

A carrier’s wave function inside a QD has to satisfy two general symmetries. The

more macroscopic one is the symmetry of the entire potential well. This results in

an envelope wave function with its symmetry dictated by the quadratic confinement

potential. Due to this, QD states are labeled as s and p-states, as shown in Fig. 1.9

c). This envelope wave function slightly differs in size between electron and hole wave

functions (Le > Lh) [70, 71] and is indicated by a dotted black line in Fig. 1.10. The

second symmetry is dictated by the individual atoms a QD consists of. Here, the

different atomic shells the conduction and valence bands consist of come into play

[14]. The valence band of a III-V semiconductor is based on the p-orbitals of its

individual atoms. As a result, valence band carriers’ (holes) wave functions show a p-

symmetry on the atomic level. Conduction band carriers (electrons) on the other hand

consist of s-orbital states of the individual III-V semiconductor atoms and reveal a

corresponding symmetry. An illustration of these different symmetries is shown in Fig.

1.10. The graph shows an example of a QD consisting of only five atoms, with their

nuclei position indicated by the red/white coloured circles. Atomistic p-symmetry of

holes leads to a local minimum at the position of the host nuclei, where the wave
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1.3. Quantum dots

Figure 1.10: Wave functions of holes and electrons in an InAs QD. In III-V semi-
conductors holes are valence band particles. This results in an atomistic p-symmetry
in their Bloch wave function (blue line) with zero density distribution (|Ψ|2) at the
position of the QD nuclei (red-white dotted circles). Electrons are conduction band
particles with a s-symmetry (red line), resulting in a local maximum of |Ψ|2 at the
position of host nuclei.

function probability distribution reaches zero [5]. The electron has a local maximum

in its probability distribution at the nuclei positions. This has a great effect on the

interaction between nuclei and carrier spin, which will be discussed in the following

section.

QD nuclei spin as a reservoir

So far, besides coupling to phonons, QD states were treated as an isolated system

inside the QD. This is not the case. A big contribution to relaxation and dephasing

of carrier spins originates from coupling between discrete QD states and nearby reser-

voirs. Reservoirs have a multitude of degrees of freedom. Once the information from

a QD state leaks into a reservoir, it will be transfered into one of these dimensions

and is lost. The two main reservoirs relevant to experiments in this thesis are the QD

nuclei and carriers in nearby highly doped regions. The interaction with highly doped

region carriers will be treated later in this thesis, when such a layer is introduced into

the device design 2.1.1.

A QD consists of ≈105 atoms. In III-V semiconductor material, the nucleus of

each atom has a non-zero spin, which can couple to the spin of carriers confined in

the QD. Here the number of QD nuclei is important and 105 is unfortunate in this

perspective. It is too big for easily controlling each nuclear spin and is too small

for that statistics can effectively average out the overall nuclei spin polarisation. An

illustration is shown in Fig. 1.11 a).

Interaction between the nuclei and carrier spins is the direct influence of the nuclear

magnetic field on the carrier spins magnetic dipole. One can assume the overall nuclear
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magnetic field to be constant over ≈1 ms [72]. The coupling between the kth nucleus

and the carrier spin can be divided into three terms [5]:

Ĥk
1 =

µ0

4π

8π

3
2µbgjkµNδ(~rk)Ŝ · Îk

Ĥk
2 =

µ0

4π
2µbgjkµN

3(n̂k · Ŝ)(n̂k · Î)− Ŝ · Îk
r3
k(1 + d/rk)

(1.19)

Ĥk
3 =

µ0

4π

8π

3
2µbgjkµN

L̂k · Îk
(1 + d/rk)

.

Here, µB is the Bohr magneton, gjk is the kth nuclear g factor of species j, µN is the

nuclear Bohr magneton, ~rk = ~r − ~Rk is the electron position operator relative to the

kth nucleus, d is the nucleus dimension and ~nk = ~rk/rk · ~S and ~Lk are the carrier

spin and angular momentum operator, ~Ik is the nuclei spin operator. These terms

describe hyperfine contact interaction (Hk
1 ), the dipole-dipole interaction (Hk

2 ) and

the carrier-orbit nucleus-spin interaction (Hk
3 ). A full, derivation of these equations

can be found in [73].

The contact hyperfine Hamiltonian (Hk
1 ) only acts directly at the position of the

host nuclei (due to the δ function). In Fig. 1.10 one can see that the density distribu-

tion of electron and hole states fundamentally differs at exactly this point. The Bloch

wave function of a hole spin goes to zero, avoiding any coupling between nuclei and

hole spin due to Hk
1 . For the electron however, the local maximum of the Bloch wave

function results in a strong interaction. Most importantly, the characteristics of this

coupling is [5, 15, 74]

Ĥelectron
1 = AelectronŜ · Îk, (1.20)

which lacks any orientational anisotropy. Equation (1.20) can be interpreted as a

coupling of the electron spin to the overall internal magnetic field of the QD nuclei

( ~Bint) when summing over k, weighted by the coupling constant Aelectron (Aelectron =86

µeV, [5]). This field varies slowly (≈1 ms [72]) in respect to the electron spin coherence

time T 2
electron. The electron spin (sz) will now start to coherently precess in the Bx

int

component. In an experimental situation however, the measurement will be integrated

for orders of magnitudes longer, and during this time ~Bint will change its orientation

(see Fig. 1.11 b)). As a result, the ensemble coherence T 2∗
electron will be shortened

relative to T 2
electron, since it sums over all the different precession frequencies. Note that

the orientational isotropy of equation (1.20) is of importance. A direct consequence is

that changing the electron spin initialisation direction (e.g. via an external magnetic

field) cannot suppress dephasing caused by the broad distribution of electron spin

precession frequencies [5, 21, 75–77]. One way to suppress this shortening mechanism

is polarising the QD nuclei [78–81] or preparing the nuclei spins in a rotating state [82].

Another experimental approach is using spin-echo techniques [16], where controlled

rotation sequences of the carrier spin annihilate the effect of ensemble dephasing.
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Interaction Hamiltonians Helectron
2 and Helectron

3 can be set to zero for electron spins

due to spherical symmetry of their Bloch-states [5].

Another result of electron-nuclear spin coupling due to equation (1.20) is a spin

flip flop. Here the spin of a QD carrier is flipped together with a nuclei spin to

maintain spin conservation (see Fig. 1.11 c)). This source of spin relaxation however

becomes strongly suppressed when applying a magnetic field, since now phonons have

to provide energy conservation [18, 29, 64, 83].

For the heavy hole, especially Ĥhole
2 results in a significant hole spin - nuclei spin

interaction. The complete spin-spin interaction can be written as [5]

Ĥhole = Ĥhole
2 + Ĥhole

3 = Aholes
zIzk . (1.21)

The big difference between equation (1.20) for electrons and equation (1.21) for holes

is that Hhole
2 is represented by an operator in a simple Ising form [5], only coupling

the z-component of ~Bint to the hole spin z-component. If the hole spin is aligned in

z-direction at zero external magnetic field, coupling to the nuclei spin is of the same

order as for electron spins (Ahole =-13 µeV, [5]). However, when a magnetic field

perpendicular to ~z is applied, the influence of Hhole
2 on heavy hole states can strongly

be suppressed. As a result, the hole spin dephasing time should increase linearly

with magnetic field. Equation (1.21) also has a big influence on hole spin precessions

in the nuclei field: for the pure Ising interaction type, hole spin precession due to

a perpendicular nuclei magnetic field component should be strongly suppressed. All

these assumptions only hold for a pure heavy hole state, light hole contributions would

lead to non Ising corrections, allowing hole spin precession as well as limiting hole spin

coherence in an in plane magnetic field.

It will be one of the major focuses of this thesis to determine relaxation and

dephasing times of single hole spins. In particular, a difference between electron and

hole spin coherence times in an in-plane magnetic field would be of great importance

for the theoretical understanding of hole wave functions in QDs.

1.4 Quantum optical experiments in quantum dots

Several quantum optical features of QDs were already mentioned in this chapter. This

section will give a more detailed introduction into quantum optics using QDs, as well

as introduce experimental techniques which can extract information about QD states.

1.4.1 Optical emission of quantum dots

Optical emission properties of a QD clearly distinguish it from classical emitters. The

most apparent difference is the true single photon emission of single QDs. It is based
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Figure 1.11: Nuclei of III-V material have a non zero overall spin. These nuclei spins
are randomly orientated throughout the QD, see a). The statistical average of QD
nuclei spin creates an overall magnetic field, Bint. A spin flip flop interaction, where
the carrier spin flips in combination with a nuclei spin to conserve overall angular
momentum is presented in b). Over time, Bint varies in magnitude and orientation.
Carrier spins polarised in z-direction start precessing in Bx

int. Spin precession fre-
quency changes in time (compare top and bottom of c)) with the varying internal
magnetic field. This is the major source of electron spin dephasing in InAs QDs.

on two different effects: the first is the quantisation of energy levels, the second is the

Coulomb interaction between carriers. If a QD is occupied by a single exciton only,

emission can only consist of one photon. This is not true for two excitons trapped

in the QD. Relaxation of such a bi-exciton happens in two steps with the bi-exciton

relaxing via photon emission into an exciton and subsequent photon emission leaving

behind an empty QD. This clearly produces two photons per relaxation cycle. Dis-

crimination between both photons is possible due to the Coulomb interaction between

carriers. The bi-exciton energy is offset from the exciton energy due to the additional

Coulomb interaction terms. This offset is ≈3 meV [84], and spectral filtering can

easily suppress this additional photon source. Hanbury-Brown Twiss interferometry

is used for a measurement of the temporal correlation between single photons, shown

in Fig. 1.12 a). The photon stream coming from the QD is split in half by a beam

splitter. Two single photon detectors detect the incident of a single photon. One

of the detectors serves as a start, the other as stop trigger. Timing electronics now

record the time delay between start and stop (τ), and a computer registers the number

of events per τ . This type of measurement is called an autocorrelation of the photon

stream, g2(τ). For a truly photon antibunched source there can never be a photon

striking the start and stop detectors at the same time. As a result, the autocorrelation

should reveal zero counts at zero time delay (g2(0) = 0).

Anti-bunched emission of a single QD was first demonstrated in 2000 [3], using

a QD embedded in a micro-disc cavity. In this experiment, a pulsed laser (pulse

duration ≈250 fs) excited excitons with energies higher than QD exciton energies.

After subsequent relaxation these excitons occupy the QD. Excitons recombined under
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Figure 1.12: a) Experimental setup for an autocorrelation measurement of QD exciton
emission. A pulsed high energy laser (830 nm) is focused onto a single QD. The
collected QD emission is filtered via a long pass filter, suppressing the excitation laser.
Only the neutral exciton emission passes through the additional tunable filter. The
photon stream is split in half by a beam splitter, with each half impinging on a single
photon detector. One detector serves as start, the other as stop signal. Counting
electronics record the number of incidents versus the time delay between start and
stop. b) shows the extracted autocorrelation g2(τ). Data provided by McFarlane et
al. [85].

photon emission after their typical life time of ≈1 ns. A narrow linewidth bandpass

filter suppressed any photons not originating from the neutral QD exciton. The

probability of only one photon per pulse approaches 100 % in this experiment. Figure

1.12 b) shows g2(τ) obtained from QDs similar to the one used in this thesis, data

was extracted using a pulsed diode laser (830 nm, 120 ps pulses) and was provided

by McFarlane et al. [85].

1.4.2 Resonance fluorescence of single quantum dots

An additional classic quantum optical experiment already carried out on single QDs

is the collection of resonance fluorescence. The challenge of such an experiment is

that the excitation source is at the same energy as the transition, hence suppression

of the much higher intensity source is challenging. This experiment was recently

demonstrated by two groups using different techniques. One used a QD embedded

in a planar waveguide [86]. While the excitation laser was coupled in and confined

to the planar wave guide, QD emission could also be collected in the orthogonal

direction. A second technique [87] relies on the coupling between QD and a high

intensity excitation laser causing the evolution of a Mollow triplet [88]. This allowed

spectrally suppressing the excitation laser via a high spectral resolution etalon. This

was the first reported observation of the Mollow triplet using a single QD.
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1.4.3 Coherent population trapping in quantum dots

Coherent population trapping was recently reported using a negatively charged ex-

citon in a single QD [76]. An in-plane magnetic field changed the optical selection

rules such that both electron spin ground states coupled to the same excited state.

The probe absorption spectrum showed the characteristic CPT-dip inside the exci-

ton transition (see Fig. 1.4 b)). Spectroscopy of this dark-state revealed an ensemble

electron coherence time T electron2 ≈20 ns.

1.5 Conclusion

QDs are a unique system for studying fundamental interactions on the single carrier

level inside the semiconductor environment. They also enable a vast variety of quan-

tum optical experiments, ranging from anti-bunched photon emission over resonance

fluorescence to experiments on dressed states and coherent population trapping.

In this chapter, a basic introduction to quantum and semiconductor physics was

given (see sections 1.2 and 1.3, respectively). The QDs described were grown using

molecular beam epitaxy. The energy of carriers confined to QDs can be manipulated

easily using external electrical and magnetic fields (Stark and Zeeman effect). The

more applicable energy scales are one advantage of QDs over atomic vapour. How-

ever, the semiconductor environment also results in additional, not easily controllable

interactions. QD states information can leak into reservoirs, which posses a vast num-

ber of degrees of freedom. Therefore this information is therefore lost. Due to this

mechanism, reservoirs can cause relaxation and dephasing of QD states.

Selection rules offer a direct connection between photon states and QD transitions.

Thereby they enable optical spectroscopy of QDs which, for example, can extract

information about the relaxation and dephasing of QD states.

One major focus of this research is the measurement of the hole spin coherence

time. If a coherent hole spin state could be identified in this work it would represent

a major advance for the QD field: coherent states are essential to applications using

QDs, like quantum computation or in metrology. Their discovery would also allow

experiments to proceed further and to exploit the physics of quantum interferences

like CPT.
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Chapter 2

Experimental techniques

The present chapter will introduce the techniques necessary for single QD spec-

troscopy. Several crucial concepts have to be developed: control of QD carrier occupa-

tion, producing the correct density of QDs on the final sample, enclosing the QDs in a

4.2 K environment, an adjustable QD sample position at 4.2 K, electrical connections

between the QD sample at 4.2 K and the electrical equipment at room temperature,

a stable cryogenic microscope system and a spectroscopy setup for resonant and non

resonant excitation.

In order to manage all these problems in a combined setup, some already individu-

ally challenging, the experiment is split up into several sections. QD carrier occupation

and density management are included in the manufacturing and post manufacturing

processing steps. A microscope system which encloses the QD sample and piezo po-

sitioners in a vacuum allows the experiment to be submerged in a liquid helium bath,

without components experiencing condensation or excessive mechanical strain. Two

different kinds of liquid helium reservoirs will be introduced: one is a liquid helium

dewar with no possibility to top up liquid helium during measurements. The other is

a bath cryostat, which has this top-up possibility. Non resonant and resonant spec-

troscopy are realised with the excitation sources located on an optical bench and later

combined in the microscope head. The non resonantly created spectrum is analysed

via a grating spectrometer, also located on the optical bench. Resonant spectroscopy

is measured either in transmission using a pin-photo diode located below the QD

sample, or in reflection with the detector situated either inside the microscope head

or also on the optical bench.

The result of work reported here is a highly stable experimental setup, enabling

spectroscopy of single QDs, in particular the same QD for up to 8 weeks. The resonant

experiment allows coherent excitation of individual QD states, and when combining

the phase sensitive detection scheme with a SIL, a signal contrast (∆T/T ) of up to

2% is achieved. Here, ∆T is the change in transmission intensity on laser/transition

resonance, while T is the overall transmission intensity off resonance.
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2.1. Quantum dot sample

2.1 Quantum dot sample

Precise control over the number of carriers occupying a QD is mandatory for studying

individual QD states. While the Pauli exclusion principle forbids multiple occupation

of states by individual carriers, this is not the case for excitons. Here the Coulomb and

exchange interaction allows a distinction between different exciton states (see chapter

1.3.3). One approach to access these individual states is to embed the QDs in a metal-

insulator-semiconductor field effect structure (MISFET) [1]. These structures consist

of several semiconductor and one metal layer, allowing the use of different band gap

energies to manipulate enclosed carriers. Here, QDs are located slightly above a highly

doped back contact. This close by, highly doped region enables carriers to tunnel to

the QD, while also providing a metal-like layer underneath the QDs. Together with

a semi transparent NiCr Schottky gate on top of the QD sample this structure forms

a capacitor with the QDs between the capacitor plates. By applying a gate voltage

(Vg) between the Schottky gate and the back contact the energy of individual QD

states relative to the back contact Fermi level (EF ) can be controlled. Pushing QD

states below EF via Vg will occupy the QD states by carriers tunneling from the back

contact to the QDs.

Spectroscopy on individual quantum states can give access to their electronic struc-

ture as well as to their lifetime and coherence time. Changing the doping material

of the back contact allows charging QDs selectively with electrons or holes. Growing

QD samples such that QD density changes across the wafer allows selecting a region

appropriate for single QD spectroscopy. Here the density is such that only several

QDs are contained inside the focal spot area (≈0.2 µm2). Manipulating QD state

energies via the DC Stark shift can change the energy of states relative to a narrow

linewidth laser. A modulation of QD state energy via an AC gate bias allows the

implementation of a phase sensitive detection scheme. This concept dramatically re-

duces the system’s noise and enables the detection of the interaction between QD

states and a resonant laser.

2.1.1 Charge tunable QD samples

Charge tunable devices were first used to study charging of QDs via capacitance and

infra red transmission spectroscopy [1] on an ensemble of QDs. Further improvement

of the MISFET structure resulted in the possibility to observe optical emission from

single quantum rings [89]. Here, discrete jumps in the emission spectrum indicated

charging from a neutral exciton (X0) up to a five times negatively charged exciton

(X5−). The next section describes these remarkably successful structures and the

functionality of each design element in detail.
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Figure 2.1: Schematic view of the QD sample. a) Shows the layer structure of QDs
embedded in a MISFET device. QDs are separated from the highly doped back con-
tact via the tunneling barrier. QDs are covered by the capping layer. A superlattice
between capping layer and Schottky gate prevents carrier leakage through the device.
The Schottky gate is a semi transparent layer of NiCr. A ≈1 mm diameter Indium
(In) piece is placed on the sample surface without connecting to the Schottky gate.
An annealing step diffuses In atoms into the sample until reaching the back contact,
providing an ohmic connection (R≈1 kΩ) between the In on the sample surface and
the back contact. b) shows the conduction band edge at different gate voltages (Vg).
This is an example with an n-doped back contact. The gate voltage is applied between
the Schottky gate and the back contact. At gate voltage V 1

g , the QD levels are above
the Fermi energy (EF ) of the back contact doping, hence the QD is empty. At V 2

g ,
the lowest QD state is below EF and the QD is occupied by one electron.

The MISFET structure

QD growth using molecular beam epitaxy was described in chapter 1.3.1. This tech-

nique allows sufficient control over material deposition rates to realise single atomic

layer structures [90]. All samples used throughout this thesis were grown at the Uni-

versity of Santa Barbara in the group of Pierre Petroff. Two samples were used in

experiments throughout this thesis. The biggest difference between both is the use of

different back contact doping materials. The negatively doped back contact of wafer

050328C is realised using a high density Si doping. Wafer 060726B has a high density

carbon doping of the back contact, leading to an excess of holes in the valence band.

Figure 2.1 a) shows a typical MISFET layer structure used for experiments in this

thesis. Layer thicknesses for both wafers are listed in table 2.1.

In all growth steps described in this section, unless stated otherwise, the wafer is

rotated while evaporating material. This guarantees an even deposition of material

across the wafer. A semi insulating GaAs substrate is covered with a AlAs/GaAs

superlattice and a GaAs buffer layer to stop dislocations in the substrate material

from propagating and to provide a smooth surface for further growth. The part of the

MISFET structure actively involved in the experiment starts with the back contact.

This layer is 20 nm thick for both samples and consists of highly doped (100) GaAs.
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MISFET layers 050328C 060726B
GaAs buffer 80 nm (GaAs) 80 nm (GaAs)
Back contact 20 nm (n+ GaAs) 20 nm (p+ GaAs)

Tunnel barrier 25 nm (GaAs) 25 nm (GaAs)
quantum dots InAs InAs
Capping layer 30 nm (GaAs) 10 nm (GaAs)

Blocking barrier 20·(3 nm / 2 nm) (AlAs/GaAs) 24·(3 nm / 2 nm) (AlAs/GaAs)
cap 6.3 nm (GaAs) 6.3 nm (GaAs)

Table 2.1: Layer thickness of wafers 050328C and 060726B. Wafer 050328C has a
negatively doped back contact, while the back contact of 060726B is positively doped.

The negatively doped 050328C wafer is Si doped with an electron density of about

4 ·1018 cm−3. Positive doping was realised for wafer 060726B using carbon, creating a

hole density of approximately 5 ·1018 cm−3. Separating this highly doped region from

the actual QDs is the tunneling barrier. The thickness of this layer determines the

tunneling rate between QDs and the free carriers of the back contact. For the case

of experiments on the confined carrier spin relaxation (T1) and dephasing (T2) time,

this tunneling rate has to be increased in order to avoid cotunneling between QD and

back contact limiting (T1) and (T2) (see chapter 2.1.1).

On top of these structures InAs QDs are now grown. The mechanisms behind

the QD self assembly process are described in chapter 1.3.1 and by Eaglesham [91].

QD density critically depends on the thickness of the InAs layer deposited on top of

the GaAs tunneling barrier. Combined with the limited sensitivity of the monitoring

RHEED detector to QD density, this results in a different approach to growing QDs.

The wafer rotation is stopped for the duration of growing QDs, which results in a QD

density gradient. The wafer area adjacent to the evaporation sources experiences a

higher deposition rate than the opposite side. Between the high and zero QD density

sides of the wafer an area of transition will be created. It is in this transition area,

where the density of QDs can be chosen such that only a manageable number of QDs

are located inside a typical microscope focal spot (≈0.2 µm2 at 950 nm).

Before the capping layer is deposited, wafer rotation is started again. The capping

layer thickness is of great importance to the device performance. It separates QDs

from the superlattice of the blocking barrier. As such it inhibits disturbances of the

QD confinement potential due to the Al content of the superlattice. On the down

side it also acts as a 2-d quantum well, permitting uncontrolled carrier storage close

to the QDs [92]. The discovery of this effect led to a reduction in capping layer size,

from 30 to 10 nm for wafer 060726B. Simulations show that the lowest states of the

capping layer well are now far above the QD states, now preventing this interaction.

In order to establish a clearly defined QD ground state population, the only source

of free carriers must be the back contact. This requires a structure which blocks all

current flow due to the voltage applied between back contact and the Schottky gate.
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A superlattice consisting of alternating layers of AlAs and GaAs strongly attenuates

leakage currents through the device [93]. The structure is finalised with a 4 nm GaAs

cap to prevent oxidation.

Selective charging using the MISFET structure

Carrier tunneling between the back contact and QD, and thereby the carrier occupa-

tion of the QD, is determined by the energy of QD states relative to the Fermi energy

of the Fermi sea in the back contact (∆E). At low temperatures, if a QD state is to

be occupied by carriers, its energy has to be below the back contact Fermi energy.

Applying a voltage between the back contact and the top of the device allows the

electric field to be changed, hence modifying ∆E.

An ohmic contact to the back contact can be provided by annealing indium (In)

from the sample surface down to the back contact (see Fig. 2.1 a)). For this, a small

piece of In (0.2x0.2x0.2 mm) is cut and cleaned from its oxide layer via scraping using

a knife. The In pieces are then placed on top of the sample which is transfered into an

alloying furnace (BIORAD) inside a hydrogen(10 %):nitrogen(90 %) atmosphere. The

furnace is flushed with the hydrogen:nitrogen gas mixture for 15 minutes to remove

moisture. The furnace is then heated to 450 ◦C with a short flush of HCl gas when

passing 150 C◦. The temperature is kept at 450 ◦C for 45 minutes, allowing the In

to diffuse through the MISFET layers, forming an Ohmic contact between the In on

the sample surface and the back contact inside the structure. A typical resistance

between back contacts should be below 1 kΩ.

The electrical connection on the sample top surface is provided by a thin nickel (Ni)

chrome (Cr) layer, which is 2 mm in diameter. This layer must be semi transparent

in order to allow optical spectroscopy of QDs located underneath it. A ≈5 nm thick

layer of NiCr is deposited via thermal evaporation on top of the QD sample, forming

a Schottky gate. A shadow mask defines the top gate structure. It is important

that there is no physical connection between the evaporated Schottky gate and the

In contact on the sample top, since this would result in a short circuit.

An external gate bias (Vg) can now be applied between the back contact below

and the Schottky gate above the QDs. A schematic of the conduction band edge of a

n-doped sample at two different gate biases is shown in Fig. 2.1 b). QD conduction

states for the gate bias V 1
g are above the Fermi energy of the back contact doping,

hence the QD is not occupied (for T=0 ◦C). For V 2
g , QD states are pulled below EF .

The change in QD state energy can be written as

∆E = e ·∆Vg ·
dQD
dt

. (2.1)

In this equation, e is the electron charge, ∆Vg is a change in gate bias, dQD and

dt are the distances from the back contact to the QDs and to the Schottky gate,
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Figure 2.2: Nomenclature for labeling states occupying a QD. Ground states are
labeled directly according to their charge (e,2e,... and h,2h,...), while excitons are
labeled with a X plus their charge as an exponent (X0 and Xn±) including the sign
(positive or negative) and magnitude (integer values) of charge.

respectively. The ratio λ =
dQD

dt
is called lever arm. In order to achieve a completely

flat band structure, one has to compensate for the Schottky voltage (V0). It originates

from the metal - semiconductor surface, and is measured to be typically ≈0.6 V for

the GaAs / NiCr interface in wafers used here. According to this, the energy of a QD

state due to an external gate bias can be written as

Eel(Vg) = e · (V0 − Vg) · λ. (2.2)

The sample structure described here allows precise control over ∆E, and the range

of voltage necessary to change QD occupation can be adjusted by changing the lever

arm λ.

This structure allows to add or remove carriers to or from optically created exci-

tons in a controlled way. Ground states are labeled according to their occupation (e

(electron) and h (hole)), with an integer indicating the amount of charge. Excitons

are labeled by a capital X, with sign and magnitude of charging indicated by an

exponent (e.g. X0, X1−, X1+). See Fig. 2.2 for a graphical illustration.

The Coulomb blockade

Selective charging of QDs allows a multitude of QD states with different charge con-

figurations. A whole variety of interactions between the carriers themselves and also

with their environment contributes to the final energy of a QD state. Figure 2.3 a)

shows a schematic of the QD energy diagram, while b) gives typical values of energies

involved (compare to [61, 66]). As discussed in section 2.1.1, the gate bias changes the

QD state energy by Eel(Vg), which is given by equation (2.2). EC is the energy from

the electron state to the top of the QD confinement potential (see Fig. 1.9 b)), Em the

energy due to the image charge induced by the charge e in the back contact, Eeh the

electron-hole on-site Coulomb energy, Ehh the hole-hole on-site Coulomb energy and

Eg is the energy gap between the lowest electron and hole state. All these interactions
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QD state Energy
vacuum 0

e −Eel(Vg)− EC − Em
2e −2Eel(Vg)− 2EC − 4Em + Eee

h Eg + Eel(Vg) + EC + Em
X0 Eg − Eeh

X1− Eg − Eel(Vg)− EC − Em + Eee − 2Eeh

X1+ 2Eg + Eel(Vg) + EC + Ehh − 2Eeh − Em

Table 2.2: Energies of example QD states. Eel(Vg) is given by equation (2.2), EC is
the confinement energy of the lowest electron level, Em the energy due to the image
charge in the back contact, Eeh the electron-hole on-site Coulomb energy, Ehh and
Eee the hole-hole and electron on-site Coulomb energy, Eg is the energy gap between
the electron and hole state.

are combined in a coulomb blockade model (shown in table 2.2, also see Warburton

et al. [61]), which provides the energies of individual QD states. It can be used for

explaining charging events for resonant and non resonant spectroscopy.

Back contact as a reservoir

An additional source of interaction is due to carrier exchange with the doped region of

the back contact. Carriers of a highly doped region are generally not spin polarised,

and as such lead to a spin randomisation when a carrier exchange between QD and

back contact takes place. Carriers inside the back contact are governed by Fermi

Dirac statistics, with the transition of occupied to unoccupied states characterised by

the Fermi Energy EF . Changing Vg now brings the QD into resonance with each state

twice: the first time when the carrier is added initially (V1), the second time when

the QD charges to a different state by again adding a carrier (V2). A schematic of

this process is shown in Fig. 2.4.

This interaction is given by [94]:

γCT = ∆
h

∫
E

∣∣∣ 1
E+e(Vg−V1)/λ+ i

2
Γ

+ 1
e(V2−Vg)/λ−E+ i

2
Γ

∣∣∣2
·f(E)[1− f(E − δCT )]dE.

(2.3)

Here, the EF was defined as zero point, f(E) is the Fermi-Dirac function, f(E) =

1/(eE/kbT + 1), ∆ is the tunnel energy given by δ = 2π|V |2g(EF ) with g(E) being the

density of states. Γ is the energy broadening including tunneling Γ = Γ0+2∆(f [e(Vg−
V1)/λ] + f [(V2 − Vg)/λ]). The lever arm λ is used as defined in equation (2.1). Due

to the Fermi-Dirac term, this tunneling rate strongly depends on the energy detuning

relative to EF . As a result, this interaction is suppressed by many orders of magnitude

in the centre of charging voltage plateaus. This effect is described in [94] and [15] for

electron spins, where it results in ps spin flip randomisation rate at the characteristics

voltages V1 and V2.
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Figure 2.3: a) schematic of a QD plus relevant energies for the Coulomb model. b)
typical values for energies relevant to the coulomb model.

Figure 2.4: Spin randomisation via tunnel coupling between QD and back contact,
shown for different gate biases (V 1

g and V 2
g ). Back contact to QD tunnel frequency

is small for a QD state which is energetically far detuned (∆) from the back contact
Fermi energy (EF ), see a). When QD state and EF come into resonance (∆ =0), this
tunneling rate increases significantly. Since carriers tunneling from the back contact
into the QD are not spin polarised, this leads to fast spin randomisation.

35



2.1. Quantum dot sample

2.1.2 Samples for single quantum dot spectroscopy

For spectroscopy on single QDs, samples have to be manufactured from wafer material

described before. These samples have to be small enough to be easily mounted on top

of piezo positioners, but still must accommodate electrical connections between QD

sample and control electronics. The QD density must be such that only a a couple of

QDs are located inside the microscope objective spot area.

Producing a low QD-density sample

The typical density of InAs QD when grown on a GaAs substrate is around 1010 cm−2,

which would result in several 100 QDs per focal spot area. As mentioned before, this

problem is solved by growing QDs on top of the capping layer with a gradient in

density. Along this gradient direction is a steep drop in QD density, changing from

high density to almost zero QD density. A typical wafer is shown in Fig. 2.5 a). The

samples are grown such that the QD density should be highest near the minor flat,

with the density transition somewhere in the wafer centre. Figure 2.5 b) shows an

experimental setup for measuring the QD density at room temperature. A 830 nm

laser is focused onto the QD wafer via a high NA lens (Thorlabs C390TM-B). The

laser photons create excitons in the bulk GaAs, which have an energy exceeding the

energy of QD states. These excitons relax into the QDs, where they can recombine

via optical emission. QD emission and back scattered non resonant laser photons are

collimated, reflected by a beam splitter and collected in a multi mode fibre (Thorlabs

M14L02). The fibre is connected to a grating spectrometer (described in detail in

Fig. 2.8 c)) and photons of the non resonant laser are suppressed via two long pass

(Thorlabs FEL0900) and one notch (Semrock NF01-830U-25) filter.

Several stripes of the QD wafer are cleaved along the expected direction of the

QD density gradient (parallel to major flat). A wafer stripe is then placed in the

focus of the microscope, and luminescence spectra are taken at different positions.

Part c) of Fig. 2.5 shows several spectra taken at different positions along stripe 14

(stripe 14 is indicated on the wafer in Fig. 2.5 a)). The spectra were recorded with an

integration time of 5 s, the optical power was ≈10 µW with a spot size of ≈ 500 nm2.

The distance between wafer minor flat and the microscope focal spot is shown in the

legend of Fig. 2.5 c). The spectra show emission from the wetting layer (WL, below

930 nm) and from QDs (above 930 nm). As the focal spot is moved further away,

QD counts drop as expected. QD counts are now integrated and plotted against the

focal spot position. The second graph in Fig. 2.5 c) shows the integrated QD counts

for different focal spot positions using stripe 14 and 15 of wafer 050328C. QD counts

of stripe 14 are shown on the left y-scale, for stripe 15 on the right y-scale. It is

the spatial dependency of counts, not their absolute number which is important for

finding the QD density transition, since they can change from stripe to stripe due to
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Figure 2.5: Measuring the QD density gradient. Part a) shows a typical wafer. Two
stripes (line 14 and 15) are cleaved off to measure the QD density. b) One line is
placed on an XY-stage. A non-resonant excitation laser (λ =830 nm) is focused
(objective lens: Thorlabs C390TM-B) on to the sample, exciting excitons in the bulk
GaAs material. Luminescence in reflection direction is collected by a multimode fibre
(Thorlabs M14L02) and analysed via a spectrometer. c) example spectra taken from
stripe 14, showing luminescence from the wetting layer and QDs. Scans were taken
with an integration time of 5 s and the distance between minor flat and focal spot
is given by the labels. QD counts decrease with increasing distance from the minor
flat. The lower part of c) shows integrated QD counts at different distances from the
minor flat. A low density QD sample would typically have the top gate centered at
27.5 mm (stripe 14) and 22 mm (stripe 15) distance from the minor flat.
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2.1. Quantum dot sample

Figure 2.6: The QD sample is mounted on an aluminium pin to provide a stable
base for electrical connections and for mounting it to piezo positioners. The sample
is connected to the pin using varnish (Oxford instruments). a) shows a top view,
while b) shows a view from the side. Wires are first glued to the pin, from where
they are wired to the back contact indium contact and the Schottky gate. The wires
are attached to the sample connections using silver paint (RS components). A SIL is
attached to the QD sample with vacuum grease. A hole in the centre of the aluminium
pin allows detection in transmission via a PIN detector (Thorlabs FDS100).

slight misalignment. Line 14 and 15 show different locations of the transition, and for

producing a low QD density sample, the Schottky gate would be centered at ≈27.5

mm for stripe 14 and ≈22 mm for stripe 15.

The final QD sample

In order to provide a stable base for electrical connections and for mounting it onto

piezo positioners, the QD sample is attached to an aluminium pin using varnish

(Oxford instruments). A schematic view of the QD sample, the pin and electrical

connections is shown in Fig. 2.1. Four holes provide a feedthrough for M2 screws for

attaching the whole device to the piezo positioners. Thin wires are first glued to the

aluminium pin. This provides a stable working platform and stops strain from outside

being transfered to the QD sample. The sample is then connected with an additional

pair of wires, which are attached to the indium contact and to the NiCr Schottky

gate using silver pain (RS components). A solid immersion lens (SIL) is attached on

top of the Schottky gate using a small amount of vacuum grease (drop with a 0.1 mm

diameter), with pressure applied from the SIL top using a cotton bud. A hole in the

centre of the aluminium pin allows to perform spectroscopy in transmission, where

the transmitted signal is detected using a PIN photo diode (Thorlabs FDS100).
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2.2 Spectroscopy on single quantum dots

The subsection below describes all aspects of the experimental setup: microscopy,

spectroscopy, electrical signal management and QD sample control as well as the

involved cryogenics. The next part introduces the principles of non-resonant and

resonant excitation spectroscopy techniques using the more established negatively

doped QD structures. The final experimental introduction section then turns to

spectroscopy of p-type devices. They suffer from a reduced signal strength (by a

factor of ≈ 10) for both spectroscopy approaches.

2.2.1 Experimental setup for single quantum dot spectroscopy

Two spectroscopy setups for studying QDs at liquid helium temperature (4.2 K) will

be developed in the following section. One uses non resonant excitation, where QD

luminescence is analysed by a grating spectrometer. The other is resonant spec-

troscopy, where the interaction between a resonant, tunable (925 - 980 nm) narrow

linewidth laser and a QD transition is measured directly by a photodiode (PD). The

two experiments extract different information, so they have to be applicable by the

same spectroscopy setup on the same QD. Both systems are embedded in the same

microscope system, which has to combine diffraction limited resolution and a com-

pact design with ultra high mechanical stability. Experiments on single QDs can take

several weeks, and combined with a diffraction limited spot size at 950 nm of around

≈350 nm [95] this sets the limit of mechanical drift and vibrations.

In developing the experimental system a clear concept is followed which divides

the individual experimental tasks into individual sections. This approach allows to

specialise each component, ensuring the highest possible performance combined with

great flexibility. Every sections will be described in its own context but still indicating

their interconnection.

Microscope system

One of the interesting prospects of QDs is that they provide atom like behavior

embedded in a solid device. This makes studying a single QDs for long experiment

durations possible, but still challenging. The first, fundamental requirement on the

microscope system is that it has to provide a diffraction limited spot size using a high

NA objective lens (Thorlabs C390TM-B, NA=0.67) and a SIL (J. Hauser GmbH&Co,

nSIL =2.15). The importance of a diffraction limited spot size originates mainly from

two points: the first is that a small spot size allows for easy isolation of single QDs.

Secondly, the interaction strength between the QD transition and the resonant laser

depends on the ratio between focal spot and QD size. In an ideal case, the spot

size would be identical to the QD dimensions. All resonant laser photons would
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have to pass through the QD and QD-laser interaction would be maximised. For non

resonant spectroscopy, the combination of a high NA objective lens and a hemispheric

SIL improves collection efficiency by increasing the solid angle of collection. Spatial

resolution and collection efficiency are given by [96]

∆x =
0.52 · λ

NAobj · nSIL
(2.4)

η = 0.5 ·

1−

√
1−

(
NAobj · nSIL

ns

)2

 (2.5)

Here, λ is the laser wavelength, NAobj is the objective lens NA, nSIL is the SIL’s refrac-

tive index and ns is the QD sample refractive index. Using NAobj =0.67, nSIL =2.15

and ns =3.5, the diffraction limited focal spot size is ∆x =340 nm and the collection

efficiency should approach η =4.5 %. Experimental spot size measurements revealed

∆x ≈(350±20) nm, approaching the theoretical resolution limit. As described in

section 2.1.2 and Fig. 2.6, the SIL is directly attached to the QD sample.

A schematic of a microscope head and a microscope tube are shown in Fig. 2.7.

