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Abstract. — 1In this short note we confirm the relation between the generalized abc-
conjecture and the p-rationality of number fields. Namely, we prove that given K/Q a real
quadratic extension or an imaginary Ss-extension, if the generalized abc-conjecture holds
in K, then there exist at least ¢ logX prime numbers p < X for which K is p-rational, here
c is some nonzero constant depending on K. The real quadratic case was recently suggested
by Bockle-Guiraud-Kalyanswamy-Khare.

Introduction

Let K be a number field and let p be a prime number. To simplify, we assume p odd. De-
note by K, the maximal pro-p-extension of K unramified outside p; put G, := Gal(K,/K).
By class field theory, the pro-p group G, is finitely generated and one knows, since
Shafarevich and Koch, that moreover G, is finitely presented (meaning that H*(G,,F,)
is finite). In fact, G, may be pro-p free, for example when K = @Q, or when K is an
imaginary quadratic field (when p > 3) and p doesn’t divide the class number of K, or
when K = Q(¢,) for p regular primes, etc.

A number field K for which G, is pro-p free is called p-rational ([25]). Observe that K is
p-rational if and only if the Leopoldt conjecture holds for K at p and the torsion .7, of
the abelianization G&* of G,, is trivial (see [28], or [27, Chapter X, §3]).

The study of .7, and of the p-rationality started in the beginning of the 80’s with Gras,
Nguyen Quang Do, Movahhedi, Jaulent, and their students. Since the literature is rich:
see for example [24], [26], [14], [21], [25], [22], [31], [8] etc. See also [13, Chapitre
IV, §3 and §4] for a well-detailed presentation of .7,, of the Leopoldt conjecture and of
p-rational fields. In the spirit of our paper, let us mention here the works of Byeon [5]
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and Assim-Bouazzaoui [1] where they showed the infiniteness of 3 and 5-rational real
quadratic fields.

Let us also precise at this level that a recent series of papers in different topics in
number theory showed the interest of p-rational fields: Goren [7], Greenberg [16],
Bockle-Guiraud-Kalyanswamy-Khare [4], David-Pries [6], Hajir-Maire [17], Hajir-Maire-
Ramakrishna [18], etc.

Assuming Leopoldt conjecture (for K at p), the p-rationality of K is therefore equivalent
to the nullity of .7,. Observe that .7, ~ H?*(G,,Z,)* for a cohomological point of view (see
[29]). When the p-Sylow of the class group of K is trivial, the quantity .7, is isomorphic
to the torsion of the quotient of the units of the p-adic completions K, of K by the closure
of the global units. Moreover, if we assume that no K, contains the p-roots of the unity
(which is always the case when p > [K : Q] + 1), then the triviality of .7, is equivalent
to the triviality of the normalized p-adic regulator defined by Gras [11, Definition 5.1].
Recently, Gras [9], [10], Pitoun-Varescon [30], Barbulescu-Ray [2] published a series of
papers more concentrated on the computations of .7,, and on some heuristics. In [12,
Conjecture 8.11], Gras proposed the following conjecture:

Conjecture (Gras). — Let K be a number field. Then for large p, K is p-rational.

This conjecture is in the same spirit of the Wieferich prime numbers problem. Indeed,
given an odd prime number p, to compute the p-valuation of 2P~! — 1 is equivalent to
compute the normalized p-adic regulator of the 2-units of Q. In particular, in this case the
nontriviality of the normalized p-adic regulator is equivalent for p to verify the congruence
2P~1 = 1(mod p?).

In [32] Silverman showed how the Wieferich prime numbers are related to the abe-
conjecture. Let us be more precise. Given an integer o € Q*\{#1}, Silverman proved
that if the abc-conjecture holds then as X — oo

#{prime number p, p < X, o' # 1(mod p?)} = ¢ logX,

where ¢ > 0 is some absolute constant. See also [15], and [33] for a generalization of
Wieferich primes in number fields.

Observe now that the generalized abc-conjecture has already been used in the context
of Iwasawa theory. Indeed in [19] Ichimura gave a relationship between the Greenberg
conjecture and the abc-conjecture. A consequence of his work is that, for example, for
any real quadratic field K if the generalized abc-conjecture holds in K, then the set of
primes p for which K is p-rational, is infinite. See also [4].

The goal of our work is to precise the quantity of such primes p, greatly inspired by the
computations of Silverman.

Our main result involves the isotypic subspaces 7X of 7. Let us observe here that the
authors studied previously in [23] such cutting and the arithmetic consequences of the
nullity of some ZX.

