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The root discriminant of a number field of degree n is the nth root of the absolute value

of its discriminant. Let R0(2m) be the minimal root discriminant for totally complex
number fields of degree 2m, and put α0 = lim infm R0(2m). Define R1(m) to be the

minimal root discriminant of totally real number fields of degree m and put α1 =

lim infm R1(m). Assuming the Generalized Riemann Hypothesis, α0 ≥ 8πeγ ≈ 44.7,
and, α1 ≥ 8πeγ+π/2 ≈ 215.3. By constructing number fields of degree 12 with suitable

properties, we give the best known upper estimates for α0 and α1: α0 < 82.2, α1 < 954.3.

c© 2002 Elsevier Science Ltd

1. Introduction

Let I = Q∩ [0, 1] be the rational unit interval. For a number field K of signature (r1, r2)
and degree n = r1 + 2r2, let τ(K) = r1/n ∈ I be the proportion of its embeddings which
are real. Let us call τ(K) the infinity type of K. Number fields of degree n ≥ 1 and
infinity type t ∈ I exist if and only if nt and n(1 − t)/2 are integral (see, for example,
Ankeny et al., 1956). For such n and t, let Rt(n) be the minimal root discriminant for
number fields of degree n and infinity type t. (The root discriminant rdK of K is defined
by rdK = |dK |1/n where dK is the discriminant of K.) Define a function α on I by

αt = lim inf
n→∞

Rt(n),

with n tending to infinity under the condition that nt and n(1− t)/2 are integral.
Using his “geometry of numbers,” Minkowski proved in 1891 that there exist constants

A,B > 1 such that

αt ≥ A1−tBt. (1)

Minkowski’s values A = πe2/4 ≈ 5.8 . . . and B = e2 ≈ 7.3 . . . were steadily improved
over the years. The best current asymptotic bounds, dating from the mid-1970s, stem
from variations on an analytic method of Stark by Odlyzko and Serre and give the values
A = 4πeγ ≈ 22.3, B = 4πe1+γ ≈ 60.8, and on GRH, A = 8πeγ ≈ 44.7, B = 8πeγ+π/2 ≈
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215.3, where γ = 0.577 . . . is Euler’s constant (see the survey article of Odlyzko (1990)
and references therein).

It is an important problem to determine the best possible constants A and B in (1).
To this end, upper bounds for α can be given, thanks to the theory of class field towers;
naturally, one is most interested in estimating αt at t = 0, 1 (totally complex, totally real
fields, respectively) since A ≤ α0, B ≤ α1. Traditionally, one uses unramified (Hilbert)
class field towers, as in Martinet (1978), where the estimates α0 < 92.3 and α1 < 1058.6
were established. In Hajir and Maire (2001), a variation on Martinet’s method using
tamely ramified ray class field towers and base fields with large Galois closure was intro-
duced and used to improve the first estimate to α0 < 83.9.

Starting with the PARI database for number fields of small discriminant and degree
up to seven available from Batut et al. (2001), we implemented in PARI a search for
quadratic extensions of these fields, looking at only those having the smallest relative
discriminant of odd norm with a specified number of prime factors. The parameters were
chosen so that according to the best known genus theory and Golod–Shafarevich bounds,
the quadratic extensions admit infinite 2-extensions ramified at a small specified set of
primes, giving upper bounds for α. As a result of this machine search, we prove here that
α1 < 954.3 and α0 < 82.2. We remark that we now have several dozen towers improving
Martinet’s record for totally complex fields, but the totally real example we give here
is the only one we have so far been able to find which improves Martinet’s 22-year old
totally real bound.

2. Golod–Shafarevich for Tame Towers

We recall briefly the ray class field construction of infinite towers with bounded root
discriminant. First we introduce some notation.