The microscope head (Fig. 2.7 a)) is used for combining several excitation sources,

for collecting QD luminescence and for producing an image of the focal plane. It

is built almost entirely from Thorlabs 30 mm cage system components. A standard

microscope head has two optical inputs or outputs. Here, light is either injected or col-

lected by single mode (Thorlabs P3-980A-FC) or polarisation maintaining (Thorlabs

P3-980PM-FC) fibres. If a polarisation maintaining (PM) fibre is used, an additional
λ
2
-plate (Thorlabs AHWP05M-980) ensures optical polarisations are parallel to the

symmetry axis of the microscope head, avoiding any polarisation distortion due to

different transmission coefficients. When using a PM fibre, this polarisation align-

ment is crucial. The output polarisation has to be analysed: for input polarisations

not aligned to the pm fibre fast and slow axis, the output polarisation will rotate in

time. One explanation is the change of the fibre core birefringence due to temperature

fluctuations, resulting in a temporally unstable output. These polarisation rotations

become slower and smaller in magnitude while the system alignment improves. Close

to perfect alignment, oscillations slows down to only one oscillation in a few minutes

with an amplitude of around ±5 %. Collimating optical input or focusing optical

output is realised by a NA=0.15 lens (Thorlabs C280TME-B), which is attached to

a z-translation stage (Thorlabs SM1Z). X/Y-translation stages (Thorlabs ST1XY-

D/M) align the fibre core to the lens’ focal spot. Thick glass windows (GWBS) are

used to reflect light at a right angle. The large thickness of the glass windows is es-

sential ensuring that reflections of the glass windows’ back side are pushed completely

off the optical axis. The lower GWBS is used for reflecting the optical path of the

40



2.2. Spectroscopy on single quantum dots

Figure 2.7: The microscope system. a) shows the microscope head. The horizontal
fibre is the polarisation maintaining fibre coming from the optical bench (see Fig. 2.8
a)). The collimated laser beam is reflected via a thick glass window BS. The glass
thickness pushes the 2nd reflection from its back side completely off the optical axis.
A second BS reflects light coming from the QD sample on a CCD camera, creating a
picture of the focal spot. The vertical fibre on top the microscope head collects the
QD luminescence and sends it to the spectrometer (see Fig. 2.8 c)). b) shows the
microscope tube. Electrical connectors on the top provide a connection to the QD
sample and the piezo positioners, which are further down the tube inside the liquid
helium dewar. Stainless steel tubes inside the microscope tube from the microscope
cage system. Electronic connections are housed inside the cage tubes.

lower horizontal microscope arm downwards at 90◦. The upper GWBS is orientated

90◦ relative to the lower GWBS, reflecting the optical path towards a charge coupled

device (CCD) camera (WATEC WAT-120N+). A long focal length lens (Thorlabs

AC254-050-B) produces a magnified image of the objective lens focal plane on the

CCD. The 90◦ angle between both GWBSs and their equal thickness ensures that the

beam path, after propagating through both GWBSs, is again centered on the micro-

scope central axis. Above the GWBSs is the vertical optical input / output. Light

collimation / focusing is provided by equipment equivalent to the lower horizontal

arm. Three tilt stages (Thorlabs KC1/M) are integrated in the microscope head, one

at the end of each horizontal arm and one below the lower GWBS. They compensate

for slight, unavoidable angle misalignments. Four cage rods at the bottom are con-

nected to the lower tilt stage, which allows angle alignment between the microscope

head and the microscope objective lens inside the cryostat. The entire microscope

head is mounted on top of the microscope tube (Fig. 2.7 b)), outside the cryostat at

room temperature.

The QD sample itself is connected at the bottom of a microscope cage system
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(Fig. 2.7 b)), which is sealed off from the surrounding environment using a stainless

steel tube. The microscope cage system is constructed of stainless steel tubes and

standard 30 mm cage plates (Thorlabs CP02/M). Before transferring the microscope

tube into cryogenic temperatures it is first evacuated to ≈ 2 · 10−5 mbar. In order to

provide a thermal connection between the QD sample and the 4.2 K environment of

the liquid helium, the tube is filled with He gas until reaching ≈20 mbar. Studying

single QDs requires the possibility to move the QD sample position relative to the

microscope focal spot. Additionally, cooling down the microscope tube to 4.2 K

results in small, uneven contraction of the microscope cage system. Mounting the

QD sample pin (shown in Fig. 2.6) on top of a three axial piezo slip-stick positioner

stack (Attocube Systems AG, XY-positioners: ANPx-100, Z-positioner: ANPz-100)

provides sub nanometer resolution with an overall travel range of 5 mm. These motors

reliably work at 4.2 K and are used in all microscope tubes. Electrical connections for

the piezo positioners, the QD sample and the transmission detector below the sample

are housed inside the microscope cage tubes. At the top of the microscope tube,

three connectors allow the experimental equipment at the bottom of the microscope

to be linked to their control electronics. The entire system is sealed at the top by

a polished glass window with an anti reflection coating operating between 650 and

1150 nm. Microscope head and tube are finally combined by a cage plate (Thorlabs

CP02T/M), which is attached to the top of the tube. The lower microscope head

cage rods are fixed in the four cage plate through holes.

Spectroscopy setup

The microscope system introduced in the previous section provides optical access to

single QDs via flexible and robust optical fibres. These input / output fibres can now

be connected to excitation and analysis equipment, which is located on an optical

bench as shown in Fig. 2.8.

Different optical excitation sources are shown in Fig. 2.8 a). The presented setup

combines two narrow linewidth lasers and one non-resonant laser in one optical fibre.

Two narrow linewidth external cavity lasers (Sacher TEC 500) provide the excitation

source for resonant spectroscopy on single QD states. They are wavelength tunable

between 925 and 975 nm, have a linewidth of ≈1 MHz and a maximum output power

of 35 mW. Wavelength tuning is provided by two mechanisms: one provides coarse

wavelength adjustments via changing the angle of the cavity grating. The second

mechanism tunes the laser wavelength by changing the voltage applied to a piezo,

which in turn alters the laser cavity length. Setting the laser wavelength to a desired

value is straightforward, however continuously tuning the wavelength can be difficult.

For spectroscopy the laser output has to be single mode (in energy) and a big enough

mode hop free tuning range has to be found at the desired wavelength. This can
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Figure 2.8: Spectroscopy setup on the optical bench. a) Shows the excitation sources.
Two narrow linewidth and tunable external cavity diode lasers (resonant lasers)
(Sacher TEC 500) are combined along two beam paths via a beam splitter (BS).
A second BS includes the non resonant laser (Roithner Lasertechnik RLT8320MG)
before coupling all three excitation sources into a polarisation maintaining (pm) fibre
(Thorlabs P3-980PM-FC-5) fibre connected to the microscope head. Two λ

2
-plates

(Thorlabs AHWP05M-980) align the polarisation of one resonant lasers to the fast,
the other to the slow axis of the pm fibre. b) monitoring apparatus for the reso-
nant lasers. A wavemeter measures wavelength of resonant lasers within ±0.2 pm
accuracy. The mode quality is monitored via a scanning etalon: one mirror of the
etalon is scanned by a piezo-element and the etalon transmission is recorded using a
PIN detector (Thorlabs SM05PD1A). The piezo scanning range exceeds the etalon
free spectral range. If the resonant laser is single mode only one resonance per free
spectral range is recorded, several resonances if the resonant laser is multi mode. c)
Spectral analysis of non-resonantly excited QDs. The fibre output is collimated (lens:
Thorlabs LA1608-B), one notch (Semrock NF01-830U-25) and two long pass filters
(Thorlabs FEL0900) suppress non-resonant laser photons. A second lens (Thorlabs
LA1608-B) focuses the QD luminescence on the input slit of the spectrometer (Acton
SP500i). Decreasing the slit size increases resolution while decreasing efficiency. Mir-
rors reflect the light onto a grating turret (Horiba TRI80ST2M) with 300, 1200 and
1800 lines per mm gratings. An additional mirror focuses the refracted light onto a
liquid nitrogen cooled silicon CCD chip (Roper Scientific LN/CCD-1340-100), which
records the luminescence spectrum.
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be achieved by adjusting the laser energy, followed by maximising the mode hop free

range by changing the diode current. For normal operation the lasers are insensitive to

back reflections. Only for experiments where two resonant lasers have to be frequency

locked (see chapter 9.1) the setup also has to include optical isolators (Linos photonics,

FI-930-5SC ). Polarisation of one laser relative to the other is controlled using a λ
2
-plate

(Thorlabs AHWP05M-980). Their relative power is adjusted via a neutral density

(ND) wheel in the beam path of one laser. A cubic beam splitter (BS, Thorlabs

BS011) combines both lasers at two outputs. One output propagates towards a second

BS, where it is combined with the non resonant laser. The non resonant laser consists

of a diode (Roithner Lasertechnik RLT8320MG), which is temperature and current

stabilised (Thorlabs, current: LDC500m, temp:TED200C). An additional λ
2
-plate and

ND wheel allows an absolute control of excitation polarisation and power. The second

resonant laser beam path is coupled into a two by one fibre beam splitter (FBS, Font

Canada). Resonant laser wavelength is measured by a wavemeter (Burleigh WA-

1650), while the second FBS output is connected to a scanning etalon (setup shown

in Fig. 2.8 b)). This etalon consist of two mirrors, one of which is oscillating back

and forth, driven by a saw-tooth voltage. Transmission through the etalon is thereby

a function of scanning mirror position. Etalon transmission is recorded via a PIN

diode (Thorlabs SM05PD1A), and the transmission signal plus the saw-tooth driving

voltage are monitored by an oscilloscope (Tektronix TDS2024), which is triggered by

the saw-tooth function generator. For a single mode laser input, transmission through

the scanning etalon will reveal one spike per cavity free spectral range. If the input is

multi mode, several spikes per free spectral range with different amplitudes will show

up in the etalon transmission spectrum.

Figure 2.8 c) shows the spectrometer used for analysis of the non resonantly ex-

cited QD luminescence. Again, the input is provided by an optical fibre coming from

the microscope head. X/Y and Z-stages align the fibre core to the focal spot of the

collimating lens (Thorlabs LA1608-B). The collected spectrum contains contributions

from both QD and resonant laser. Two filter stages consisting of a holographic notch

filter (Semrock NF01-830U-25) at 830 nm and two 900 nm long pass filters (Thorlabs

LA1608-B) suppress photons created by the back reflection of the non resonant laser.

The filtered signal is focused on an input slit. This slit is imaged on the spectrometer

CCD chip, hence a narrower slit improves the resolution but at the cost of detec-

tion efficiency. Inside the spectrometer (Acton SP500i), light is collimated again, this

time using mirrors which reflect it onto a grating turret (Horiba TRI80ST2M). Three

gratings (with 300, 1200 and 1800 lines/mm) provide a selection of resolution, band-

width and efficiency. Light diffracted off the grating is reflected and focused onto a

liquid nitrogen (LN2) cooled Si CCD camera (Roper Scientific LN/CCD-1340-100),

providing an image of the single QD emission spectrum.

Interaction between the QD transition and the resonant laser is recorded directly
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by a photo diode. Several locations in the entire spectroscopy setup are adequate for

attaching a PD for measuring the QD spectrum. In the standard configuration the

PD is located underneath the QD sample, as shown in Fig. 2.6. This setup should

provide the strongest interaction signal strength [97] and, due to its location, is robust

against influences from outside the experimental setup. Rather than measuring in

transmission, the QD spectrum can also be measured in reflection. Here, the detector

is placed on the optical bench and attached to the microscope head collecting fibre.

Collection efficiency drops dramatically when coupling a signal into a single mode fibre

(≈15 % coupling efficiency). This reduces the overall signal strength and makes the

entire resonant spectroscopy experiment more challenging. The plus side of external

detection in reflection is that additional filtering techniques can be applied easily.

Electrical signals and sample control

Electronic control over the QD sample, the detection of a change in photo current and

electronics handling the piezo positioners are at the heart of the experiment. Figure

2.9 gives an overview over the entire electronic equipment used. One key element is

the lock in amplifier (Signal Recovery 7265). It is a very versatile platform and is

used as a DC voltage supply, a multimeter and for conditioning and recording the

spectrum of the resonant absorption experiment. The DC gate bias between the QD

Schottky gate and the back contact is provided by the DAC 1 output of the lock in

amplifier. The connection to the QD sample gate bias uses outputs number 4 and 7

on the microscope tube sample connector. In order to implement a phase sensitive

detection (PSD) scheme, the interaction between QD and resonant laser is modu-

lated with frequency νmod. Phase sensitive detection is equivalent to an electronic

homodyne detection scheme. Here, the measured signal is mixed with an AC signal

of a frequency equivalent to νmod. The resulting signal is filtered by a extremely low

frequency low pass filter. The remaining signal consists only of frequency components

modulated very close to νmod, hence the majority of experimental system noise is

rejected. The rejection of random noise relative to transmission of the desired signal

is measured in the common-mode rejection ratio (CMRR). For the Signal Recovery

7265, a CMMR exceeds 100 dB for a signal modulation with νmod =1 kHz. Modulating

the interaction between QD and laser is realised utilising the Stark shift of quantum

states, introduced in chapter 1.3.3. An applied bias changes the transition energy of

a QD state, thus allowing a fast and accurate modulation of the QD transition energy

using a function generator (TTi TG230). The function generator output is a square

wave voltage signal with an amplitude big enough to push the QD transition out of

resonance with the narrow linewidth laser. The modulation frequency and Amplitude

for measuring in transmission is somewhat limited to several 100 Hz and Vmod ≈0.2 V

due to noise induced by capacitative coupling between the sample gate and transmis-
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sion detector leads inside the microscope tube. Additionally, the low bandwidth of

amplifiers for amplifications of around 109 limits the overall measurement bandwidth

to ≈1 kHz. One crucial parameter for PSD detection is the phase when the system is

off resonance. Capacitative coupling provides some help here: using the transmission

detector, the lockin amplifier phase is set to zero when the system is off resonance

using the auto phase function. This is also the easiest way to adjust the PSD phase

for reflective spectroscopy experiments, since there is capacitative coupling to the re-

flection detector. For a correct phase, the QD absorption signal should be mainly

located in one of the X/Y channels of the lockin amplifier. Accordingly, the phase

can also be adjusted by measuring the QD transition, changing the phase value until

the signal in one channel is minimised. The TTL output of the TTi TG230 function

generator is used as a reference input for the Signal Recovery 7265. The initial photo

current of the resonant spectroscopy detector is picked off at connector number 4

of the microscope transmission detector output. After a short BNC connection it is

amplified by a low noise amplifier (Femto DLPCA-200). The noise equivalent power

of this amplifier is 4.3 fA/
√

Hz. Amplifications range from 109 until 105 V/A. The

amplifier output is divided into two: one part is connected to the voltage signal input

of the lock in amplifier, used for directly measuring the QD absorption spectrum.

The second part of the amplified signal is connected to a multimeter (Keithley 2000

MM), measuring the optical transmission power applied to the QDs sample. All elec-

tronic equipment connected to the QD sample or to the detection section, plus the

microscope tube share a common ground (provided by the piezo positioner control)

to avoid earth loops. Back contact and the resonant detector are grounded to the

microscope tube straight at the microscope tube output. All electrical connections

at room temperature are provided by standard 50 Ω BNC cables. For a well setup

experiment, the experimental noise should be of the order of µV using an integration

time of 1 s and 1 nW optical power of the resonant laser.

Piezo position controllers, introduced in Fig. 2.7 b) are controlled using the At-

tocube ANC 150 controller.

Cryogenics

Single quantum dot spectroscopy described in this thesis is carried out at 4.2 K.

There are several readily available techniques for reaching this temperature. Some

use a closed cycle process, where evaporated helium is re-liquefied by a compressor.

Using this technique, experiment durations would not be limited by the cryogenic

setup. Refill with liquid helium during experiments would also be avoided. However,

there were concerns about the vibration stability of the setup, since this technique

is based on pulsed injection of cold helium. The constantly running compressor also

adds to this problem. For these reasons all experiments were carried out using a
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Figure 2.9: Control and acquisition electronics. The microscope tube is viewed from
the top. Piezo control electronics (Attocube ANC 150) allow stepping the piezo
positioners, changing the microscope focus position on the QD sample. Connector 4
and 7 of the sample electrical connections are connected to the sample Schottky gate
(#4) and to the back contact (#7) (sample structure: see Fig. 2.1 a)). Connector
#7 is grounded directly to the microscope. The gate bias applied to connector #4
consist of a DC component (provided by lockin amplifier: Signal Recovery 7265) and
an AC square wave component (provided by function generator: TTi TG230). The
transmission detector output #7 is also grounded directly to the microscope, while
output #4 is amplified (Femto DLPCA-200). Laser power in transmission is measured
via a multimeter (Keithley 2000 MM), while the amplified transmission detector signal
is also connected to the lockin amplifier input. The function generator applying the
AC gate bias component provides a reference signal for the lockin amplifier via a
TTL output (RefOut). The lockin amplifier uses this reference frequency to reject all
components in its input signal at different frequencies. This way the system signal to
noise ratio is vastly improved.
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Figure 2.10: a) Schematic of a liquid helium dewar with a capacity of 80 l. The
microscope tube (see Fig. 2.7 b)) and a 5 T magnet (part c)) can be inserted through
an inlet at the top. Liquid helium cannot be refilled during experiments. A liquid
helium top up cryostat is shown in part b). For vibration isolation the cryostat is
suspended from a supporting frame using bungee cords. A liquid helium transfer tube
allows the cryostat to be refilled during experiments. Again, an inlet at the cryostat
top allows inserting a 3 T magnet and the microscope tube. Part c) shows the
schematic of a superconducting magnet. The microscope tube slots into the magnet
centre bore. Metallic baffles provide a heat shield from the environment.

liquid helium bath cryostat. This setup offers superior stability while still enabling

experiments of acceptable length.

Two different bath cryostat were used, both are presented in Fig. 2.10. Part a)

shows a closed bath cryostat, which was custom built by CryoVac, Gesellschaft für

Tieftemperaturtechnik. It consists of a main tank for liquid helium with a capacity of

80 l, surrounded by a vacuum chamber filled with insulating material. The boil-off rate

of liquid helium for the dewar itself is ≈1 litre a day, the one of the microscope is ≈5

litres a day. A wide neck at the top of the dewar acts as intake for a superconducting

magnet and the microscope tube. The superconducting magnet used with this dewar

can reach fields of 5 T, for which a current of 75.1 A has to be applied. This high

current requires big cross section cables of non superconducting wires inside the dewar,

connecting it to the power supply. As a result the dewar boil off is increased by ≈3

litres a day, strongly limiting the possible length of experiments. The combined boil

off from the helium dewar, the 5 T magnet and the microscope tube limits experiment

durations to ≈10 days.

In order to allow for longer experiments, a liquid helium cryostat with the pos-

sibility of refilling the helium tank during experiments was purchased. Again, the

system was custom built by CryoVac. An inlet at the cryostat top allows it to be

connected to an external liquid helium reservoir. For refilling, the reservoir dewar is

pressurised using He gas, forcing the liquid helium through the transfer tube into the

cryostat. Especially the first seconds of liquid helium transfer are critical. Temper-
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ature fluctuations inside the cryostat, caused by the transfer process, move the QD

position out of the microscope focus in seconds. This drift has to be compensated for

by the piezo motors if the QD is not to be lost. It seems that the drift always follows

the same direction, making tracking the QD in real time a bit easier. After refilling

is completed, the QD has to be monitored for up to three hours while the cryogenic

system slowly moves back to a thermal equilibrium. The liquid helium tank itself

has a capacity of 35 litres and is shielded from the environment by three insulating

layers: the first (view from the cryostat outside) is a vacuum chamber, similar to the

one of the 80 litre dewar. The second layer is an additional tank filled with liquid

nitrogen and the third another vacuum chamber between the LN2 and helium tank.

Magnetic fields are provided by a 3 T superconducting magnet, which requires 9.7 A

at maximum magnetic field. This much smaller current allows the use of smaller cross

section current leads, reducing the boil off due to the magnet. Combined cryostat,

magnet and microscope boil off is ≈5 litres per day, requiring a liquid helium refill

around every 3 days.

Both cryostats can be run without including a magnet, which reduces the boil off.

For the 80 litre dewar the measurement time increases substantially by 30 %. For the

top up cryostat this lowers the refill frequency and thereby reduces the risk of losing

the QD.

Figure 2.10 c) shows a schematic of a typical superconducting magnet. The magnet

is suspended from a platform at the top which is connected to the cryostat. Baffles

are used as heat shields to minimise the impact of heat radiation originating from

the top which is at room temperature. The microscope tube is inserted through an

inlet, which is centered and runs from top to bottom of the entire magnet system.

Current leads connect the superconducting solenoid to the power supply, with an

additional superconducting wire shortening both magnet inputs, effectively creating

a superconducting loop. Charging the magnet with current follows the same protocol

for both magnets. First, the power supply current is set to match the current stored

inside the magnet at this particular moment. This might be zero (at the start of an

experiment) or some value set previously. The next step is to heat a small section

of the shortening superconducting wire, destroying superconductivity at this very

section. This destroys the closed loop and allows the power supply to charge the

magnet with a current. The speed the magnetic field can be increased at is limited

by the inductance of the magnet, to 0.5 T/min for the 3 T magnet and 2.5 T/min

for the 5 T magnet. If the desired magnetic field is reached, the heater is switched

off while the power supply current is kept constant for around 2 minutes. After this

duration the magnet again is entirely superconducting and the power supply current

can be taken to 0 A.
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2.3 Spectroscopy on n-doped structures

Spectroscopy on single QDs will be introduced in the following sections using the ex-

perimental setup introduced. Non resonant excitation spectroscopy allows a spectrum

of a QD to be recorded without first characterisation of excitation energies. This is

the starting point for every experiment. After the initial characterisation of the QD,

the experiment is switched to resonant spectroscopy. Due to the selective excitation

of the narrow linewidth laser, the energy of QD to be observed has to be known with

a certain accuracy before starting the experiment.

2.3.1 Photoluminescence spectroscopy on single quantum dots

Excitation

A band gap diagram of an n-doped sample under non resonant optical excitation is

shown in Fig. 2.11. High energy photons provided by the non resonant laser produce

excitons inside wetting layer close to the QDs. These excitons rapidly relax, with the

back contact doping type determining the final states they occupy. In n-type doping,

the majority charges are electrons with an electron reservoir in form of the back

contact. Accordingly electrons relax into the back contact. Some of the optically

created holes are captured by the QD [54]. Changing the gate bias alters the QD

energy relative to the back contact Fermi energy. Electrons now tunnel into the QD

until the lowest energy configuration is occupied [1]. Figure 2.11 a) shows non resonant

spectroscopy at a gate bias which allows one electron to tunnel from the back contact

into the QD. Combined with the optically created hole this QD charge configuration

is the neutral exciton (X0). In Fig. 2.11 b) the gate voltage pulls the second QD state

below the back contact Fermi energy. Electrons from the back contact now occupy the

second state of the QD conduction band s-shell, forming a singly negatively charged

exciton (X1−). Even though in the same QD shell, the electron - electron on-site

Coulomb interaction results in an energy difference between both electron states.

This method of occupying the QD with excitons using optically and electrically

provided carriers is extremely versatile. Quantum dots with deep confinement demon-

strated an extremely large extent of charged excitons, reaching from a six times pos-

itively charged exciton (X6+) until seven times negatively charged (X7−) [98].

Experiment

A single QD experiment starts with the search for an isolated QD. Two isolations are

important here: spatially and spectrally. Two QDs can be in the same focal spot area,

as long as their spectra sufficiently differ. Emission from a single QD is usually inside

a 6 nm wide wavelength window, where the ensemble emission is located between 920

and 980 nm, approximately following a bimodal distribution [89]. A QD density of up
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Figure 2.11: Band gap of a n-doped sample under non resonant excitation for two
different gate biases. Excitons produced by the non resonant laser relax rapidly into
the lowest non-occupied QD state, where they recombine optically. Unequal excitation
laser and QD emission wavelengths allow spectral suppression of the excitation laser
in the collected spectrum. a) shows the experiment for neutral exciton (X0) emission,
b) for a singly negatively charged exciton (X1−).

to 10 QDs per focal area is appropriate for single QD experiments. While the piezo

positioners move the QD sample inside the focal plane of the objective lens, a high

intensity non resonant laser (typically 10s of nW) constantly provides excitons. As

described in Fig. 2.11, these excitons relax into the QDs located in the microscope

focal spot. While the QD sample is moved around, the luminescence is collected and

a live image of the QDs spectra is observed via the spectrometer (see Figures 2.7 and

2.8), using a typical integration time of 1 s. A typical count rate is several thousand

counts per second.

Once an isolated QD is found, an entire spectrum of the QD is taken. For that,

the gate bias is scanned over the entire range of QD-charging steps and a spectrum is

recorded at each gate voltage step [89]. Recorded spectra can be stitched together to

a 2-d array where the x-axis corresponds to the gate bias, the y-axis to the spectrom-

eter wavelength and each element of this array representing the spectrometer counts.

A false colour contour plot then shows the QD emission spectrum, revealing the char-

acteristic QD charging steps. Figure 2.12 a) shows the emission spectrum of a single

QD from wafer number 050328C. The spectrum was recorded with a non-resonant

laser power of PL =450 nW, λL =830 nm and scanning the gate bias from -0.7 V to

0.3 V. Each spectrum is taken with one second integration time.

Figure 2.12 b) shows optical relaxation for three exemplary excitons. Quantum

dot occupation before (after) optical relaxation is shown on the left (right) side of

the graph. This scheme can be extended equivalently for positively charged excitons.

Excitons labeled with an additional h, X1+
h for example, are hot states, where excitons

optically recombine with one hole not in the lowest available QD state. Each exciton

shows a Stark-shift, introduced in chapter 1.3.3. At high positive bias the wetting
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Figure 2.12: a) Example luminescence spectrum from a QD on wafer 050328C. Emis-
sion shows the characteristic charging steps. The spectrum was taken with PL =450
nW, λL =830 nm and an integration time of 1 s. The spectrum originates from a
single QD. b) optical relaxation processes of three exemplary excitons. Initial charge
configuration is on the left side while QD occupation after optical relaxation is shown
on the right side. A more detailed description of involved states can be found in Fig.
2.2.

layer begins to emit, resulting in emission at all energies (Vg ≈0.1 V). A detailed

study of excitons can be found in work of Ediger et al. [98].

For a better understanding of the QD spectrum, energies of each carrier trapped

by the QD have to be calculated using the Coulomb blockade model of section 2.1.1.

Non resonantly created PL presented in Fig. 2.12 was used as an example, since it

shows a great variety of QD states. For fitting the Coulomb blockade model of table

2.2, a set of data is used where fewer QD states are visible. The non resonantly

created spectrum of the new QD is shown in Fig. 2.13. The main difference between

the spectra shown in Fig. 2.12 and Fig. 2.13 is the non resonant excitation laser

power. The new QD was excited using a much lower power of 1 nW, increasing the

integration time to 10 s. Additionally, high non resonant excitation power results in

charge storage close to the QD [66], creating an additional shift in gate bias for non

resonant spectroscopy.

Quantum dot state energies are shown in the lower section of Fig. 2.13. The

Coulomb blockade model (see section 2.1.1) was adjusted to fit the charging plateau

of X0 measured with non resonant spectroscopy. Fits presented here are only a part of

the Coulomb blockade model and data collected in a resonant spectroscopy experiment

fills in missing information. The resonant experiment was carried out on the same

QD and will be presented in the next section. The voltage offset due to the Schottky

bias (see equation (2.2)) used in the model is V0 =0.6 V. Energies used for fitting

the data are: EC =76.5 meV, Em =0.9 meV, Eg =1.3465 eV, Eee =18.5 meV and

Eeh =27.4 meV. They agree well with values reported in literature [61].
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Figure 2.13: Photo luminescence spectrum of a QD from wafer 050328C. The non
resonant laser power was 1 nW, λL =830 nm and the integration time 10 s. The
Coulomb blockade model, introduced in table 2.2, is used for fitting transition energies
and charging steps. A typical Schottky bias offset of V0 =0.6 V was used. Values
extracted from the PL spectrum using the X0 and X1− charging points are: EC =76.5
meV, Em =0.9 meV, Eg =1.3465 eV, Eee =18.5 meV, Eeh =27.4 meV, Ehh =30 meV.
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Non resonant excitation of single QDs was introduced in this section. The non

resonant excitation technique is a very versatile tool for an initial characterisation of

a QD, which is the essential starting point for resonant spectroscopy. Non resonant

spectroscopy, as introduced in this chapter, is an incredibly powerful tool. It was

used in a great variety of experiments, for example showing highly charged QDs [98],

photon anti bunching [3, 92, 99], hybridisation of QD states with the continuum states

[100], strong coupling of a single QD to a photonic crystal cavity [101].

The non resonant excitation in itself is the main advantage and drawback of this

technique at the same time. While it is very powerful to produce the first char-

acterisation, it is limited to experiments which are not based on a coherent, direct

coupling between QD states. Furthermore, the system’s resolution is dictated by the

spectrometer used. For the experimental setup introduced in this section, this reso-

lution is limited to ≈30 µeV. Typical QD exciton linewidths are around one order of

magnitude narrower [38, 95]. Quantum interferences predicted for single QDs [6] are

expected to show lineshape features even narrower while also relying on a resonant

excitation [40].

2.3.2 Resonant absorption spectroscopy on single quantum

dots

Resonant spectroscopy on a single QD is nearly impossible without starting values

provided by non resonant spectroscopy. After individual states are identified in PL,

these values have to be adjusted to the resonant absorption experiment. The wave-

length offset between emission and resonant excitation wavelength ranges from around

λresonant = λPL + (0.2 . . . 0.8) nm. This value crucially depends on the non resonant

laser excitation power [66], the smaller the non resonant laser power (<5 nW), the

closer the offset will be to 0.2 nm. An offsets of the gate bias has also to be con-

sidered. For a X1+, a typical gate bias extent (found in experiments and predicted

by the Coulomb model) is 0≤ Vg ≤0.125 V, X0 absorption should be expected for

0.125≤ Vg ≤0.3 V in the p-doped sample 060726B and for -0.1≤ Vg ≤0.05 V in the

n-doped sample 050328C. X1− emission should be located between 0.05≤ Vg ≤0.175

V.

Excitation

Other than with non resonant excitation, the interaction between a single QD and the

resonant laser is measured directly via a photo diode in transmission (behind the QD

sample). Quantum dot charging using the back contact is equivalent to experiments

shown before (see Fig. 2.14 a)). However, the scheme differs in the creation of optical

excitons: the resonant laser energy is kept below the band gap of the wetting layer.

Other than QD excitons, there are no states inside the sample the resonant laser can
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Figure 2.14: Band diagram of an n-doped sample under resonant excitation. Excitons
can only be produced by the resonant laser for equal QD state and resonant laser
energies (δ =0). a) shows the experiment for a sample gate bias at which all QD
states are above the back contact Fermi energy. The resonant laser excites the X0

transition for δ = 0, which can recombine optically. A schematic of the resonant
spectroscopy homodyne detection scheme is shown in b). For |δ| 6= 0 (off resonance),
the laser photons pass the QD without interaction, the light impinging on the photo
diode originates only from the laser. For the case when laser and QD state match
in energy, the electric dipole of the QD starts to oscillate in the driving laser field.
This results in a fraction of the laser being scattered by the QD. Light impinging on
the photo diode now originates from the laser and the QD, resulting in a homodyne
measurement of the QD exciton state.

excite. The energy mismatch between a QD exciton and the resonant laser (δ) is now

tuned. At δ =0 eV, the resonant laser directly excites a single QD state, which again

either optically relaxes or experiences stimulated emission. For resonantly exciting

a charged exciton, the gate bias is changed to occupy the QD with back contact

carriers. The resonant laser is then tuned to resonance, which now is at a different

energy compared to the uncharged exciton. Resonant excitation of QD states has

to satisfy optical selection rules, building a connection between laser polarisation and

carrier spin [15, 29]. Resonant spectroscopy is possible for s to s and p to p transitions.

However, p to p transition signal contrast is reduced by three orders of magnitude

[102].

Experiment

Example scans of absorption spectroscopy on X0 and X1− are shown in Fig. 2.15. In

both cases, the resonant laser was set close to the transition, which then was tuned

through resonance using the Stark shift [38]. Two images of the same resonance

show up in each spectra, one with a positive amplitude, one with a negative. This

is a direct result of the voltage modulation technique [38], used for noise suppression

and introduced in section 2.2.1. The voltage applied to the device (VD) is the DC

gate bias (Vg) plus the square wave modulation (Vmod). Assuming the QD is at
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Figure 2.15: Absorption spectrum of X0 and X1−, measured in transmission with
circular polarisation using wafer 050328C. The X0 shows a characteristic fine struc-
ture, which makes a clear distinction between X0 and X1− possible. The absorption
spectrum was recorded using PL =1 nW, νmod ≈75 Hz (see section 2.2.1). The reso-
nant laser energy was kept constant, while the QD transition was swept through the
resonance via the Stark shift. The spectrum shows two measurements of the same
transition. In one part the signal contrast is positive, for the other part it is negative.
This is a direct result of the square voltage modulation, which brings the same QD
into resonance with the laser twice: once at the positive voltage of Vmod, once on the
negative voltage part. The sign change in amplitude (A) originates from the opposite
phase of Vmod: if the positive voltage part is at phase zero, then the negative would
be at 180◦. Due to the broader spectral features of X0, a bigger modulation voltage
had to be used: Vmod = 50 mV. X1− data was recorded using Vmod =26 mV. Red lines
are Lorentzian fits to the data.
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2.3. Spectroscopy on n-doped structures

- 0 . 1 0 - 0 . 0 5 0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5
0

5

1 0

1 5
0 . 0 0 0

0 . 0 0 5

0 . 0 1 0

0 . 0 1 5
1 . 3 1 2

1 . 3 1 4

1 . 3 1 6

1 . 3 1 8

c )
 

 

Lin
ew

idt
h (

me
V)

A p p l i e d  b i a s  ( V )

b )  X 0

 X 1 -

 

 

Co
ntr

as
t (D

T/T
)

S t a r k  s h i f t :  0 . 9  m e V / V

 

 

En
erg

y (
eV

)

S t a r k  s h i f t :  1 . 3  m e V / V
a )

Figure 2.16: Absorption plateau of the QD used in Fig. 2.13. The data were recorded
with PL =1 nW and an integration time of 0.5 s. The Stark shift were measured
across the X0 and X1− voltage plateau in part a). Part b) shows the contrast for
both X0 and X1−. The big difference between both cannot be explained, typically
these values are close to each other. Exciton linewidths are plotted in c). Here, the
Stark shift extracted in a) was used to convert linewidth in volts into eV.

resonance at VD =0 V, resonant absorption is possible at two different DC gate

biases: Vg(VD = 0) = ±Vmod

2
. One Vg compensates for the positive, one for the

negative amplitude of the Vmod square wave. The opposite sign in signal amplitude

is caused by the 180◦ phase shift between both positions - if the positive part of the

square wave is set at 0◦, the negative will be at 180◦. The applied modulation has a

frequency of ≈75 Hz. In order to limit mains noise, the modulation has to be kept

away from integer values of the mains frequency (50 Hz). The X0 spectrum shows

a characteristic finestructure splitting (FSS), which is usually between 8 and 30 µeV

[103]. It is this FSS which also provides the possibility for a clear distinction between

X0 and X1−. For scanning the X0 transition, the modulation strength had to be

increased so the up-peak of the left side would not overlap with the down-peak on

the right side. One drawback of a greater Vmod is that it increases the capacitative

coupling inside the microscope tube, resulting in bigger system noise.

Systematic analysis of a QD is shown in Fig. 2.16. The QD studied is the same

which was used in section 2.3.1 for fitting the Coulomb blockade model. Again, the

resonant laser was always set close to the transition, which was then tuned through

resonance via the Stark shift. Each data point represents a scan taken with different

λL. Part a) of Fig. 2.16 plots the resonance position in gate bias against the resonance

laser energy, extracting the Stark shift via a linear fit. Absorption contrast of both ex-
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2.3. Spectroscopy on n-doped structures

citon states is shown in Fig. 2.16 b). Similar to the non resonant excitation experiment

in section 2.3.1, the spectrum reveals characteristic charging events, where carriers

are added or removed from the QD. The big difference in absorption strength between

X0 and X1− is not understood at this point and typically their absorption contrast

correspond closer with each other [95] (also see Fig. 2.15). Using the extracted Stark

shift, the linewidth of the exciton transitions can be converted from volts into energy

(eV). Linewidths for both transitions are plotted in part c). The increase in linewidth

at the plateau edges originates from the fast tunneling between QD and back con-

tact [94] taking place at the edges of charging plateaus. Furthermore, linewidths

of both excitons are broader than their typical lifetimes would suggest (~γspont ≈ 1

µeV, [84]). A common interpretation is that electric fluctuations in the QD sample

cause a wandering of exciton transitions, which is fast compared to the experiment

integration time, but slow relative to exciton lifetimes. This mechanism additionally

broadens transitions beyond their lifetime limited linewidths [104]. Data presented

here suggests a pre-factor of α0 ≈ 1 · 10−2 (see equation (2.9)), which is about one

order of magnitude lower than the value calculated by the model (α0 ≈0.1, [38]).

There are reasons for this reduction: one is that not all light transmitted through the

sample strikes the photo diode. The other is that spectral fluctuations smear out the

resonance, causing a reduction in signal amplitude.

The measured resonant absorption signal is based on a dipole, oscillating in an

external field. For the case of |δ| exceeding the exciton linewidth and at low laser

powers, no interaction is taking place. In this case the entire optical field detected by

the photo diode originates only from the resonant laser. For the case of δ = 0, the

oscillating electric field of the resonant laser couples to the QD exciton dipole moment.

This electric dipole starts oscillating, scattering a fraction of the laser electric field

[97]. Impinging on the photo diode is now the sum of both fields, the scattered plus

the laser field
~ET = ~EL + ~Es. (2.6)

~ET , ~EL and ~Es are the transmitted, the laser and the field scattered by the QD, re-

spectively. The experimentally measured signal change in transmission is the absolute

value of the combined field divided by the laser field, squared:

T =

∣∣∣∣E0 + Es
E0

∣∣∣∣2 (2.7)

Assuming that Es � EL, it can be shown that the transmission coefficient can be

written as

T≈1− α0
γ2

δ2 + γ2
. (2.8)

Here, γ is the spontaneous exciton decay rate. Equation (2.8) is equivalent to a

Lorentzian lineshape, which is to be expected for an isolated system with discrete
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2.4. P-doped quantum dot structure

quantised states. The pre-factor α0 is given by

α0 =
1

A

e2f

ε0cm0nΓ
, (2.9)

where the focal spot area is given by A and f is the exciton oscillator strength. All

other symbols are used according to their typical meaning.

Data extracted in Fig. 2.16 can now be used to complete the Coulomb blockade

model. In order to avoid space charge effects in the PL spectrum [66], the non

resonant laser power was kept low. Figure 2.17 shows a combination of the non

resonant and resonant QD spectrum, with charging events fitted by the Coulomb

model. Parameters used are equivalent to Fig. 2.13. Other than for the non resonant

spectroscopy experiment, which is based on the relaxation of an excited state, the

charging plateaus of resonant spectroscopy are based on the charging of ground states.

Energies of the three ground states relevant to the charging between X0 and X1− are

calculated using parameters presented in 2.3.1. The vacuum, single electron and two

electron QD states are displayed in the lowest section of Fig. 2.17. This combination

of resonant and non resonant spectroscopy illustrates good agreement between QD-

exciton charging and the Coulomb blockade model. Results are also comparable to

literature [66].