Let K/Q be a Galois extension of Galois group G. Let us fix an odd prime number
p 1t #G. For an irreducible Q,-character ¢ of G, let r,(Ex) be the ¢-rank of Q, ® Fk,
where Ex denotes the units of the ring of integers 0k of K. Let us also cut .7, by its
isotypic subspaces Z}", and denote by r,(.7,) the ¢-rank of .7,. Observe that, assuming
Leopoldt conjecture, the number field K is p-rational if and only if r4(.7,) = 0 for all



irreducible Q,-characters ). Moreover we will see that for p » 0, 74(.7,) < ry(Ex) for

all .

We will then focus on some special units u of Ex: we denote by S the set of algebraic
integers v € Q having no conjugate on the unit circle.

Here we prove:

Theorem A. — Let K/Q be a Galois extension of Galois group G and let x be an
wrreducible Q-character of G such that the x-component of Q ® Ex contains some unit
u € S. If the generalized abc-conjecture holds for K, then as X — oo

#{prime number p < X, r4(7,) < ry(Ex) for some irred. Q,—char. ¢|x} > ¢ logX,

for some constant ¢ > 0 depending on K.

(Of course, in Theorem A one considers only prime numbers p  #G.) As consequence
we obtain the following result (the real quadratic case was suggested in [4]):

Corollary. — Let K/Q be a real quadratic field or an imaginary Ss-extension. If the
generalized abc-congjecture holds for K, then as X — oo

#{prime number p < X, K is p—rational} > ¢ logX,

for some constant ¢ > 0 depending on K.

Remark 1. — It is well known that Leopoldt conjecture holds in the situations of Corol-
lary, but we don’t assume Leopoldt conjecture in Theorem A.

Let us add one additionnal remark about the units in S.

Remark 2. — The following observations will be useful for us:

— an unit uw # 1 for which all the conjugates are real is in S;
— every cubic field contains some unit u € S;
— Pisot numbers are in S.

See also [3] on the abundance of Pisot units.

Our work contains two sections. In the first one, we introduce the objects we need. In
the second section, we give the proofs of our results.

1. The objects

We start with a Galois extension K/Q of degree m and Galois group G. We denote by N
the norm in K/Q.

Let Ok be the ring of integers of K, Ex be the units of Ok, and ux be the group of the
roots of the unity of K.

Let p be an odd prime number. In all that will follow, we suppose that:
(i) pt #G,
(74) p is unramified in K/Q,
(#7i) p does not divide the class number hgk of K.
One excludes this way only a finite set of prime numbers p. In particular, there exists an
explicit prime number py such that every p > p satisfies (i), (i¢) and (7).



1.1. p-rational fields and isotypic components. —

1.1.1. Let S, be the set of places of K above p. For v € S, denote by K, the completion
of K at v, by O, the ring of integers of K,, and by =, an uniformizer of K,. Then the
p-completion &k = Z, ® Ex of Ex embeds diagonally, via ¢, in %), := Hvesp U}, where
%} :=1+ 7,0, is the group of principal units of K,. Observe that here %, ~ Zy,'. By
p-adic class field theory (and due to the fact that p  hk), the group ng is isomorphic
to %,/t(8x). Then, assuming Leopoldt conjecture for K at p (meaning here that ¢ is
injective), the number field K is p-rational if and only if %,/.(ék) is without torsion.

1.1.2. Observe that as p is unramified in K/Q, we also get that p 1 |uk|, and as p t #G,
the character (as G-module) of & is equal to the character of Q, ® (Q® Ex) ~ Indf,_1,
where D, is the decomposition group of an archimedean place in K/Q and where 1 is
the trivial character. In particular, &k is a submodule of the regular representation.

To be complete, %, is isomorphic to the regular representation (here %, has no nontrivial
root of unity).

1.1.3. Let us fix an irreducible Q-character x of G. Let Q[GJey ~ M, (D) be the simple
algebra of Q[G] associated to x, where D is a skew field of degree s3 over its center (the
integer s, is the Schur index of x). Then x = s, >, ¥, where the sum is taken over
irreducible Q,-characters ¢ dividing x (here p { #G).

Let E¥ be the y-component of the Q[G]-module Q ® Fk, then the character of Ef is
written as ¢,y for some ¢, € {0,---,n,}. Given an irreducible Q,-character 1|x, the
integer s,t, is then the ¢-rank r,(Ex) of Q, ® Ex.