In this section, we fix an arbitrary prime `. In the next section, we will work exclu-
sively with ` = 2. For a finitely generated pro-` group G, we let d(G) = dimF`

H1(G, F`),
r(G) = dimF`

H2(G, F`) be its generator and relation rank, respectively. For a number
field K, and a finite set T of prime ideals of K, we say that T is “away from `” if no
prime in T is a divisor of `. For such a T , let mT =

∏
P∈T P be the corresponding

modulus and define rdK,T = rdK(NK/QmT )1/[K:Q]. We let Cl(K),ClT (K) be the ideal
class group and ray class group modulo mT of K, respectively, and write ρK , ρK,T for
their respective `-ranks. We write EK for the unit group of K. Let KT be the max-
imal `-extension of K unramified outside T (in a fixed algebraic closure of K), and
put GK,T = Gal(KT /K) for its Galois group. Note that, by the Burnside Basis Theo-
rem, and class field theory, d(GK,T ) = ρK,T . When T is empty, KT /K is the Hilbert
class field tower of K. We say that an ideal of K is odd if its absolute norm is odd.
We let

θK,T =
{ 1 if T is empty and K contains a primitive `th root of unity

0 otherwise.

Theorem 1. Suppose K is a number field with signature (r1, r2). Let T be a finite set
of prime ideals of K away from `.

(1) If
ρK,T ≥ 2 + 2

√
r1 + r2 + θK,T ,

then GK,T is infinite.
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(2) If F is a finite extension of K contained in KT , then rdF < rdK,T .

Proof. (1) This is immediate by combining Theorems 1 and 5 in Shafarevich (1964)
(or Satz 11.5 and 11.8 in Koch, 1970), which give an estimate on the minimal number
of relations of GK,T with the Golod–Shafarevich theorem (Golod and Shafarevich, 1964)
on the number of relations of a finite `-group (as improved by Vinberg and Gaschütz,
see Roquette, 1980, Theorem 10). (2) This is a simple calculation. For more details see
Hajir and Maire (2001), Lemma 5. 2

Theorem 2. (Genus Theory) Suppose K/k is a Galois extension of degree `. Suppose
t places of k ramify in K. Then

ρK ≥ t− 1− dimF`
(Ek/Ek ∩ NK/kUK)

where UK is the group of idèle units of K.

Proof. A proof can be found, for example, in Schoof (1986). 2

We will single out a special case of the above Theorem which will be useful in our
totally real example.

Corollary 3. Let ` = 2. Consider a number field k with signature (r1, r2) such that −1
is not a square in k, and a quadratic extension K/k unramified at the infinite places of
k. Suppose further that all t primes of k ramified in K have absolute norm ≡ 1 mod 4.
Then

ρK ≥ t− r1 − r2.

Proof. It suffices to show that −1 ∈ NK/kUK . Since in an unramified extension of
local fields, every unit is a norm, we need only consider the localizations at each of the
ramified primes in K/k. Hensel’s lemma reduces this to checking that −1 is a square in
the corresponding residue field, which follows from the assumption that this residue field
has cardinality ≡ 1 mod 4. 2

3. Infinite Towers with Small Root Discriminant

Throughout this section, we let ` = 2. We construct some infinite tamely ramified
2-towers with small root discriminant.

Since ` = 2, every number field contains the `th roots of unity. Upon examination of
the Golod–Shafarevich bound (Theorem 1), it is clear that the use of tame, as opposed
to unramified, towers is most advantageous when

d2
√

r1 + r2e < d2
√

r1 + r2 + 1e,

where dxe is the least integer greater than or equal to x. In this case, the bound for
obtaining an infinite tame tower is less by one than the bound for obtaining an infinite
unramified tower. It pays, therefore, to examine cases where the number of infinite places
of K, namely r1 + r2, is of the form n2 or (n2 − 1)/4, for a natural number n. For
example, in Hajir and Maire (2001), we made use of degree eight totally complex K,
where r1 + r2 = 4 is a perfect square. For both of our key examples here, we take K of
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degree 12: in the totally real case, r1 + r2 = 12 = (72 − 1)/4 and in the totally complex
case, r1 + r2 = 6 = (52 − 1)/4.