It it necessary to mention that a resonant spectroscopy experiment is unpractical

without first characterisation using non resonantly created photo luminescence. Laser

and QD linewidths are too narrow to search just for an absorption resonance without

a starting point. A resonant laser linewidth of ≈5 neV however results in a true point-

probe of the QD exciton linewidths. Resonant spectroscopy has already shown great

successes in the field of quantum optics using single quantum dots. It spans from

measurements of true exciton lineshapes [105], dressed QD states [106], electron spin

initialisation [15] to quantum interferences [107, 108]. Even though not presented here,

transitions other than X0 and X1− can be probed resonantly. Transitions between

p-states show a much broader linewidth and smaller interaction strength due to their

fast decay [102]. Resonant spectroscopy of a positively charged exciton requires an

additional hole, which could either be provided optically via non resonant excitation,

or by positive doping of the back contact (see section 2.1.1).

2.4 P-doped quantum dot structure

In order to enable resonant spectroscopy experiments on single holes a carbon doped

back contact sample was developed (wafer #060726B), where quantum dots can be

deterministically charged with single holes. This was an important step, since another

possible approach is based on optical injection. Optical injection complicates the
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Figure 2.17: Data of resonant (2.16) and non resonant (2.13) spectroscopy combined.
The QD charging plateaus are described using the Coulomb blockade model, proofing
its validity for both experiments. While quantisation steps in non resonant spec-
troscopy are dictated by charging events of the excited state, charging of ground
states describes exciton plateaus for resonant spectroscopy.
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2.4. P-doped quantum dot structure

Figure 2.18: Band gap of a p-doped sample under non resonant excitation at different
gate biases. a) shows the situation for the gate bias set to create a neutral exciton.
Optically created electrons relax into the QD where they recombine optically. In b)
the lowest QD valence state below the back contact Fermi energy is the positively
charged exciton. Accordingly, the QD is constantly occupied by at least one hole.

experiment and, like in the case of non-resonant carrier injection, can lead to creation

of charges close to the QD [66]. Spectroscopy on p-doped structures relies on the

same techniques as for n-doped, so the following section will skip the details of the

experiment as they are the same as in the section before.

2.4.1 Photoluminescence spectroscopy

A band gap diagram of a p-doped QD sample under non resonant excitation is shown

in Fig. 2.18. The p-doping (Carbon) produces an excess of holes inside the valence

band of the back contact. Equivalent to section 2.3.1 the majority charge (holes)

relaxes into the back contact, while the QD captures some of the minority charges

(electrons). The lowest energy configuration of QD state with an energy less than

the back contact Fermi energy will be occupied. a) and b) show electrical and optical

injection of carriers at two different gate biases, forming a X0 (see a)) and a X1+ (see

b)).

Figure 2.19 a) shows non resonantly created luminescence of a QD in wafer

060726B. The data were recorded using PL =1.5 nW, λL =830 nm and an inte-

gration time of 40 s. Two main striking differences in the PL spectrum appear when

compared to n-doped data. The first is that all exciton states show a much stronger

gate bias overlap. This is due to slower tunneling times between back contact and QD.

The effective mass of holes in GaAs exceeds the electron effective mass by a factor of

≈7 [109], resulting in a tunneling time of around 10 ns [104]. The second difference

is the much lower count rate, which is reduced by at least one order of magnitude.

One explanation for this was again the slow tunneling rate, resulting in a probability

of non-populated ground states. This interpretation was tested using C-doped wafers

with a shorter tunneling barrier between QD and back contact (12 nm instead of 25

nm), shown in Fig. 2.19 b). However, there was no increase in count but the charging
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2.4. P-doped quantum dot structure

Figure 2.19: a) Example luminescence spectrum from a QD on wafer 060726B. Emis-
sion shows the characteristic charging steps. The spectrum was taken with PL =1.5
nW, λL =830 nm and an integration time of 40 s. The spectrum originates from a
single QD. The main difference to PL of an n-doped sample is that charging steps are
not as discrete, resulting in a large voltage overlap of QD states. This is due to an
increased tunneling time between back contact and QD of ≈10 ns, compared to the
≈0.8 ns exciton lifetime. b) shows PL of a QD from wafer 2. The spectrum was taken
with PL =30 nW, λL =830 nm and an integration time of 5 s. The shorter tunneling
distance (12 nm) resulted in more clearly defined charging transitions between states.

plateaus were more clearly defined, similar to n-doped samples.

2.4.2 Resonant spectroscopy

Resonant spectroscopy on a QD in a p-doped sample is presented in Fig. 2.20. The

experimental approach follows the same strategy as with n-doped samples. Data was

recorded using PL =1 nW and an integration time of 1 s. As in the non resonant

experiment before, compared to an n-type sample the signal strength is reduced by

around one order of magnitude, also showing an additional linewidth broadening.

A full characterisation of the p-doped exciton plateaus using resonant spectroscopy

is shown in Fig. 2.21. As in PL, the X1+ is located at a lower gate bias than the X0.

Both excitons show an increased linewidth when compared with n-doped samples,

which directly results in a smaller signal amplitude. Spectral fluctuations are again

expected to be the reason for the broader exciton resonances. This idea is based

on the fact that the highly doped back contact should act like a shield, blocking

the influence from charge fluctuations below the back contact via an induced mirror

charge. If the carbon doped back contact shows lower mobility, this could point

towards this interpretation. Each sample has several annealed In connections to the

back contact. Resistivity between two of these connections might be used as a rough

indicator for the quality of the back contact charge mobility. In n-doped samples, this

resistivity usually is several 100 Ω, while for the p-doped samples it is between 1 and

10 kΩ.
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Figure 2.20: Absorption spectroscopy on a p-doped QD sample from wafer 060726B.
Here, resonant spectroscopy was carried out on X0 and X1+. As in PL, the signal
contrast is about an order of magnitude smaller when compared to n-doped samples.
Additionally, the linewidths of ≈5 µeV are broadened.
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Figure 2.21: Characterisation of the X0 and X1+ plateau of a QD in the p-doped
060726B sample. Across the entire charging plateau the absorption contrast of both
examined transitions is around one order of magnitude less when compared to n-doped
samples. Linewidths are broadened to around 5 µeV. Data were recorded with linear
polarisations, an excitation power of 1 nW and an integration time of 1 s.
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2.4. P-doped quantum dot structure

Figure 2.22: Histogram for transition linewidths in n and p-type devices. Linewidths
of p-type devices are substantially broadened. One possible broadening mechanism
are strong spectral fluctuations.

Data shown in this section successfully shows selective charging of a QD using

p-doped sample structures. Resonant spectroscopy on the positively charged exciton

was also demonstrated. However, the smaller signal contrast makes longer integration

times necessary. Positively doped QD samples were also grown using beryllium (Be)

as back contact dopant. This led to strongly asymmetric lineshapes, also observed in

n-doped QD samples which are designed to provide a strong coupling between discrete

QD states and the continuum of states in the capping layer [108]. The interpretation

is that, rather than forming a sharp transition between the back contact and the

tunneling barrier, Be atoms might diffuse closer to the QDs during the growth process.

There they might provide a continuum of states, leading to the observed resonances.

Despite their narrower linewidths, Be doped samples were not used throughout this

thesis due to this additional, non-Lorentzian lineshape component. A histogram of

transition linewidths on n and p-type devices is shown in Fig. 2.22.

Results on p-doped structures presented here allow spectroscopy on hole spin

ground states, which have been predicted to have long spin relaxation times [7] and

coherence times in magnetic fields in Voigt geometry [5]. These values are highly rel-

evant for quantum optics and give insight into the physics of interaction between QD

states and the semiconductor environment. Furthermore, long hole spin coherence

times could boost experiments based on quantum interferences using single QDs [40].

Relaxation [29] and coherence times [110] of hole spins were so far only measured on
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an ensemble of QDs.

2.5 Conclusion

Experimental techniques, which are essential to single QD spectroscopy, have been

introduced in this chapter. They were divided into different sections, each tailored to

produce high performance while providing a reliable and temporally stable setup.

Different architectures of MISFET QD samples allow spectroscopy on electron

and hole ground states (see section 2.1). Spectroscopy of hole spin ground states is

based on a sample with a carbon doped back contact. This is a new approach and

was introduced for experiments presented later in this thesis. A diffraction limited

microscope system enables single QD spectroscopy at 4 K and is shown in section 2.2.1.

Two different spectroscopy setups are introduced: one analyses the non resonantly

created emission spectrum of a single QD, the other is based on the detection of the

interaction between a QD transition and a resonant laser. Especially the resonantly

created spectrum reveals interactions with very small signal strength. This signal is

amplified and noise filtered by an electrical system based around a lock in amplifier.

Different cryogenic systems are shown. One is a liquid helium dewar which has no

possibility to refill the system during experiments. This results in superior stability

but at the cost of limited experiment durations. The other system provides this top

up possibility and is therefore the choice for experiments which are expected to require

long continuous measurements.

Preliminary experiments demonstrate the potential of the introduced setup. Res-

onant and non resonant spectroscopy of negatively and positively doped sample struc-

tures are shown in sections 2.3 and 2.4, respectively.
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Chapter 3

Modelling of resonant experiments

on quantum dots

Experimental techniques based on laser spectroscopy provide a flexible system to gain

information about QD states. This information can only be used to its full extent when

combined with a theoretical model. Otherwise no physical values directly describing

recombination, relaxation and dephasing times can be extracted.

A standard approach to interpret experiments in quantised systems are rate equa-

tions. Here, populations and population transfers are treated as real numbers. This

approach might be practical, but it does not comply with the fundamental difference

between populations described by real numbers and the physical reality of quantum

mechanical wave functions. As mentioned before, quantum mechanical wave func-

tions can cause interferences similar to light waves. This makes a different approach

necessary if the model is supposed to extract wave function coherence times. The den-

sity matrix treatment used in this thesis employs a semi-classical treatment, where

QD states are treated quantum mechanically, but laser radiation fields are treated

classically.

The following sections will proceed with the same methodology already applied

in the experimental introduction: a general foundation of all theoretical tools needed

for data analysis will be developed. Additional theoretical sub sections in each QD

experimental section will then apply these basic methods to provide a model for each

individual experiment.

3.1 The Hamiltonian of a two level system under

resonant excitation

The typical starting point when describing a quantum mechanical system is the Hamil-

ton operator. As this operator describes the energy structure of a system, bare atom

energies and energies due to bare states↔laser field coupling are included. Especially
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3.1. The Hamiltonian of a two level system under resonant excitation

Figure 3.1: A quantum mechanical two level system, with ground state | 1〉 and
excited state | 2〉. The energy difference between excited and ground state is given
by ~ω12. A monochromatic source (laser) with energy ~ωL drives the | 1〉 ↔| 2〉
transition with an angular frequency of ΩL. The excited state relaxes after a lifetime
of γ−1

12 .

the off diagonal elements due to laser coupling are what induces a behaviour different

from a classical system.

3.1.1 The bare states Hamiltonian

Spectroscopy on single QDs probes the energy eigenvalues and the populations of QD

states. When observing an unperturbed 2-level QD system, the Hamilton operator is

dictated only by the QD states energies:

Ĥ0 =

(
0 0

0 ~ω12

)
. (3.1)

Here, the energy between the ground (| 1〉) and excited state (| 2〉) is given by ~ω12,

with ω12 being the angular frequency of the transition (see Fig. 3.1). The ground

state energy is set to zero.

3.1.2 Coherent coupling Hamiltonian

The next step is to consider the influence of a monochromatic optical field, with an an-

gular frequency (ωL) close to the | 1〉 ↔| 2〉 transition frequency ω12. The interaction

between QD and optical field (~E) is given by the dipole interaction Hamiltonian

Ĥopt = −ed̂ · ~E · cos(ωLt), (3.2)

where d̂ is the QD dipole operator for the transition between ground and excited state.

This dipole operator is what allows the optical excitation of a quantum mechanical
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3.1. The Hamiltonian of a two level system under resonant excitation

system, and it can be written in the form of creation and annihilation operators:

d̂ = d12(| 2〉〈1 | + | 1〉〈2 |) = d12(d̂+ + d̂−), (3.3)

with d̂+ and d̂− being the creation and annihilation operator of excited state popula-

tion, respectively. Combining this with the optical field gives

Ĥopt = −1
2
ed12E(d̂+e

−iωLt + d̂−e
iωLt + d̂−e

−iωLt + d̂+e
iωLt)

Ĥopt = −1
2
~ΩL(| 2〉〈1 | e−iωLt+ | 1〉〈2 | eiωLt).

(3.4)

It can be shown [111] that the two last terms inside the bracket of the first equation

correspond to population creation while emitting a photon and population annihila-

tion while absorbing a photon. These two terms are rejected, which corresponds to the

commonly used rotating wave approximation. Further more, the optical field-dipole

coupling is generalised by replacing it by the angular Rabi frequency (Ω). The an-

gular Rabi frequency is a general treatment of a coherent coupling between quantum

states. It describes the coupling strength between states and the driving source (see

Fig. 3.1). Here it was introduced for optical excitation. However, it is also used for

treating the coherent precession of a spin in a magnetic field orthogonal to the spin

direction. The angular Rabi frequencies are given by:

~ΩL = −e · d12 · E (3.5)

~ΩM = gµBB (3.6)

The Hamiltonian for a two level system under coherent optical excitation then

becomes

Ĥ = Ĥ0 + Ĥopt = ~

(
0 1

2
ΩLe

iωLt

1
2
ΩLe

−iωLt ω12

)
. (3.7)

Note that spin precession is included by treating the transition between two spin states

equivalently to the optical transition, just replacing ΩLe
±iωLt by ΩM . The effect of a

magnetic field parallel to the spin direction would be treated by adding an additional

Zeeman energy term on the diagonal elements of Ĥ0.

When combining Ĥ with the Schrödinger equation

i~
∂

∂t
| Ψ〉 = Ĥ | ψ〉 (3.8)

the time evolution of a two level system under coherent optical excitation becomes

i~

(
ċ1

ċ2

)
= ~

(
0 1

2
ΩLe

iωLt

1
2
ΩLe

−iωLt ω12

)
. (3.9)
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3.1. The Hamiltonian of a two level system under resonant excitation

3.1.3 Rotating frame transformation

The Hamiltonian of equation (3.9) has a time dependency due to the oscillating terms

of the coherent lasers. These rapidly oscillating time dependencies can be eliminated

by a transformation into the laser reference frame.

c̃1 = c1
˙̃c1 = ċ1

c̃2 = c2e
−iωLt ˙̃c2 = [ ˙̃c1 − iωLc̃2]e−iωLt

(3.10)

Substituting equations (3.10) into the Hamiltonian of equation (3.9) results in

~

(
0 1

2
ΩL

1
2
ΩL (ω12 − ωL)

)
= i~

(
˙̃c1

˙̃c2

)
. (3.11)

This is now the entire set of equations needed to describe the coherent dynamics in a

two level system under monochromatic excitation. In the following, the substitution

δ = ω12 − ωL will be used, where δ is equivalent to the detuning between the driving

laser and the | 1〉 ↔| 2〉 transition. All experiments in this thesis are measurements

where the experimental integration time exceeds all physical processes by orders of

magnitude. In this situation, the steady state of Hamiltonian (3.11) is obtained by

setting all time dependencies to zero.

3.1.4 Dressed state picture

Until now, calculations were all presented in the basis of an isolated QD transition. It

is informative to change the basis to a new set, where atom and coherent interactions

are treated as a combined entity. This new basis is the so called dressed atom, where

the bare atom states are dressed by the driving field. The eigenvalues of Hamiltonian

(3.11) correspond to the energies of the dressed atom states. The solution is obtained

by solving the eigenvalue problem Ĥ | ψ〉 = E | ψ〉 using the Hamiltonian of equation

(3.11):

E1 = ~
2

(
δ +

√
δ2 + Ω2

L

)
E2 = ~

2

(
δ −

√
δ2 + Ω2

L

) (3.12)

The energies of both dressed states are now a function of the transition angular Rabi

frequency and the detuning between bare states and the driving laser. The splitting

between both new states is given by

∆E = ~
√
δ2 + Ω2

L, (3.13)

which is the well known Autler-Townes splitting [112]. According to this equation,

the energy structure of the combined QD-coherent laser system can be modified by

the laser intensity and the laser detuning.
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3.2. Master equation

Energy eigenvalues are then used to look at the new eigenvectors of the dressed

system. Using the substitution tan(2Θ) = ΩL

δ
, the new system eigenvectors are

| d1〉 = cos(Θ) | 2〉+ sin(Θ) | 1〉
| d2〉 = − sin(Θ) | 2〉+ cos(Θ) | 1〉.

(3.14)

These new states reveal the true quantum mechanical nature of the experiment, which

cannot be captured using rate equations: a coherent field driving a QD transition does

not only distribute population, but it also results in a coherent superposition of both

coupled states. This superposition is characterised by the mixing angle Θ. Coherent

superposition effects are what ultimately leads to quantum interferences. They are

produced by the off-diagonal elements of the bare Hamiltonian (3.9), which gives these

elements the name coherences. The same effect is obtained from the coherent spin

rotations in an orthogonal magnetic field, which were mentioned before.

3.2 Master equation

Excitations and relaxations of QD states result in an uncertainty about QD states in

a classical sense: it cannot be said with 100 % certainty which state the QD occupies.

Furthermore, without a measurement, the QD state vector can be in an admixture of

different QD states. A system with such a statistical state can be described by the

density matrix, introduced by John von Neumann.

The model so far developed only included a treatment for coherent couplings

between QD states. The density matrix formalism allows a combination of coherent

and non coherent interaction via the von Neumann equation.

3.2.1 The density operator

The Hilbert space of a quantum system consists of several orthogonal dimensions.

When observing a N-level QD, the system state vector (| ψ〉) can be described by

assigning one dimension (| ci〉) to each level.

| ψ〉 =
N∑
i

ci | i〉 (3.15)

The statistical mixture of the system can then be expressed by giving each dimension

a weighting factor (wi), which describes the system’s evolution in time or in a steady

state limit. Since no population can be lost when the QD system is treated as an

entity, they have to satisfy
N∑
i

wi = 1 (3.16)
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3.2. Master equation

when summing over the entire number of QD states N . One can now define an

operator according to

ρ̂ =
N∑
i

wi | ci〉〈ci | . (3.17)

The operator described in equation (3.17) is called the density operator, consisting of

NxN -elements.

It is straightforward to see that the expectation value of an operator can easily be

calculated using the density operator:

〈Â〉 =
N∑
i

wi〈ci | Â | ci〉 = tr[ρÂ], (3.18)

where tr denotes trace. This method can already be applied to the coherent physics

Hamilton operator (3.11). A complete treatment however has also to include in-

coherent processes.

3.2.2 Relaxation of QD states

Relaxation of quantum states is not a coherent process and as such it cannot be in-

cluded into the density matrix master equation as an off-diagonal term in the Hamil-

tonian (3.9). The influence of relaxation onto a statistical ensemble is given by the

Lindblad formalism [113]
∂

∂t
ρ̂ = Lρ̂, (3.19)

where ρ̂ is the density operator introduced in equation (3.17) and L is the Lindblad

operator. It is defined as

Lρ̂ =
N∑
i,j

[γij | j〉〈i | ρ̂ | i〉〈j | −
γij
2

(| i〉〈i | ρ̂+ ρ̂ | i〉〈i |)] (3.20)

This treatment is adequate for a non Markovian interaction, corresponding to cou-

pling between a quantised system and a bath with no memory. Physically relevant

interactions of this type are the exciton relaxation, spin relaxation due to interaction

with the QD nuclei (see chapter 1.3.3) and the tunneling exchange between QD and

back contact (see chapter 2.1.1).

For the two level system treated before, the resulting Lindblad operator is

Lρ̂ = γ21 | 1〉〈2 | ρ̂ | 2〉〈1 | −
γ21

2
(| 2〉〈2 | ρ̂+ ρ̂ | 2〉〈2 |), (3.21)

where γ21 is the relaxation rate from state | 2〉 into | 1〉 which for example describes

spontaneous recombination.
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3.2. Master equation

3.2.3 Dephasing of excited and ground states

The effect of pure dephasing terms are treated as relaxations with identical initial and

final states. This way, no additional population dynamics are caused by dephasing

(Lρ̂ii = 0). However, these rates are involved in the coherent dynamics caused by

the system’s Hamiltonian (since Lρ̂ij 6= 0, with i 6= j), where they limit coherent

superpositions due to a damping via equation (3.20). The Lindblad operator including

dephasing and relaxation is then given by

Lρ̂ = γ21 | 1〉〈2 | ρ̂ | 2〉〈1 | −γ21
2

(| 2〉〈2 | ρ̂+ ρ̂ | 2〉〈2 |)+
γ22 | 2〉〈2 | ρ̂ | 2〉〈2 | −γ22

2
(| 2〉〈2 | ρ̂+ ρ̂ | 2〉〈2 |),

(3.22)

where the dephasing rate γ22 was added.

3.2.4 Von Neumann equation

The final step is to obtain a master equation, capturing the coherent and non coherent

dynamics of the QD. For that, the coherent system of the Hamiltonian (3.11) and

the non coherent system of the Lindblad formalism (3.20) have to be combined. A

framework for this step is provided by the von Neumann equation:

i~ ∂
∂t
ρ̂ = [Ĥ, ρ̂]

i ∂
∂t
ρij = 1

~
∑k=N

k=1 (Hikρkj − ρikHkj) + iLρij
(3.23)

As a result, the master equation of a two level system under coherent excitation

between | 1〉 ↔| 2〉 and relaxation of | 2〉 →| 1〉 is given by combining operators (3.11)

and (3.21) using the von Neumann equation (3.23). The resulting set of equations

writes as follows:

i ˙̃ρ11 = 1
2
ΩL[ρ̃21 − ρ̃12] + iγ21ρ̃22

i ˙̃ρ22 = −1
2
ΩL[ρ̃21 − ρ̃12]− iγ21ρ̃22

i ˙̃ρ12 = 1
2
ΩL[ρ̃22 − ρ̃11]− [δ + i

2
(γ21 + γ22)]ρ̃12

i ˙̃ρ21 = −1
2
ΩL[ρ̃22 − ρ̃11]− [δ + i

2
(γ21 + γ22)]ρ̃21

(3.24)

This set of equations can now be solved either focusing on the temporal dynamics

of the system or for the steady state. The temporal behaviour of the differential

equation (3.24) is generally described oscillations between states | 1〉 and | 2〉. For

the steady state solution, one assumes ∂
∂t
ρij(t→∞) = 0.

Relaxation and dephasing effects

A close look on the differential equations (3.24) can already provide insight into the

physics of the system, without providing an analytical solution.
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3.3. Heterodyne signature in laser field

Populations of states | 1〉 and | 2〉 are given by the diagonal elements ρ̃11 and ρ̃22.

It is easy to see that the sum of both diagonal terms is constant, hence no population

‘escapes’ the system. As mentioned before, population is moved between both states

via the angular Rabi frequency (ΩL), where the difference between the off-diagonal

elements (ε = [ρ̃21 − ρ̃12]) acts as a scaling factor. This action is non directional

(create and annihilate population of state | 2〉) since the scaling factor ε can change

sign. One consequence of this are Rabi-floppings: when the system is in state | 1〉
(| 2〉), factor ε is negative (positive) and creates (annihilates) population in state | 2〉
(here ρ̃11 + ρ̃22 = 1 and 0 ≤ ρ̃ii ≤ 1 was used). This results in oscillations between

| 1〉 and | 2〉.
The influence of rate γ21 on the diagonal elements is pure relaxation: it constantly

transfers population from state | 2〉 into state | 1〉. It is important to note the

dephasing rate γ22 does not directly appear in the diagonal elements of equations

(3.24).

The off diagonal elements follow a similar oscillating behaviour, but now relaxation

and dephasing contribute to the damping. As a consequence, both rates limit the

coherent superposition of states | 1〉 and | 2〉. This makes the difference between

relaxation rate γ21 and dephasing rate γ22 obvious: relaxation rate γ21 dampens the

coherent superposition of both states and transfers population from state | 2〉 into

| 1〉. Dephasing rate γ22 only limits coherent superpositions.

3.3 Heterodyne signature in laser field

The theoretical foundation introduced so far provides the necessary physics for de-

scribing the QD. What is missing is a link to laser spectroscopy of the experiment.

For that, the density matrix formalism has to be connected to the absorption contrast

of a resonant laser, as introduced in chapter (2.8).

The approach here is similar, but the dipole moment is now calculated based on

the density matrix elements. The scattered field is given by the operator [97]

Ês = − 1

A

1

2ε0cn
˙̂
d. (3.25)

Using the dipole moment given in equation (3.3), Es becomes

Es =
1

A

ed12ω12

2ε0cn
i
(
−ρ21e

−iω12t + ρ12e
iω12t

)
(3.26)

The experimentally measured signal is given by [97]

∆T

T
= 1− 〈|EL + ES|2

|EL|2
〉, (3.27)
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3.4. Conclusion

where EL is the electric field of the monochromatic laser, ES is the field scattered by

the oscillating dipole of equation (3.3), and 〈| . . . |2〉 corresponds to the time average.

In the limit of Es � EL, this equation can be written as

∆T

T
= −2

Es
EL

= − 2

A

ed12ω12

ε0cn

1

EL
=[ρ12(t→∞)] (3.28)

Finally, when using equation (3.5), the experimentally measured signal contrast is

given by
∆T

T
= −α0

γ21

ΩL

=[ρ12(t→∞)], (3.29)

with the interaction strength α0 equivalent to the one in [97].

Equation (3.29) provides a final link between the dynamics of QD states to the ex-

perimentally relevant interaction between resonant laser and the QD transitions. Now

all techniques, experimentally and theoretically, are at hand to investigate relaxation

and dephasing mechanisms of QD excited and ground states.

3.4 Conclusion

Theory introduced in this chapter provides a framework for analysis of experimental

data presented later in this thesis. A direct link between the experiment and the

quantum mechanical theory is provided by the heterodyne signature of the resonant

laser field, given by equation (3.29). Investigating the response of equation (3.29)

to changes in experimental parameters should provide information about the steady

state solution of the QD state vector. The link between the heterodyne signature

and the dynamical timescales of QD states is then given by the von Neumann master

equation (3.24).

Experimental techniques as well as the introduced theory will be adapted to dif-

ferent experimental situations. The fundamental techniques introduced in chapter 2

(experiment) and chapter 3 (theory) are used throughout this thesis to extract and

analyse experimental data. The experimental setup and theory will be adapted for

each experiment to suit the exciton system under investigation and to extract the

information wanted.
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Chapter 4

Optical initialisation of hole-spin

ground states

4.1 Introduction

As discussed in chapter 1.1, carrier spins have been proposed as a well suited platform

for the realisation of quantum information processing in the solid state [79, 114–116].

However, due to strong interaction with the reservoir of QD nuclei spin (explained

in chapter 1.3.3), the time-averaged coherence time of an electron spin is limited to

≈10 ns [79] and the strong contact hyperfine coupling leads to short relaxation times

at small external magnetic fields [15]. Fast electron spin relaxation and decoherence

can be suppressed in several ways. Two examples are spin-echo techniques [16, 82]

as well as polarising the nuclei spin [80, 81, 117]. A different approach is confining a

single hole spin to a QD. The p-type atomistic Bloch wave function of a hole wave

function has a node at the position of the QD nuclei, thus leading to a significant

reduction in the hyperfine contact coupling Hamiltonian (again, see chapter 1.3.3)[18,

29]. Heavy-light hole mixing, which leads to fast relaxation and dephasing of hole spins

in bulk material, is strongly suppressed in self assembled QDs due to strain and their

asymmetry in x/y and z-direction [18, 29]. In all experiments shown in the following

section a QD is charged with a single hole using techniques described in chapter 2.4. A

resonant laser manipulates single hole spins. If the predicted long relaxation times for

hole spins are confirmed, a high quality of hole spin initialisation should be achievable,

one fundamental requirement for quantum information processing [116]. Experimental

results are analysed using a 4-level density matrix formalism, introduced in chapter

3 and applied to the X1+ system. This experimental and analytical approach is used

to extract relaxation time scales of single hole spins. The main results extracted are

a hole spin relaxation time of ≈1 ms and high fidelity hole spin initialisation. The

collected data also shows no clear dependency of the hole spin lifetime on the external

magnetic field.
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4.2. A single hole spin in a perpendicular magnetic field

Figure 4.1: Hole spin initialisation scheme. The |⇓〉 ←→|⇑⇓, ↓〉 transition is driven
by a σ+ polarised laser with angular Rabi frequency Ω+. Wavy arrows depict relax-
ation of exciton and ground states. Electron spin precession in the internal magnetic
Overhauser field transfers population between the exciton states. For a long hole spin
relaxation time T hole1 , the system will be shelved in the |⇑〉 state via optical excitation,
electron spin precession and spontaneous recombination.

4.2 A single hole spin in a perpendicular magnetic

field

4.2.1 Hole spin pumping using a X1+ exciton

At moderate magnetic fields (B <5 T), the tight carrier confinement in QDs strongly

suppresses spin relaxation mechanisms caused by phonons interacting with carrier

spins via spin orbit coupling [20]. Accordingly a population difference between two

QD spin states is mainly sensitive to two processes: relaxation by interaction with

a nearby spin bath or coupling to a magnetic field perpendicular to the initial spin

direction. In chapter 1.3.3 and 2.1.1, the back contact and the QD nuclei spins were

identified as the two relevant spin reservoirs: tunneling between back contact and QD

randomises spin [94] while coupling of QD carrier spins to nuclei spin can lead to spin

flips at small Zeeman splittings [18]. The randomly orientated QD nuclei additionally

provide a perpendicular magnetic field component which can result in spin precession

of a carrier confined to a QD.

In order to study hole spin relaxation and its dependence on experimental pa-

rameters a population imbalance between both hole spin ground states is established

via resonant optical excitation. This scheme relies on the optical selection rules:

angular momentum conservation restricts the optically active transitions to excita-

tions where the difference in spin between initial and final state is one. Hence, the
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4.2. A single hole spin in a perpendicular magnetic field

|⇑〉 ↔|⇑⇓, ↑〉 transition can only be driven by a σ+ polarised laser field (see Fig.

4.1), while |⇓〉 ↔|⇑⇓, ↓〉 is restricted to the σ− polarisation. Interaction strength

between QD and a circular polarised laser field is thereby linked to the population

of the spin ground state accessible by the laser. Heavy-light hole mixing could po-

tentially alter optical selection rules. The total spin for hole spin up would then be

|s〉=α | 3
2
〉 + β | 1

2
〉, with α and β as the heavy and light hole contributions, re-

spectively. For β 6= 0 the hole spin up (down) also couples to a σ+ (σ−) laser. For

a successful experiment the fidelity of optical selection rules is crucial: only clean

selection rules allow unambiguous analysis as well as high quality hole spin manipula-

tion. An optical experiment, where the system can be manipulated such that a large

percentage of population is stored in one hole spin state is called hole spin pumping.

In order to study electron and hole spin lifetimes, an external magnetic field (Bext)

can be applied along the growth direction (z-direction) of the sample. Due to the

inbuilt natural strain and the spatial asymmetry between the x/y and z-axis of self

assembled QDs, the quantisation axis of a heavy hole spin (chapter 1.3.3) is then

parallel to Bext. The applied magnetic field introduces a Zeeman splitting between

opposite electron and hole spins of the ground and excited states, while also adding to

the internal Overhauser field (Bint) (chapter 1.3.3). This has a big impact on possible

spin precession of both, the electron and hole spin: Bext can be up to two orders of

magnitude stronger than Bint and therefore hugely influences the proportion between

magnetic fields parallel and orthogonal to carrier spins.

The resonant spectroscopy experiment is carried out via the standard technique,

introduced in chapter 2.3.2. A PIN detector located below the sample and illuminated

from the top, detects the homodyne signal between laser field and the field scattered

by the oscillating dipole of an optical QD transition. Using a lockin scheme, the signal

is filtered from noise and the interaction between the QD and the resonant laser field

is recorded. Studying hole spin relaxation times for external magnetic fields, up to 5

Tesla, was realised by incorporating a superconducting magnet with the normal liquid

helium dewar setup, shown in chapter 2.2.1.

4.2.2 Spin pumping scheme

An optical hole spin pumping scheme describing pumping with one circular polarised

laser at Bext = 0 Tesla is shown in Fig. 4.1, where a σ+ field drives the |⇓〉 ↔|⇑⇓, ↓〉
transition. The excited state electron spin precesses in the QD nuclei Overhauser

field and coherently distributes population between |⇑⇓, ↓〉 and |⇑⇓, ↑〉. Spontaneous

recombination results in decay from |⇑⇓, ↑〉 into the |⇑〉 state. A well isolated hole

spin will shelve the system from the optical laser field for the duration of the hole spin

relaxation time. If the hole spin shelving time exceeds all other population transfer
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4.2. A single hole spin in a perpendicular magnetic field

timescales, the clean optical selection rules forbid interaction between the resonant

laser and quantum dot for the majority of the experimental integration time. In this

situation the absorption signal strength for pumping with a circular polarised laser

should approach zero.

A signal approaching zero is usually an inconclusive experimental situation, it can

always be ‘achieved’ by a misaligned setup or wrongly chosen system parameters. In

order to confirm this interpretation and proof hole spin pumping the optical selection

rules are again exploited. When driving both optical transitions simultaneously by

two σ+ and σ− polarised lasers, hole spin pumping is avoided since the combined

laser field can access both ground states. The full absorption contrast should then

reappear. This will directly link small absorption contrast to ground state shelving

and rule out any experimental errors.

Successful and high quality hole spin pumping imposes very stringent requirements

on every population transfer mechanism. First, the lifetime of the hole spin has

to exceed all time scales of other population transfer processes (≈1 ns spontaneous

lifetime, ≈6 ns [118] electron spin precession period) in the 4-level system by orders

of magnitude. Therefore hole spin precession in the Overhauser field as well as hole

spin relaxation must be slow. Secondly, optical selection rules must be very clean.

If a laser with circular polarisation could access both ground states sufficiently, the

ground state population polarisation at degeneracy will be fundamentally limited.

This is due to excitation of both |⇓〉 and |⇑〉 by the same source. Shelving the system

from the laser will then be destroyed and a non negligible amount of population is

transfered from the intended final hole spin state into excited states as well as the

orthogonal hole spin ground state.

4.2.3 Experiment

All following experimental results were obtained by spectroscopy on QDs from sample

060726B#1. A carbon doped back contact provides a hole Fermi sea and is located

25 nm from the QDs. The optical setup plus the liquid helium cryostat and their

performance were discussed in chapter 2. Unless otherwise stated, all resonant scans

were taken at the centre voltage of the X1+ voltage plateau, which minimises spin

exchange between back contact and quantum dot (see chapter 2.1.1 and [94]). Using

the superconducting magnet increased the consumption of liquid helium to ≈7 litres

a day, allowing only around ten days of experiment time per liquid helium dewar.

This was not enough to conduct all experiments on a single QD, hence results for two

QDs (QD A and QD B) are presented in the following chapter. It is important to

emphasise that experiments conducted on each QD represent a complete set of data,

providing enough information to extract reliable values for each QD.
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Figure 4.2: Standard spectroscopy on a p-doped QD sample. a) Photoluminescence of
QD A. The sample is illuminated by a 830 nm laser with intensity of 1.18 nW�µm2,
the signal integration time is 20 s. The photoluminescence spectrum shows the QD is
well isolated and all spectral lines can be identified. b) Resonant laser spectroscopy
on X0 and X1+ with an intensity of 8.16 nW�µm2 and an integration time of 1 s.
The X0 fine structure (∆EFS) enables a clear identification when compared to X1+

single resonance at Bext=0 T. Optical pumping with linear polarisation avoids spin
shelving of the X1+ hole ground state as demonstrated by equal signal strengths for
X1+ and X0.

Photoluminescence spectroscopy was performed for a first characterisation of QD

A (Fig. 4.2 a), where the QD was illuminated with 1.18 nW�µm2 using a 830 nm

diode laser. The sample gate bias Vg was varied from -0.5..0.5 V in 50 steps, recording

a spectrum at each step while integrating for 20 s. A well isolated QD was found for

PL energies between 1.272 and 1.283 eV and for gate biases between -0.5 and 0.2 V. All

spectral lines of the PL spectrum are labeled as described in chapter 2.4.1. Resonant

absorption spectroscopy, shown in Fig. 4.2 b) and c), with an optical intensity of 8.16

nW�µm2 and linear polarisation shows two resonances, corresponding to the X0 and

X1+ at 969.154 and 967.084 nm, respectively. The X0 has a fine structure splitting

(∆EFS) of 29.84 µeV, linewidths of Γ1=4.35 µeV and Γ2=5.26 µeV, the differential

absorption contrast is ∆T
T

=1.6·10−3 for both resonances. Scanning through the X1+

transition shows one resonance with a linewidth and signal contrast of Γ = 4.83 µeV

and ∆T
T

= 1.35·10−3. These values are typical for both transitions in p-doped samples,

and the X0 fine structure allows clear distinction between X0 and X1+ [103]. An

important, early result is the almost identical signal contrast for X0 and X1+, which

indicates that there is no hole spin shelving for excitation of a single hole spin with

linear polarisation.

Changing the resonant laser polarisation to σ+ or σ−, shown in Fig. 4.3 a) and b),

79



4.2. A single hole spin in a perpendicular magnetic field

- 1 5 - 1 0 - 5 0 5 1 0 1 50 . 9 9 8 8
0 . 9 9 9 2
0 . 9 9 9 6
1 . 0 0 0 0

- 1 5 - 1 0 - 5 0 5 1 0 1 5 - 2 0 - 1 0 0 1 0 2 0 0 . 9 9 8 8
0 . 9 9 9 2
0 . 9 9 9 6
1 . 0 0 0 0

a )

 D e t u n i n g  ( m e V )Tr
an

sm
iss

ion
 (D

T/T
)  

 

↓⇑⇓ ,

⇓ ⇑

↑⇑⇓ ,

+Ω 0Γ 0Γ

↓⇑⇓ ,

⇓ ⇑

↑⇑⇓ ,

+Ω 0Γ 0Γ

↓⇑⇓ ,

⇓ ⇑

↑⇑⇓ ,

−Ω0Γ 0Γ

↓⇑⇓ ,

⇓ ⇑

↑⇑⇓ ,

−Ω0Γ 0Γ

↓⇑⇓ ,

⇓ ⇑

↑⇑⇓ ,

−Ω0Γ 0Γ+Ω

↓⇑⇓ ,

⇓ ⇑

↑⇑⇓ ,

−Ω0Γ 0Γ+Ω

 D e t u n i n g  ( m e V )

b )

 
 

 

 

 D e t u n i n g  ( m e V )

c )

 

 

 

 

Figure 4.3: Hole spin pumping at Bext=0 T using QD B. The integration time was 2 s.
a) shows the experimental result of the hole spin pumping scheme described in Fig. 4.1.
Driving the |⇓〉 ↔|⇑⇓, ↓〉 transition with σ+ polarisation results in absorption contrast
dropping below the experimental noise floor. The interpretation is that the system
has been shelved in |⇑〉. Pumping with σ− polarisation results in shelving the system
in |⇓〉, shown in b). Driving both transitions simultaneously via two orthogonally,
circular polarised lasers destroys spin shelving, leading to a strong absorption signal,
shown in c). This proofs effective spin pumping at Bext=0 T, demonstrates clean
optical selection rules and excludes experimental errors resulting in low absorption
contrast in a) and b).

has a dramatic effect on the X1+ absorption, even at Bext=0 T. Other than in Fig. 4.2

b) and c), the difference between X0 and X1+ absorption is maximised due to the X1+

absorption contrast approaching zero. Pumping with both lasers brings theX1+ signal

strength back up to a level similar to X0 absorption (∆T
T
≈ 1.5 · 10−3). As discussed

earlier in this chapter, data shown in a) and b) can be associated with effective spin

shelving. At Bext=0 T, selective pumping of spins is only possible due to the optical

selection rules, which in turn must be sufficiently clean. This interpretation is verified

by pumping both horizontal transitions simultaneously (called spin repumping) with

a σ+ and σ− lasers, demonstrated in Fig. 4.3 c). Spin shelving is destroyed by both

lasers and the absorption contrast reappears. Since σ± = Πx±iΠy, the result of Fig.