If M is a Z,[G]-module of finite type, the t-rank r,(M) of M is defined as
dimg, (MY /(M?)P).

1
ro(M) =
#(M) deg(v))
As seen before ry(Ex) = 14(8k), obviously ry(&k) = ry(¢(&k)), and Leopoldt conjecture
is equivalent to the equality ry(&k) = ry(e(8k)) for every x and 1. Observe that one
knows that r,(¢(&k)) = 1 when r4(8k) # 0 (see [20]).

Remark 1.1. — When G is abelian, one has 7 (k) < 1.

As seen before, with all the assumptions, the torsion of %,/t(ék) is isomorphic to .7,.
Thus, 74(7,) < ry(ék). If for every |y the ¢-rank of %,/1(&k) is maximal, meaning
ry( ) = ry(Ek), then necessarily, for every unit x € EY such that z = 1(mod p) for all
p|p, one must have x = 1(mod p?) for all p|p.

Lemma 1.2. — If there exists an unit uw € EY such that w = 1(mod po) but u #
1(mod p?) for some polp, then ry(T,) < ry(&k) for some ¥|x.

Proof. — Put x = uN®)~1 e EX where N(p) = #0k/p. Observe that x = 1(mod p)
for every p|p (the extension K/Q is Galois) but, easily, one also has z # 1(mod p3). We
conclude with the small discussion above. ]

1.2. The generalized abc-conjecture. — See [34]. If [ Ok is an integral ideal, let
us denote by Rad(I) the following ideal:

Rad(I) = | [N(p),

pll



where the product is taken over prime ideal p dividing I and where as usual N(p) =
#O /p is the absolute norm of p.
The generalized abc-conjecture for K states that for any € > 0, there exists a constant
Ck. > 0 such that the inequality :

Hmax{\a!v, blo, |clo} < Ck.- (Rad(abe))'

holds for all nonzero a,b,c € Ok verifying a + b = ¢, (a,b) = 1, where the product is
taken over all absolute values of K and where | - |, denotes the normalized norm of K,
(such that [, |z|, = 1 for all z € K*).

Here we use it in the case where b = uy and ¢ = wu; are two distinct units of K and
a = u; —ug : for every € > 0, there exists a constant Ck . such that for all u; # uy € Ex,
one has

|N('U,1 — U2)| < CK,ERad((ul — 'U/Q))1+€.

2. Proofs

2.1. As explained in Introduction, some part of the proof is greatly inspired by [32].
Let K/Q be a Galois extension of degree m. Consider the number field L := K(¢{) where ¢
is a primitive nth-root of 1. The extension L/Q is Galois of degree O(p(n)).

Let T, be the set of integers j € {1,---,n — 1} coprime to n. We denote by ®, the
nth cyclotomic polynomial: ®,,(u) = H (u — ¢7). The polynomial ®, is of degree p(n).

J€Ty
Thereafter, we will focus on integer n such that ¢(n) > 3n. Recall Lemma 6 of [32]:
1 6 1
#n < X, pln) > Tn) > (5 — 1) X + Oflog X),

We start with the key lemma extending Lemma 5 of [32].

Lemma 2.1. — Let ue Ex n'S. Then there exists some k € Z~q such that
IN(@,,(u"))] = exp(en),
for n such that p(n) = n where ¢ > 0 1s a constant depending on u and k.

Proof. — As u € S, there exists an embedding ¢ : K < C such that |o(u)| = a > 1, for
some real a. Hence, for k € Z-q, we get |o(u¥)| = a*, and then |o(u*) — 7| = a* — 1.
Let us choose an another embedding 7. We want to give some "good” lower bound for
|7(u*) — ¢7]. As u €S there is only two situations.

o If |[7(u)| < 1, then clearly for sufficiently large k, we get

m(u") = ¢ = 1= |r(Wh)] =

N[ —

o If |7(u)| > 1, for sufficiently large k, we get |7(u*) — (7| > 1.
Putting all of this together, we obtain

H H joi(u*) — {7 = ((ak — 1)27m+1)¢(n) 7

i=1 jeTn,



Consequently, by taking sufficiently large k, we get that for every n with ¢(n) >
N(@,(u")) = exp(en),

where the 0;’s are the embeddings of K in C and where ¢ > 0 is some constant (depending
on u, k and m). O

1
27’L

Suppose now that v € Fx N S is such that
IN(®y(u))| = exp(cn),

for every n such that ¢(n) = +n (which is always possible by Lemma 2.1).