An outline of the construction is as follows. We used the PARI number field tables
(Batut et al., 2001) (which stop at degree seven) to find a suitable base field k, then
used PARI to locate prime ideals of small norm whose product has a generator η which
is a square mod 4Ok and has the right signature at infinity; these conditions ensure that
K = k(

√
η) is unramified at 2 and has the desired signature. In the totally real case,

we take 15 ramifying primes all of norm congruent to 1 mod 4 and apply Corollary 3
to obtain ρK ≥ 9. Theorem 1 then says that KT /K is infinite for any non-empty set T
of odd primes of K. In the totally complex case, the best results were found for k with
signature (4, 1). In that case, four infinite and eight finite places of k are ramified in K,
so ρK ≥ 6 by Theorem 2. We then take a set T of primes of K such that ρK,T ≥ 7,
ensuring that K has an infinite T -ramified 2-tower by Theorem 1.

The number field arithmetic which is at the heart of our construction takes place in
degree six number fields; computer packages such as PARI (Batut et al., 2001) and KANT
(Pohst, 2001) make it easy to carry out these calculations. We also give approximate roots
ξ(j), j = 1, . . . , 6, accurate to 25 decimal places (which more than suffices) of a monic
integral defining polynomial f for k, using which our claims can be verified by using an
ordinary calculator.

3.1. totally real case

We now prove α1 < 954.3 by constructing a degree 12 totally real field with small
discriminant and 2-class group of large rank.

Let k = Q(ξ) where ξ is a root of f = x6 − x5 − 10x4 + 4x3 + 29x2 + 3x − 13. The
roots of f are

ξ(1) = −1.883 173 014 899 617 292 140 105 726 . . .

ξ(2) = −1.850 277 939 491 434 625 515 659 524 . . .

ξ(3) = −0.933 888 901 249 385 718 006 746 6209 . . .

ξ(4) = 0.636 193 411 182 150 231 090 095 9583 . . .

ξ(5) = 2.295 319 807 404 063 434 093 464 652 . . .

ξ(6) = 2.735 826 637 054 223 970 478 951 259 . . . .

Thus, k has signature (6, 0). The prime factorization of the discriminant of f is df =
74 · 13 · 113. One can check that k is a quadratic extension of the maximal real subfield
of the field of 7th roots of unity (for example, if h(t) = −t5 + 3t4 + 4t3 − 13t2 − 3t + 7,
h(ξ(j)) = 2 cos(2πj/7) for j = 1, 2, 3). Since the latter field has discriminant 72, dk is
divisible by 74, hence df = dk and Ok = Z[ξ]. The (wide) class number of k is 1. The
unit group of k is generated by {ξ5 − 3ξ4 − 4ξ3 + 13ξ2 + 3ξ − 8, ξ5 − 3ξ4 − 5ξ3 + 14ξ2 +
7ξ− 9, ξ2− ξ− 5, 3ξ5− 9ξ4− 13ξ3 +40ξ2 +12ξ− 22, ξ5− 3ξ4− 4ξ3 +14ξ2 +2ξ− 11,−1}.

In order to locate some prime ideals of small norm, we factor f modulo some small
primes:

f(x) ≡ (x2 + 2x + 2)3 mod 7
f(x) ≡ x(x + 4)2(x− 6)(x− 2)(x− 1) mod 13
f(x) ≡ (x + 7)(x + 11)(x + 12)(x− 9)(x2 + 7x− 6) mod 29
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f(x) ≡ (x + 16)(x− 20)(x− 8)(x− 3)(x2 + 14x + 1) mod 41
f(x) ≡ (x− 35)(x− 34)(x− 32)(x− 22)(x2 + 25x− 33) mod 97.

Generators for some of the prime ideals evident in the above factorizations are listed
in the table below; here, πr = a5ξ

5 + a4ξ
4 + a3ξ

3 + a2ξ
2 + a1ξ + a0 generates a prime

ideal πrOk of absolute norm r. The second column matches the primes listed below
with the ones above by giving s(ξ), a degree one or two expression in ξ which is an
Ok-multiple of πr. We also give hπr

, the minimal polynomial of πr so that the reader
can verify that each of the algebraic integers listed has the claimed norm. (Instead of
writing out the polynomial in full, we give a list of its coefficients in order of descending
powers of x. For example the coefficient list 1, 2, 3, 4, 5, 6, 7 represents the polynomial
x6 + 2x5 + 3x4 + 4x3 + 5x2 + 6x + 7.)