4.3 c) agrees with Fig. 4.2 c). Laser intensity and integration times for all experiments

shown in Fig. 4.3 are equal to numbers introduced in Fig. 4.2; when the system was

pumped with two lasers simultaneously the intensity was evenly distributed between

both. The data was recorded using QD B.

These results are significant: for Bext=0 T hole spin precession as well as relaxation

must be significantly slower than electron spin precession and spontaneous recombi-

nation of the exciton. Also, the difference in signal contrast between Fig. 4.3 a) (or

b)) and c) shows that optical selection rules are very clean. Results obtained in scans
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shown in Fig. 4.3 thereby already indicate that for Bext=0 T a hole spin confined to

a QD is well isolated from the disturbing semiconductor environment. Additionally,

without any further analysis at this early stage of experimental investigation, hole

spin pumping with an initialisation quality approaching 100% is confirmed by the

presented data.

A more detailed study of hole spin repumping (pumping each exciton transitions

by one laser, Fig. 4.3 c)) at Bext=0.25 T is shown in Fig. 4.4. While the σ+ laser was

on resonance, the σ− laser energy was stepped through resonance with the transi-

tion. For each laser detuning ten scans were recorded while the gate bias was scanned

through resonance. In Fig. 4.4 a), maximum repump contrast is plotted for different

detunings of the σ− laser, the error bars correspond to the standard deviation of ten

scans. Figure 4.4 b), c) and d) are example scans for a repump laser detuning of

-4.3, 0 and +3.8 µeV, respectively. For a better understanding the Zeeman splitting

was subtracted from energy scales on the x-axis. While the overall signal contrast in

Fig. 4.4 a) shows a strong detuning dependence, the lineshape is neither Lorentzian

nor symmetric around zero detuning. It still proofs an important difference between

electron- and hole spins: for an electron spin the strong contact hyperfine interaction

renders high quality electron spin pumping impossible for Bext <0.3 T [15]. Both

Fig. 4.3 and Fig. 4.4 provide evidence and detailed information about successful hole

spin pumping for Bext <0.3 T, even for Bext =0 T. This is a very important result

and it shows advantages of hole spins over electron spins for use in quantum infor-

mation processing. It also provides further indications of reduced contact hyperfine

interaction for hole spins.

As explained in section 1.3.3, ground state spins can be randomized via coupling

to the Fermi sea of the back contact [94]. In order to evaluate the strength of this

interaction, a spin pumping experiment is performed at different positions of the X1+

voltage plateau at an external field of Bext=1.5 T. The external magnetic field creates

a Zeeman splitting of exciton and ground states and thereby allows addressing sin-

gle states spectrally, thus reducing sensitivity of the experiment to small polarisation

fluctuations of the laser. Each data point in Fig. 4.5 is the average value of six mea-

surements and error bars correspond to the standard deviation and data was recorded

using QD B. Optical intensities and integration times are again set to standard values

used before.

At the edges of the X1+ voltage plateau (V 1
g ≈-0.055 V and V 2

g ≈+0.06 V),

the absorption contrast reaches values close to situations with zero spin shelving

(1.2·10−3 using repumping experiment, Fig. 4.3 c). This is an indication of fast hole

spin relaxation, which can be linked to strong interaction, referred to as cotunneling,

between the QD and the back contact Fermi sea [94]. However, the second order
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Figure 4.4: Hole spin repumping at Bext=0.25 T using QD A. While the σ+ laser is
kept on resonance, the σ− laser is swept through the transition. The Zeeman split-
ting was subtracted of the detunings for clarity. a) Absorption contrast for different
detunings of the σ− laser from resonance. The error bars correspond to the standard
deviation of 10 scans. b), c) and d) show example scans at -4.3 µeV, 0 µeV and +3.8
µeV detuning of the σ− laser, respectively. The x-axis corresponds to the detuning
via the DC-Stark shift.
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Figure 4.5: Hole spin pumping at Bext=1.5 T across the X1+ voltage plateau using
QD B. a) Strong interaction between quantum dot and back contact Fermi sea ran-
domises spin at the X1+ plateau edges (indicated by dotted red lines) and destroys
spin pumping. This effect is largely suppressed closer to the plateau middle, though
non-vanishing absorption contrast shows spin pumping is inefficient. Single scans are
shown for clarity in parts b), c) and d). Experiments at the voltage plateau centre and
Bext=0 T (Fig. 4.3 a) and b))prove that the now significant contrast at plateau centre
originates from Bext >0 T. Error bars in a) were obtained by standard deviation from
6 measurements.
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Figure 4.6: Hole spin pumping recorded at the middle of the X1+ plateau for external
magnetic fields reaching from 0 to 5 Tesla, using QD B. Hole spin pumping efficiency
decreases rapidly with increasing magnetic field but still indicating changes in system
dynamics up till 4 to 5 Tesla. This indicates hole spin relaxation times comparable
to electron spin precession period at Bext ≈4 T.

nature of this process (chapter 1.3.3) results in a strong voltage dependency in the

interaction strength. For -0.04 V< Vg <0.05 V the absorption contrast remains at a

constant value of ∆T
T
≈ 0.6 ∗ 10−3 without gate bias dependence. Absorption contrast

independent of gate bias indicates strongly suppressed cotunnelling. Comparing data

at Bext =1.5 T with data extracted at Bext =0 T presented before in Fig. 4.3 a) or

b) (both at centre of voltage plateau), shows a clear difference in hole spin pumping

efficiency.

To quantify the influence of the external magnetic field on hole spin pumping

efficiency, Bext was increased from 0 to 5 Tesla in steps of 0.25 Tesla. Absorption

contrast of the X1+ transition for pumping with both, σ+ and σ− polarisation was

recorded at each magnetic field. The gate bias was centered in the voltage plateau

and experimental parameters match those of hole spin pumping experiments earlier

in this chapter. QD B was used for this experiment and a total of 10 scans were

recorded at each field strength to provide statistical information.

The experimental data reveals a very strong dependence of the absorption signal

on the external magnetic field. Maximum spin shelving was achieved at Bext=0 T with
∆T
T

=3.4·10−5. Signal contrast quickly increased in the region of Bext=0...2 T, where

at Bext=2 T it already was ∆T
T

=0.78·10−3, which is ≈70 % of the absorption signal

without hole spin shelving. As mentioned before, the population transfer mechanism

between the excited states relies on electron spin precession in Bint. For external

magnetic fields strengths of several Tesla, this precession frequency is greatly reduced

[15]. Signal contrast still only approaches the maximum value repumping value for
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Figure 4.7: Hole spin pumping recorded at the middle of the X1+ plateau for external
magnetic fields reaching from 0 to 0.6 Tesla, using QD A. Other than in Fig. 4.6,
absorption signal at Bext =0 T is is equal to zero hole spin pumping. It quickly
decreases, reaching a minimum of ∆T

T
=1.2510−4 at 0.25 T.

Bext >3.5 T, where Bext exceeded Bint by approximately two orders of magnitude. It

is also apparent that for increasing Bext there was an increasing inequality for pumping

with σ+ or σ− polarisation.

Figure 4.7 is an equivalent magnetic field dependency recorded with a σ− polarised

laser, but using X1+ of QD A. Absorption contrast shows the same behaviour for fields

greater than 0.25 T. However, for Bext =0 T absorption contrast was ∆T
T

=1.5710−3,

equivalent to the repumping absorption contrast of Fig. 4.4. This value decreased with

increasing Bext, until reaching the minimum value of ∆T
T

=1.2510−4 at Bext =0.25 T.

There are several possible explanations: one is that a strong electron spin hyperfine

interaction rotated the electron spin quantisation axis (explained in detail in chapter

3.1.4), accordingly enabling coupling of each hole spin state to each exciton. For

Eh
Zeeman bigger than the exciton linewidth, one laser could again address a single

hole spin. Similar effects causing hole spin dynamics can also not be excluded: in

the presence of heavy-light hole mixing the hole spin could precess in the nuclei

magnetic field. The result would be a strong magnetic field dependence of hole spin

shelving quality. Another explanation is that the resonant laser polarisation itself

was elliptical rather than purely circular. Here, both transitions accessed by one laser

would be split by the sum of electron and hole Zeeman splitting. In this case, hole spin

pumping becomes possible as soon as EZeeman = Eh
Zeeman+Ee

Zeeman exceeds the exciton

linewidth. Experimental laser polarisation analysis was conducted by filtering the

resonant laser polarisations after propagating through the entire microscope system

and recording polarisation ratios of each laser. Extracted values from ten independent

measurements average to a polarisation purity of (95±5) %. This ratio will be used
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in numerical simulations.

All results presented so far point to high fidelity hole spin pumping, for QD B even

at a vanishing external magnetic field. Four QDs where studied in detail, where two

QDs showed high quality hole spin pumping at Bext =0 T like QD B, two showed a

magnetic field behavior similar to QD A. In all experiments conducted so far, the shape

and position of the X1+ transition was independent of excitation power, polarisation

and scan direction, showing no direct evidence of nuclear spin polarisation [77, 119].

In order to quantify interactions of the hole spin with the back contact Fermi sea and

to extract the hole spin lifetime a theoretical model is needed. Coherent population

transfer due to electron spin precession and resonant optical excitation have to be

included as well as incoherent relaxations via exciton and hole spin decay.

4.3 Analysis via 4-level density matrix master equa-

tion

4.3.1 Introduction

The density matrix formalism introduced in chapter 3 generally provides all elements

needed to treat QD states under resonant optical excitation. Extending the formalism

to a 4-level system by including two coherent optical excitations, spin precessions and

incoherent relaxations is expected to create a model for simulating the hole spin

pumping experiment shown in the experimental section of this chapter. The only

unknown parameter will then be T hole1 , which consequently is extracted by fitting the

theory to experimental data.

Final state preparation fidelity is an essential information for quantum informa-

tion technology, with effective algorithms requiring high fidelity. It is defined as the

polarisation of the system population in an intended final state. According to chapter

3.3, absorption spectroscopy is only sensitive to off-diagonal elements of the system’s

Hamiltonian, not final hole spin populations. For that reason hole spin preparation

fidelity is experimentally not accessible directly, but will be simulated numerically

with values extracted from experimental data.

4.3.2 Density matrix and master equation

Figure 4.8 shows all transition mechanisms involved between the 4-levels of the X1+

in an external magnetic field in z-direction. Non-coherent relaxations are symbolised

by wavy arrows. These are the spontaneous recombinations (Γ0) and electron spin

(T electron1 ) and hole spin (T hole1 ) relaxation. Coherent population transfer is provided
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4.3. Analysis via 4-level density matrix master equation

Figure 4.8: All population transfer mechanisms relevant to the hole spin pumping
experiment. Relaxations are symbolised by wavy arrows (Γ0, (T hole1 )−1, (T electron1 )−1)
while laser excitations and spin precessions are shown as straight connections (Ω+,
Ω−, ΩN). The spontaneous exciton decay rate is set equal for both excitons. ∆ is the
repump laser detuning.

by two resonant lasers and the electron spin precessing in the internal Overhauser

field, which is assumed to be constant during the exciton lifetime. Both types of

transitions are characterised by their angular Rabi frequencies Ωi.

The density matrix of the | X1+〉 system consists of four dimensions, with the

state vectors:

|1〉 =


c1

0

0

0

 , |2〉 =


0

c2

0

0

 , |3〉 =


0

0

c3

0

 |4〉 =


0

0

0

c4

 .

They are linked to the QD states via |1〉 =|⇑〉, |2〉 =|⇓〉, |3〉 =|⇑⇓, ↑〉 and |3〉 =|⇑⇓, ↓〉.
The coherent population transfer due to resonant lasers and spin-precession is

given by:

Ωij
opt =

edij
~
Eij
opt

ΩN = ge
µb
~
Bx
int,

where Ωij
opt is the angular Rabi frequency for optically driven transitions between state

i and j, while ΩN is the angular Rabi frequency of the exciton electron spin precession.

dij is the electric dipole moment of transition ij which is zero for transitions forbidden

by optical selection rules. Eij
opt is the electric field of a monochromatic laser acting on
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4.3. Analysis via 4-level density matrix master equation

| i〉 ↔| j〉. The coupling Hamiltonian matrix elements are

Ĥσ+ =
~Ω+

2
(eiω+t | 2〉〈4 | +e−iω+t | 4〉〈2 |)

Ĥσ− =
~Ω−

2
(eiω−t | 1〉〈3 | +e−iω−t | 3〉〈1 |)

for the optical excitations and

ĤN = ~
ΩN

2
(| 3〉〈4 | + | 4〉〈3 |)

for the electron spin precession. According to 3.1.2, these additional off-diagonal

matrix elements of the Hamiltonian provide a rotation of the initial state vector

which corresponds to coherent population transfer. Derivation and discussion of these

equations can also be found in Chapter 3.1.2.

After a rotating frame transformation, introduced in chapter 3.1.3, where elements

of vector ~̃c are defined as

c1 = c̃1

c2 = c̃2e
−i(ω+−ω−)t

c3 = c̃3e
−iω+t

c4 = c̃4e
−iω+t.

The Schrödinger equation for all coherent interactions of the X1+ system can be

written as 
0 0 0 ~Ω+

2

0 ~δ2 ~Ω−
2

0

0 ~Ω−
2

~δ3 ~ΩN

2

~Ω+

2
0 ~ΩN

2
~δ4




c̃1

c̃2

c̃3

c̃4

 = i~


˙̃c1

˙̃c2

˙̃c3

˙̃c4

 . (4.1)

Detunings used in equation (4.1) are

~δ2 = ~ω12 − ~ω+ + ~ω−
~δ3 = ~ω13 − ~ω+

~δ4 = ~ω14 − ~ω+,

with ~ω12 and ~ω13−~ω14 as the Zeeman splittings for holes and electrons, respectively.

The non coherent relaxation terms are treated via the Lindblad equation:

Lρ̂ = ~
∑
ij

γij | j〉〈i | ρ̂ | i〉〈j | −
γij
2

(| i〉〈i | ρ̂+ ρ̂ | i〉〈i |), (4.2)

87



4.3. Analysis via 4-level density matrix master equation

leading to the following decay matrix:

Lρ̂ = ~(Γ12|2〉〈1 | ρ̂|1〉〈2| − Γ12

2
(|1〉〈1 | ρ̂+ ρ̂|1〉〈1 |)

+Γ21|1〉〈2 | ρ̂|2〉〈1| − Γ21

2
(|2〉〈2 | ρ̂+ ρ̂|2〉〈2 |)

+Γ34|4〉〈3 | ρ̂|3〉〈4| − Γ34

2
(|3〉〈3 | ρ̂+ ρ̂|3〉〈3 |)

+Γ43|3〉〈4 | ρ̂|4〉〈3| − Γ43

2
(|4〉〈4 | ρ̂+ ρ̂|4〉〈4 |)

+Γ0|2〉〈4 | ρ̂|4〉〈2| − Γ0

2
(|4〉〈4 | ρ̂+ ρ̂|4〉〈4 |)

+Γ0|1〉〈3 | ρ̂|3〉〈1| − Γ0

2
(|3〉〈3 | ρ̂+ ρ̂|3〉〈3 |)).

(4.3)

Both exciton decay terms are set to be equal and are given by Γ0 [69]. Hole spin

(electron spin) relaxation is Γ12 = (T hole1 )−1 (Γ34 = (T electron1 )−1). Decay rates for

relaxing from an energetically higher into a lower state are different from the opposite

relaxation direction. These two processes are related by a thermal equilibrium: in the

absence of an optical driving field relaxations for hole and electron spins follow

Γ21 = Γ12e
−Eh

Z�kbT (4.4)

and

Γ43 = Γ34e
−Ee

Z�kbT , (4.5)

respectively. Since hole spin pumping is an experiment insensitive to quantum me-

chanical phase, no pure dephasings have to be included for simulating this experiment.

A model which included pure dephasing terms produced the same results until de-

phasing rates exceeding typical values by orders of magnitude. Coherent and non

coherent population transfers are combined in a master equation using the von Neu-

mann equation:

i~
∂ρ̂

∂t
= [Ĥ, ρ̂] + iLρ̂ (4.6)

The QD X1+ states in the basis of equation (4.1) combined with (4.2) are repre-

sented as follows:

〈⇑| ρ̂ |⇑〉 = ρ11

〈⇓| ρ̂ |⇓〉 = ρ22

〈⇑⇓, ↑̃ | ρ̂ |⇑⇓, ↑̃〉 = ρ33

〈⇑⇓, ↓̃ | ρ̂ |⇑⇓, ↓̃〉 = ρ44.

According to chapter 3.3, the four-level model is linked to the experimental ab-

sorption contrast for both lasers by:

∆T

T
= α0Γ0

Ω+=(ρ14(t→∞)) + Ω−=(ρ23(t→∞))

Ω2
+ + Ω2

−
. (4.7)
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Density matrix components ρ14 and ρ23 are obtained by solving the master equation

(equation (4.6)) for the steady state limit, where ∂ρ̂
∂t
→ 0. The factor α0 was introduced

in chapter 3.3 and linearly scales theoretical simulations to the experimental data. For

a robust fit, it is extracted from using X0 and X1+ data for each QD examined and

kept constant for all fits. Using this formalism, the hole spin preparation fidelity is

now defined ρ22−ρ11
ρ11+ρ22

for shelving the system in |⇑〉 and ρ11−ρ22
ρ11+ρ22

for shelving in |⇓〉.

4.3.3 Data analysis

Results shown in section 4.2 featured key signatures of successful and high fidelity

hole spin pumping. Based on these strong indications, claims of a long T hole1 at

zero external magnetic field were made. In the following, all claims made earlier

will be underpinned by fitting experimental data shown in the previous section to

equation (4.7) of the four-level density matrix model. Predictions regarding T hole1 will

be substantiated.

Figure 4.9 a) represents a fit for data extracted from a repumping experiment

on QD A, shown earlier in Fig. 4.4. Model parameters were Bext =0.25 T, σ+-

laser:~Ω+ =0.38 µeV and ~Ω− =0.02 µeV, σ−-laser:~Ω+ =0.02 µeV and ~Ω− =0.38

µeV, ∆Ee
Zeeman =8.75 µeV, ∆Ee

Zeeman =17.5 µeV. The nuclei magnetic field was as-

sumed to be BN =25 mT [21, 78, 120, 121]. The extracted hole spin relaxation time,

using equation (4.7), is T hole1 =250 µs. This is extremely relevant: it proofs a strongly

suppressed contact hyperfine interaction between hole spins and QD nuclei. For a

hole spin hyperfine coupling comparable to electron spins as the limiting factor for

T hole1 , mixing of both hole spin states via spin precession should already be strongly

suppressed at Bext =0.25 T (see chapter 3.1.2). The resulting hole spin lifetime in

the limit of hyper fine coupling should be ≈10 ms [15]. This indicates that other

mechanisms limit T hole1 . Additionally, the asymmetric lineshape of the repump ex-

periment is perfectly reproduced theoretically. This behavior stems from the electron

spin hyperfine coupling rotating the quantisation axis for the electron spin (changing

from |↑〉 to | ↑̃〉 and from |↓〉 to | ↓̃〉, see chapter 3.1.2). The |⇑〉 ↔|⇑⇓, ↑̃〉 transition

remains strong but now with a weak contribution from |⇑〉 ↔|⇑⇓, ↓̃〉. For positive

repumping detunings and scanning the σ+ laser, the laser has access to this second

transition but is detuned from this additional resonance for negative detunings, see

Fig. 4.9 b). This results in an asymmetric lineshape dependency on the repump laser

detuning ∆, demonstrated by the experimental data and the theoretical fit in Fig.

4.9.

Figure 4.9 was a first demonstration for the good agreement between experiment

and theory. A better understanding of the interactions between hole spin and reser-

voirs is achieved by interpreting the dependency of T hole1 on external magnetic fields
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Figure 4.9: a) Repump experiment on QD A fitted to the four-level model using
equation (4.7). The σ+ laser is on resonance with the |⇓〉 ↔|⇑⇓, ↓〉 transition, while
σ− is stepped through |⇑〉 ↔|⇑⇓, ↑〉. Model parameters are Bext =0.25 T, BN =25
mT, σ+-laser:~Ω+ =0.38 µeV and ~Ω− =0.02 µeV, σ−-laser:~Ω+ =0.02 µeV and
~Ω− =0.38 µeV, ∆Ee

Zeeman =8.75 µeV, ∆Ee
Zeeman =17.5 µeV and T hole1 =250 µs. The

solid line represents the fit created by the simulation. All experimental parameters
are typical for experiments in this chapter. b) shows optical coupling for electron
spin states transformed by the hyperfine coupling into the | ↑̃〉/| ↓̃〉 basis. Now the
σ+ polarised repump laser has access to an additional transition at higher energies,
resulting in the observed repumping asymmetry.

and applied gate biases. Both spin randomisation via cotunnelling (gate bias de-

pendent) as well as population transfer between the exciton levels via electron spin

precession (magnetic field dependent) is controlled through these experimental pa-

rameters. The experiments were carried out on QD B.

The four-level theory introduced before perfectly reproduces the hole spin pump-

ing experiment for Bext reaching from 0..5 T. Figure 4.10 a) shows a fit to exper-

imental data presented earlier in Fig. 4.6 using equation (4.7). The fit was cre-

ated using BN =21 mT, α0 =0.025 ∆Ee
Zeeman =35 µeV/T, ∆Eh

Zeeman =70 µeV/T,

~ΩN =0.73 µeV, T electron1 =10 ms and T hole1 =1 ms. Polarisation impurity of the

resonant lasers was included using ~Ω+ =0.38 µeV and ~Ω− =0.02 µeV (~Ω+ =0.02

µeV and ~Ω− =0.38 µeV) for excitation by the σ+ (σ−) laser. The only uncertainty

originates from the unknown nuclei magnetic field. When changing Bint from 12 to

21 mT, data fits to hole spin lifetimes between 0.2 and 1 ms. Values used for Bint

are consistent to those used in common literature [15, 78, 120, 121]. The fit extracted

from Fig. 4.10 a) is a very robust measurement of T hole1 : equation (4.7) perfectly

reproduces changes in ∆T
T

greater than one order of magnitude for a big range of
Bint

Bext
. An important fact is that a signal change of almost two orders of magnitude

is explained without introducing any magnetic field dependency for T hole1 . This has

two crucial consequences. First, long hole spin lifetime at Bext =0 T proofs spin flip

processes between nuclei spins and hole spin are inefficient. Secondly, a hole spin

lifetime independent of the external magnetic field confirms negligible hole spin pre-
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Figure 4.10: Spin pumping while varying Bext (a) and Vg (c). Data presented here
was obtained from QD B and shown before in Fig. 4.5 and Fig. 4.6. a) Shows hole
spin pumping for excitation with σ+ or σ− polarisation fitted to equation 4.7. Param-
eters used for the fit are BN =21 mT, Ee

Zeeman =35 µeVT−1 (ge =0.66), Eh
Zeeman =70

µeVT−1, ~ΩN =0.73 µeV, T electron1 =10 ms and α0 =0.025. Optical polarisation purity
was set as 99.7% in power. The hole spin lifetime extracted is between 0.2≥T hole1 ≤1
ms. b) Simulation of the hole spin pumping fidelity, which is not directly measur-
able. For Bext =0 T, the extracted fidelity is 99.0±0.5%. c) A simulation combining
magnetic field and bias dependent effects. The dashed line only includes the effect
of cotunneling with the back contact, while the solid line combines bias dependent
and undependent processes. Tunnelling timescales are ≈3 µs at the plateau edge and
≈100 ms at the centre. Cotunnelling does not limit T hole1 in the plateau centre.
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cession, since it would be greatly effected by strong external magnetic fields. The

different behavior for pumping with σ+ and σ− polarisation is also correctly repro-

duced by the model. It originates from relaxation rates between spin up and spin

down states following equation (4.4) for hole spins and equation (4.5) for electron

spins. Two different regimes can be identified for experimental data shown in Fig.

4.10 a). For Bext ≤1.5 T, the big changes in signal contrast make the experiment

particularly sensitive to T hole1 . Strongly suppressed system dynamics for Bext >1.5 T

reduce this sensitivity. It is in that region of Bext ≤3 T, that two phonon processes

seem to dominate hole spin relaxation [7]. Phonon energy does not have to match

∆Eh
Zeeman for two phonon driven relaxations of hole spins and accordingly this type

of process shows a weak dependency on Bext. This provides a good justification for

assuming T hole1 to be independent of Bext for Bext ≤3 T, where the impact of Bext on

the experiment is biggest. Similar hole spin relaxation times, almost independent on

Bext for Bext ≤4 T where extracted in measurements on QD ensembles [29].

Figure 4.10 b) shows the hole spin pumping fidelity calculated using the four-

level model. For Bext approaching zero this fidelity reaches the maximum value of

(99.0±0.5) %. Again, the uncertainty of 0.5% arises from the unknown nuclei magnetic

field. This value is also limited by a slight elipticity in laser polarisation (99.7 %),

which is the limiting experimental factor. According to simulations with T hole1 =1 ms,

a maximum fidelity of 99.9 % should be acchievable with a perfect optically polarised

experimental setup. Hole spin preparation fidelities approaching these high values

were achieved with about three additional QDs and are not restricted to QD B.

The remaining limiting factor on T hole1 examined in this chapter is cotunnelling

between QD and back contact. A theoretical model was introduced in chapter 2.1.1.

Experimental results for hole spin pumping at Bext =1.5 T show the expected contrast

dependency on gate bias (Fig. 4.10 c)). A fit of cotunnelling simulations [94] to the

extracted data is shown by the dashed line in Fig. 4.10 c). Combining it with the

four-level model allows a description of the voltage dependent hole spin pumping

experiment, represented by the solid line. At the voltage plateau edges, hole spin

relaxation time due to cotunnelling is ≈3 µs while it reaches ≈100 ms at the plateau

centre. This value is much longer than T hole1 deducted from data presented earlier,

hence cotunnelling is not the limiting relaxation mechanism in the plateau centre.

Experimental data with vanishing hole spin pumping at Bext =0 T was shown

in Fig. 4.7. At this moment no model explaining this effect was developed. Several

possible explanations were suggested before. The first relied on strong mixing of the

excited states via the electron spin precession in Bx
int, which would allow an optical

transition from each exciton to both hole spin ground states. Elliptical polarisations of

the resonant laser addressing both exciton transitions was another explanation. These

interpretations could not be confirmed. The 4-level model fits to the experimental
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Figure 4.11: Fit to data presented in Fig. 4.7. Data can be fit by theory when
assuming linear polarisation for the pumping laser (red line). No fit can be found
using typical experimental parameters.

results only when a linear polarised excitation laser is assumed (see Fig. 4.11, red fit).

This however does not correspond to the experimental conditions, where the excitation

lasers polarisation above the sample were (95±5) % circular (see Fig. 4.11, green fit).

A hole spin relaxation time of 150 µs was used, other fit parameters were equivalent

to data presented in Fig. 4.9. Electron spin precession due to the nuclei magnetic

field can also not serve as an explanation, since for typical values (10 mT≤ Bint ≤50

mT) it has almost no effect on signal contrast at such low external magnetic fields.

Result presented in Fig. 4.11 might still provide some insight: it indicates either

unclean selection rules for QD A or fast hole spin dynamics at low external magnetic

fields. Heavy light hole mixing might cause such an effect: it might change the optical

selection rules as well as the interaction between hole and nuclei spin [5]. For future

experiments it is crucial that the excitation polarisation is exactly σ+/−, a complete

magnetic field dependency is recorded and the possibility of transitions from both

hole spin states to a common exciton state has to be examined.

4.4 Conclusion

A resonant excitation experiment has been used to implement an optical hole spin

pumping scheme. The experimental data extracted were fitted to a four-level density

matrix treatment which included incoherent relaxation mechanisms via the Lindblad

formalism. Hole spin pumping with a fidelity approaching 100 % has been demon-

strated at zero external magnetic field and hole spin lifetimes of up to 1 ms were

extracted. It is the first succesfull direct measurement of T hole1 on a single QD. The
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long T hole1 at zero external magnetic field proofs that spin flips between hole spin and

QD nuclei are strongly suppressed for QD B. Also, the insignificant influence of Bext

on the hole spin lifetime shows a negligible hole spin precession in the Overhauser field

of the QD nuclei. This demonstrates good isolation of hole spins from the disturbing

semiconductor surrounding, which can be linked to the atomistic p-symmetry of the

Bloch wave function. Other than for experiments on electron spin pumping at low

Bext [15], where the strong contact hyperfine interaction for electron spins presents a

major stumbling block, the proposed scheme utilises this source of relaxation as an

additional population transfer mechanism.

The good isolation of the hole spin from its environment offers big opportuni-

ties for experiments sensitive to quantum mechanical phase, like coherent population

trapping [76] and coherent qubit rotations [22]. The final limiting factor on hole spin

lifetime remains uncertain. Spin-orbit coupling via a two phonon process [7] is one

possibility. This is a tantalising prospect, since a coherence time of T hole2 = 2T hole1

has been predicted for this case [20]. Overall, results shown in this chapter open

new possibilities for implementations of quantum information processing techniques

with solid state devices. The achieved high hole spin pumping fidelity satisfies the

reliable state preparation criteria necessary for quantum computation in QDs [114].

After successful hole spin initialisation in QDs, spin readout and spin manipulation

concepts have to be established. Optical spin readout concepts include vertical waveg-

uide techniques [86], Faraday rotation [122] and high resolution, spin selective spectral

filtering of dressed states [87]. Coherent spin rotations have been demonstrated in

lithographically defined quantum dots using electric field induced resonances [16] and

for self assembling dots via ultra short optical pulses [22]. These different concepts

show that complete quantum control for single QDs is achievable but still remains a

challenging task. Since results reported in this chapter are the first characterisation of

hole spins confined to a single QD, the long T hole1 is likely to motivate further research

into hole spins using transport based systems.
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Chapter 5

Optical readout of quantum states

5.1 Introduction

The interaction between quantum states and a resonant laser can be measured opti-

cally in several ways: detection of the homodyne signal between laser and QD, which

was demonstrated in chapter 4 is one approach. A second way is combining photo-

luminescence and resonant excitation techniques, the collection of resonance fluores-

cence (PLRF ). The goal is detecting photons from relaxation of a resonantly excited

quantum state, while filtering out the excitation laser. Collecting photons emitted

by a recombination process offers access to additional information as well as enabling

new experimental techniques. Second order correlation measurements (g2(τ)) of pho-

tons, introduced in chapter 1.4.1, determine time delay statistics between individual

photons. By combining this technique with resonant spectroscopy, one has access to

lifetimes, eventual Rabi oscillations as well as the system’s true single photon emission

rate (g2(0)) without eventual charge storage effects, e.g. due to non resonant excita-

tion [92], influencing the result. Measuring photon polarisation via a single photon

detector allows a highly accurate measurement of the final state spin of a quantum

system: optical selection rules dictate the final state spin. Thus, detection of a single,

polarisation filtered photon accurately determines the final state spin for the duration

of its lifetime. Additionally, the collection of PLRF should give access to the Mollow

triplet of a strongly driven transition [88]. Experimental readout of PLRF also closes

the cycle between optical and electrical storage of information: photon polarisation

and carrier spin can be intra converted.

Collecting PLRF is a major challenge. Spectral discrimination between the degen-

erate excitation laser and QD photons is impossible. Still, for allowing the number of

QD photons to exceed those originating from the laser, the laser suppression has to

exceed

DL = log
CQD
α

, (5.1)

where DL is the optical density of the laser attenuation optics, α is the QD emission
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5.2. Darkfield experiment on a single quantum dot

rate (≈ 109) and CQD is the QD luminescence count rate after propagating through the

entire system (≈ 103). The technique proposed here is using a dark field microscope,

combining spatial and polarisation filtering elements. The major result of this chapter

is successful collection of PLRF using the dark field microscope, with a ratio of ≈100:1

between QD and residual laser photons. Furthermore, experiments which demonstrate

anti-bunched emission as well as two-photon absorption on the |2X0〉 will be presented.

Experiments and results presented in this section were obtained in close collabo-

ration with A. Kuhlmann [123].

5.2 Darkfield experiment on a single quantum dot

5.2.1 Resonance fluorescence from a QD

Filtering of the resonant laser from the QD emission has been demonstrated using

several different techniques. One employs QDs embedded in a planar waveguide

[86]. Excitation photons are confined to the two spatial dimensions of the waveguide,

while photon collection is restricted to the orthogonal third direction. Realising this

experiment requires a completely new sample design as well as a new optical setup

with excitation orthogonal to detection. Another experiment demonstrates PLRF by

exciting the QD with a strong driving field [87]. This leads to a Rabi splitting [112] of

the QD resonance, changing the optical spectrum from a single resonance to a Mollow

triplet [88]. Spectral isolation of the two outer resonances from the centre resonance

and excitation laser is now possible. Typical energy splittings are of the order of ≈10

µeV [106, 124], which makes lossy filtering via an etalon necessary. Also, relying on

lifting the system’s degeneracy limits this experimental technique to strong driving

fields and is unable to directly probe of the unperturbed main resonance.

Challenges and restrictions of both established filtering techniques can be avoided.

Separating QD from laser photons via polarisation filtering offers suppression ratios of

up to 104 while using standard optical components, easy to integrate into an existing

design. An additional suppression of laser photons can be achieved via spatial filtering.

The clear aperture of collection optics (e.g. annulus, clear ring) is the negative image of

the excitation optics (e.g. clear pinhole smaller than opaque centre part of annulus).

Realising spatial filtering relies on precise optical alignment, but readily available

devices (shadow masks). This microscope design will allow excitation of a QD where

only the scattered photons are collected. Such a microscope is also referred to as

a dark field microscope. In principle, a dark field microscope of this design could

investigate every QD state where emitted QD photons can be collected 90◦ relative

to their excitation polarisation.
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5.2. Darkfield experiment on a single quantum dot

5.2.2 Darkfield microscope

Beam splitters are used in the standard microscope head design to reflect beams to the

QD sample, detectors and a CCD camera (see chapter 2.2.1). Including polarisation

filtering by replacing standard beam splitters (BS) with polarising cube beam splitters

(PBS) is therefore a natural approach. Two thick glass windows, rotated 90◦ relative

to each other are used as BSs in the standard microscope head (see Fig. 2.7 a)).

Ghost images from backside reflections are avoided by the glass window thickness

pushing them completely off the optical axis. For the central beam this offset is

eliminated by the orthogonal alignment of the BS windows, but this is only true

for two windows with the same thickness. Consequently both glass window BSs

are replaced by one polarisation insensitive and one polarising dielectric cube BS.

Figure 5.1 shows a microscope head adapted to the dark field experiment. Unless

otherwise stated all peripheral components (e.g collimating optics) are consistent with

the standard microscope head design (chapter 2.2.1).

The lower horizontal arm is used for QD excitation. This arrangement is dic-

tated by the characteristic performance of a dielectric PBS (B. Halle GmbH, PTW

2.10), which polarisation filters photons with 99.9 % p and only 0.01 % in the s-

polarisation state for the transmission direction (manufacturer specifications). Thus

exciting horizontally and collecting vertically (demonstrated in detail later in Fig.

5.2), should allow a suppression of a s-polarised laser by up to three orders of magni-

tude. However, p polarisation accounts for 3 % in the reflected beam and an initial

tidy up of excitation polarisation is neccessary: an additional PBS cleans excitation

polarisation and a subsequent λ
2
-plate converts the s-polarised excitation photons into

p-polarisation. The central PBS reflects the p-polarised laser beam towards the QD

sample. A λ
4

waveplate is added in order to correct for any birefringent behaviour of

optical components in the microscope tube system.

A suppression of the resonant excitation laser by four orders of magnitude is not

sufficient and residual laser counts would still exceed QD counts (see chapter 5.3).

Additional rejection of laser photons is provided by spatial filtering. Here, a higher

NA lens (Thorlabs C220TME-B, NA=0.25) was used for collimating the excitation

laser. Combined with a NA=0.12 for the optical fibre, it results in a collimated beam

diameter of Γ0 = 1.1 mm (measured at FWHM). Rejection of this excitation beam

is provided by a shadow mask with an annulus shaped transparent area where the

diameter of the opaque centre is chosen to be bigger than Γ0. Mounting the shadow

mask on a X/Y translation stage (see Fig. 5.1, above the non polarising BS) allows

alignment relative to the excitation laser beam. This spatial filtering component

is included in a collection cage system and added to the microscope head in the

transmission direction of the second BS. As in chapter 2.2.1, the second BS enables

imaging of the microscope objective focal plane an a CCD chip.
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5.2. Darkfield experiment on a single quantum dot

Figure 5.1: Microscope head including filtering units for suppressing the resonant
laser. The excitation laser beam (dashed red lines) diameter (Γ0) is reduced from
1.85 mm to 1.1 mm by collimating with a higher NA lens (0.25 instead of 0.15).
After the PBS its polarisation is 99.9 % p-polarised (manufacturer specifications)
and subsequentialy rotated by 90◦ using a λ

2
-plate. The second PBS reflects the s-

polarised light to the sample. A λ
4
-plate corrects any polarisation ellipticity introduced

by lenses or the SIL. The back scattered resonant laser light will again be reflected by
the PBS, suppressing resonant laser intensity in the transmission direction by 99.9 %.
An annulus with a donut-shaped transparent area, diameter of opaque centre is 2mm,
blocks the narrow excitation laser beam, adding a further 3·10−3 of suppression. The
transparent part of the annulus transmits QD fluorescense (solid red lines) and the
collected photons are analysed by a spectrometer.
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5.2. Darkfield experiment on a single quantum dot

Figure 5.2: Filtering performance of a PBS. a) shows polarisation filtering using a
PBS in transmission. For exciting via the right input and collecting at the top,
laser intensity should be filtered out by 99.9 %. b) Reproduction of the microscope
polarisation filtering unit. The λ

2
-plate aligns the fiber output to s-polarisation. A

λ
4

after the PBS changes the reflection polarisation from p (≈ 1.55 rad) to s (≈ 2.35
rad). c) A fit to the normalised transmission intensity gives a maximum suppression
ratio of 2.51·10−4.