Let us write (v — 1) = I,,J,, with I, and J, relatively prime and where if p|I,,, then
p? { I, and if p|J, then p?|J,. Then, if we write u” — 1 + 1 = u", the generalized
abc-conjecture implies that

IN(u" —1)| k. Rad(I,Jn) "¢ <k (N(T)N(T,)Y2) .
Hence, as [N(u™ —1)| = N(1,,)N(J,,), we get
N(J)Y? «xe N(I,)EN(J,)¥? «k o [IN(u™ = 1)]7,

and then

N(J,) «xe |[N(u™ — 1),
Now let us also write (®,(u)) = A,B,, with A, and B, relatively prime and where if
p|A, then p?t A,, and if p|B,, then p?|B,. Of course, B,|J,, and then

N(B,) «x. |N(u™ — 1)]*.
Choose 8 > 1 such that |o;(u)| < § for all i. Then

IN@" = 1) < [ [los(w)* + 1) < 2m(B™)",
i=1

which implies

N(Bn) <<K,E 22m£(ﬁm)2n£'
Hence,

N(A4,) = N(®,(u))/N(B,) »k. exp(n(c — 2melogf)).

We finally obtain:

Proposition 2.2. — If the generalized abc-conjecture holds then for all € > 0, one has

N(An) PK,e eXp(ﬂ(C - 2m€logﬁ)),

in.

for every n such that o(n) = 3

c
2mlogf3’
nential grows faster than polynomial, there exists ng € Z~( such that for all n > ng, with
¢(n) = 3n, then N(A,) > n™, where we recall that m = [K : Q]. Then, for each such n,
there exists a prime ideal p,, € O, dividing A,, but not n: indeed if it was not the case
then as A, is square free, A, would divide n, which contradicts N(A4,) > n™. Observe
that p,|(u™ — 1) implies N(p,,) < 2™g™".
As p, 1 n, the polynomial X™ — 1 is separable over Ok/p,. Thus u is a simple root
of X* =1 =[], ®a(X) modulo p, and, as p,, divides ®,(u), its order in (Ok/p,)" is

Take now ¢ > 0 such that € <

Thanks to Proposition 2.2 and because expo-



exactly n. Furthermore, p,, is a divisor of A, so p? does not divide u™ —1 (in other words
Pl ln).

Let p, be the prime number such that p,Z = p,, N Z.

In conclusion, we obtain:

Proposition 2.3. — Take u € Fx as before. For each n = ng such that p(n) > 5n,

there exists a prime ideal p,, = Ok such that
(1) Pu|®n(u) and u™ # 1(mod py),
(i1) u is of order n in (Ok/pn)”,
(731) N(pn) <A™, for some v depending only on K.

1
2

By (it) of Proposition 2.3, it follows that p, = p, if and only if n = n’. Observe that a
set of primes p,, of size Y gives at least Y /m primes p,,.
Now given X > 1, let n; be the largest integer such that 4" < X. Assume X sufficiently
large to ensure ng < n;. Then, for each n € [ng,n1] such that p(n) > in, there exists
a prime ideal p, < O for which v” = 1(mod p,) and u" # 1(mod p2). Note that
pn < N(pp) <" <™ < X. Thereby:
1 1
m#{n7 ny SN K N, (p(ﬂ) = 2n}

< #{pn < X, p, prime | 3 p,, € Ok, pu|pn, u"™ = 1(mod p,,) and u™ # 1(mod pi)}

In conclusion, one has found at least ¢ logX prime numbers p, < X satisfying (i) of
Proposition 2.3 for some p,,|p,.

2.2. Proof of Theorem A. Let x be an irreducible Q-character of G such that there exists
some u € EX n'S. By the previous section, there exists k¥ > 1 such that v*" = 1(mod p,,)
and u*" # 1(mod p2) for at least ¢ logX prime numbers p, < X (where p,|p,). We
conclude with Lemma 1.2 (after forgetting the prime numbers smaller than py).

Proof of the Corollary.

Observe first that, in the two cases, the Leopoldt conjecture holds and the field K contains
some unit in S (see Remark 2). Take p > py. The choice of the character is the following :
if K is real quadratic, let x = v be the nontrivial character of G ; if K/Q is an imaginary
Ss-extension, let x be the irreducible Q-character of G of degree 2 (observe that x = ¢
is also Q,-irreducible). Then Q ® Ex = E, ry(Ex) = 1, and 9, = %‘Z’. Therefore by
Theorem A, ., = {1} for at least ¢ logX prime numbers p < X.
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