π s(ξ) a5, a4, a3, a2, a1, a0 hπ

π13 ξ + 4 0,−1, 0, 5, 1,−2 1, 15,−50, 23, 51,−52, 13

π′13 ξ − 6 3,−8,−15, 35, 19,−18 1,−2,−12, 11, 44, 12,−13

π′′13 ξ − 2 −1, 2, 5,−9,−5, 6 1, 16, 28,−23,−42, 8, 13

π′′′13 ξ − 1 −2, 6, 9,−26,−11, 11 1, 8, 14,−30,−98,−47, 13

π′′′′13 ξ 2,−6,−9, 26, 10,−13 1, 5,−5,−24, 16, 19,−13

π29 ξ + 7 −2, 5, 11,−22,−16, 10 1, 6,−8,−51, 44, 66,−29

π′29 ξ + 12 1,−2,−5, 8, 5,−3 1,−13, 35,−2,−91, 100,−29

π′′29 ξ − 9 1,−3,−5, 14, 8,−10 1, 9, 21,−16,−105,−104,−29

π′′′29 ξ + 11 −1, 3, 4,−13,−4, 7 1, 3,−16,−30, 57, 27,−29

π41 ξ + 16 0, 0, 1, 0,−5,−2 1,−2,−25, 54, 25,−93, 41

π′41 ξ − 8 −3, 8, 15,−35,−19, 19 1,−4,−7, 37, 0,−81, 41

π′′41 ξ − 3 −1, 3, 5,−14,−6, 9 1,−5,−7, 40,−14,−55, 41

π′′′41 ξ − 20 5,−14,−24, 62, 29,−35 1, 6,−1,−58,−89, 3, 41

π49 ξ2 + 2ξ + 2 0, 0,−1, 1, 4,−1 0, 0, 0, 1,−7, 7

π97 ξ − 35 −5, 14, 23,−54,−31 1, 36,−1079,−8776,−14103, 6227, 97

π′97 ξ − 32 −3, 1, 33, 2,−90,−41 1, 71,−1667,−4884,−3708,−367, 97

We let

η = π13π
′
13π

′′
13π

′′′
13π

′′′′
13 π29π

′
29π

′′
29π

′′′
29π41π

′
41π

′′
41π

′′′
41π49π97

= −2993ξ5 + 7230ξ4 + 18937ξ3 − 38788ξ2 − 32096ξ + 44590 ∈ Ok.

One checks easily that η is totally positive. Its minimal polynomial is g(y) = y6 − 56966y5

+ 959048181y4 − 5946482981439y3 + 14419821937918124y2 − 12705425979835529941y +
3527053069602078368989. We let K = k(

√
η), a totally real field of degree 12. A defining

polynomial for K is g(y2). We note that η is congruent to a square modulo 4OK ; explicitly,
η = β2 + 4γ with β = ξ5 + ξ3 + ξ2 + ξ + 1 and γ = −811ξ5 + 1617ξ4 + 5013ξ3 − 8847ξ2 −
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8002ξ + 10754. Thus, the relative discriminant DK/k is simply (η), and K/k is ramified
at the 15 primes dividing η and nowhere else. The root discriminant of K is

rdK = rdk(NK/kDK/k)1/12 = (74 · 13 · 113)1/6(72 · 135 · 294 · 414 · 97)1/12 = 770.643 . . . .

Now let us estimate the 2-class rank of K. By Corollary 3, since all 15 places ramifiying
in K/k have norm congruent to 1 mod 4, the 2-rank of the ideal class group of K is at
least 15 − 6 = 9 > 2 + 2

√
12. By Theorem 1, K admits an infinite T -tamely ramified

2-tower, where T consists of any odd prime of K at all; for instance we can take T
to consist of any one of the five primes of absolute norm 13. By Theorem 1, the root
discriminant of the fields in this tower are bounded by rdK,T = 131/12rdK , so

α1 ≤ rdK,T = 75/6132/3(29 · 41)1/3971/121131/6 = 954.293 . . . .

Remarks.
1. A standard calculation of the class group, using PARI, revealed that ClK = (Z/2Z)9,

confirming our lower bound of nine for the 2-rank of the class group. Not surpris-
ingly, the ray class group modulo any one of the primes of norm 13 was found to be
isomorphic to the ideal class group. We thank Bill Allombert for performing this
PARI calculation on PARI 2.1.0; this new release of PARI contains an improved
algorithm for calculating class groups of number fields with many subfields which
allowed the calculation to be made in less than 1 h; previous attempts with earlier
versions of PARI had not succeeded.