A schematic of polarisation filtering using a PBS, identical as in Fig. 5.1, is illus-

trated in Fig. 5.2 a). Displayed numbers (provided by the manufacturer) are reflection

and transmission coefficients for p-polarised light. A performance analysis of the PBS

was carried out via an experimental setup shown in Fig. 5.2 b), which replicates the

excitation unit of the dark field microscope. Polarisation of a linearly polarised laser

is aligned such that maximum intensity is reflected by the PBS and consequently

focused on a GaAs piece. A λ
4
-plate is mounted in front of the objective lens. The

light reflected of the GaAs surface passes the λ
4
-plate a second time and is finally

measured in the transmission direction of the PBS. Characterisation of the PBS is

conducted without the annulus attached to the XY-stage. The electric field vector of

light reflected by the GaAs sample and behind the λ
4
-plate is represented by(

Es

Ep

)
= E0

(
cos(2β)

sin(2β)

)
,

where β is defined as the angle between reference frames of the PBS and λ
4
-plate. A

factor of two originates from passing the λ
4
-plate twice. The intensity modulation in

the PBS transmission direction (viewed from the GaAs piece) due to rotating the λ
4

is then given by

I(β) = I0(Ts cos2(2β) + Tp sin2(2β)). (5.2)
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5.2. Darkfield experiment on a single quantum dot

Figure 5.3: Spatial filtering. a) shows an annulus with a donut shaped transparent
ring, the diameter of the opaque centre is given by d0. The opaque areas are 3mm
thick aluminium coated with a black, matt optical finish. b) and c) show simulations
of beam divergence according to (5.3) for different Γ0. A beam with Γ0= 1.84 mm
shows almost no axial spreading after a distance of 5 m, while for Γ0= 1.1 mm the
beam considerably diverges.

Tp and Ts are the PBS transmission coefficients for s and p-polarised light, respec-

tively. By fitting experimental results shown in Fig. 5.2 for 1 > Ts > 0.95 (typical

values according to manufacturer) using equation (5.2), the ratio

2.31·10−4 < T =
Ts
Tp

< 2.51·10−4

is extracted. Fitting I(β) for 1 < β < 3.2 degree radiant makes the extracted value

a robust measurement of the PBS filter performance. This result is confirmed by

setting β to the position of maximum extinction, remove the λ
4
-plate and measure the

intensity ratio between these two scenarios. A ratio of

T =
Ts
Tp

= 2.234·10−4

agrees with results extracted earlier. This number is converted into an optical density

via

DPBS = log10(1/T ) = 3.6± 0.1.

Introducing an additional PBS after the excitation fibre in the setup shown in Fig.

5.2 acts as a polarisation filter. Now light reflected by the second PBS is already 99.9

% p-polarised. This improves the polarisation filtering performance to

DPBS = 5.40± 0.15.

Motivated by this increase in DPBS, an initial PBS also filters the excitation laser

polarisation in the microscope head design, shown in Fig. 5.1.

While the PBS performance exceeds manufacturer specifications by a factor of five,
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5.2. Darkfield experiment on a single quantum dot

a further suppression of ≈ 102 has to be provided by spatial filtering. Now the annulus

is included in the test setup shown in Fig. 5.2 a), while the λ
4
-plate is set to maximum

transmission through the PBS. Mounting a SIL on top of the GaAs reproduces the final

QD experiment. Using the XY-stage, the annulus position is optimised for maximum

suppression of the reflected laser beam, repeating the experiment for several beam

propagation lengths. Changing the propagation length is necessary to investigate

the influence of beam spreading on the spatial filtering performance. According to

Gaussian beam equations

Γ(z) = 0.85 · Γ0 ·

√(
1 +

zλ

π(0.85 · Γ0)2

)2

, (5.3)

even an initially perfectly collimated beam diverges in diameter after propagating

some distance z. Γ(z) is the beam FWHM at position z for a beam width of Γ0

at the origin, the 0.85 multiplication factor originates from converting a 1/e2 into a

FWHM beam width. It is obvious that a decrease of Γ0 results in faster increase in

Γ(z). For too small Γ0 the laser beam diameter would exceed the diameter of the

opaque shadow mask centre (d0, see Fig. 5.3) after traveling through the microscope

system, making spatial filtering impossible. Diffraction thereby sets the lower limit

for Γ0. In turn, this results in an increased d0, reducing the area transmitting the QD

luminescence and hence the PLRF collection efficiency. Additionally, the effective NA

of the microscope objective lens is given by NA = Γ0

2·0.85·f . Here, f is the lens focal

distance and the factor of 0.85 originates from the beam 1/e2 to FWHM conversion.

This leads to an increase in spot size on the QD sample for smaller Γ0 and consequently

to a poorer absorption signal to noise ratio [95]. A typical annulus used for the dark

field microscope is shown in Fig. 5.3 a), together with simulations for beam diffraction

using Γ0=1.84 mm (b) and Γ0=1.1 mm (c). The annulus was manufactured from 3

mm thick aluminium by the mechanical workshop. It consists of a pin-hole and a pin

with diameter d0, both glued onto a glass substrate. The aluminium was coated with

black, matt optical paint.

One way to counteract beam spreading is to focus the excitation beam on the

opaque annulus centre. This is achieved via decollimation of the excitation beam.

In turn this results in an increased excitation spot size on the QD sample (which

is in focus of the collimated collection beam). Measuring the overall optical density

of the dark field system for a collimated and decollimated excitation beam allows to

weigh better spatial filtering against the increased spot size. Different optical path

lengths of 0.3, 0.7 and 1.1 m were used. Two conclusions can be drawn from this

measurement: first, the optical density decreases with microscope length. Secondly,

focusing the excitation laser beam on the opaque annulus area improves the optical

density. Numbers are presented in table 5.1.
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5.2. Darkfield experiment on a single quantum dot

length of microscope head + 0.3 m head + 0.7 m head + 1.1 m
optical density (DSF ) 3.16±0.15 2.4±0.1 2.25±0.15
DSF (focused on annulus) - 4.1±0.25 2.75±0.15

Table 5.1: Optical density of spatial filtering (DSF ). Focusing the excitation laser on
the non-transparent annulus centre increases the optical density.

length of microscope head + 0.3 m head + 0.7 m head + 1.1 m
optical density (DDF ) 6.8 ± 0.5 6.7 ± 0.5 7.00 ±0.5
optical density (focused on annulus) >8 >8 no increase

Table 5.2: Optical density of dark field microscope (DDF ) for different microscope
lengths. Focusing the excitation laser on the non-transparent annulus centre increases
the optical density only for lengths where beam diverging is irrelevant.

So far each mechanism for suppressing resonant laser collection was investigated

individually. A QD experiment with polarisation and spatial filtering combined is

simulated at room temperature by mounting the dark field microscope head, shown

in Fig. 5.1, on a microscope tube system with variable length. Results are shown

in table 5.2. For short path lengths it is possible to increase laser suppression when

decollimating the excitation beam. The relevant microscope length of 1.1 m shows

no difference between collimated and decollimated system. Therefore the experiment

will be carried out with collimated excitation and collection beams.

Adding up the individually measured optical densities for polarisation (DPBS =5.4)

and spatial filtering (DSF =2.25) exceeds the optical density obtained when both are

measured combined in the same system (DDF =7, but DDF < DPBS + DSF =7.65).

This discrepancy is not yet understood, but according to [125], changes in focal spot

shape can be observed for tightly focused polarised light, which may explain a reduc-

tion in spatial filtering efficiency. This effect was recorded with the microscope CCD

camera, and example pictures are shown in Fig. 5.4. The image corresponds to the

s-polarised component of the light reflected back from the sample surface. In a) laser

and collection polarisation is in the s-state, while in b) the laser is p-polarised and

the s-polarised image is recorded.

5.2.3 Experiment

Considering results shown in chapter 4.2, an optical read-out experiment of resonantly

created hole spin states (chapter 4) would be a high profile experiment. However, the

aim of this chapter is to provide a first proof of concept of the dark field microscope.

P-doped QD samples suffer from a factor of ≈10 reduction in PL intensity (compare

Fig. 4.2 a) and Fig. 5.5 a)) and as such are not suited for a first characterisation. In

order to provide the maximum available amount of PL intensity, a QD sample with

n-doped back contact was chosen for the PLRF experiment.

The n-doped QD sample 050328C#12 with a SIL was mounted to the standard
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5.2. Darkfield experiment on a single quantum dot

Figure 5.4: Scanning through the objective lens focus: each image of series a) and
b) shows a cross-section of the objective plane while steeping through the focus.
The back-reflection of the sample surface is filtered by the PBS and the s-polarised
image is recored with a CCD camera. A clear difference between focusing s (a) and
p-polarisation (b) might reveal the vectorial characteristics of the focal spot.

resonant spectroscopy microscope system (chapter 2.2.1), with the dark field micro-

scope head attached. An isolated QD (QD7) was found between 1.31 < eV < 1.303

for a gate bias between −0.2 < Vg < 0.3 using standard PL spectroscopy (Fig. 5.5 a).

Resonant absorption contrast and linewidth behavior across the X1− plateau (Fig. 5.5

b and c) was determined using standard resonant absorption in transmission. While

a linewidth of ≈3 µeV at the plateau centre is a typical value, an absorption contrast

of ≈0.3 % is about a factor of four smaller compared to standard values [95]. This

is to be expected, since the excitation arm effective NA is reduced by the smaller Γ0.

By changing Γ0 from 1.85 mm to 1.1 mm, the NA decreases by ≈ 40 %. Accordingly

the focal spot area increases by a factor of 2.8, reducing the signal contrast by the

same amount.

After successful characterisation of the X1− using standard techniques, data is

recorded via the PLRF experiment. Photons collected by the vertical arm are di-

rected to the grating spectrometer, usually used for fluorescence with non resonant

excitation. Excitation and collection spot are aligned by setting the λ
4
-plate to circular

polarisation, transmitting the resonant excitation laser through the PBS. Collection

efficiency is optimised by moving the excitation spot relative to the collection spot.

Subsequently, first shadow mask, then the λ
4
-plate were aligned for maximum sup-

pression. For a perfect alignment the residual laser count rate dropped as low as two

counts per second for excitation powers of several nW.

Resonance fluorescence follows a similar experimental approach as classic resonant

spectroscopy in transmission. The resonant laser is either set close to resonance while

tuning the QD state via the DC Stark shift, or the gate bias is fixed and the laser

energy is stepped through resonance. First demonstration of PLRF on X1− is shown

in Fig. 5.6. A level diagram including excitation and emission of X1− is shown in Fig.
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Figure 5.5: a) Non-resonant spectroscopy of QD7, sample 050328C#12. A well iso-
lated QD (QD7) is found for −0.2 < Vg < 0.3 and 1.31 < E < 1.302. The integration
time was 20 seconds, the optical intensity 1.4 nW/µm2 at λ =830 nm excitation
wavelength. Standard resonant spectroscopy in transmission is used for mapping ab-
sorption contrast and linewidth across the X1− plateau, see b) and c). Scans were
taken at 8.16 nW/µm2 optical intensity and an integration time of 0.5 s. The lasers
wavelength were 951.506 < λ < 951.591 nm. Error bars correspond to the standard
deviation of 4 measurements.

5.6 a). A linearly s-polarised excitation laser excites the X1− state. Relaxation of

X1− consists of two circular polarised decay channels (see Fig. 5.6 a), hence half of the

photons emitted in the excitation direction are transmitted through the PBS while

the resonant laser is suppressed. A false colour contour plot of spectrometer counts

against emission energy and sample gate bias is shown in Fig. 5.6 b). A faint line

of elevated counts at excitation laser energy, but not at laser/QD resonance, shows

the residual laser photons penetrating the dark field filtering units. The excitation

power is 200 nW measured in transmission. A clear resonance between QD and

excitation laser is located at a gate bias of Vg = 0.18 V. Figure 5.6 c) and d) show

the spectrometer count rate at laser wavelength of 951.248 nm, while the gate bias

tunes X1− through resonance. The optical power in transmission is 5 and 200 nW,

respectively while the integration time is 0.5 s. Measured QD to laser count ratios are

118:1 (5 nW) and 12.2:1 (200 nW). The dramatic drop in background to noise ratio

for 200 nW is a first indication of residual laser counts setting an upper power limit for

resonant laser powers. Higher excitation powers would further reduce this ratio until

the PLRF signature is obscured by the background noise. A broadened resonance in

d) also indicates that the QD transition is saturated at 200 nW. Combining these two

findings allows a first conclusion that the laser suppression ratio is sufficiently high

for optical powers relevant for a 2-level QD experiment using n-doped samples.
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5.2. Darkfield experiment on a single quantum dot

Figure 5.6: Example of resonance fluorescence, measured on QD 7. a) shows a
schematic of a PLRF experiment on X1−. The X1− emission is σ+/− polarised. In the
experiment, this transition is excited by Πx polarisation, the Πy part of the circular
emission is collected. The QD is tuned through the laser energy via Vg and a clear
increase in counts is observed on resonance, part b). A contour plot shows a line
of elevated counts at resonant laser wavelength (951.548 nm), which is due to the
residual laser counts at 200 nW excitation power. c) and d) show the same experi-
ment for laser intensities of 5 and 200 nW, respectively. The integration time was 0.5
seconds. Typical 2 level system behavior like power broadening is observed and the
red lines are a Lorentzian fit to the data. This experiment is a proof of concept and
demonstrates successful measurement of resonance fluorescence.

A successful QD PLRF experiment relies on a high laser extinction as well as good

temporal stability. Both are measured under real experimental conditions via the

setup used for collecting the first QD PLRF (Fig. 5.6). Figure 5.7 a) shows a measure-

ment of residual laser counts against optical power, which fits well with the expected

linear correlation. Monitoring the residual laser counts over time however produces a

more surprising result, see Fig. 5.7 b). Background counts change on two time scales:

there is a slow, linear increase which can be associated with mechanical drift of the

shadow-mask or the microscope head. Over an hour this leads to an increase in back-

ground counts of around 5 counts/s. An additional oscillation with a period of ≈ 8

minutes leads to variations of around five counts a second. This is a typical time scale

for temperature fluctuations in the experimental environment, but no correlation be-

tween environment temperature and background count rate oscillation amplitude or

frequency could be found. An underlying mechanism has not yet been identified. The

microscope is found to be sufficiently stable for experiments which can be conducted
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5.2. Darkfield experiment on a single quantum dot

Figure 5.7: Signal to noise characterisation of the dark field experiment. a) shows a
power dependency for residual resonant laser counts. Laser counts (λ=950 nm, fo-
cus FWHM≈1.25 µm) are successfully suppressed for excitation powers in the typical
range of an unsaturated quantum dot transition (see Fig. 5.6). The red line represents
a linear fit to the residual laser counts. Part b) shows the temporal stability of exci-
tation laser suppression by the darkfield microscope for 1 nW excitation power. The
laser counts show a linear increase in time (dashed red line) as well as an oscillation
with ≈ 8 minutes periodicity.

in a period of a few hours, while shadow mask and Λ
4
-plate realignment is necessary

for experiment durations longer than ≈ 5 hours.

After demonstrating PLRF and characterising the temporal performance of the

dark field microscope a more detailed study of the X1− PLRF can be conducted. At

zero external magnetic field X1− is represented by a two level system (see Fig. 5.6 a))

and as such linewidth and signal contrast are subject to a power dependency [126].

Linewidth and signal contrast are recorded using the PLRF as well as classical resonant

transmission spectroscopy, allowing a direct comparison of both methods. Results are

shown in Fig. 5.8 a) and b) with red (blue) dots representing data collected using

PLRF (transmission). Optical excitation powers range from 53.1 pW to 0.99 µW for

transmission and from 0.2 nW to 3.89 µW for PLRF spectroscopy. A lower power limit

for the PLRF experiment is set by QD photon counts approaching the spectrometer

noise floor, while the high resonant laser intensity impinging on the transmission

detector sets the upper limit of the transmission experiment via shot noise [95]. In

order to compare both experiments PLRF counts are divided by the optical power in

order to produce an equivalent to ∆T
T

of the transmission experiment. Signal contrast

and linewidth show classical 2-level system behavior, where for high powers the signal

contrast decreases due to saturation of the transition and linewidths increase due to

power broadening [97]. Transmission spectroscopy is taken to be an accurate and

established experiment [95, 127] producing correct results in terms of linewidth and

signal strength. The PLRF experiment perfectly reproduces both of these features

over the entire range of the power spectrum, thereby validating linewidth and signal

strength measured by the dark field microscope. The extracted PLRF signal contrast
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5.2. Darkfield experiment on a single quantum dot

Figure 5.8: Power dependence for transmission (blue dots) and resonance fluorescence
(red dots) on QD7. The PLRF experiment almost perfectly reproduces the power
dependence of signal contrast and linewidth measured in transmission, see a). The
good agreement between the two methods validates the dark field experimental setup.
Two example scans measured with PLRF and transmission are shown in b), the first
data were recorded at 1 nW, the second at 100 nW optical power. Part c) shows
a comparison between QD counts (red dots) and residual laser counts (blue dots).
Residual laser counts exceed QD counts at ≈ 4·10−6 W, which sets an upper limit for
QD experiments.
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Figure 5.9: Photon correlation data obtained from the X1− of QD7. A dip at τ = 0
indicates a tendency to antibunched emission. The high magnitude of g2(0) may
originate from a low QD vs laser counts ratio (≈7:1) as well as limited time resolution.
To achieve acceptable QD count rates, excitation power was set to ≈ 125 nW, at which
the X1− is already partially saturated. The measurement time was ≈10.4 hours.

of a X1− now also allows a comparison between PLRF and residual laser counts, shown

in Fig. 5.8 c). Residual laser counts, which were extracted by tuning the X1− out of

resonance via Vg, are well below PLRF counts until an excitation power of 4 µW.

After characterising the two level spectroscopy behavior of X1− via PLRF timing

statistics of X1−-photons, collected by the PLRF microscope, were recorded. Photon

timing statistics are used (see chapter 1.4.1) to evaluate the quality of a resonantly

excited X1− as a single photon source, which is characterised by the g2(0) value. The

experimental challenge is that practical measurement durations for a g2(τ) experiment

strongly depend on QD counts. The overall measurement time scales with 1
c2

, where

c is the count rate at the single photon detectors. Spatial filtering by the shadow

mask now comes with a big disadvantage: collected QD counts are greatly reduced

by the big opaque centre of the shadow mask. An additional reduction of QD counts

by a factor of four is caused by the two microscope head beam splitters. In order

to reach practical QD count rates a resonant laser power (≈ 125 nW) had to be

chosen where the QD to laser count ratio dropped to only seven to one. Hence even

a perfectly antibunched emitting QD could not produce g2(0) = 0 in this experiment.

Experimental data are shown in Fig. 5.9. The measurement time was ≈10.4 hours,

divided into individual scans of ≈0.5 hour. Realignment of the microscope before each

scan assured maximum performance. A small dip in count rates for zero delay time

between photons can still be identified and indicates antibunched emission, though

the low QD to laser counts ratio largely obscures the g2(0) dip.

Instead of a ‘true’ PLRF experiment, a ‘quasi’ PLRF experiment can be conducted

using two-photon absorption on the X0 − 2X0 system as shown in Fig. 5.10 a). The

X0 to 2X0 excitation energy is ≈2.5 meV smaller than for X0 excitation. Due to this
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5.2. Darkfield experiment on a single quantum dot

Figure 5.10: Two-photon spectroscopy of QD 8 on the X0-2X0 system. a) Shows the
schematic of the experiment. The X0 and 2X0 emission is, depending on the decay
channel, Πx or Πy polarised. Excitation was chosen as Πx, so the Πy emission was
collected. The excitation laser energy is tuned through the two-photon resonance of
2X0 at (EX0 +E2X0)/2. b) Luminescence of X0 as well as 2X0 is collected while the
high intensity of the excitation laser saturates the detector. A fit to the X0 and 2X0

emission is shown in c) and d). Data is extracted via profile cuts parallel to the x-axis
of b). Both resonances reveal the characteristic fine structure splitting of the neutral
exciton. The different intensities between the fine structure split lines originates
from the collection/excitation polarisation reference frame not being aligned to the
polarisation axis of the QD.
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5.2. Darkfield experiment on a single quantum dot

energy difference, other experimental approaches to two-photon absorption on 2X0

could rely on spectral filtering, which is not necessary with the dark field microscope.

Setting the resonant laser exactly in the middle of both transition energies should

directly excite the biexciton via two-photon absorption without using the intermediate

X0 state. A schematic of two-photon absorption on 2X0 is shown in Fig. 5.10 a). First

characterisation of the 2X0 complex requires a two colour experiment: one laser is on

resonance with X0 for a certain Vg. The expected window for scanning the second laser

energy is calculated from values extracted using non-resonant spectroscopy of 2X0.

Additional photons at the biexciton energy are collected at resonance of both lasers on

the X0 and 2X0 transitions. The two-photon energy is exactly half of both transition

energies, which can now be accurately calculated using values from the two colour

resonant experiment. For the two-photon experiment only one, high intensity resonant

laser is used, which is tuned through the expected two-photon energy while the QD

gate bias is kept constant. Figure 5.10 b) shows QD and laser spectra for different

two-photon laser energy. The bright, continuous line of the saturated CCD camera at

1.31875 eV corresponds to the residual laser counts. This experiment would not be

possible without the strong resonant laser suppression of the dark field microscope,

since direct resonant laser illumination could potentially damage the CCD chip. An

increase in counts at X0 and 2X0 energy is recorded for a resonant laser energy of

1.317985, corresponding to the two-photon resonance. Excitation power was set at

4·10−6 Watt and an integration time of 10 seconds was used. Collected emission,

presented in Fig. 5.10 c) (X0) and d) (2X0), also shows the characteristic X0 fine

structure splitting (8.4 µeV). In the two-photon experiment, in order to achieve similar

QD emission, excitation powers had to be four orders of magnitude stronger than for

one-photon absorption. Both states start emitting at exactly the same two-photon

laser energy and show a typical linewidth, which proofs they belong to the same

excitation - recombination cycle. This excludes any residual one-photon excitation of

X0 and 2X0 caused by the high intensity of the two-photon laser. The experiment

was carried out on QD 8. QDs were switched because QD 7 did not show a clear 2X0

emission in PL.

Further evidence that results reported in Fig. 5.10 are caused by two-photon ab-

sorption is presented in Fig. 5.11. Part a) shows the energy entire spectrum of data

recorded using a high intensity resonant laser (25 µW measured in transmission) at

940.7111 (similar to Fig. 5.10) while tuning the gate bias from -0.5 to 0.5 V. Two

sharp resonances can be identified at energies slightly above and below (±0.7 meV)

the high intensity resonant laser at Vg =0.028 V, corresponding to the earlier observed

emission of the 2X0 two-photon resonance. Additional lines appear in the spectrum,

some can be linked to the same QD (see b)), some must belong to a second QD (QD

9, Fig. 5.11 c)). In Fig. 5.11 b), several transitions of QD 8 can be observed: both

transitions participating in the two-photon experiment have an additional baseline,
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5.2. Darkfield experiment on a single quantum dot

Figure 5.11: High intensity spectroscopy of QD 8. a) Shows the entire spectrum
recorded using 5 s integration time. The high intensity resonant laser is at 940.7112
nm with an intensity of 25 µW. A second QD, emitting 30 meV detuned from the
resonant laser can be identified. b) Shows the two-photon resonance of QD 8. c)
Detailed spectrum of the additional QD (QD 9). One explanation could be that
additional phonon emission can now drive the red detuned QD, i.e. the resonant
laser acts non resonant excitation source [55, 128]. Comparing the sharp two-photon
resonance with the broad emission of QD 9 excludes a combined photon+phonon in
Fig. 5.10.

extending over the entire voltage plateau of X0 and 2X0. At lower energies X1−

emission can also be identified. Emission energies of X0, 2X0 and X1− agree with

values measured with non resonant spectroscopy. Details of the additionally emitting

QD 9 are shown in Fig. 5.11 c). Again, QD states emit over their entire voltage

plateau range and several negatively charged excitons plus faint emission of X0 (not

visible for scaling of c)). A likely explanation for these additional emitting states is

a combined photon/phonon process plus decay using intermediate QD states [128].

Similar results were also observed in other experiments on equivalent QDs [55, 128].

It has to be stressed that emission due to photon/phonon and decay via additional

QD states does not show the same narrow linewidth of data shown in Fig. 5.10, thus

verifying the two-photon interpretation for the 2X0 experiment shown in Fig. 5.10.

Additionally, emission can only be observed at energies lower than the excitation en-

ergy, which would correspond to combined photon absorption plus phonon emission

rather than photon and phonon absorption, which would be strongly suppressed at 4

K.

Results shown in this chapter demonstrate successful collection of resonance flu-

orescence via a dark field microscope. The microscope was tested over the entire

excitation power range until saturating the X1− transition. Additional experiments

on X1−-photon statistics and two-photon absorption on 2X− were conducted. In
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5.3. Analysis via 2 and 3-level density matrix master equation

order to fit microscope and QD performance and to extract system parameters, a

theoretical model has to be developed for a PLRF -experiment on both QD transitions

(X1− and 2X0).

5.3 Analysis via 2 and 3-level density matrix mas-

ter equation

5.3.1 Introduction

A density matrix treatment for PLRF of X1− and the ‘quasi’ PLRF of 2X0→X0

ladder system is again developed using methods introduced in chapter 3. The 2-

level system of the X1− is solved analytically, which allows a qualitative comparison

between the standard resonant absorption and the PLRF experiment. Fits for the

2X0 cascade decay will be calculated numerically. According to [126], PLRF is only

sensitive to quantum state populations, not to off diagonal elements of the density

matrix. Furthermore, the focus of the experimental section in this chapter was a first

proof of principle for PLRF , without attempts to study the coherence of exciton states

in QDs. This makes including dephasing terms in the Lindblad formalism obsolete.

Figure 5.12: Level schematic of experiments conducted in this chapter. a) represents
the PLRF experiment on X1−, b) the two-photon excitation of 2X0.

Figure 5.12 shows the level diagram of the X1− PLRF a) and the two-photon 2X0

b)experiment. Levels, excitations and relaxations are labeled as used in the following

theory.

5.3.2 Density matrix and master equation X1−

In the absence of a magnetic field a X1− can be described as a 2-level system. The

only coherent interaction is the resonant laser distributing the system’s population
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5.3. Analysis via 2 and 3-level density matrix master equation

between the vacuum state and the X1−. Vacuum and X1− states are represented by

|1〉 =

(
c1

0

)

and

|2〉 =

(
0

c2

)
,

respectively. The optical Hamiltonian is given by

Ĥopt =
1

2
~ΩL(eiωLt|1〉〈2 | +e−iωLt|2〉〈1 |),

where ΩL is the resonant laser angular Rabi frequency and ~ωL the resonant laser

energy. After a rotating frame transformation with

c1 = c̃1

c2 = c̃2e
−iωLt

and the substitution of δ = ω12 − ωL, the Schrödinger equation for a X1− under

resonant optical excitation is:(
0 ~ΩL

2

~ΩL

2
δ

)(
c̃1

c̃2

)
= i~

(
˙̃c1

˙̃c2

)
. (5.4)

Spontaneous relaxation of the X1− contains equal contributions from σ+ and σ−

(see Fig. 5.6). Both are combined in a total exciton relaxation rate γ21 = γσ+ + γσ−.

Using the Lindblad equation (4.2) gives

Lρ̂ = γ21|1〉〈2 | ρ̂|2〉〈1 | −
γ21

2
(|2〉〈2 | ρ̂+ ρ̂|2〉〈2 |).

According to chapter 3.3, absorption contrast is a function of =(ρ12), while the

PLRF count rate is given by γ12ρ22 [126]. At infinite times the system is in the steady

state limit (∂ρ̂
∂t

= 0), and the relevant density matrix elements are calculated via

equation (4.6):

ρ̃12(t→∞) =
(ω12 − ωL − iγ12)1

2
ΩL

(ω12 − ωL)2 + 1
2
(γ2

12 + Ω2
L)

(5.5)

ρ̃22(t→∞) =
1
2
Ω2
L

(ω12 − ωL)2 + 1
2
(γ2

12 + Ω2
L)
. (5.6)

Absorption contrast (see chapter 3.3) and PLRF counts per optical power (see
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5.3. Analysis via 2 and 3-level density matrix master equation

[126]) are then given by

∆T

T
= αdT ·

1

ΩL

=(ρ12(t→∞)) = αdT ·
γ12

(ω12 − ωL)2 + 1
2
(γ2

12 + Ω2
L)

(5.7)

PLRF
PL

= αPLRF
· γ12

PL
ρ22(t→∞) = αPLRF

· γ12

(ω12 − ωL)2 + 1
2
(γ2

12 + Ω2
L)
, (5.8)

where

ΩL = β·
√
PL (5.9)

was used for calculating PLRF

PL
. PL is the optical power of the resonant laser measured

in transmission. Equations (5.7) and (5.8) are identical besides different scaling fac-

tors. This theoretically confirms observations of Fig. 5.7, where the PLRF experiment

reproduces linewidth and 2-level saturation behavior of the transmission experiment.

According to equation 8.4.13 in [126], the second order photon correlation g2(τ)

under resonant excitation is given by

g2(τ) = 1− (cos(λτ) +
3γ12

2λ
sin(λτ))e−

3
2
γ12τ , (5.10)

and

λ = (Ω2
L −

1

8
γ2

12)
1
2 .

Oscillations in the second order correlation (sin and cos terms) originate in alternating

cycles of absorption and stimulated emission while τ increases.

5.3.3 Density matrix and master equation 2X0

Two-photon absorption on the 2X0 was realised by setting the laser energy (~ωL) at

half the |0〉 ↔ |2X0〉 transition energy. The detuning of ~ωL relative to ~ω12 of the

X0 and to ~ω23 of the 2X0 transition is δ ≈1.35 meV. The two optical excitations are

represented by

Ĥopt =
1

2
~ΩL

(
(eiωLt|1〉〈2 | +e−iωLt|2〉〈1 |) + (eiωL|2〉〈3 | +e−iωL|3〉〈2 |)

)
.

A substitution according to

c1 = c̃1e
iωLt

c2 = c̃2

c3 = c̃3e
−iωLt
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and a rotating wave approximation leads to

~

 ωL
ΩL

2
0

ΩL

2
ω12

ΩL

2

0 ΩL

2
ω23 − ωL


 c̃1

c̃2

c̃3

 = i~

 ˙̃c1

˙̃c2

˙̃c3

 (5.11)

as the 2X0 Hamiltonian for two-photon excitation. The same theoretical approach

was used for for two-photon Rabi oscillation experiments on QDs [129] and SF6 vapor

[130]. After finding the new system eigenstates the transition ratios for one and two-

photon processes can be extracted. For excitation via two-photon to dominate over

one-photon excitation, the detuning ∆ (see Fig. 5.12 b)) has to be large compared to

one-photon Rabi energy.

The spontaneous recombination rates from 2X0 to X0 (γ32) and from X0 to the

vacuum state (γ21) are again included using the Lindblad form:

Lρ̂ = γ21|1〉〈2 | ρ̂|2〉〈1 | −γ21
2

(|2〉〈2 | ρ̂+ ρ̂|2〉〈2 |)+
γ32|2〉〈3 | ρ̂|3〉〈2 | −γ32

2
(|3〉〈3 | ρ̂+ ρ̂|3〉〈3 |).

Coherent and incoherent interactions are included in a master equation via the

Von Neumann equation (4.6).

5.3.4 Data analysis

The theoretical formalism developed so far is now applied to data collected in exper-

iments presented earlier this chapter. Figure 5.7 demonstrates the good agreement

between PLRF and the resonant differential transmission experiment, which was vali-

dated theoretically by comparing equations (5.7) and (5.8). Data in figure 5.13 a) and

b) was extracted with QD 7 and is identical to PLRF signal contrast and linewidth

dependency on resonant laser power shown in Fig. 5.7. Both sets of data are fit using

equations (5.8) and (5.9).

Figure 5.13 shows the good agreement between experimental data and the the-

ory of PLRF collected of a two level system. Signal contrast measurements in a)

give ~γ21 =(1.00±0.018) µeV, corresponding to τ=0.66 ns lifetime of the X1−. The

coupling constant between QD and driving laser is β(1) =(5.87±0.99)·103 µeV /
√
P .

Linewidth measurements in b) result in ~γ21 =(1.49±0.2) µeV, corresponding to

τ=0.44 ns lifetime and a QD/laser coupling constant of β(1) =(5.87±0.34)·103 µeV /
√
P .

Two-photon absorption on the 2X0 complex was demonstrated in Fig. 5.10 on QD

8. The experiment was repeated for different powers, while PL counts and linewidth

were recorded. Figure 5.14 shows the extracted experimental values plus a theoretical

fit using equation (5.11). Model parameters were 1.5 meV for the X0-2X0 splitting

∆, γ32 =0.65·γ21 [84] and ~γ21 =1 µeV. The coupling strength between QD and laser

115



5.3. Analysis via 2 and 3-level density matrix master equation

1 E - 1 0 1 E - 9 1 E - 8 1 E - 7 1 E - 6 1 E - 5

0

5 0

1 0 0

1 5 0

2 0 0

1 E - 1 0 1 E - 9 1 E - 8 1 E - 7 1 E - 6 1 E - 5
0
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2

 

Co
ntr

as
t (1

/s*
nW

)

P o w e r  ( W )

a )
γ1 2 = 1 . 0  µe V
β  =  5 . 8 7 * 1 0 3  µe V / P 1 / 2 γ1 2 = 1 . 4 9  µe V

β  =  8 . 5 7 * 1 0 3  µe V / P 1 / 2

b )

Lin
ew

idt
h (

me
V)

P o w e r  ( W )

Figure 5.13: Power dependence fit of PLRF , data collected with QD 7. Part a) and
b) show linewidth and signal contrast extracted from X1− PLRF . The data was fit
using equations (5.8) and (5.9). Natural linewidths extracted are ~γ21 =1.00 µeV and
~γ21 =1.49 µeV using data from a) and b), respectively. Spectral fluctuations cause
an additional increase in linewidth, resulting in increased transition linewidths than
when measured through system dynamics as in b). The coupling constant between QD
and optical field is β(1) =(5.87±0.99)·103 µeV /

√
P in a) and β(1) =(5.87±0.34)·103

µeV /
√
P in b).
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Figure 5.14: Power dependence fit of the two-photon absorption on 2X0, data collected
with QD 8. Part a) and b) show the X0 (blue dots) and 2X0 (red dots) linewidth
and signal contrast dependence on two-photon laser power. The data was fit using
equations (5.11). Model parameters are γ32 =0.65·γ21 [84], ~γ21 =1 µeV and a
coupling strength between QD and laser field of β(2) =67 µeV/

√
PL. Theory predicts

similar counts from the X0 and 2X0 transition (see identical fit of X0 and 2X0 with
grey line), which is not the case in the extracted data (see part a)). Also, the count
rate of both transitions drops for PL >8·10−6 W. Part b) shows Γ2X0 < ΓX0. All fits
where generated using the same parameters. The poor agreement between theory and
experiment is not yet understood. The amount of available data is also quite thin (6
data points).
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5.3. Analysis via 2 and 3-level density matrix master equation

field of β(2) =67 µeV/
√
PL was used for all fits presented in part a) and b) (note that

β(2) ≈
√
β(1)). The model produces fits which agree with the experiment to only some

extent, especially for the recorded PL intensity (part a)). According to theory, both

transitions should emit with equal intensities, which is not the case in the experiment

where count rates of X0 are smaller than for 2X0. Furthermore, the experimental data

shows a drop in count rates for excitation powers above 8 µW, which again cannot be

explained by the model. It should be mentioned that at such high powers, the signal

to background level was dramatically decreased. This led to an integration time of

50 s. On this timescale, oscillations in background intensity (shown in Fig. 5.7 b))

result in an uncertainty over the true signal contrast, maybe resulting in the observed

decrease in counts. Figure 5.14 b) shows the power broadening of both transitions,

with the natural linewidth of X0 always exceeding the one of 2X0, which is opposite

of what is expected due to their lifetimes [84]. One explanation could be that spectral

fluctuations of both exciton levels are in phase due to their equivalent Stark shift

[104]. Hence spectral fluctuations for the 2X0 → X0 transition cancel each other,

while the X0 to vacuum transition remains broadened. It has to be stressed that the

presented data and theory only act as a proof of concept. Comparing one and two-

photon power broadening as well as the two coupling factors (β(1) and β(2)) allows

estimation of excitation powers needed for a complete power dependency for two-

photon excitation of 2X0 (Ω(2) ≈ 20 µeV: PL ≈ 90 µW). At the highest laser power

used (PL =10 µW), the one-photon angular Rabi energy is around 20 µeV. According

to this, for a detuning of ∆ =1.45 meV two-photon processes should dominate and

accordingly the interpretation of the experimental data as a two-photon experiment

should be correct.

Equation (5.8) is also used to extract the signal to background ratio of the PLRF

experiment. Here, all detector counts, which do not originate from QD emission are

classified as background. The main source of background counts are residual resonant

laser photon, penetrating the microscope dark field filters. Figure 5.15 shows data

for residual resonant laser (noise) and QD X1− PLRF (signal) counts. These values

(shown before in Fig. 5.8 c), extracted on QD 7) are represented in Fig. 5.15, including

a linear fit to background counts and a fit to QD counts using equation (5.8). The inset

shows PLRF and residual laser counts, while the main graph is the experimentally and

theoretically extracted signal to background ratio.

The theoretically extracted signal to background ratio for the unsaturated tran-

sition is ≈100:1 (compared to 50:1 using a filtered Mollow spectrum [87]). This can

now be compared to theoretical values. QD and residual resonant laser counts are

given by

SQD =
1

τ
·ξ·Ξ1

2
, (5.12)
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Figure 5.15: Fitted signal to background characteristics of the dark field experiment,
using data extracted with QD 7, presented in before in Fig. 5.8 c). QD counts were
fitted using equation (5.8), while residual counts from the resonant laser were taken to
increase linearly with power (inset, shown before in Fig. 5.8). A signal to background
ratio approaching 100 is achieved for low excitation powers, but only with big statis-
tical fluctuations due to PLRF count rates approaching the detector noise limit. This
noise limit is also the origin of big error bars at low excitation powers. Background
to noise ratio was taken to be QD counts divided by residual laser counts.

SL = PL
λ

h·c
·R · Ξ 1

10D
. (5.13)

Here, τ is the excited state lifetime, ξ is the throughput of objective lens and shadow-

mask annulus, Ξ is the overall collection efficiency of the microscope, PL and λ the

resonant laser power and wavelength, c the speed of light, R the sample surface

reflectivity (26 % when SIL is included) and D the optical density for resonant laser

suppression. A factor 1
2

in equation (5.12) originates from the PBS, which blocks half

the QD emission. The ratio of QD emission passing objective lens and annulus can

be calculated according to

ξ =
1

4π

∫ 2π

0

dφ

∫ θL

θa

dϑsin(ϑ). (5.14)

Angle φ lies in the plane perpendicular to the optical axis and thus is integrated from

0 to 2π. Angle ϑ is between optical axis and sample surface, and is limited by the

outer radius of the objective lens (θL) and the outer radius of the opaque annulus

centre (θa). Using NA = sin(ϑ), this equation results in

ξ =
1

2

[
(1−NA2

an)
1
2 − (1−NA2

L)
1
2

]
. (5.15)

According to the manufacturer, the objective lens (THORLABS C390TMB) has

NAL =0.68, which corresponds to NAan = d0
dl
NAL after the annulus. Objective

118



5.3. Analysis via 2 and 3-level density matrix master equation

lens and inner annulus diameter are given by dl and d0 (for d0 see Fig. 5.3 a)), re-

spectively. The SIL’s effect on the NA is included by using NAeff = nSIL/nGaAsNA

for calculating equation (5.15), where nSIL =2.15 and nGaAs =3.5. For the mounted

annulus with d0 = 2.4 mm and dl =3.6 mm, a collection efficiency of ξ =2.59 % is

calculated.

Using these values plus λ = 950 nm and τ = 1.96 ns in equations (5.12) and (5.13),

gives a ratio of
counts(QD)

counts(Laser)
= 533 : 1.

Given the complexity of the darkfield microscope, everything which is within an order

of magnitude of the calculated value is an achievement. Still, a mismatch of five be-

tween calculated and experimental (100:1) ratios is disappointing. The experimental

problem becomes clearer when comparing experimental and theoretical values of SQD,

which reveals
StheoryQD

SexpQD

=
5.5 · 103

800± 100
= 6.8± 0.68.

One explanation could be the difficult alignment, especially of the shadow mask.

Looking at the QD PLRF count rates with and without annulus supports this in-

terpretation. PLRF QD counts theoretically should drop by a factor of 1.75 when

including the annulus. However, a factor between 8 and 15 was observed in the ex-

periment. A new alignment procedure has to be established, monitoring the effect of

spatial filtering on residual laser counts as well as on QD PLRF counts. Optical losses

of the system should be less than 10 % and are not able to explain a factor of almost

two orders of magnitude.

Autocorrelation data presented in fig, 5.9 is analysed via equation (5.10). As men-

tioned earlier, this data was recorded at high resonant laser power to allow sufficiently

high count rates, which resulted in a poor signal to background ratio. Still, a measure-

ment time exceeding 10 hours was necessary. As predicted in Fig. 5.8, realignment

of the dark field filters was required every 0.5 hours. For the realignment a second

narrow linewidth laser was focused on the QD through the same excitation fibre. Its

energy was set close to the transition energy but far enough detuned such that the

spectrometer could resolve QD photons and alignment laser photons. For realign-

ment the λ
4
-plate and the shadow mask were tweaked until collected QD counts were

maximised for a minium of collected alignment laser photons. All this makes data

analysed in Fig. 5.16 more a proof of concept rather than an accurate determination

of X1− characteristics.

The fit according to equation (5.10) promotes the anti-bunching dip at τ = 0,

while also indicating Rabi-oscillations. This is to be expected at optical powers of

PL ≈500 nW. However, a Rabi energy of ~ΩL =14 µeV, extracted in Fig. 5.16 does
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Figure 5.16: Fitted antibunching data of the QD7 X1−. The fit assumes an angular
Rabi frequency of ΩR =14 µeV, a lifetime of 1.5 ns and a signal to background ratio
of 7/1. The fit proofs antibunching tendency as well as Rabi-oscillations.

not correspond to the more accurate, alternative measurement presented in Fig. 5.13

(~Ω(500nW ) ≈5 µeV). Antibunching results combined with theory proof the limi-

tation of the dark field microscope in its present state. Collection efficiency of QD

emission and resonant laser suppression is not sufficient to provide experiments in

intense optical fields as well as high quality photon statistics, where g2(τ) is mainly

governed by the QD emission.

5.4 Conclusion

A resonance fluorescence experiment has been realised by implementing standard

optical components, shadow-masks and a polarising beam splitter, in the standard

microscope setup introduced in chapter 2.2.1. Experimental data was analysed via a

2 and 3 level density matrix approach, where non coherent relaxations were included

according to the Lindblad formalism. A ratio between QD emission and residual

resonant laser intensity of 100:1 was measured experimentally at low excitation laser

powers, which are of the same order of magnitude as the theoretically calculated

maximum value. The temporal stability of the PLRF microscope was analysed and

experiments with a duration of several hours can be realised without realignment of

the experimental setup. After this timespan, a slow increase in residual laser counts

of an additional ≈5 counts/hour makes high signal to noise experiments impossible.

This is only the third demonstration of resonance fluorescence on a single QD [86]

[87]. Other than in [86] [87], no big changes to QD sample design or experimental
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5.4. Conclusion

setup had to be made. This makes this approach even more successful. However, for

experiments on dressed states, spin rotations or p-doped samples a way to boost QD

emission collection efficiency has to be found. One approach could be the use of bigger

objective and collection lenses. This would increase the dl
da

ratio and, according to

equation (5.14), lead to higher QD counts. Also, the effect of beams spreading would

be reduced. Changing the microscope top beam splitter from a 50/50 ratio to a

greater transmission would also increase the collection efficiency. This would open the

possibility of collecting PLRF of p-doped samples, allowing an additional measurement

approach of hole spin polarisation, demonstrated earlier in chapter 4. The experiment

would also benefit from investigations and improvements of the temporal stability,

making long scans for g2(τ) possible without realignment.
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Chapter 6

Neutral exciton states in intense

optical fields

6.1 Introduction

Resonant spectroscopy experiments presented so far were treated as exclusively sensi-

tive to state populations of an isolated QD. For the case of sufficiently high resonant

laser intensities (γexciton � Ωlaser), this restriction breaks down. Now QD states and

the resonant laser photon number state behave as a combined system. This system

creates new eigenstates, called dressed states (for a two level system, see chapter 3.1.4).

Other than the originally isolated (bare) states, these dressed states are a coherent

superposition of the two coupled levels and the high intensity lasers’s n-photon state.

Coherent superpositions of states are now sensitive to loss of quantum mechanical

phase as well as relaxations. In the energy domain, when exposed to high intensity

fields, a single bare state splits into two dressed states, divided by the angular Rabi

frequency of the coupling [112]. This splitting is called Autler-Townes splitting. In

the time domain, these coherent evolutions manifest themselves as oscillations of the

system state vector between the two states, also called Rabi-oscillations. These oscil-

lations are damped by a factor of 1
T

= 1
T1

+ 1
T2

, where T1 is the relaxation time and

T2 the decoherence time.

The following section discusses an experiment where different QD exciton states

are coherently coupled by an intense optical field, hence producing exciton superposi-

tions. Of particular interest to quantum information processing is the |0〉-|X0〉-|2X0〉
ladder system. A canceled |X0〉 fine structure splitting (∆FSS =0 in Fig. 6.1 a))

offers a possibility for entangled photon-pair generation [4, 106, 131–133] as well as

constructing a two-bit quantum gate [134, 135]. Previous work has demonstrated

two-photon Rabi oscillations [129] and dressed state spectroscopy [106] in this sys-

tem. However, no experiment investigated if constructive and destructive quantum

interferences can be realised, which are predicted for a 3-level ladder system [136]. A
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6.2. Autler-Townes experiment on an exciton - biexciton system

pump-probe experiment will be introduced, where swapping the pump-probe geom-

etry should change the character of quantum interferences from constructive to de-

structive. In the case of strong destructive quantum interferences this system behaves

similar to a Λ-system, allowing experiments on dark states and electromagnetically

induced transparency (EIT)[40]. The main experimental results extracted in the fol-

lowing chapter is a maximum Autler-Town splitting of 67 µeV and the demonstration

of weak quantum interferences.

6.2 Autler-Townes experiment on an exciton - biex-

citon system

6.2.1 Pump-probe spectroscopy on the X0-2X0 system

A resonant experiment on QDs in intense optical fields comes with a great experi-

mental stumbling block, the intense optical fields. For a coupling strength of several

µeV between QD transition and resonant laser an optical power exceeding 10−6 W is

necessary (demonstrated earlier in with Fig. 5.7). When such high powers impinge on

the optical detector, the system’s signal to noise performance decreases dramatically

[95] due to shot noise. Again, filtering of the high intensity optical field is mandatory.

One approach is to divide the spectroscopy into two sections: one part is limited

to manipulate the system with intense optical fields (pump), the other to measure

the response of the system (probe). In this experiment the pump laser corresponds

to the coupling laser. For non-degenerate pump and probe transitions, the strong

pump laser can now be suppressed without creating noise in the probe absorption

spectrum. In the case of the |0〉 ↔ |X0〉 ↔ |2X0〉 system (shown in Fig. 6.1 a)),

the |X0〉 ↔ |2X0〉 transition is red-shifted from the |0〉 ↔ |X0〉 due to excitonic

Coulomb-interaction. This makes spectral suppression of the resonant lasers feasible.

The absorption spectrum of the weak probe laser is recorded while the pump laser

manipulates the system and is subsequently filtered out. A pump-probe spectroscopy

schematic on the 2X0 system is shown in Fig. 6.1 b). To keep the same nomenclature

as in quantum optics, the pump will be called coupling laser from now on.

According to that, an experimental setup has to provide several features: the high

intensity coupling laser has to be sufficiently suppressed (ideally by ≈ 10−4) while at

the same time providing sufficient throughput of the probe laser. Additionally the

filter’s centre wavelength must be tunable in order to be adjustable to individual QDs.
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6.2. Autler-Townes experiment on an exciton - biexciton system

Figure 6.1: The 2X0 4-level system in pump-probe spectroscopy. a) shows the four
QD states involved, also including the X0 fine structure splitting. The system can be
divided into two excitation / decay paths, one linearly x-polarised (Πx), the other y-
polarised (Πy). This allows selecting only one |0〉 ↔| X0〉 ↔| 2X0〉 system. Energies
of |0〉 ↔| X0〉 (~ω12,~ω13) and | X0〉 ↔| 2X0〉 (~ω24,~ω34) differ by ≈3 meV. b)
shows pump-probe spectroscopy on the two y-polarised transitions. Both parts of b)
correspond to the same experiment but with swapped pump-probe geometry. A high
intensity pump laser, the coupling laser, with angular Rabi frequency ΩC creates a
coherent superposition of the two coupled levels, which leads to a splitting by ~ΩC of
both states involved. A second probe laser measures the spectrum of the transition
between the unperturbed third state and |X0〉, which should reveal the |X0〉 Autler-
Townes splitting.
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6.2. Autler-Townes experiment on an exciton - biexciton system

6.2.2 Experimental scheme

As mentioned before in chapter 5.2, the |0〉 ↔ |X0〉 transition consists of two res-

onances, split by the exciton fine structure, typically 5 to 30 µeV [103]. The level

scheme of lasers and excitons is shown in Fig. 6.1 a). Both |0〉 ↔ |X0〉 transitions

are polarised linearly, but orthogonal to each other. A further transition links |X0〉
states to a common excited state, the |2X0〉. Polarisation for driving |X0〉 ↔ |2X0〉
(energy ~ω23) is always consistent with the polarisation of |0〉 ↔ |X0〉 (energy ~ω12).

Thus a single 3-level system can be selectively addressed by choosing the correspond-

ing linear polarisation basis, avoiding laser - QD interaction with the second system.

This is of great importance, since the experimental goal is to measure the relation

between dressed state splitting and optical power, where a third close by resonance

might obscure results.

Figure 6.1 b) shows both examples for different pump - probe geometries. In the

first case, a strong coupling laser with angular Rabi frequency Ωc is on resonance with

|X0〉 ↔| 2X0〉. This should lead to a splitting by ~ΩC of both states involved. A

second, low intensity probe laser now scans through the |0〉 ↔| X0〉 transition and

the |X0〉 dressed state splitting should now be visible in its absorption spectrum. The

second part of Fig. 6.1 b) shows an experiment where pump and probe are swapped.

It is again the |X0〉 splitting which is recorded by the probe, but this time the coherent

evolution due to the coupling laser is between | X0〉 and the vacuum state |0〉.
The energy difference of ≈3 meV between the pump and probe transitions is large

enough to use a grating spectrometer for spectral filtering. A grating spectrometer

offers higher flexibility combined with higher throughput than etalons, while holo-

graphic filters do not provide the flexibility for studying different QDs. Figure 6.2

shows the experimental setup. Identical, linear optical polarisations for driving both

transitions are easily achieved by passing the two resonant lasers through the same

polarisation filtering system. The microscope head in Fig. 5.1 in chapter 5.2 offers

exactly that opportunity, so a similar approach is adopted here. Without the need

of spatial or high quality polarisation filtering, a more simple microscope head with

two cubic beam splitters is used, see Fig. 6.2 a). A PBS ensures parallel polarisations

for lasers propagating along the same optical path of the microscope head. The sub-

sequent λ
2
-plate can align optical polarisations relative to the dipole moment of the

QD exciton transitions. To avoid an attenuation of 50 % by the second BS, resonant

excitation sources (described in Fig. 6.2 b) and the collection of the resonant spec-

trum have to be included in the horizontal arm. This is realised via a 2 by 1 fibre

beam splitter (FBS) with 99 % transmission along one output and only 1 % along the

other. The setup is such that 99 % of the collected backscattered QD signal is directed

towards the grating monochromator, shown in Fig. 6.2 c). This grating spectrometer

was custom built in the nano-optics group and was used in earlier publications [92].
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6.2. Autler-Townes experiment on an exciton - biexciton system

Figure 6.2: Experimental setup for pump-probe QD spectroscopy with linear polar-
isations. a) shows the microscope head with two cubic BS. A non resonant laser is
connected to the vertical, the resonant lasers to the horizontal arm. Both resonant
lasers pass the PBS, ensuring parallel polarisations. The subsequent λ

2
-plate aligns

resonant laser and QD polarisation axes. Both resonant lasers are coupled into the
same 2 by 1 FBS, part b). The same FBS is used for collecting backscattered resonant
signal. The FBS output in 99 % transmission direction is connected to the transmis-
sion grating monochromator with a resolution of ≈50 µeV, shown in c). Here, the high
intensity coupling laser is rejected while probe photons are connected to an avalanche
photodiode. The probe spectrum can now be recorded isolated from the high intensity
pump.
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6.2. Autler-Townes experiment on an exciton - biexciton system

The design is such that high throughput (22.5 % for a single mode collection fibre)

and tunability (940 - 960 nm) were prioritised. Details can be found in [137]. Achro-

matic lenses with a NA of 0.176 (Thorlabs AC254-075-B) collimate (focus) light at

the monochromator input (output). Pump and probe signals both pass the volume

phase transmission grating (Wasatch Photonics, 1200 l/mm), mounted on a rotation

stage (Thorlabs PR01) in Littrow-configuration. A dielectric mirror housed in a gim-

bal mount (Thorlabs GM200) follows the grating. Rotating the mirror compensates

for spectral dispersion of the transmission grating at a certain wavelength. Photons

at a particular wavelength are coupled into the detection fibre-core, while photons

of different wavelength are rejected. The spectral resolution of this system using a

single mode fibre for collection is ≈50 µeV, sufficient to isolate pump and probe with

a splitting of ≈3 meV, resulting in an extinction ratio of ≥103 for pump photons of

the coupling laser. The probe spectrum is measured with a detector (avalanche photo

diode, PerkinElmer C30902S-DTC) mounted to the detection fibre, without the high

intensity of the pump laser creating noise problems. All collimating and coupling

optics, used in Fig. 6.2 are, unless stated otherwise, standard components as used

and introduced in earlier chapters.

Measuring the interaction between the resonant laser and QD in reflection comes

with one disadvantage: while lineshapes in transmission are only governed by the QD

response, the lineshape in reflection is a combination of a Lorentzian QD signal and

a dispersive component. The additional dispersive component stems from a cavity,

formed between QD sample surface and the polished single mode fibre tip. When

changing detection from reflection to transmission, these additional features disappear

and can thereby be identified. Further details can be found in [105].

6.2.3 Experiment

For first characterisation, standard non-resonant and resonant spectroscopy, intro-

duced in chapter 2.3, is carried out on a QD in sample 050328C#12, shown in Fig.

6.3. Higher signal strength of n-doped structures made them the right choice for

the detection scheme in this experiment, where detection in reflection and spectral

filtering strongly reduce the signal amplitude. Sample 050328C#12 was chosen for

its medium density, allowing spectroscopy on an isolated QD while also providing a

large enough number of QDs to find one with a clearly visible 2X0. Part a) shows the

non-resonantly excited PL spectrum for a QD isolated in energy between 1.308 eV and

1.301 eV for gate biases between -0.3 V and 0.3 V. High intensity of the non-resonant

laser (0.1 µW, 5 seconds integration time) ensured populating the |2X0〉 state via

saturation of |X0〉. Emission from |2X0〉 is located at an energy between the |X0〉
and |X1−〉. Resonant absorption spectroscopy in transmission, shown in Fig. 6.3 b),

with 1 nW optical power shows a typical |X0〉 with a fine structure splitting of 24
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Figure 6.3: Resonant and non-resonant characterisation of a QD in sample
050328C#12. The PL spectrum of an isolated QD is found between 1.308 eV and
1.301 eV for gate biases between -0.3 V and 0.3 V, shown in part a). High non-
resonant laser power (0.1 µW at λ =830 nm, 5 s integration times) allows detection
of the |2X0〉 due to saturation of the |X0〉 transition. Resonant spectroscopy on |X0〉
with a power of 1 nW and a polarisation tilted by 45◦ (see b) reveals a |X0〉 with 24
µeV fine structure splitting. c) shows both resonances separately at -12 µeV (+12
µeV) when the resonant laser polarisation is set to Πx, red circles (Πy, blue circles).
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Figure 6.4: Spectral broadening, measured in transmission at λ =949.244 nm with
a laser intensity of 1 nW. a) shows data recorded with 0.1 s integration time, b)
with 0.01 s integration time. The longer integration time in a) allows more spectral
wandering of the transition while recording the data, where as b) is closer to a real
‘snap shot’ using a shorter integration time.

µeV. An angle of 45◦ between resonant laser polarisation and |X0〉 dipole moment

results in equal intensities for both |X0〉 transitions. Two isolated resonances can be

realised by aligning laser polarisation to Πx/y. Figure 6.3 c) shows both separately,

one at a negative detuning of -12 µeV for Πx polarisation (red circles), one at a posi-

tive detuning of 12 µeV for Πy polarisation (blue circles). Decreasing the integration

time from 0.2 s to 0.005 s leads to a linewidth reduction from 4.5 to ∼1.5 µeV. Two

example scans with 0.1 s (part a)) and 0.01 s (part b)) integration time are shown

in Fig. 6.4. The spectra were recorded in transmission using λ =949.244 nm and a

excitation power of 1 nW. This shows that spectral fluctuations are responsible for the

additional broadening, which are slow compared to timescales related to the quantum

mechanical system. The almost lifetime limited linewidth for short integration times

(2 µeV=0.33 ns, compared to 0.7 ns [84]) indicates that the exciton dephasing rate

is of the order of ≈10 ns−1 or longer. This means that destructive and constructive

quantum interferences could be observed [136]. The coherence time of the resonant

laser exceeds 1 µs and will not limit the experiment for exciton coherence times more

than an order of magnitude shorter.

Choosing the y-polarised exciton, the biexciton transition is found by setting one

laser (LX0) on resonance with |X0〉. To find the 2X0 resonance, the offset of the

second laser (L2X0) is calculated from the |X0〉 to |2X0〉 splitting measured with

non resonant spectroscopy. Now the gate bias and the wavelength of LX0 are kept

constant while λ(L2X0) scans through an area around the calculated wavelength. The

absorption signal of LX0 with a normal intensity of 1.5 nW is recorded in reflection,

while the high intensity of L2X0 (3 µW) is filtered out. On |2X0〉 resonance, the high

intensity of L2X0 changes the resonance position of |X0〉 due to the Autler-Towns

splitting. A drop in QD-LX0 absorption signal strength is recorded. An identical DC-
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6.2. Autler-Townes experiment on an exciton - biexciton system

Figure 6.5: Probing dressed states for coupling the |X0〉 ↔| 2X0〉 transition. a) shows
|X0〉 splitting for increasing power of the coupling laser. At zero PC , the resonance is
a single line but transforms into two peaks for increasing powers, reaching a maximum
splitting of 60.7 µeV. The label on each data set corresponds to the coupling laser
power. A detuned coupling laser results in an asymmetry of the spectrum, as presented
in b) for a splitting of 17.54 µeV. The overall spectrum describes a typical anticrossing.
Each dataset is labeled with the detuning of the coupling laser. All single spectra
shown in a) and b) are offset by 7·10−3 for clarity.

Stark-shift for the exciton and biexciton state of (1.15±0.05) meV/V was recorded.

To centre on both resonances, the gate bias is scanned while λ(LX0) and λ(L2X0)

are kept constant. From scan to scan the wavelength of L2X0 is optimised until an

Autler-Townes splitting with equal intensities for both peaks is identified.

With all experimental parameters known the experimental focus now changes to

pump - probe spectroscopy, where the Autler-Townes splitting is recorded for different

coupling laser powers. The first configuration is coupling the |X0〉 ↔| 2X0〉 transition,

while the second laser probes the dressed states of |X0〉 and the coupling laser photons.

Probe and coupling laser wavelengths are kept constant in energy while the gate bias

tunes both transitions through resonance via the identical Stark-shift. In the absence

of the coupling laser, the probe laser spectrum reveals the expected single resonance.

For a QD to coupling laser interaction strength exceeding the transition linewidth,

the resonance starts to split into two peaks, Fig. 6.5 a). The splitting continues to

increase with coupling laser intensity and can be tracked until reaching 67 µeV. At

this value, the maximum available coupling laser power of 100 µW was used, which

is already ≈ 105 times beyond the probe laser power.

Detuning the coupling laser from resonance has a big impact on the dressed state

130



6.2. Autler-Townes experiment on an exciton - biexciton system

- 1 0 - 5 0 5 1 0

0 . 0 0 0

0 . 0 0 4

- 1 0 - 5 0 5 1 0

0 . 0 0 0 0

0 . 0 0 0 5

0 . 0 0 0 0

0 . 0 0 0 5

0 . 0 0 0

0 . 0 0 4

0 . 0 0 0 0

0 . 0 0 0 5

0 . 0 0 0

0 . 0 0 4

P C = 0 . 5  m W

c )
 

 

Co
ntr

as
t (D

R/
R)

 D C  s t a r k  s h i f t  ( m e V )

P C = 0 . 5  m W

 

  

P C = 0 . 7 5  m W

 

 

 

 

P C = 1 . 5  m W

b )

 

 

 

 

P C = 1 . 5  m W

 

 

 

d )

e )

f )

 

 

 

a )

P C = 2  m W

Figure 6.6: Dressed state spectrum for different pump - probe geometries at low
coupling laser powers (power stated in each graph). a), b) and c) (d), e) and f))
show spectra with the coupling laser on the |X0〉 ↔| 2X0〉 (|0〉 ↔| X0〉) transition.
Comparing c) and f) shows that the first geometry can still reveal the dressed state
Autler-Townes splitting, while there is no dip for the swapped geometry. Generally, a)
to c) seems to show enhanced dip visibility, while for d) to f) the dip is more smeared
out.

spectrum, shown in Fig. 6.5 b). At a coupling laser intensity corresponding to an

Autler-Townes splitting of ΩC = 17.54 µeV, a complete probe spectrum is recorded for

different coupling laser detunings. Positive (negative) coupling laser detuning results

in an increased signal contrast of the resonance at positive (negative) probe detunings,

which also moves closer to zero. This describes typical anticrossing behavior, which

is observable for systems where charges are combined with an interacting field into a

new quasi-particle [138]. This finding confirms the previous interpretation of a dressed

state composed of the QD exciton states and the coupling laser field.

After confirming dressed states for intense coupling laser fields, the focus turns

to investigate the influence for different pump - probe geometries. Now the strong

coupling laser acts on the |0〉 ↔| X0〉 transition, while the probe laser measures the

spectrum of |X0〉 ↔| 2X0〉. Coupling powers are varied between 2 and 0.5 µW, the

integration time was 1 s. Both experiments produce comparable results for high cou-

pling laser powers. However, a significant difference is recorded at low powers. Figure

6.6 shows example scans for different coupling powers, with |0〉 ↔| X0〉 coupling for

a), b) and c) and |X0〉 ↔| 2X0〉 coupling for d), e) and f). It is apparent that for the

smallest coupling power (compare c) and f) of Fig. 6.6), the Autler-Townes splitting

of the dressed states is clearly visible in the |X0〉 ↔| 2X0〉 coupling geometry, while

for the experiment with swapped pump and probe the dip is washed out. Generally,

131



6.3. Analysis via 4-level density matrix master equation

scans which couple |0〉 ↔| X0〉 seem to produce two clear peaks, while the splitting

is more obscured for coupling |X0〉 ↔| 2X0〉.
The experimental data recorded via pump-probe spectroscopy showed clear Autler-

Townes splittings as well as classical anti-crossing behaviour (see Fig. 6.5). Further

more, a difference between both pump-probe geometries was recorded, where one

geometry seems to enhance the Autler-Townes splitting visibility while the other ge-

ometry smears it out. This is behavior similar to predictions made in [136], where

quantum interferences change from constructive (obscuring splitting) to destructive

(enhancing splitting). To support these results, their interpretation and to provide a

physical explanation, a theoretical description of the experiment is needed.

6.3 Analysis via 4-level density matrix master equa-

tion

6.3.1 Introduction

The 2X0 system studied before is coupled to two resonant lasers, which provide the

only coherent population transfer. They are restricted to the y-polarised excitation

paths of the excitons, hence the coherently coupled system ‘reduces’ to a 3-level

system. Incoherent relaxations occur from |2X0〉 into both |X0〉 states and from there

into the QD vacuum state. A complete treatment therefore has to include all 4-levels

of the |2X0〉 ↔| X0〉 ↔| 0〉 cascade system. A ratio of 0.65 between the lifetimes of

|2X0〉 and |X0〉 has been confirmed experimentally via direct lifetime measurements

on 80 different QDs [84] and will be used throughout these simulations.

Figure 6.7: Level scheme of the 2X0 complex as used in the model. Both lasers are
Πy polarised, driving transitions between levels | 1〉, | 2〉 and | 4〉.
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6.3.2 Density matrix and master equation

The 2X0 system is presented in a 4-level density matrix treatment. Exciton states,

optical driving fields and relaxation processes are described in Fig. 6.7. The states

vectors of the 4-level system are:

|1〉 =


c1

0

0

0

 , |2〉 =


0

c2

0

0

 , |3〉 =


0

0

c3

0

 |4〉 =


0

0

0

c4

 ,

QD states are connected to the density matrix via their state vectors: |0〉 = |1〉,
|X0

y 〉 = |2〉, |X0
x〉 = |3〉 and |2X0〉 = |4〉. With two laser fields driving the y-polarised

transitions, the coherent coupling Hamiltonian becomes:

Ĥopt =
1

2
~Ω1(eiω1t|1〉〈2 | +e−iω1t|2〉〈1 |) +

1

2
~Ω2(eiω2t|2〉〈4 | +e−iω2t|4〉〈2 |).

Ωi and ~ωi are angular Rabi frequency and energy of laser i. A rotating frame trans-

formation according to

c1 = c̃1e
iω2t, c2 = c̃2e

−i(ω1−ω2)t, c3 = c̃3, c4 = c̃4e
−iω1t

leads to

~


ω2

Ω1

2
0 0

Ω1

2
δ1 + ω2 0 Ω2

2

0 0 ω23 0

0 Ω2

2
0 ω24 − ω1




c̃1

c̃2

c̃3

c̃4

 = i~


˙̃c1

˙̃c2

˙̃c3

˙̃c4

 , (6.1)

for the combined QD exciton - laser system. Here, δ1 = ω12 − ω1 was used.

The biexciton decays along both polarisation channels into the exciton, which

relaxes into the vacuum state. The |2X0〉 decays with the rates γ42 and γ43, the

exciton with rates γ21 and γ31. This results in the following Lindblad relaxation

matrix:
Lρ̂ = γ21|1〉〈2 | ρ̂|2〉〈1 | −γ21

2
(|2〉〈2 | ρ̂+ ρ̂|2〉〈2 |)

+γ31|1〉〈3 | ρ̂|3〉〈1 | −γ31
2

(|3〉〈3 | ρ̂+ ρ̂|3〉〈3 |)
+γ42|2〉〈4 | ρ̂|4〉〈2 | −γ42

2
(|4〉〈4 | ρ̂+ ρ̂|4〉〈4 |)

+γ43|3〉〈4 | ρ̂|4〉〈3 | −γ43
2

(|4〉〈4 | ρ̂+ ρ̂|4〉〈4 |)

Coherent and incoherent interactions are combined in a master equation using the

von Neumann equation

i~
δρ̂

δt
= [H, ρ̂] + iLρ̂, (6.2)

which is solved for the steady state limit at t→∞.
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The resonant probe laser absorption contrast of the exciton is then given by

∆R

R
= α0γ21

=(ρ12(t→∞))

Ωp

, (6.3)

and by
∆R

R
= α0γ42

=(ρ24(t→∞))

Ωp

, (6.4)

for absorption of the biexciton.

A treatment for the dispersive lineshape component in reflection was not included,

since this would not contribute to the overall understanding of the dressed state

behavior. Fitting experimental results presented earlier to equations (6.3) and (6.4)

allows extracting the coupling constant between QD and resonant lasers. Claims

about constructive and destructive quantum interferences can be confirmed for the

case that theory and experiment coincide in lineshape and splitting at low pumping

powers. Results could also be interpreted using the analytical approach of Agarwal

[136]. The treatment is however not complete for the 2X0-system, since it would not

include decay into the second X0-state.

6.3.3 Data analysis

The theory developed for dressed states of the |2X0〉-system is now applied to exper-

imental data. Dressed state splittings at different optical powers were presented in

Fig. 6.5 a). The same data is shown in Fig. 6.8 a), including a fit (red line) generated

by equation (6.4), using typical relaxation rates γ42 = γ43 =0.74 µeV, γ21 = γ31 =1.13

µeV and Ωp = Ω1 =0.4 µeV as parameters [84]. Tuning both transitions through

resonance with coupling and probe laser simultaneously (using the gate bias) results

in an Autler-Townes splitting of ∆ = 1/
√

2 · ~ΩC . For the probe laser to be on res-

onance with the dressed states, the probe transition Stark shift has to compensate

for the dressed state splitting of the coupled transition. All three involved states are

represented by

∆(Exc) = d

E(d1) = 0.5 · (d+
√
d2 + Ω2

C)

E(d2) = 0.5 · (d−
√
d2 + Ω2

C),

(6.5)

where ∆(Exc) is the energy detuning of the probe transition, d is the DC Stark shift,

E(d1) (E(d2)) is the energy of dressed state number one (two). As a result, the

resonance condition is written as

d = ± 1√
8

ΩC ⇒ ∆ =
2√
8

ΩC =
1√
2

ΩC . (6.6)

According to this, the maximum observed dressed state splitting of 67 µeV corre-

sponds to ~ΩC =94.3 µeV. This is equivalent to a Rabi-flopping period of ≈6.5 ps,
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6.3. Analysis via 4-level density matrix master equation

Figure 6.8: Fitted Autler-Townes splitting. a) shows data presented earlier in Fig. 6.5
a), with a numerical fit via the four-level master equation (6.4). According to theory,
scanning both transitions simultaneously via gate bias changes the relation between
ΩC and the splitting of the probe spectrum (∆) to ∆ = 0.71~ΩC . All relevant
parts of the recorded spectra are fit well by equation (6.2). b) shows a numerical
simulation showing dressed state spectrum vs Ω2. Blue (white) colour corresponds to
a signal contrast of 7·10−3 (0), the probe laser angular Rabi frequency is Ωp =0.4 µeV,
spontaneous decay rates are γ21 =1.13 µeV and γ42 =0.74 µeV. The simulated signal
is convoluted by a Lorentzian lineshape with a FWHM of 3 µeV, which describes the
linewidth broadening due to spectral fluctuations.
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6.3. Analysis via 4-level density matrix master equation

which allows ≈ 102 coherent manipulations of the |X0〉-|2X0〉 system before sponta-

neous relaxation leads to decay. Figure 6.8 b) presents a simulation of the dressed

state splitting for a continuously changing coupling laser angular Rabi frequency Ω2.

This simulation emphasises the linear relation between Autler-Townes splitting and

the coupling laser angular Rabi frequency. The simulated signal shown in both parts

of Fig. 6.8 was convoluted by a Lorentzian with a FWHM of Γsf =3 µeV. It simu-

lates the spectral fluctuations of QD transitions, which are slow compared to system

decay dynamics but fast compared to the experimental integration time. A factor of

α0 =0.03 is multiplied to all simulated signals which are directly compared to exper-

imental data. It originates from geometrical factors and the QD oscillator strength

[97]. Both Γsf and α0 are a general adaption of theory to experimental condition and

do not influence values extracted from fits. They are kept constant for all fits in this

chapter.

Using identical parameters, equation (6.2) is now applied to the anticrossing data

shown in Fig. 6.5 b). Figure 6.9 a) shows fitted example scans. When looking at the

simulation for continuous coupling laser detuning, shown in Fig. 6.9 b), the text book

anticrossing behavior becomes even more apparent.

Figure 6.9: Anti-crossing with theoretical fit. a): data presented in Fig. 6.5 b) is fit
via the 4-level model. Simulation are produced with ΩC =24.5 µeV, all remaining
parameters used for a) and b) correspond to those used in Fig. 6.8.

After demonstrating a valid model on example data in Fig. 6.8 and Fig. 6.9, a

more detailed investigation of dressed state splitting in different geometries follows.

Figure 6.10 a) plots dressed state splitting ∆ for both pump-probe geometries against
√
PC over the entire experimental range. The expected linear dependency between

splitting (∆ = 0.71−1 · ~ΩC) and ΩC ∝
√
PC is confirmed at optical powers where
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Figure 6.10: Fit of peak to peak splitting for different pump-probe geometry, red dots
(blue dots) show experimental data for coupling |X0〉 and |2X0〉 (|0〉 and |X0〉). The
coupling laser Rabi energy ranges from 3 to 67 µeV, part a). The recorded splitting
increases linearly with

√
PC , represented by a linear fit of each data set. A more

detailed study of splittings for ΩC ≈ γij is shown in b). The smallest, resolvable
splitting for coupling |0〉 ↔| X0〉 is 5.6 µeV, while a splitting as small as 3.6 µeV is
resolved for coupling |X0〉 ↔| 2X0〉.

~ΩC � ~γij holds. Overall, fitting a linear dependency of ΩC = β ·
√
PC to both

data sets shown in Fig. 6.10 a) confirms earlier observations on the simulation shown

in Fig. 6.8 b). Proportionality factors of β0−X0 = (8.91±0.3)·103 µeV√
PC

for the blue

data set and βX0−2X0 =(6.46±0.16)·103 µeV√
PC

for the red data set are extracted. Both

values are typical when compared to those extracted for the X1− using linewidth and

2-level saturation behavior, shown in Fig. 5.13 of chapter 5.3. Anomalous lineshape

features were recorded for the two highest intensity points of the blue data set, which

were consequently ignored in the fit. Regardless of the robust fits presented here,

the linear dependency between Autler-Townes splitting and
√
PC fails for the lowest

pumping powers in Fig. 6.10 a) (dashed box). First, the splitting cannot be traced

back until approaching zero. This is a result of inhomogeneous broadening as well as

the experimental noise. Second, and most importantly, there is a clear difference in

the smallest, observable splitting between both geometries.

Figure 6.10 b) now shows data points contained in the dashed box in part a),

where ~ΩC ≈ ~γij. In this regime, the peak splitting becomes obscured by the

combined homogeneous and inhomogeneous broadening. As a result, no splitting

can be extracted for the lowest intensities in Fig. 6.10 b). However, there is a clear

difference between both pump-probe geometries. The smallest resolvable splitting

for coupling |X0〉 and |2X0〉 (red dots) is ∆1 =3.6 µeV. For the opposite geometry

(blue dots), it takes a splitting of ∆2 =5.6 µeV to generate two distinguishable peaks.

Three measurements for lower coupling powers on | 0〉 ↔| X0〉, which all do not show

a clear Autler-Townes splitting, confirm this result as a fundamental difference and
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Figure 6.11: Dressed state spectrum for different pump - probe geometries. Data
from Fig. 6.6 is combined with fits using equation (6.4) for the red (coupling |X0〉 ↔|
2X0〉) and equation (6.3) for the blue (coupling |0〉 ↔| X0〉) data set. Importantly,
the experimental difference between a) to c) and d) to f) also agrees to the model.
Simulations show two Lorentzian lines separated by a dip for a) to c), but a non-
Lorentzian resonance with a flat top for d) to f). This corresponds to destructive
(constructive) quantum interference in panels a) to c) (panels d) to f)).

not just a deviation between the two points ∆1 and ∆2.

Example scans for these low coupling laser powers are presented in Fig. 6.11. Pan-

els a) to c) show data and fits for coupling |X0〉 ↔| 2X0〉 (using equation (6.4)), panels

d) to f) for coupling |0〉 ↔| X0〉 (using equation (6.3)). A fundamental difference, not

only in the splitting visibility, but for the overall lineshape can be identified in both

experimental data and theory. While coupling |X0〉 ↔| 2X0〉 produces two Lorentzian

resonance separated by a dip, coupling |0〉 ↔| X0〉 results in a non-Lorentzian line-

shape with a flat top component.

This difference between the two pump-probe geometries in a 3-level system is

analysed analytically in [136]. There, Agarwal treats overall absorption in a coupled

3-level system as an interference of Lorentzian and dispersive lineshapes,

∆R

R
=

Γ

2
[Lw(δ − ΩC

2
) + Lw(δ +

ΩC

2
)] +

ζΓ

ΩC

[Dw(δ − ΩC

2
)−Dw(δ +

ΩC

2
)]. (6.7)

The interference factor ζ determines if interference between Lorentzian (Lw) and

dispersive (Dw) lineshapes is constructive (ζ<0) or destructive (ζ>0). The transition

half width is given by Γ. Equation (6.7) can be interpreted as the net contribution of

two absorption channels. The two channels correspond to the dressed states created by

the coupling laser. The four terms in this equation are the consequence of the coherent

sum of both absorption channels, and the dispersive lineshapes cause the interference.
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For a Λ-system the interference is always destructive, while for a V-system it always is

constructive. In the here examined ladder system interference depends on pump-probe

geometry as well as on the the exciton relaxation and dephasing rates. Data presented

will be analysed numerically, but the analytical approach to the low coupling power

spectra offers insight into the nature of the observed quantum interferences.

In the case of coupling |X0〉 ↔| 2X0〉 of the 3-level ladder system, the interference

factor becomes

ζ =
γ21 − γ32

2
. (6.8)

Here, γ32 is the spontaneous decay from |2X0〉 into |X0〉, γ21 the |X0〉 relaxation rate.

In this system, the interference factor ζ is positive due to γ32 = 0.65 · γ21 [84], leading

to destructive interference and a reduced absorption contrast at zero detuning. A dip

is observable even for splittings where it would be washed out in the classical case.

For coupling |0〉 ↔| X0〉, the interference factor becomes

ζ =
γ22 − γ21

2
→ −γ21

2
. (6.9)

Again, γ21 is the spontaneous decay of |X0〉. Factor ζ is always negative if the |X0〉
dephasing time (γ−1

22 ) exceeds its lifetime. Hence interference is constructive. This

leads to the flat top contribution in the overall lineshape and to a washed out dip.

A numerical simulation of these analytical results is shown in Fig. 6.12. Coupling

|X0〉 ↔| 2X0〉 is shown in part a) with ~γ21 =1.12 µeV, ~Ωp = ~Ω1 =0.4 µeV and

~ΩC = ~Ω2 = 1 µeV. Different values of ~γ42 are shown in the legend. It is obvious

that interference changes from destructive (~γ42 < ~γ21) to constructive (~γ42 > ~γ21).

Interference behaves completely differently for coupling |0〉 ↔| X0〉, where it stays

constructive for all values of ~γ21, as long as ~γ21 > ~γ22. Parameters other than

~γ42 =0.74 µeV are consistent with part a). Comparing this behavior to experimental

data indicates that the exciton dephasing time must be longer or at least the same as

its lifetime. An almost lifetime limited linewidth for short integration times supports

this interpretation.