2. One can take, instead of η, the number η′ = η ·π′97/π97. Again, η′ is totally positive,
is congruent to a square modulo 4Ok and K ′ = k(

√
η′) has the required properties.

3. We expect that K in fact has an infinite unramified 2-tower, which would give
α1 < 770.7, but are unable to prove this. See Section 5 of Hajir and Maire (2001).

3.2. totally complex case

We now produce an infinite tower of number fields with root discriminant bounded by
82.100 . . ..

Let k = Q(ξ) where ξ is a root of f = x6+x4−4x3−7x2−x+1. The prime factorization
of the discriminant of f is df = −23 · 35509; thus, df = dk is also the discriminant of k,
and Ok = Z[ξ]. The roots of f are

ξ(1) = −0.7616624538446810079178460970 . . .

ξ(2) = −0.6995379628437212990705725539 . . .

ξ(3) = 0.2952257131772996366893970980 . . .

ξ(4) = 1.830157823416367310460200115 . . .

ξ(5) = −0.3320915599526323200805892812 . . . + 1.833942276050826293170694152 . . . i

ξ(6) = −0.3320915599526323200805892812 . . .− 1.833942276050826293170694152 . . . i.

Thus, k has signature (4, 1). The narrow class number of k is 1. The unit group of k is
generated by {ξ, 4ξ5 − 3ξ4 + 6ξ3 − 20ξ2 − 13ξ + 6, 6ξ5 − 4ξ4 + 9ξ3 − 30ξ2 − 21ξ + 8, ξ5 −
ξ4 + 2ξ3 − 6ξ2 − ξ + 1,−1}.

Generators for some Ok-ideals of small norm are listed in the table below where, as
before, πr = a5ξ

5 + a4ξ
4 + a3ξ

3 + a2ξ
2 + a1ξ + a0 generates a prime ideal πrOk of norm



Tamely Ramified Towers and Discriminant Bounds for Number Fields—II 421

r and the coefficients of hπr , the minimal polynomial of πr, are listed in descending
powers.

πr a5, a4, a3, a2, a1, a0 hπr

π3 −6, 4,−9, 30, 21,−7 1, 0,−5, 2, 5,−5, 3

π7 −9, 6,−13, 44, 31,−12 1, 1,−29, 98, 624,−449,−7

π13 −7, 5,−11, 36, 23,−9 1, 3,−4,−24,−23, 7, 13

π19 5,−4, 8,−26,−15, 6 1, 11, 50, 120, 151, 89, 19

π′19 5,−3, 7,−24,−20, 6 1,−3,−10, 13, 29,−8,−19

π23 −5, 4,−8, 26, 15,−9 1, 7, 20, 30, 16,−20,−23

π′23 6,−4, 9,−30,−22, 6 1, 6, 11, 0,−30,−46,−23

π29 11,−8, 17,−56,−35, 16 1,−7, 3, 52,−82, 55,−29

π31 7,−5, 11,−36,−22, 7 1, 9, 22, 13,−15,−38,−31

The fact that 19OK has two prime factors of residue degree 1 can be seen, for instance,
from the factorization of f over F19: f(x) ≡ (x+7)(x−2)(x4+14x3+2x2+11x+4) mod 19.
Similarly, f factors over F23 as f(x) ≡ (x + 10)2(x− 5)(x3 + 8x2 + 19x + 4) mod 23. To
see that the pairs π19, π

′
19 and π23, π

′
23 generate different prime ideals, one can check that

the minimal polynomials of π19/π′19 and π23/π′23 are not integral.
The element η = −671ξ5 +467ξ4− 994ξ3 + 3360ξ2 +2314ξ− 961 ∈ Ok is totally nega-

tive. Its minimal polynomial is g(y) = y6 +339y5−19752y4−2188735y3 +284236829y2 +
4401349506y + 15622982921. The ideal (η) factors into eight prime ideals of Ok; in fact,
one can check that η = π7π13π19π

′
19π23π

′
23π29π31. We let K = k(

√
η), a totally complex

field of degree 12. A defining polynomial for K is g(y2). We note that η is congru-
ent to a square modulo 4OK ; explicitly, η = β2 + 4γ with β = ξ5 + ξ4 + ξ3 + 1 and
γ = −173ξ5 + 112ξ4 − 270ξ3 + 815ξ2 + 576ξ− 237. Thus, the relative discriminant DK/k

is simply (η), and K/k is ramified at the infinite places, at the eight primes dividing η,
and nowhere else. The root discriminant of K is

rdK = rdk(NK/kDK/k)1/12 = (23 · 35509)1/6(7 · 13 · 192 · 232 · 29 · 31)1/12 = 68.363 . . . .

Now k admits a quadratic extension in which the only ramified finite primes are (π3)
and (π19). To see this, we note that π3π19 = 11ξ5−8ξ4+17ξ3−56ξ2−35ξ+14 = ρ2+4σ,
where ρ = ξ5 + ξ3 + ξ2 +1, and σ = 2ξ5− 8ξ4− 14ξ3− 28ξ2− 9ξ +5. Thus, k(

√
π3π19)/k

is ramified at π3Ok and at π19Ok but at no other finite prime. Now since π19Ok already
ramifies in K, K(

√
π3π19)/K is a quadratic extension unramified outside T where T is

the set of primes of K dividing π3OK (it is not necessary, but one can check that T has
one element, P9, a prime of absolute norm 9). Note that since π3Ok does not ramify in
K, K(

√
π3π19)/K is actually ramified at P9.

Now let us estimate class ranks. By Theorem 2, since eight finite and four infinite
places ramifiy in K/k, the 2-rank of the ideal class group of K is at least 6. Moreover, by
the previous paragraph, the 2-rank of ClT (K) is at least one more than that of Cl(K),
so 2-rank of ClT (K) ≥ 6 + 1 ≥ 2 + 2

√
6.
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By Theorem 1, K admits an infinite T -tamely ramified 2-tower, and the root discrim-
inant of the fields in this tower are bounded by rdK,T = 91/12rdK , so

α0 ≤ rdK,T = 231/3(3 · 19 · 35509)1/6(7 · 13 · 29 · 31)1/12 = 82.100 . . . .

Remarks. We found one other example almost as good as the one above; we sketch it
briefly, omitting the details which are similar. We take k = Q(ξ) where ξ is a root of
f = x6 − 2x5 − 2x4 + 7x3 − 2x2 − 4x + 1, a field with signature (4, 1) and prime
discriminant dk = −658403. The element η = −33ξ5 − 9ξ4 + 166ξ3 − 70ξ2 − 100ξ + 17,
is totally negative, is congruent to a square modulo 4Ok, generates an ideal divisible
by eight primes and has norm 133 · 17 · 232 · 372. Its minimal polynomial is g(y) =
y6 + 302y5 − 20535y4 + 11631690y3 + 511386746y2 + 6643287248y + 27048183149. The
field K = Q(

√
η) has 2-class rank at least 6 and root discriminant rdK = 6584031/6 ·(133 ·

17 · 232 · 372)1/12 = 69.032 . . .. The number π3 = −ξ4 + ξ3 + ξ2 − ξ generates a prime of
norm 3 in Ok, and is congruent to a square mod4Ok. Thus K(

√
π3)/K is ramified only

at T where T is the set of primes of K above π3Ok (it has cardinality 2). Thus, ClT (K)
has 2-rank at least 7 and KT /K is infinite. We have rdK,T = 91/12rdK = 82.903 . . ..

In closing, we briefly mention that our totally complex example achieves records for
two other invariants. The Ihara–Tsfasman–Vladut deficiency δ for this example satisfies
δ ≤ 1 − γ+log(8π)

log(rdK,T ) = 0.137 . . .. The integer lattice of the fields in our tower (under
the usual trace norm) have arbitrarily large dimension and asymptotic packing density
1
ni

log2(∆i) ≥ −2.132 . . .. For details, see Hajir and Maire (2001); Tsfasman and Vladut
(1998) and Conway and Sloane (1988).
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