6.4 Conclusion

In summary, dressed states in an exciton-biexciton system were demonstrated. An

experimental scheme was developed where pump-probe spectroscopy was carried out

in reflection, which allowed spectral filtering of the pump laser. A maximum Autler-

Townes splitting of 67 µeV was achieved at a coupling laser intensity of≈100 µW. This

corresponds, due to the 0.71 factor between splitting and Rabi energy, to a coupling

laser Rabi energy of ~ΩC =100 µeV with a Rabi flopping period of 6.5 ps. This

would allow ≈ 102 coherent manipulations of the dressed states which would allow to
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Figure 6.12: Simulations of quantum interferences for different decay rates, spectral
fluctuations are not included. In a), the coupling laser acts on the |X0〉 ↔| 2X0〉
transition. Changing ~γ42 has strong effects on the nature of the quantum interference,
changing it from destructive (~γ42 < ~γ21) to constructive (~γ42 > ~γ21). Parameters
used are ~Ωp =0.4 µeV, ~γ21 =1.12 µeV and ~ΩC =1.0 µeV. Values for ~γ42 are
listed in the legend. b) The probe absorption spectrum when ΩC couples |0〉 ↔|
X0〉. ~γ42 =0.74 µeV, ~γ21 is listed in the legend, other values are equivalent to a).
Interference is always constructive and drops to zero for ΩC →0.

introduce quantum error correction schemes in this system [139]. The Autler-Townes

splitting reported here exceeds the typical fine structure splitting by a factor of ≈3.

According to this result, all-optical techniques could be used to eliminate the |X0〉
fine structure splitting and produce entangled photons [106].

Changing the pump-probe geometry by swapping the coupled and probed transi-

tions revealed constructive and destructive quantum interferences, which is the first

time these were observed in a QD 3-level ladder system. The governing interfer-

ence factor depends on the spontaneous decay ratio of both excitons (constructive for

γ42 > γ21, destructive for γ42 < γ21), which can be changed by almost one order of

magnitude using current technology [140, 141]. This would lead to strongly increased

visibility of these quantum interferences and would even allow changing them from

constructive to destructive.

This experiment has shown that excitons confined to a QD can be coherently

manipulated, allowing the creation of arbitrary superpositions of their states. This

completes a further requirement of the road map to quantum computations in QDs

[116]. The limiting factor for coherent manipulations here is the fast spontaneous

relaxation of exciton states in QDs. One approach to avoid this problem is the use

of ground rather than excited QD states. For a well isolated ground state, schemes

like EIT [40] or coherent spin rotations via a far detuned laser [142] can be realised.

After examining quantum interference in a ladder system, an equivalent experiment

using a Λ-system could reveal the coherence times of hole spins.
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Chapter 7

Coherent superposition of hole spin

ground states

7.1 Introduction

The relaxation and coherence time of a hole spin confined to a QD attracts an increas-

ing amount of interest in recent years. Theoretical papers highlight their promising

properties [5–7, 18], which led to a number of successful experiments. Measurements

on an ensemble of QDs were used to extract hole spin relaxation (T hole1 ) [29] and co-

herence times (T hole2 ) [110], while extraction of T hole1 using a single QD was reported

in section 4.

The appeal of hole spins as candidates for a coherent QD state originates in their

wave function’s atomistic p-symmetry (see chapter 1.3.3). As a result, the hyperfine

contact interaction is avoided for purely heavy hole states and the remaining dipole-

dipole interaction should be anisotropic [5] (also see chapter 1.3.3). While coupling

between hole spin and nuclei spin along the sample growth direction (~z-direction) is

comparable to electron spins, it is suppressed for hole spins aligned in the ~x/~y-plane

(see equation (1.21)). As a result, an external magnetic field aligned along ~x or ~y

(called Voigt geometry) should strongly reduce this interaction.

As demonstrated in section 6, coherent superpositions of excited states are limited

due to the exciton recombination. Accordingly, for measuring a potentially long

T hole2 , an approach for creating a ground state superposition has to be found. One

way is to couple ground states directly via a radio-frequency field in the GHz range

[143]. For heavy holes the optical dipole of this transition is zero due to selection

rules (change of angular momentum: +3
2
↔ −3

2
: ∆ = 2), but might be possible

utilising spin-orbit coupling [144]. Coupling both levels optically requires a third

level with an optical transition to both ground states: two QD ground states are

coupled to a common QD exciton state. This geometry is called a Λ-system. A

superposition of both ground states, while avoiding populating the excited state, can
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now be achieved either by adiabatic creation using two resonant lasers [40], or by

pumping both transitions with lasers far detuned from the optical resonance [142]. In

the case of two laser pump-probe spectroscopy on the Λ-system, a superposition of

only ground states is realised via a dark state, where a transition from | ψ〉 = α |⇑
〉+β |⇓〉 to the exciton is forbidden. This dark state results in dramatic changes to the

probe absorption spectrum and is at the heart of phenomena like coherent population

trapping (CPT), electro-magnetically induced transparency (EIT) and slow light in

optically thick media. Furthermore, dark state spectroscopy gives access to the ground

state coherence time.

The following chapter introduces an experiment which creates coherent superpo-

sitions of hole spins via resonant spectroscopy on X1+. An external magnetic field

perpendicular to the QD growth direction is applied. For long hole spin coherence

times the probe spectrum should show a Lorentzian lineshape, with a narrow dip in

intensity at zero detuning caused by the dark state. The main result of the following

section is an estimated lower bound for the hole spin coherence time of T hole2 ≈500 ns

at 2.3 T, demonstrating that coupling between hole spin and the QD nuclei is strongly

suppressed at this magnetic field strength for an in-plane field.

7.2 Coherent population trapping of a hole spin

7.2.1 A Λ-system using an X1+ in an in-plane magnetic field

In order to create coherent superpositions of single hole spins, the X1+ is used (already

examined in section 4). Optical selection rules for an external magnetic field ( ~Bext) in

growth direction (or for ~Bext = 0 T) only allow one circular polarised transitions for

each hole spin state. No superpositions of hole spins can be created optically in this

scheme. Tilting the external magnetic field from ~Bext = B0 · ~z (Faraday geometry)

to ~Bext = B0 · ~x (Voigt geometry) causes a reference frame transformation from ~z to

~x-basis. This can be shown by expanding |↑x〉 and |↓x〉 in the ~z-basis using the spin

ladder operators (S+ and S−):

Ŝx |↑x〉 = 1
2
|↑x〉 = 1

2
(Ŝ+ + Ŝ−)(α |↑〉+β |↓〉) ⇒|↑x〉 = 1√

2
(|↑〉+ |↓〉)

Ŝx |↓x〉 = −1
2
|↓x〉 = −1

2
(Ŝ+ + Ŝ−)(α |↑〉+β |↓〉) ⇒|↓x〉 = 1√

2
(|↑〉− |↓〉).

(7.1)

Applying the ~z-basis optical selection rules (〈⇑⇓, ↓| σ̂+ |⇓〉 6= 0 and (〈⇑⇓, ↑| σ̂+ |⇑〉 6=
0) to |↑x〉 and |↓x〉 leads to new optical selection rules according to:

〈↓x| Êx |⇓x〉 6= 0 〈↓x| Êy |⇓x〉 = 0

〈↑x| Êx |⇑x〉 = 0 〈↑x| Êy |⇑x〉 6= 0.
(7.2)
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Figure 7.1: Lambda-system realised with X1+ in ~Bx
ext. The magnetic field perpen-

dicular to the growth direction changes optical selection rules, now allowing transi-
tions from both hole spin ground state to each exciton state. An individual lambda
system can be isolated for Zeeman splittings (∆Ee

Zeeman and ∆Eh
Zeeman) exceed-

ing the transition linewidth. For δ = ∆1 − ∆2 = 0 the system is projected into
| ψ〉 = c1 |⇑x〉 + c2 |⇓x〉, a superposition consisting only of ground states. This dark
state allows extracting the hole spin coherence time T hole2 via dark state spectroscopy.

Here,

Êx = 1
2
(σ̂+ + σ̂−)

Êy = 1
2
(σ̂+ − σ̂−)

(7.3)

was used. Now each hole spin ground state is linked to two exciton states via linearly

and orthogonally polarised transitions. An isolated Λ-system can be realised with X1+

in combination with ~Bx
ext, as shown in Fig. 7.1. The ground and exciton states are split

by the Zeeman splitting (∆Ee
Zeeman and ∆Eh

Zeeman), which allows addressing single

transitions spectrally for splittings exceeding the exciton transition linewidth. Both

optical transitions of the Λ-system are orthogonally polarised, enabling pump-probe

spectroscopy via polarisation filtering.

Figure 7.1 shows one example Λ-system of X1+, a second could be realised via cou-

pling both hole spin ground states to the second exciton state. The coupling (probe)

laser in Fig. 7.1 drives the |⇓x〉 ↔|⇓⇑, ↓x〉 (|⇑x〉 ↔|⇓⇑, ↑x〉) transition. Detunings (∆1

and ∆2) and angular Rabi frequencies (Ωc and Ωp) now dictate the mixture of states

the system consists of. Generally, state-vector | ψ〉 is a superposition of all three

Λ-system states, equivalent to the two level problem described in chapter 3.1. How-

ever, for δ = ∆1 −∆2 = 0 (called two-photon resonance), the state vector changes to

exclusively | Ψ〉 = c1 |⇑x〉+ c2 |⇓x〉 [40]. This new state has no probability amplitude

for transitions to the excited state (zero probability amplitude for |⇓⇑, ↑x〉 in | ψ〉),
hence interactions between QD and resonant lasers are forbidden. Accordingly, the
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7.2. Coherent population trapping of a hole spin

coherent superposition of both hole spin ground states cannot decay radiatively like

in chapter 6. This is the dark state, and the process of projecting all the systems

population into this state is called coherent population trapping (CPT). It was first

demonstrated experimentally using Sr vapor [145].

The mechanism behind CPT is a direct result of the Λ-system eigenstates [40].

Using mixing angles tan(θ) = Ωp

Ωc
and tan(2φ) =

√
Ω2

p+Ω2
c

∆1
, the dressed states are given

by

| d+〉 = sin(θ) sin(φ) |⇓x〉+ cosφ |⇓⇑, ↑x〉+ cos(θ) sin(φ) |⇑x〉
| d0〉 = cos(θ) |⇓x〉 − sin(φ) |⇑x〉
| d+〉 = sin(θ) cos(φ) |⇓x〉 − sinφ |⇓⇑, ↑x〉+ cos(θ) cos(φ) |⇑x〉,

(7.4)

where each dressed state consists of a quantum interference of the bare QD sates. The

experimentally important d0 dark state linewidth is given by [40]:

~ΓDS = ~
(

Ω2
couple

2 · Γ0

)
, (7.5)

where the assumption T hole2 � 2π
Γ0

was used. Optical excitation now distributes popu-

lation between d+, d− and d0. Exciton relaxation of states d± results in a damping of

these states. All population taken out of the coherent d± states is eventually trans-

fered into d0 via the continuing optical excitation. This way, after a short amount of

time all population is transfered in to d0. This process was first demonstrated exper-

imentally using Sr vapor [145]. A different method, which transfers population much

quicker into d0, also avoids populating | d+〉 or | d−〉, is stimulated Raman adiabatic

passage (STIRAP).

It is exclusively the hole spin decoherence time which (T hole2 ) determines the spec-

tral behaviour of the dark state. Remarkably, for CPT no contribution comes from

the excited state. Section 4 showed that the hole spin relaxation time ranges be-

tween 0.25 and 1 msec. For T hole2 � T hole1 , the dark state visibility is limited by

decoherence of the hole spin ground states, which enables extracting T hole2 via dark

state spectroscopy of the probe-laser spectrum. Here, dark state visibility is defined

as the amplitude of the CPT dip measured from maximum absorption to the centre

of the CPT dip, divided by the maximum absorption signal contrast. For a complete

transparency at two-photon resonance, the CPT dip visibility is one. This visibility is

what clearly separates an Autler-Townes splitting from the CPT-dip: in the regime of

~Ωcoupling � ~Γ0, no Autler-Townes splitting can be resolved. The quantum interfer-

ence of the CPT-dip however does not exclusively lead to a splitting of two Lorentzian

lines. For a long T hole2 it results in a very narrow dip at two-photon resonance of the

exciton absorption spectrum.

Dark state spectroscopy on X1+ has to match two experimental conditions. First:

the external magnetic field must be applied perpendicular to the growth direction.
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Second: the experimental setup has to enable pump-probe spectroscopy, where the

strong coupling laser is suppressed and only the probe spectrum is recorded. This

makes changes to the experimental layout of chapter 4 necessary.

7.2.2 Experimental scheme

Resonant spectroscopy of QD states in external magnetic fields was introduced in

chapter 2.2.1 by including a superconducting magnet to the liquid helium cryostat. In

order to achieve magnetic fields of several Tesla, the magnet dimensions are relatively

bulky and aligning it 90◦ to the microscope tube / piezo positioners is not possible

using the current setup. Instead of rotating the magnet the QD sample is rotated.

This is realised by two components. The first is a 90◦ aluminium bracket, which

attaches the QD sample to the piezo-positioner stack in a right angle. The second

is an optical mount made from titanium (Voigt mount). It holds the objective lens

(Thorlabs 355390-B) 90◦ to the original optical axis. A mirror, made of polished

brass, mounted at 45◦ in the microscope vertical beam path reflects the laser beams

towards the objective lens and QD sample. Earlier attempts using a dielectric mirror

failed due stress fractures of the glass substrate. Physical dimensions of both elements

are dictated by the microscope tube diameter and all components had to be realised

within the spacing of one inch. The QD sample holder and the Voigt mount are shown

inside the liquid helium dewar in Fig. 7.2. The alignment of this unit is crucial, any

deviation of 45◦ mirror angle results is aberrations of the focal spot.

The microscope head in Fig. 7.2 is based on the standard design, introduced in

chapter 4. Orthogonally polarised lasers are injected vertically via a polarisation

maintaining fibre (Thorlabs P3-980PM-FC-2). Using a polarisation maintaining fibre

allows to inject both resonant lasers at the same location of the microscope head. As a

result, the objective lens focus position will be the same for both lasers, making align-

ment much easier. Disadvantageous is that the polarisation after the pm-fibre is only

≈95 % linear and fluctuates in time by ±3 % (already discussed in chapter4), result-

ing in a slight uncertainty of optical selection rules as well as reduced coupling laser

supression in the probe spectrum detection. A λ
2
-plate (Thorlabs AHWP05M-980)

aligns the resonant laser-polarisations to the symmetry axis of the BS. This ensures

that different transmission coefficients for s and p-polarised light do not change linear

polarisations into elliptical. The first BS reflects an objective-plane image onto the

CCD camera, while the second BS reflects the non-resonant laser towards the QD

sample. Polarisation selective detection of the resonant QD spectrum can be realised

in two ways. Maximum signal strength would be achieved by mounting a polaris-

ing BS with two detectors (one for every polarisation) behind the QD sample. The

main disadvantages of this design are limited space and a not accessible polarisation

filter, which would be located in the liquid helium dewar. Additionally it was found
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Figure 7.2: Standard microscope head with extension for external, polarisation se-
lective detection. Orthogonally polarised couple and probe laser are injected via a
polarisation maintaining fibre. Thick glass BS reflect beams to create a focal-plane
image and to illuminate the sample via the non-resonant laser. The back-scattered
QD absorption spectrum is reflected by a 50/50 cube BS and filtered via a Glan-
Thompson polariser before illuminating the PIN Si detector. A λ

2
-plate aligns optical

polarisations such that only the probe spectrum is detected. Control over the resonant
laser polarisations is provided by a liquid crystal polariser via an applied voltage. The
QD sample is tilted by 90◦ via a right angle aluminium bracket, setting the external
magnetic field perpendicular to the sample growth direction.
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later that a magnetic field parallel to the PIN-junction of the standard transmission

detector (Thorlabs FDS-100) leads to a big dark current induced noise, making trans-

mission detection using this detector impossible for Voigt geometry. It was therefore

decided to add resonant detection outside of liquid helium dewar, recording the spec-

trum in reflection. A third cubic BS (Thorlabs BS011) below the two initial thick

glass BS reflects 50 % of the back-reflected QD signal by 90◦, passing it through a
λ
2
-plate (Throlabs AHWP05M-980), a Glan-Thompson polariser (Thorlabs GT-10M)

and a lens (Throlabs C220 TM-B) to focus it on the detector (Thorlabs SM05PD1A).

Rotating the λ
2
-plate allows to align polarisation filtering orthogonal to the strong

coupling laser and the isolated probe absorption spectrum can be recorded.

A complete study of hole spin coherence times is expected to take several weeks.

As mentioned in chapter 4, the 80 l liquid helium dewar only provides enough helium

for roughly 12 days when the superconducting magnet is used. It was therefore

decided to work with a new cryogenic system, which can be topped up with liquid

helium if needed. Chapter 2.2.1 introduces this top-up cryostat. It is combined with a

superconducting magnet, which is able to reach fields of 3 T. This system theoretically

allows much longer experiment durations with a single helium run, however it is

somewhat limited by the liquid helium transfer process. During every transfer the

temperature gradient inside the cryostat changes, which results in a dramatic drift of

the QD relative to the microscope focus. Keeping the QD in focus the entire transfer

time requires real-time compensation of this drift via the piezo positioners. Once the

QD is far out of focus it is near impossible to bring it back into the focal spot. This

can be avoided most of the time, but is still a considerable risk during every liquid

helium transfer.

7.2.3 Experiment

Experiments on a X1+ Λ-system again start by a first characterisation of the QD

via non-resonant and resonant spectroscopy. Figure 7.3 a) shows the non-resonantly

excited spectrum of a QD in sample 060726B#15 for gate biases between -0.8 and

-0.3 V and emission energies between 1.304 and 1.312 eV. The non-resonant laser

power and wavelength were 30 nW and 830 nm, the integration time 20 s. Resonant

spectroscopy on X1+ in an external magnetic field in ~x-direction comes with the usual

spin-pumping complication: the long relaxation time of the hole spin ground state

shelves the system from one resonant laser via the optical selection rules (see Fig. 7.1)

and the signal contrast disappears. In order to find the transition for Bext >0 T, the

repump experiment of chapter 4 has to be repeated. Measuring the X1+ absorption

contrast voltage plateau at Bext =0 T with linear polarisations provides a starting

point for resonant laser energies (voltage plateau: see chapter 2.16). For Bext >0

T, the energy of one laser is chosen such that the resonance would be located in
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Figure 7.3: Resonant and non-resonant spectroscopy of QD A in sample 060726B#15.
Emission from an isolated QD was found between -0.8 and -0.3 V gate bias and energies
between 1.304 and 1.312 eV, shown in part a). The integration time was 20 s, the
non-resonant laser power 30 nW at 830 nm. Part b) shows a resonant absorption

contour plot with an external field of ~Bext =0.75 T in ~x-direction. The data was
recorded using QD B from p-doped sample Sample2#10. No resonant absorption
contour showing both Λ-systems was recorded on QDA due to long measurement
durations. The wavelength of one laser stays constant (942.384 nm), while the second
laser energy is changed every scan. At each laser detuning, one spectrum is recorded
via sweeping the gate bias. Two resonances are found, corresponding to one Λ-system
(see Fig. 7.1) each, where both lasers are on resonance with the two transitions. The
dashed boxes in part b) show the Λ-systems for each resonance. The resonant laser
power was 1 nW for each laser, the integration time 2 s.
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the middle of the voltage plateau (coupling laser). The second laser with orthogonal

polarisation (probe laser) is now offset from the coupling laser energy and a spectrum

is recorded by tuning the gate bias. To make sure the whole parameter space is

covered, this procedure is repeated for negative and positive probe laser detunings.

Scan results are combined in a false colour contour plot, shown in Fig. 7.3 b).

The x-axis corresponds to the coupling laser energy detuning from the transition at

Bext =0 T, which is tuned via the gate bias. The y-axis is the energy difference

between both lasers. An external magnetic field of Bext =0.75 T is applied, resonant

laser power is 1 nW, the coupling laser wavelength is 942.384 nm and the integration

time is 2 s. Two resonances can be identified at E(L1) − E(L2) = ±1
2
Eh
Zeeman,

corresponding to the two different Λ-systems of the X1+. The Zeeman splitting of

the X1+-electron spin is equivalent to the y-axis energy difference of both resonances.

This experiment is repeated for every magnetic field strength before conducting a high

detail absorption experiment, able to resolve the dark state. The data was recorded

using QD B on sample Sample2#10, with QD A of 060726B#15 showing similar

behavior. All scans of QD A focused on one Λ-system only to reduce experiment

durations. Values of Fig. 7.3 a) were recorded in transmission, until the mentioned

noise caused by increasing dark counts strongly reduced the experiments signal to

noise ratio at around Bx
ext =1.25 T.

There is an apparent difference between repumping X1+ in Faraday (Bz
ext) and

Voigt (Bx
ext) geometry. While the maximum repumping signal contrast does not

change with Bz
ext, it drops by a factor of approximately three for Bx

ext ≥0.25 T. The

same reduction was observed when measuring in reflection. One interpretation was

that Bx
ext results in a curved trajectory for holes tunneling from the back contact to

the QD, increasing the effective tunneling distance. Experiments using Sample2#15

with a 12 nm tunnel barrier showed the same behaviour, invalidating this theory since

the shorter tunnel barrier significantly increases the tunneling probability.

All data presented from this point onwards were recorded using QD A on sample

060726B#15. Polarisation optics in the detection system (Fig. 7.2) are aligned such

that the Πx-polarised coupling laser is filtered out and only the Πy-polarised probe

laser absorption spectrum is recorded.

Since the experimental goal was to extract T hole2 , no accurate measurement of T hole1

was conducted. It would require accurately recorded signal contrast for pumping with

only one laser, which would be a lengthy experiment for a maximum repump contrast

of only ∆R
R

= 4 · 10−4. It is possible to give a lower bound for this value using the

experimental noise floor, which at Bext =2.3 T gives a minimum contrast change

between hole spin repumping and hole spin pumping of 7±1. As a result, the lower

bound is T hole1 ≥10 µs.

It has been proposed that an external magnetic field in x-direction results in a

linear increase of T hole2 [5]. Motivated by this the pump-probe experiment on X1+
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Figure 7.4: Example probe spectrum of X1+ absorption at Bx
ext =2.3 T, using QD A.

Coupling laser wavelength and gate bias are kept constant with the coupling laser close
to resonance with |⇑〉 ↔|⇑⇓, ↑〉, the probe laser is tuned through the |⇓〉 ↔|⇑⇓, ↑〉
transition. Coupling and probe laser powers are 5.6 nW and 1.2 nW, respectively. A
pronounced dip at the two-photon resonance most likely corresponds to CPT, trapping
all population in the dark state d0 (see equation (7.4)).

starts at an external magnetic field of 2.3 T, where T hole2 is predicted to be several

µs [5]. Additionally, at this magnetic field the two Λ-systems are well isolated. Spec-

troscopy on the CPT dark state has to extract its visibility and linewidth for several

Ωcouple’s. A coupling power threshold can be given by the following relation: T hole2

of several 100 ns will still result in a clearly visible CPT-dip, while the dark state

linewidth reduces to ΓDS ≈0.3 µeV. Stark-shift tuning of the exciton transition pro-

vides a resolution of ≈0.5 µeV, clearly insufficient for an accurate measurement of

~ΓDS. Tuning the resonant laser energy increases the experimental resolution, which

is now limited by the last digit (±0.3 pm) of the resonant laser wavemeter (Burleigh

WA-1650), corresponding to 0.4 µeV. This limitation can be pushed when tuning the

probe laser in smaller steps using the laser piezo controller. The recorded probe laser

wavelength will change in steps of the last digit after several increases of the applied

piezo voltage. Extrapolating a linear wavelength dependency between these steps in

the last wavemeter digit enables a resolution of approximately 0.06 µeV, but at the

risk of systematic errors.

An example probe spectrum is shown in Fig. 7.4. Coupling laser wavelength

and gate bias were kept constant, setting the coupling laser close to resonance with

|⇑〉 ↔|⇑⇓, ↑x〉. Data was recorded at an external magnetic field of 2.3 T, a coupling

(probe) laser power of 5.6 nW (1.2 nW) while using an integration time of 5 s. The

overall X1+ absorption linewidth is as big as ≈6 µeV, still a CPT-dip with a linewidth

of only ≈0.4 µeV is clearly resolved. Such a narrow and strongly visible dip can only
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Figure 7.5: Probe absorption spectrum for different pump detunings from resonance.
Scans were recorded at Bx

ext =3 T, the integration time was 5 s, pump and probe laser
powers were 5.6 nW and 1.2 nW, respectively. The main resonance is broadened by
spectral fluctuations (≈6 µeV, lifetime limited ≈1 µeV).

originate from quantum interferences with a highly coherent hole spin state. Also, the

mechanisms behind the exciton broadening seem to have no influence on the dark state

spectrum. This is a powerful early result of the experiment. Further more, it provides

a clear distinction between the dark state in the presented data and Autler-Townes

splitting, which is sensitive to exciton broadening (see chapter 6).

It is important to understand the entire probe spectrum, the exciton lineshape

as well as the CPT-dip. Only this way systematic errors, which might result from

wavelength extrapolation of the probe laser, can be avoided. A radiative decay time

of (0.4±0.1) ns for X1+ was measured directly via photon counting statistics. Even

though this is relatively fast for InGaAs QDs [84], it cannot explain a X1+-linewidth

of ≈6 µeV. Spectral fluctuations were identified as a source for broadening exci-

ton linewidths in section 6. Here, the shape of the entire probe spectrum is a

strong indication that the same mechanism is present. Spectral fluctuations only

broaden the exciton resonance, sensitive to the exciton-probe laser detuning. The

dark state spectrum however is dictated by the energy offset between coupling and

probe laser. The centre of the CPT-dip is located at the two-photon resonance, where

the E(L1) − E(L2) = Eh
Zeeman. Since spectral fluctuations have no influence on the

hole spin Zeeman splitting, ΓDS will not be effected by fluctuations in the electrical

environment.
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Figure 7.6: Dependency of dark state position against pump laser detuning. The
data was recorded at 3.0 T, example scans were presented in Fig. 7.5. Dip position
and pump detuning of the experimental data perfectly reproduces the expected linear
dependency and the gradient of one. This provides further evidence that the dip in
the probe absorption spectrum originates from coherent superposition of hole spin
ground states.

Detuning the coupling laser from the |⇑〉 ↔|⇑⇓, ↑x〉 transition (∆2 in Fig. 7.1) has

a big influence on the probe spectrum. Figure 7.5 shows three example scans for a

pump laser which is blue detuned a), close on resonance b) and red detuned c). The

data were recorded at Bx
ext =3 T, with an integration time of 5 s, a coupling laser

power of 5.6 nW and a probe laser power of 1.2 nW. Other than for an Autler-Townes

splitting [112], reported in chapter 6, the spectra do not follow a typical anti-crossing.

Instead, the entire main resonance is shifted and the dark state CPT-dip follows the

coupling-laser detuning. Figure 7.6 shows the CPT-dip position for a range of ∆2,

using the same parameters as in Fig. 7.5. The CPT-dip position linearly follows the

coupling laser detuning with a slope of EDS = (0.99± 0.1) ·∆2. This behavior clearly

differs from Autler-Townes splitting (compare to dressed two level states: equations

(3.12)), proving the dip in the probe absorption spectrum originates from CPT.

Figure 7.7 shows probe absorption spectra of the CPT-dip for different pumping

powers. System parameters are Bx
ext =2.3 T, Pprobe =1.2 nW and integration times

of 20 s (part a)) and 5 s (part b and c). The quantum interference is already visible

for the lowest recorded coupling laser power of 0.05 nW (Fig. 7.7 a). At such low

coupling laser power the X1+ transition is largely unsaturated and a coherent dark

state is only created at a small rate. Therefore, in order to produce a significant CPT-

dip, the fraction of population in the coherently created | Ψ〉 = α |⇑〉+β |⇓〉 dark state

must have a lifetime exceeding that of the exciton by orders of magnitude. Recording

a CPT dip at lower coupling powers was in fact not limited by a disappearing CPT-

dip, but was unpractical due to the long integration time needed. Higher coupling

laser powers produce a wider and deeper CPT dip, but also a noticeable asymmetry
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Figure 7.7: Probe absorption spectrum for different pump powers. Spectra concen-
trate around the dark state at the centre of the X1+-transition. Scans were recorded
at Bx

ext =3 T, a probe laser power of 1.2 nW, using integration times of 20 s in part a)
and 5 s for part b) and c). Pump powers as low as 0.05 nW (part a) already produce a
dark state, demonstrating the hole spin coherence time exceeds the radiative exciton
lifetime by orders of magnitude. The dark state linewidth increases with the coupling
laser intensity, as shown by part b) (Ppump =0.5 nW) and c) (Ppump =10 nW). The
CPT-dip asymmetry in c) might arise from remaining nuclei spin polarisation [77].

of the CPT-dip lineshape (see part c) in Fig. 7.7). This asymmetry might arise from

QD nuclei polarisation via the remaining hyperfine coupling between hole spin and

nuclei spin [77] or between the exciton electron spin and the QD nuclei [119]. The

CPT-dip reaches zero absorption contrast, where 100 % of the system population is

coherently trapped in | Ψ〉 = α |⇑〉+ β |⇓〉, for coupling laser powers ≥5 nW.

Experimental results reported so far already indicate the successful creation of a

long-lived coherent quantum state in a semiconductor. The processes which lead to

an exciton broadening of approximately 6 µeV do not effect the hole spin dark state

spectrum. However, for higher coupling laser powers there are hints of a remaining

hyperfine interaction between hole spin and QD nuclei, which could ultimately limit

the hole spin coherence time to less than twice the lifetime [20]. A theoretical model

describing the pump-probe experiment on X1+ in ~Bext = B0 · ~x is needed. Given

the experimental resolution limitation, the main focus of the theoretical model is to

reproduce the CPT dip signal contrast for extracting T hole2 . Additionally, the model

will only be applied to low coupling laser powers where asymmetry in the CPT-dip

was observed.
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7.3 Analysis via 3-level density matrix master equa-

tion

7.3.1 Introduction

A model of a resonant absorption experiment on X1+ in ~Bext = B0~x is again provided

via a master equation for coherent and non-coherent interactions. Transitions from

the two hole spin ground states to the common exciton state include coherent coupling

via the resonant lasers and non-coherent interaction via the radiative relaxation of the

exciton. Other than in chapter 6, the experimental figure of interest mainly depends

on the pure dephasing of hole spin ground states. These dephasings are included in

the Lindblad-formalism via incoherent interactions for which the initial and final state

is identical, but the quantum mechanical phase will be lost due to this mechanism.

7.3.2 Density matrix and master equation

Figure 7.8: Level scheme of a Λ-system using X1+.

For an external magnetic field perpendicular to the sample growth direction, the

X1+ complex can be effectively reduced to a 3-level Λ-system, shown in Fig. 7.8. The

three states are given by the following vectors:

|1〉 =

 c1

0

0

 , |2〉 =

 0

c2

0

 , |3〉 =

 0

0

c3

 .

X1+-states are connected to state vectors according to |⇓〉 = |1〉, |⇑〉 = |2〉 and

|⇑⇓, ↑x〉 = |3〉. A schematic of QD states plus interactions is shown in Fig. 7.8.
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With the two resonant lasers driving one orthogonally polarised transition each, the

coherent coupling Hamiltonian becomes:

Ĥopt = 1
2
~Ωprobe(e

iωprobet|1〉〈3 | +e−iωprobet|3〉〈1 |)
+1

2
~Ωcouple(e

iωcouplet|2〉〈3 | +e−iωcouplet|3〉〈2 |),

where Ωcouple (Ωprobe) and ~ωcouple (~ωprobe) are the coupling (probe) laser angular

Rabi frequency and laser Energy. A rotating frame transformation with substitutions

according to

c1 = c̃1, c2 = c̃2e
−i(ωprobe−ωcouple)t, c3 = c̃3e

−iωprobet

leads to the system’s Hamiltonian:

~

 0 0
Ωprobe

2

0 ∆1 −∆2
Ωcouple

2
Ωprobe

2

Ωcouple

2
∆1


 c̃1

c̃2

c̃3

 = i~

 ˙̃c1

˙̃c2

˙̃c3

 . (7.6)

Detunings ∆1 and ∆2 were introduced in Fig. 7.1 and correspond to laser detunings

relative to their transition for probe and coupling laser, respectively.

Non-coherent relaxation terms and pure hole spin dephasing terms are included

via the Lindblad formalism. The X1+ radiative decay (Γ0) is split into two decay

paths, one to each hole spin state using equal relaxation rates (Γ31 and Γ32) for both

transitions. Hole spin dephasing is given by relaxation rate γ22, which describes the

dephasing of state |⇑〉 relative to |⇓〉. The Lindblad decay terms are then given in

the following matrix:

Lρ̂ = Γ31|1〉〈3 | ρ̂|3〉〈1 | −Γ31

2
(|3〉〈3 | ρ̂+ ρ̂|3〉〈3 |)

+Γ32|2〉〈3 | ρ̂|3〉〈2 | −Γ32

2
(|3〉〈3 | ρ̂+ ρ̂|3〉〈3 |)

+Γ21|1〉〈2 | ρ̂|2〉〈1 | −Γ21

2
(|2〉〈2 | ρ̂+ ρ̂|2〉〈2 |)

+Γ12|2〉〈1 | ρ̂|1〉〈2 | −Γ12

2
(|1〉〈1 | ρ̂+ ρ̂|1〉〈1 |)

+γ22|2〉〈2 | ρ̂|2〉〈2 | −γ22
2

(|2〉〈2 | ρ̂+ ρ̂|2〉〈2 |).

As in chapter 4.3, the relaxation rate between the hole spin ground states depends

on the relaxation direction, following a thermalisation dependency:

Γ21 = Γ12e
−∆Eh

Zeeman�kbT .

The master equation is then solved for the steady state limit via the Von Neumann

equation:

i~
∂ρ̂

∂t
= [H, ρ̂] + iLρ̂ (7.7)
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Figure 7.9: Influence of fast electron dephasing on the probe absorption spectrum.
Only unrealistically fast (0.19 ns) electron spin dephasing can reproduce a exciton
linewidth of 6 µeV. Further more, the simulation’s lineshape does not correspond to
extracted experimental data.

and the probe laser absorption spectrum is calculated numerically via

∆R

R
(∆1,∆2) = α0γ31

=(ρ13(t→∞))

Ωprobe

. (7.8)

Simulating experimental results via equation (7.8) however failed. Especially for

the case of a detuned coupling laser there were big lineshape discrepancies between

simulations and experimental results. As pointed out before, to eliminate the pos-

sibility of systematic errors, exciton and CPT-dip lineshape had to be fitted using

the same model. Efforts to reproduce the exciton broadening via fast electron spin

dephasing of the exciton failed likewise. This approach did not reproduce lineshapes

obtained from the experiment and the necessary electron dephasing time had to be

orders of magnitude shorter than those reported in common literature [21, 75, 76].

The next attempt was to include the effect of spectral fluctuations on the exci-

ton energy. Convoluting equation (7.8) with a Lorentzian corresponds to a spectral

broadening of the exciton level, simulating the spectral fluctuation effect:

∆R̃

R̃
(∆1,∆2) =

∫
∆R

R
(∆1 − x,∆2)L(x)dx, (7.9)

where L(x) is a Lorentzian with a full-width-half-maximum of ΓSF . A Lorentzian

lineshape was chosen because absorption lineshapes measured in the experiments are

closer to Lorentzians than Gaussians. Simulations are shown in Fig. 7.10.
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7.3. Analysis via 3-level density matrix master equation

Figure 7.10: Simulations of a Λ-system, using equation (7.8) in a) and b), equation
(7.9) in c). Parameters used are ~Ωcouple =1 µeV, ~Ωprobe =0.45 µeV, Γ31 = Γ32 = Γ0

2
,

Γ0 =0.5 µeV, T hole2 =1 µs (black line), T hole2 =10 ns (red line). Part a) and b) show
standard text-book example probe absorption spectra, with no additional broadening
mechanisms included. In a) the coupling laser is on resonance, while in b) it is detuned
by 2.82 µeV. Only including spectral fluctuations via ΓSF=6 µeV in equation (7.9)
reproduces the correct lineshape for the entire probe spectrum, see c).

7.3.3 Data analysis

Figure 7.10 a) and b) show a simulation of the CPT-experiment using equation (7.8).

Parameters in Fig. 7.10 are set similar to values of the experimental data: ~Ωcouple =1

µeV, ~Ωprobe =0.45 µeV, Γ31 = Γ32 = Γ0

2
, Γ0 =0.5 µeV, T hole2 =1 µs (black line),

T hole2 =10 ns (red line). In part a) the coupling laser is on resonance with |⇑〉 ↔|⇑⇓, ↑〉
and CPT dip as well as the overall resonance are symmetric. Detuning the coupling

laser has a big influence on the probe spectrum, as shown in b). Still, the overall

lineshape does not correspond to data presented in Fig. 7.4 and 7.5. Maximum ab-

sorption in a) and b) is, other than in the experiment, still at zero detuning and a

narrow spike appears next to the dark state. When equation (7.9) is used instead

(see part c)), the probe spectrum changes considerably, reproducing the overall ex-

perimental lineshape. The additional convolution linewidth is ΓSF =6 µeV. ΓFS was

extracted using the transition linewidth of X1+ when excited with linear polarisation

at zero magnetic field. Black and red lines in Fig. 7.10 correspond to a hole spin

coherence time of T hole2 = 1µs (black line) and 10 ns (red line). A clearer distinction

between T hole2 = 1µs and 10 ns can be achieved by reducing the coupling laser inten-

sity until the the CPT-dip disappears. However, this procedure is not practical with

the current setup due to the dramatic decrease in signal strength. As a result the

confidence in the experimentally extracted value of T hole2 is limited.

The next step in data analysis is extracting the remaining X1+ parameter, the

coupling constant between the resonant laser oscillating electric field and the QD

transition as well as the exciton spontaneous life time. As in earlier chapters, a
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7.3. Analysis via 3-level density matrix master equation

Figure 7.11: Extracted fit parameters of QD A. Part a) shows a fit of Rabi energy
against

√
P . The angular Rabi frequency was extracted at low powers by fitting the

dark state linewidth using ΓDS =
~Ω2

couple

Γ31
. At higher powers the Autler-Townes like

splitting was used. A linear dependency between Ωi and
√
Pi is found, the propor-

tionality factor is comparable to numbers reported in chapters 5 and 6. The optical
relaxation of X1+ is shown in b). X1+ is excited with 100 ps pulses at 830nm with
40 nW average power. Data was recorded with TRPL measurements, using the same

setup as in [84]. The residual counts were weighted by a factor of wi =
√
Ci
−1

, which
is the standard procedure for Poissonian noise. Here, wi and Ci are the weighting
factor and counts of point i, respectively.

dependency according to Ωi = β
√
Pi is expected between transition angular Rabi

frequency and laser power. Figure 7.11 a) shows transition angular Rabi frequency

against the square root of coupling laser power. Values were extracted via the dark

state linewidth at low coupling laser powers and the Autler-Townes like splitting at

higher coupling laser powers. Results reproduce a linear dependence with a coupling

strength of β =(11.9±0.26)103 µeV√
P

, comparable to numbers extracted in chapters 5

(β =5.87·103 µeV√
P

) and 6 (β =8.91·103 µeV√
P

). Time-resolved photoluminescence of X1+

is shown in Fig. 7.11 b). In this measurementX1+ was excited by a pulsed photo diode,

with a pulse duration of 100 ps, a wavelength of 826 nm and an average power of 40

nW. Data shown in Fig. 7.11 b) was obtained with time resolved photoluminescence

(TRPL), using an integration time of 10 hours. The setup for measuring the X1+

decay is identical to [84]. The extracted exciton lifetime is τ =(0.4±0.1) ns.

For a first demonstration of the good agreement between theory and experiment,

example scans presented in Fig. 7.5 were fitted using equation (7.9) (solid lines) in Fig.

7.12. Fit parameters are given in the caption of Fig. 7.12. All parameters, especially

the angular Rabi frequencies stated here had to be moved inside the error bars, which

where extracted by earlier experiments (see Fig. 7.11). Equation (7.9) reproduces

the difference between a typical, unbroadened text-book Λ-system probe spectra and

the spectrum of X1+ confined in a QD, disturbed by the semiconductor environment.

Convoluting the master equation results via a Lorentzian with a linewidth of ΓSF =6

µeV reproduces the overall broadened exciton lineshape while having no influence
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7.3. Analysis via 3-level density matrix master equation

Figure 7.12: Probe spectrum example scans, fitted via equation (7.9). Theory agrees
well with the overall, broadened transition lineshape combined with the still narrow
CPT-dip. Pump laser detunings were 2.831 µeV, 0.000 µeV and -2.820 µeV for
part a), b) and c), respectively. Remaining fit parameters are: ~Ωcouple =1.00 µeV,
~Ωprobe =0.45 µeV, ~Γ31 = ~Γ32 =0.5 µeV and a hole spin dephasing of ~γ22 =0.0007
µeV.

on the CPT-dip visibility. Other than providing a reliable fit to experimental data,

this result is also strong evidence identifying spectral fluctuation as the cause for

additional exciton broadening in InGaAs QDs. Similar conclusions were also drawn

from chapter 6, where this claim was substantiated by a decreasing linewidth for faster

measurements. The influence of slowly varying spectral fluctuations was reduced when

the integration time approached the timescale of this mechanism.

Data and theory shown so far established a link between the X1+ experiment and

CPT as well as validating the developed interpretation of the experimental results.

The remaining unknown is the hole spin coherence time. Figure 7.13 provides a link

between experimental results and T hole2 , while paying justice to the big experimental

error bars. Figure 7.13 a) allows a comparison between experimental data and the

quality of fit for different T hole2 . It demonstrates that only a hole spin coherence time

close to 1 µs leads to a small enough signal contrast in the CPT dip to explain exper-

imental data. While this is only an example, b) gives a measurement of T hole2 taking

statistics of 10 measurements with different coupling laser detunings into account. All

data was recorded at 2.3 T, fits of T hole2 were extracted using ~Ωcoupling =0.75 µeV,

~Ωprobe =0.34 µeV and ~Γ31 = ~Γ32 =0.5 µeV. It presents the ratio between signal

contrast in the CPT dip divided by the maximum transition signal contrast. The

extracted ratio is (0.11 ±2.07) %, which is associated to a upper bound of T hole2 . The

random error of 2.07 % is now transformed into a confidence relative to the extracted
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Figure 7.13: a) shows data from Fig. 7.4, including fits via equation (7.9). Spec-
troscopy parameters used are: ~Ωcouple =0.75 µeV, ~Ωprobe =0.34 µeV, Bx

ext =2.3 T
and an integration time of 5 s. Parameters of the X1+ are the same as in Fig. 7.12.
The solid lines correspond to fits using different T hole2 , fits are labeled correspond-
ingly. Part b) shows the calculated signal in the CPT dip divided by the maximum
absorption strength, while varying T hole2 . The experimentally extracted minimum /
maximum signal contrast ratios are associated with a confidence level related to the
upper bound of T hole2 . Confidence levels are shown as black, blue and red lines. They
correspond to the probablitity for an equal or smaller value of T hole2 . The probability
is given by integrating the standard deviation (of the extracted Imin/Imax) from zero
to T hole2 .

T hole2 , for example T hole2 ≥ 490 ns with a 70 % probability. The current data suggests

that T hole2 ≥ 1 µs with 40 % probability.

Probe spectra of the CPT-dip were also recorded at several external magnetic

fields and example scans for Bext =1, 1.5 and 2.3 T are presented in Fig. 7.14. Fitting

parameters are ~Ωcouple =0.9 µeV, ~Ωprobe =0.45 µeV and ~Γ32 =0.5 µeV. While

extracted values again can only serve as an indication, there is still a definite increase

of T hole2 for Bext =1 T→ Bext =2.3 T. For low magnetic field T hole2 is less than 100 ns

(T hole2 (1T ) ≈15 ns, T hole2 (1.5T ) ≈40 ns) but increases to T hole2 ≈1 µs at Bext =2.3 T.

Especially T hole2 (2.3T ) ≈1 µs can only be seen as a lower bound, as already discussed

for data presented in Fig. 7.13. This increase of T hole2 is consistent with theoretical

predictions [5] and is a direct result of the hyperfine interaction anisotropy, shown

in equation (1.19). However, the exact nature of hyperfine coupling between nuclei

and heavy hole spin can only be extracted by a detailed magnetic field dependency

of accurately measured T hole2 .

Other than using a quantum interference of both hole spin ground states to ex-

tract T hole2 , the CPT-dip can also be utilised as a tool for magneto-spectroscopy.

Figure 7.15 demonstrates the use of the CPT-dip position for extracting the hole

spin g-factor. This method comes with two advantages: first is that the CPT dip

linewidth is not limited by an excited state relaxation, which in the case of this ex-

periment results in CPT-dip linewidths of around 0.2 µeV. For data presented in Fig.
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Figure 7.14: Probe absorption spectra for Bext =1, 1.5 and 2.3 T. Data suggests a mag-
netic field dependency of T2. Fit parameters were ~Ωcouple =0.9 µeV, ~Ωprobe =0.45
µeV and ~Γ32 =0.5 µeV. Increasing Bext from 1 to 2.3 T causes a coherence time
increase by more than one order of magnitude, which is consistent with theoretical
predictions [5].
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Figure 7.15: Extracting the hole g-factor using the hole spin quantum interference.
The narrow linewidth of the CPT-dip allows to determine ghole with far greater ac-
curacy than using the overall transition resonance. A hole spin g-factor of 0.1121
±2.06·10−3 was measured.
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7.13 this led to an increase in measurement quality factor (for example E
∆E

) from

2.2·105 to 3.7·106, when compared to determining ghole via the exciton transition Zee-

man splitting. For the smallest observed CPT width (presented in Fig. 7.7 a), this

ratio increases to 7.2·106. Additionally, it can be controlled optically: for a short

measurement duration the coupling laser intensity could be increased on the cost of

measurement accuracy and vice versa. The second advantage is that the CPT-dip

position does not depend on absolute energies, but on the energy detuning between

coupling and probe laser. When both lasers are frequency locked, a X1+ Λ-system

allows dark state spectroscopy, where the important system parameter is controlled

via a reference frequency generator [146].

7.4 Conclusion

Data presented in this chapter is the first demonstration of a coherent superposition of

hole spins in a single semiconductor QD. The experimental scheme introduced allowed

pump-probe spectroscopy on X1+ in an external magnetic field perpendicular to the

growth direction. Pump-probe spectroscopy on the 3-level Λ-system of X1+ revealed a

narrow linewidth dark state (due to CPT), which was subsequently used for extracting

the hole spin coherence time. Big error bars on the measured T hole2 are the result of

a narrow CPT-dip linewidth (ΓDS ≈0.35 µeV), which approaches the resolution limit

of the experimental setup. The theoretical master equation included coherent and

incoherent interactions as well as pure dephasing terms for the hole and electron spin

states. Spectral fluctuations were included via convoluting the numerical simulation

by a Lorentzian with a linewidth of ΓSF ≈6 µeV. This allowed a theoretical simulation

of all aspects of the probe laser absorption spectrum. Consequently equation (7.9) was

used to extract a upper limit of the hole spin coherence time, giving T hole2 (2.3T ) ≥1

µs with a probability of 40 %.

This is the first successfully extracted coherence time of a single hole spin con-

fined to an InAs QD. It also reveals an important difference between electron- and

hole spin coherence times (T electron2 ≈10 ns [21, 75, 77]), where T hole2 increases with

Bext. Results represent the starting point for many experiments still to be conducted

on single holes in self assembled QDs like studies of T hole2 for different magnetic fields

and different QDs as well as coherent spin rotations. Measuring the temporal damping

characteristics of hole spin rotations might give inside into the mechanisms respon-

sible for the hole spin dephasing [5]. The long T hole2 should also motivate transport

measurements on lithographically defined QDs, which were so far unsuccessful. Fi-

nally, it is necessary to increase the experimental resolution by at least one order of

magnitude for example via frequency locking of coupling and probe lasers. A higher

experimental resolution would allow an exact measurement of T hole2 . Furthermore, an

increased experimental resolution allows measuring the CPT-dip linewidth correctly,
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7.4. Conclusion

which might provide a link between an asymmetry (first hints shown in Fig. 7.7) and

spin-polarisation of the QD nuclei.

It was demonstrated that T hole2 is of the order of several 100 ns, enough for 104

coherent optical spin manipulations (see [22]). This allows efficient quantum error cor-

rections for an optically manipulated q-bit based on single hole spins, completing one

of the remaining points on the road map to quantum computation via semiconductor

QDs [116]. The narrow linewidth of ≈0.35 µeV (85 MHz) opens a domain for reso-

nant QD spectroscopy, enabling applications in metrology with a spectral resolution

of ≈50 MHz.
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Chapter 8

Conclusion

Resonant laser spectroscopy was used to access new quantum-optical fields with sin-

gle QDs. Experiments in this thesis went from measuring exciton populations to

the creation of a coherent QD-exciton↔resonant-laser superposition and finally to a

coherent superposition of two hole spin states. Chapter 4 and 5 showed a direct mea-

surement of QD-exciton populations, but both experiments were not sensitive to QD

wave function dephasing. Chapter 6 went one step further, where different lineshapes

of the 2X0-complex↔resonant-laser superposition revealed weak quantum interfer-

ences. The final chapter then demonstrated the creation of a Λ-system using X1+ in

an in-plane external magnetic field. A Λ-system is at the heart of many quantum-

optical experiments which are based on a coherent superposition of two ground states.

Strong quantum interferences (CPT and EIT) can be observed in this system and its

realisation using single QDs demonstrates the potential of quantum optics in the solid

state.

During these experiments, the relaxation (T hole1 ) and dephasing (T hole2 ) time of a

hole spin were measured for the first time on a single QD. A new microscope system

which allows the collection of resonantly created fluorescence was developed and could

serve as a readout tool for single hole spin states. Combining these experiments would

satisfy the main criteria for a qubit (initialisation, manipulation and read-out) using

a hole spin confined to a single QD.

Theoretical analysis was provided throughout this thesis through a master equa-

tion approach. Here, the Hamiltonians of QD-excitons and of all coherent population

transfer processes were combined into a single Hamiltonian. Non-coherent relaxations

and pure dephasing of excitons were treated via the Lindblad formalism. Coherent

and non-coherent sections of the model were merged into a combined model using the

von Neumann equation.

To draw a final conclusion, each experiment will be reviewed and the experimental

results discussed in the following sections.
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8.1. Hole spin pumping, hole spin relaxation

8.1 Hole spin pumping, hole spin relaxation

A hole spin, when confined to a single QD, was predicted to be well isolated from

disturbing interactions with the QD nuclei spin [18]. Resonant laser spectroscopy on

a single hole spin was introduced in chapter 4. Detecting the QD and resonant laser

homodyne signal in transmission provided a direct measurement for the interaction

strength between the QD X1+-state and the resonant laser field. Combined with the

optical selection rules this experiment enabled the initialisation of single hole spins

with high finesse as well as the analysis of the hole spin relaxation time.

Equation (4.7) provided a numerical model for this experiment, where the only

remaining fit-parameter was the hole spin relaxation time (T hole1 ). The extracted hole

spin relaxation times ranged from 0.25 to 1 ms, depending on the studied QD and the

internal magnetic field strength of the QD nuclei. An external magnetic field of up

to 5 T was applied parallel to the QD growth direction. Remarkably, no big changes

of T hole1 were observed. This allowed the conclusion that indeed, the QD nuclei are

not the limiting factor for T hole1 , since this interaction strongly depends on the overall

magnetic field.

Reported results demonstrate the first successful initialisation of a single hole spin

and the first extraction of T hole1 measured on a single QD.

8.2 Readout of resonantly created exciton-states

Semiconductor QDs combine well isolated quantum-mechanical states, usually found

in atoms, with the vast functionality of solid state technology. After chapter 4 demon-

strated spin initialisation, the second step on the road map to quantum computation

in the solid state is to read out an initialised QD state. This was shown in chapter 5,

where resonantly created luminescence was collected via a dark field microscope. The

challenge here was to suppress the resonant laser strongly enough such that collected

QD emission exceeds collection of all other photon sources. Combining polarisation

and spatial filtering techniques in the microscope head provided a suppression of res-

onant laser light by up to seven orders of magnitude, while keeping changes to the

experiment at a minimum. In the following QD experiment a ratio of 100:1 between

QD photons and resonant laser photons for an unsaturated transition was recorded.

This was a first proof of concept. Further experiments on second order correlations

revealed that especially the QD photon flux has to be increased by at least one order

of magnitude.

The dark field microscope was also used as an attenuator in a two photon absorp-

tion experiment on the 2X0−X0 complex. Emission from 2X0 and X0 was recorded

for resonance between the excitation laser and the two photon energy of 2X0. Again,
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this can only serve as a first proof of concept and the consequently recorded power

dependency did not agree well with theoretical simulations. As in earlier experiments,

the relatively low collected QD photon flux meant that only a few data points could

be recorded until the maximum available laser intensity was reached.

These results show the first collection of resonant fluorescence from a QD using

a spatial and polarisation-filtering based dark field microscope. Earlier experiments

utilised planar waveguides [86] and high resolution spectral filtering of a strongly

driven QD [87], but came with big changes to the experimental setup or did not allow

probing of the unperturbed QD resonance.

8.3 Superposition of excitons and resonant lasers

One step further than creation and readout of a bare QD states is the superposition of

QD excitons via the optical field of a resonant laser. Experiments shown in chapter 6

produce such a superposition, relying on pump-probe spectroscopy. A high intensity

resonant laser, the coupling-laser, drives a QD exciton transition, which results in

new system eigenstates. The recorded probe spectrum revealed classical dressed-

state characteristics, such as anti-crossing [138] and an Autler-Townes splitting [112]

proportional to the electric field of the coupling laser. The biggest Autler-Townes

splitting recorded was ≈70 µeV.

Evidence of quantum interferences were identified when pump-probe geometries

of 2X0 − X0 were swapped. The smallest resolvable Autler-Townes splitting when

probing the | 0〉 ↔ X0〉 transition while coupling | X0〉 ↔ 2X0〉 was 3.6 µeV. For

the opposite geometry (probing | X0〉 ↔ 2X0〉 while coupling | 0〉 ↔ X0〉), no

Autler-Townes splitting smaller than 5.6 µeV could be resolved. This clear lineshape

difference between both geometries could only be explained via quantum interferences,

also discussed analytically by Agarwal [136].

Fitting experimental results to numerical simulations confirmed quantum inter-

ferences as the cause for the different dressed states lineshapes. The extracted Rabi-

flopping period between two exciton states was 6.6 ps for the highest coupling laser

intensity.

The strong interaction between QD exciton and coupling laser allows several new

experiments in QDs. One application is the cancellation of the X0 fine structure split-

ting using only optical techniques [132]. This would allow the creation of entangled

photons, which serve as a foundation for quantum information processing in single

QDs [135]. Fast exciton Rabi-oscillations with 6.5 ps periodicity allows ≈ 102 coher-

ent manipulations of this system, sufficient to establish quantum-error corrections.

Other than these purely quantum information processing applications, one could in-

crease the magnitude of quantum interferences by changing individual exciton decay
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rates [140] [141]. Stronger quantum interferences could enable a new class of quantum

optical experiments using semiconductor QDs, for example slow light.

8.4 Coherent superposition of hole spin states

A prominent system in quantum optics is a three level Λ-system, where two ground-

states are coupled to one common excited state. Here, strong quantum interferences

between the two ground states (CPT) can be observed [40], which manifest themselves

as a narrow dip in the normal Lorentzian absorption spectrum. Spectroscopy on this

dip allows the extraction of the ground state coherence time. In chapter 7 such a

system was realised using a X1+ in an external, in-plane magnetic field. Again, one

laser was used to manipulate, a second laser to probe the system. The reflected

homodyne signal was polarisation filtered before impinging on a PIN-detector. The

recorded probe spectrum showed a narrow dip in the exciton absorption spectrum,

already reaching zero absorption contrast for low coupling laser intensities. CPT-dips

were recorded at magnetic fields of 2.3 and 3 Tesla. Typical CPT-dip linewidths of

≈0.5 µeV exceeded the resolution of the wavemeters used (0.3 pm or 0.4 µeV). In

order to increase the resolution, the probe laser wavelength was approximated by

extrapolating the wavelength between changes of the last wavemeter digit. This led

to an increase in the experimental error bar.

Fitting the obtained CPT-dips via the developed master equation (equation (7.9))

allowed extracting the hole spin coherence time, T hole2 . However, big experimental

error bars only allowed giving a lower bound for T hole2 combined with a certain confi-

dence. For example T hole2 ≥0.49 µs with a probability of 70 % and T hole2 ≥1 µs with a

probability of 40 %. This result demonstrates a fundamental difference between T hole2

and T electron2 . While electron spin coherence is limited via the contact-hyperfine inter-

action, heavy-hole spin coherence can be manipulated and increased via an external

in-plane magnetic field [5].

Coherence times of the order of 1 µs show the big potential of hole spins for quan-

tum information processing and for quantum optics in single QDs. Future experiments

first have to increase the experimental resolution, for example using frequency locking

techniques [146]. Recording a magnetic field dependency of T hole2 as well as the tem-

poral damping characteristics of coherent hole spin rotations should provide insight

into hole spin dephasing mechanisms [5]. The extracted hole spin coherence time of

several 100 ns allows ≈ 104 coherent spin rotations before dephasing (using 10 ps per

rotation, [22]), offering great potential for quantum information processing using sin-

gle hole spins confined to a InGaAs QD. The narrow CPT-dip linewidth allows highly

accurate applications in metrology as well as realising quantum optical experiments

like slow light.
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Chapter 9

Outlook

Resonant spectroscopy on single QDs has been used throughout this thesis. Funda-

mental hole spin time scales (relaxation and decoherence), quantum interferences in

three level ladder and Λ-systems and new quantum optical techniques were demon-

strated. Pushing all these experiments one step further requires improvements of the

current experimental setup as well as its extensions by completely new devices.

Selection rules for optical excitation and electron spin precession were used in

chapter 4 for high finesse hole spin initialisation. Applications in quantum information

processing require fast and high finesse initialisation of long lived quantum states. An

extension of the experimental setup with pulsed excitation sources could allow a new

spin pumping scheme: population transfer could then be based on π-pulses, where

a single pulse inverts the population along the addressed transition. There are two

ways to include pulsed excitation: The first uses optical pumping of exciton transitions

(see Fig. 9.1 a)), with earlier experiments demonstrating population inversion with

a ≈10 ps pulse [22]. Combining this with spin initialisation using a hole spin Λ-

system, this would allow hole spin initialisation with only two π-pulses. The second

possible experiment addresses the transition between |⇑〉 and |⇓〉 directly using a

GHz frequency field (see Fig. 9.1 b)), already demonstrated on electron spins using

continuous GHz excitation [143]. An equivalent experiment should be possible for a

heavy-hole system [144], utilising spin orbit coupling to drive the otherwise forbidden

| 3
2
〉 ↔| −3

2
〉 transition. Both techniques rely on the system being prepared in one

hole spin state at time t =0. Both techniques would increase the initialisation rate

by orders of magnitude.

A new experimental approach for read-out of resonantly created states in single

QDs was introduced in chapter 5. Polarisation and spatial filtering techniques resulted

in a ratio of 100:1 signal to background ratio. This was sufficient for a measurement

of the two level-saturation, but especially the g2(τ) measurement was impractically

long due to the poor QD luminescence collection efficiency. One approach to improve
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Figure 9.1: Schemes for fast hole spin initialisation. Both schemes rely on an initial,
long preparation pulse, projecting the system into |⇓〉. a) uses two subsequent optical
π-pulses, which quickly pump the system first into |⇑⇓, ↑x〉, then into |⇑x〉. The second
scheme directly drives the |⇓〉 ↔|⇑〉-transition using a radio frequency field and spin
orbit coupling [144].

the performance would be the use of bigger diameter aspherical lenses. Consequently

shadow masks could be designed slightly bigger, reducing beam spreading (see equa-

tion (5.3)) and thereby improve the spatial filtering performance. Additionally, the

ratio between opaque and transparent shadow-mask areas could be hugely improved:

The ratio between transparent and opaque area of the collection optics in chapter 5

was
d20
d2l

= 3.62

2.42
=2.25. With readily available big diameter aspherical lenses, this could

be improved to
d20
d2l

= 252

32
=70, where a bigger opaque annulus area is already included.

A big increase in collection efficiency of QD-luminescence should be the result.

This improved optical layout would allow several new experiments, since measure-

ment duration and signal to noise of auto correlations would largely benefit. Mea-

suring g2(τ) of a resonantly excited exciton could show g2(0)→ 0. Furthermore, the

lower luminescence intensity of p-doped samples (approximately lower by one order of

magnitude) makes resonance fluorescence experiments on positively charged excitons

impractical using the current setup. An improved collection efficiency and a better

signal to noise ratio would overcome this limitation. Non destructive readout of res-

onantly created hole spins would be possible, realising a hole spin qubit based on all

optical techniques.

Suggested changes to the dark field microscope do not require a completely new

design, hence offer a straightforward way to an improvement which allows several new

experiments.

QD exciton states in intense fields were examined in chapter 6. One final conclusion

of this chapter was the presence of quantum interferences in the 3-level ladder system.

The nature of these quantum interferences is determined by the ratio between exciton
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and biexciton decay: (ΓX0 ≈ 0.65 · Γ2X0). Changing this value could modify the

strength and the sign of quantum interference (see Fig. 6.12). A ratio of κ =0.65

between decay rates is already enough to show quantum interferences, while increasing

this ratio further would intensify destructive quantum interference. A consequence

would be an increase in the group velocity (ng = ∂n
∂ω

) close to the resonance centre,

which is the basis for realising slow light.

Exciton decay rates can be altered using the Purcell effect [147]. Here, the emitter

is embedded in a cavity which strongly alters the photon density of states and thereby

influences the recombination frequency. Embedding QDs in cavities is a well estab-

lished technique [101, 148, 149], and Purcell factors of a six-fold reduced lifetime [3]

have been reported. Combining a cavity in the experimental setup of chapter 6 would

allow control over sign and magnitude of quantum interferences in the 2X0 three level

ladder-system.

Quantum interferences of a much stronger kind were observed in chapter 7 using

a hole spin based Λ-system. The experiment revealed a highly coherent hole spin

state as well as ultra narrow CPT-dip linewidths. However, the hole spin coherence

time T hole2 was extracted using the ‘visibility’ of the CPT-dip. For an accurate T hole2

measurement, the coupling laser power has to be reduced until the CPT-dip visibility

approaches zero. In this low coupling power regime the CPT-dip becomes too narrow

to be measured accurately by standard resonant spectroscopy.

There are two relevant quantities to hole spin coherence: first is the ensemble co-

herence time (T ∗hole2 ), the second is the temporal characteristics of hole spin dephasing.

An accurate measurement of T ∗hole2 requires a much improved energy resolution for

the detuning between the coupling and probe laser. Lineshape spectroscopy of the Λ-

system dark state only depends on the detuning between both involved lasers, which

was demonstrated in chapter 7. This already points towards a solution: rather than

stabilising both laser using highly accurate (and expensive) wavemeters, there are

electronic schemes which stabilise the frequency detuning between two lasers using

their beat signal [146]. These schemes can be designed to be highly flexible and offer

a detuning accuracy of ≈1 MHz, corresponding to ≈0.004 µeV. This represents an

improvement of around three orders of magnitude, which would be sufficient for an

accurate determination of T hole2 .

The temporal characteristics of hole spin dephasing can be measured using co-

herent hole spin rotations, already demonstrated for electron spins [22]. In such an

experiment, the envelope function of the spin rotation describes the temporal decay

of the quantum mechanical phase. Spin rotations can be realised using either far de-

tuned optical pulses which drive both optical transitions [22], or driving the transition

between |⇑〉 and |⇓〉 directly with pulsed GHz electric fields [144].
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9.1. Frequency locking of pump and probe laser

As mentioned before, chapter 7 only gave an estimate of T hole2 . Since this was

the first measurement of the hole spin coherence time, it is of great importance to

improve this experimental setup. An electronic frequency locking of two diode lasers

scheme was already designed and tested, but insufficient experiments on single QDs

were conducted to produce reliable results so far. Therefore, the electronic scheme

and first results on hole spin Λ-system spectroscopy using frequency offset locking will

be presented in detail.

Pulsed excitation is needed for two experiments: direct measurements of hole spin

dephasing and the fast hole spin initialisation experiment. Due to this important role

for future experiments, a short overview of pulsed excitation and the required values

of experimental parameters will also be given.

9.1 Frequency locking of pump and probe laser

Frequency offset stabilisation via a side of filter technique is commonly used in spec-

troscopy of cold atoms [146]. However, applying this technique to spectroscopy of

solid state systems comes with a new set of challenges. Other than with cold atoms,

overall transition energies of self assembled InGaAs QDs vary by ±40 meV (±1013

Hz). Zeeman splitting for spins in a magnetic fields ranges from 1 GHz/Tesla up to 15

GHz/Tesla, depending on magnetic field direction as well as on the examined carrier

(electron or hole). Since a CPT experiment on a single carrier spin is always based

around its Zeeman split ground-state, a frequency offset locking technique has to re-

alise great flexibility and tuneability. Spectroscopy up to a few Tesla, corresponding

to ≈15 GHz, has to be possible while being continuously tunable to record the entire

exciton spectrum.

In order to satisfy the flexibility, a frequency mixing technique is used which limits

the demands of a wide frequency bandwidth to only one component, the frequency

mixer. For greater tuneability the design relies entirely on an analogue scheme, which

allows continuous tuning of the frequency offset from values of 0.25 GHz up to 18.5

GHz.

The goal of a frequency offset locking scheme is to lock the energy of a slave

laser relative to a master laser. The setup built for the highly tunable and ultra wide

bandwidth frequency offset locking scheme is shown in Fig. 9.2. A direct measurement

of the frequency offset between master and slave is produced using their beat frequency

(νb), provided by a fast photo diode (New Focus 1554-A) (see section A). A frequency

mixer (Marki M2-0026) mixes νb with a reference signal (νr) provided by a microwave

source (Agilent E8257D), creating the locking signal (νl = νr − νb) (see section B).

Setting νr always ν0 higher than the target frequency offset decouples νl from the

desired beat signal frequency band width. This allows all electronics following the
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9.1. Frequency locking of pump and probe laser

Figure 9.2: Laser frequency offset locking. The setup is divided into sections A to
E, a) shows the schematic including all electrical components, b) describes how the
error voltage is created from the beat and reference signal. The beat signal of master
and slave laser (section A) is mixed down via the reference frequency to νl ≈1.5 GHz
(section B). After signal conditioning electronics (section C and D) the signal is split
in two, one part passing a constant attenuator of -40 dB, the other a high pass filter
(section E). Both outputs are connected to power detectors, producing a DC voltage
signal depending on the signal amplitude. The error signal produced by the lock box
is DCerror = DCA −DCB. A change in frequency results in change of DCerror. Gain
and DC offset are applied to DCerror to create a feedback to the slave laser piezo. By
changing the reference frequency, the frequency offset lock point moves by νr−ν0. This
design allows a vast tuneability while keeping the frequency for almost all electronic
components at 1.5 GHz. Abbreviations are MC: Mini Circuits, PD: photo diode, BA:
buffer amplifier.
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9.1. Frequency locking of pump and probe laser

frequency mixer to be designed around the operating frequency ν0, only the frequency

mixer has to satisfy a wide bandwidth. The mixed signal is cleared of components

with frequencies of multiple νl by a low pass filter (Mini Circuits VBFZ-925+). A

buffer amplifier (Mini Circuits ZRL-1150LN+) is used for further signal conditioning.

The next section allows monitoring the locking signal strength and frequency, while

also producing a signal of constant amplitude. Therefore the signal is split into

two equal components using a power splitter (Mini circuits ZX10-2-20). One arm

is connected to a power detector (Mini Circuits ZX47-40LN) or a spectrum analyser

(Anritsu MS2667C), the other to a frequency prescaler (RF Bay FPS-2-18). The

frequency prescaler produces a square wave signal of half the input frequency, but

with the output amplitude independent from the input amplitude as long as input

power is kept above a threshold (all section C). An additional conditioning section

follows. A low pass filter (Mini Circuits VLFX-780) blocks higher frequency Fourier

components due to the square wave and converts it back into a sine wave. Again,

a buffer amplifier (Mini Circuits ZRL-700+) increases the signal amplitude (section

D). In order to produce an error signal which is a function of detuning from the

target frequency offset (νl = ν0 + ∆ν), the conditioned signal is split by an additional

power splitter. One output (ref.A) is passed through a high pass filter (Mini Circuits

SHP-800+), the other (ref.B) through constant attenuators (Mini Circuits VAT-10

and VAT-30). While the transmitted power of ref.A changes strongly with frequency,

hence is a function of ∆ν, the transmitted power of ref.B is independent from νl.

The two references can now be used to determine a locking point, given by a certain

power difference between ref.A and B. Therefore ref.A and ref.B are each connected

to additional power detectors (all section E). The DC voltage signals of the power

detectors (DCA, DCB) are used as input for a lock box (New Focus LB1005), and

an error signal (DCerror=DCA-DCB) is created. Using the lock box offset and gain

features, locking point and gain between error and feedback signal can be adjusted.

The feedback signal is connected to the slave laser piezo controller and will correct

for any deviations from the target offset frequency by ∆ν.

Tests and analysis of the electronic’s performance is described in Fig. 9.3. By

modulating the slave laser frequency around the target frequency, one can determine

the error voltage response vs. frequency offset. The error signal is recorded for several

νr and results are shown in Fig. 9.3 a). The overall error signal response to a detuning

of ∆ν remains identical in terms of shape as well as amplitude for νr reaching from

1.8 until 20 GHz. Example scans are shown for νr =3, 12 and 18 GHz in black, red

and blue, respectively. For a detuning of ∆ν ≤ ±0.3 GHz, the error function has

no zero crossing other than the locking point, allowing locking inside this window.

The origin of the additional peak in error voltage, located ≈0.2 GHz before the zero

crossing, is not understood at this point. The slave laser is then frequency locked to
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9.1. Frequency locking of pump and probe laser

Figure 9.3: a): Error voltage response as the frequency offset is modulated around
the lock-point. The reference frequency for the black, red and blue data was set at 3,
12 and 18 GHz, respectively. b): The black circles show laser beat frequency for the
locked system at different reference frequencies. The fit gives an offset of 1.502 GHz
and a gradient of 1.0002. The blue circles show the lock-point deviation from the fit.

the zero crossing for multiple νr. Beat signal frequency and linewidth are analysed via

a spectrum analyser and statistical information is gained from three measurements.

The lock-point has an almost perfect linear correlation to νr with a gradient of 1.0002

and an error of less than ±4 MHz over the whole spectrum. The offset ν0 between

reference and beat signal is 1.502 GHz.

To estimate the temporal lock-point stability the beat signal is recorded over a

window of several hundred seconds as well as several hours. The beat signal is recorded

with a spectrum analyser with an averaging time of 1 s. Temporal drift under locked

condition is less than 2 MHz, compared to 200 MHz in 150 seconds without locking.

In order to quantify the response to reference frequency modulations, the master laser

is modulated via a square voltage of different amplitude. Temporal characteristics of

the error signal are then recorded. After an initial increase in error voltage, due to

the limited bandwidth of the slave laser piezo control, the error signal quickly returns

to zero. For a modulation amplitude of 71.5 MHz the error signal returns to zero with

a settling time of 9.5 ms.

A two MHz accuracy for the coupling and probe laser frequency offset is an im-

provement by a factor of ≈250, which should be sufficient to measure the CPT line-

shape of a hole spin Λ-system. Figure 9.4 a) presents the probe absorption spectrum,
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9.1. Frequency locking of pump and probe laser

Figure 9.4: Probe spectrum of a hole spin Λ-system, recorded with frequency locked
probe and coupling lasers. a) Shows the complete resonance lineshape with a linewidth
of 41 MHz. Both laser were locked the entire measurement time. Data away from the
CPT-dip was recorded with a resolution of 0.1 GHz (0.4 µeV), with the resolution
close to the CPT-dip was 0.002 GHz (0.004 µeV). The inset presents data zoomed in
on the CPT-dip. Part b) presents a scan using lower pumping powers, resulting in a
CPT-dip linewidth of only 16.3 MHz (5 neV).

measured with coupling and probe laser frequency locked during the entire measure-

ment. The coupling laser (master) was energy stabilised while centered on resonance

with an accuracy of ±1.5 pm using a wavemeter (Burleigh WA-1650) and a LabVIEW

program. The frequency offset between coupling and probe laser was stabilised by

the frequency locking electronics. Coupling and probe laser intensities were 2 and 1

nW, the integration time was 5 s. Figure 9.4 a) shows the entire probe spectrum.

The experiment starts with locked lasers and the reference frequency is increased step

by step. Away from the CPT-dip position, the step size was set at 0.1 GHz in or-

der to shorten the overall measurement time, while it was 0.002 GHz close to the

CPT-dip. The frequency locking electronics automatically changed the probe laser’s

energy, following the reference frequency. This measurement makes the elegance of

this stabilisation scheme apparent: the important frequency offset is controlled and

tuned easily by just changing the electronic reference frequency (Agilent E8257D)

using a LabVIEW program. All the critical feedback is performed automatically by

the electronics, independent from the PC controlling the experiment and with much

higher speed than the experimental integration time. A zoomed in plot of the CPT-

dip is shown in the inset of Fig. 9.4 a). The high resolution is sufficient to clearly

resolve the CPT-dip lineshape.

Experimental data shown in Fig. 9.4 a) is only one example. CPT-dip linewidths as

narrow as 16.3 MHz were recorded (see Fig. 9.4 b)), showing the potential of hole spins

for metrology. Further experiments on hole spin Λ-systems should allow extracting an

accurate value for T hole2 . The introduced frequency offset locking scheme produces the

expected results and performs well over the entire measured range. One improvement
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9.2. Time-resolved spectroscopy

could be the use of a smaller frequency offset (ν0) between laser beat frequency (νb)

and reference frequency (νr). This would allow measurements of detunings smaller

than 0.25 GHz. It is also worth emphasising that the introduced locking scheme allows

tuning of the frequency offset in both directions (0.25 GHz→ νl →18.5 GHz as well

as 18.5 GHz→ νl →0.25 GHz). The upper frequency limit (18.5 GHz) was set by the

bandwidth of the electronic reference (0→20 GHz).

9.2 Time-resolved spectroscopy

All experiments presented so far in this thesis are measurements using continuous

wave excitation. Using this technique it is not possible to create an arbitrary super-

position of QD states. The measured value is always a steady state solution, hence

the population distribution is dictated by relaxation or decoherence of the involved

QD states. Two main experiments, which would otherwise be a natural progression

to experiments reported here, cannot be realised using this excitation method: fast

hole spin initialisation and coherent spin rotations. Both rely on pulsed excitation and

were described in greater detail earlier this chapter. Two main techniques can be used

for pulsed transitions between single hole spin states: directly driving the transition

via a GHz electromagnetic field, or pulsing optical transitions in the introduced hole

spin Λ-system.

A big advantage of optical pulsing is the short pulse duration achievable. One can

either use naturally pulsed systems like mode-locked lasers, which have typical pulse

durations as short as a few femto seconds. The other method is using electro optical

modulators, which offer pulse durations on the order of 20 ps. Optical coherent spin

rotations and fast hole spin initialisation are both sensitive to the detuning of the

excitation source relative to the transition. The effective angular Rabi frequency for

a detuned laser is given by [22]:

Ωeff =
Ω2

∆
, (9.1)

where Ω is the angular Rabi frequency for the excitation source on resonance and ∆

the detuning.

Hole spin initialisation would be fastest for ∆ =0. This should allow an initiali-

sation speed of ≈50 ps (see angular Rabi frequency reported in chapter 6) using an

electro optical modulator to pulse the exciting laser.

Coherent hole spin rotations in a Λ-system can only be realised if the fast dephasing

exciton level is avoided. For this, the detuning in equation (9.1) has to be large. In

order to extract high quality data multiple 2π hole spin rotations (ideally more than

ten) have to be possible in the expected dephasing time to allow a reliable fit to

experimental data. This requires a complete hole spin rotation in roughly 50 ns for
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Figure 9.5: Coherent hole spin rotations using optical excitation. The rotation angle
was calculated via equations (9.1), (9.2) and (9.3). The detuning ∆ between excitation
source and transition avoids populating the excited state, but reduces the rotation
frequency. The pulse duration was τ =5 ns.

coherence times reported in chapter 7. To get sufficient resolution the optical pulse

duration should not exceed 5 ns. The reported coupling coefficient between transition

and excitation source (see chapters 5, 6 and 7) is

Ω = β
√
P ≈ 104 ·

√
P , (9.2)

hence the hole spin rotation angle per pulse is given by

Θ =
(β
√
P )2

∆
· τ. (9.3)

Θ is the hole spin rotation angle, P the laser power and τ the pulse duration. Using

equation (9.3), the possible number of complete coherent hole spin rotations using

τ =5 ns pulse are shown in Fig. 9.5 for different excitation powers and different

detunings ∆. Such long pulses can be produced by either electro optic modulators or

pulsed laser diodes. According to these calculations, approximately 15 coherent hole

spin rotations by 2π should be achievable with a realistic excitation power of 10 mW

and a detuning of five times the angular Rabi frequency. A similar experiment on an

electron spin in single InGaAs QDs has been realised [22].

Coherent spin rotations can also be realised by driving the |⇑〉 ↔|⇓〉 directly. The

transition energy is given by the hole spin Zeeman splitting and can reach up to

several hundred GHz for fields less than 5 Tesla. Continuous wave experiments on

an electron spin in a single, self assembled QD [143] represent a proof of concept.
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9.2. Time-resolved spectroscopy

However, the situation for driving the hole spin resonance directly is different, since

the angular momentum of a heavy hole is ±3
2

in InGaAs. The difference of three

angular momentum quanta cannot be provided by a single photon. Theoretical inves-

tigations suggest that spin-orbit coupling combined with an GHz field can still induce

a transition between |⇑〉 and |⇓〉 [144].

One disadvantage of direct hole spin manipulation using a GHz field is that switch-

ing times for GHz pulses are relatively slow when using macroscopic antennas (≈250

ns [51]). This makes it an inadequate solution for this experiment. Also, it first has

to be shown whether a GHz field allows sufficient by 2π to extract reliable temporal

hole spin dephasing characteristics. One advantage for coherent hole spin rotations is

that a population of the quickly dephasing excited state is avoided.
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