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1 Introduction

Let p be a prime number, K a number field, and S a finite set of places of K. Let Ks be
the compositum of all extensions of K (in a fixed algebraic closure K) which are unram-
ified outside S, and put Gk s = Gal(Ks/K) for its Galois group. These arithmetic fun-
damental groups play a very important role in number theory. Algebraic geometry pro-
vides the most fruitful known source of information concerning these groups. Namely,
given a smooth projective variety X/K, the p-adic étale cohomology groups of X are finite-
dimensional vector spaces over Q, equipped with an action of Gk s where S consists of
the primes of bad reduction for X/K together with the primes of K of residue characteris-
tic p. The richness of this action can be judged, for example, by the intimate relationships
between algebraic geometry and the theory of automorphic forms which it mediates.
For this and many other reasons, it would be difficult to overstate the importance
of these p-adic Galois representations. Nonetheless, linear p-adic groups simply form
too restrictive a class of groups to capture all Galois-theoretic information, and some im-
portant conjectures in the subject, notably the Fontaine-Mazur conjecture [10] (to men-
tion only one, see the discussion in Section 7), point specifically toward the kind of in-
formation inside arithmetic fundamental groups which cannot be captured by finite-

dimensional p-adic representations.
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In this work, we discuss a method for studying finitely ramified extensions of
number fields via arithmetic dynamical systems on P'. At least conjecturally, this
method provides a vista on a part of Gy s invisible to p-adic representations. We now
sketch the construction, which is quite elementary. Suppose ¢ € K[x] is a polynomial of
degree d > 1.! For each n > 0, let @°™ be the n-fold iterate of ¢, that is, ¢°°(x) = x and
e (x) = 9(0°™(x)) = @°™(@(x)) forn > 0. Let t be a parameter for P, with function

field F = K(t). We are interested in the tower of branched covers of P' given by
def on
Dn(x, 1) =" (x) —t € Fx], (1.1)

as well as extensions of K obtained by adjoining roots of its specializations at arbitrary
to € K. The variable-separated polynomial @, (x, t) is clearly absolutely irreducible over K
(sinceitislinearint). It is separable and irreducible, of degree d", in F[x|; see Lemma 2.1.

Fix an algebraic closure F of F, and let K be the algebraic closure of K determined
by this choice, that is, the subfield of F consisting of elements algebraic over K. Forn > 0,
let T,  be the set of roots in F of @, (x,t); it has cardinality d™. We denote by T, the
d-regular rooted tree whose vertex set is Un>0T¢ n, and whose edges point from v to w
exactly when ¢(v) = w; its root (at ground level) is t.

We choose and fix an end & = (&, &1, &2,...) of this tree; in other words, we
choose a compatible system of preimages of t under the iterates of ¢: ¢(&1) = & = tand
@(&ni1) = &n forn > 1. For each n > 1, we consider the field F, = F(é,) ~ F[x|/(®) and
its Galois closure J,, = F(T, ) over F. Let O, be the integral closure of K[t] in F,,. Corre-
sponding to each ty € K, we may fix compatible specialization maps oy, 1, : O3, — Kwith
image X 1,, a normal extension field of K, and put &,|y, = on 1, (&n) for the correspond-
ing compatible system of roots of @, (x,to). We denote by K,, ¢, the image of the restric-
tion of oy, ¢, to Of, . We refer the reader to Section 2.2 for more details, but we should em-
phasize here that ®,,(x, to) is not necessarily irreducible over K; hence, although X,, , de-
pends only on ¢, n, and to, the isomorphism class of K, 1, depends a priori on the choice
of & as well as on the choice of compatible o, ¢,. Also, the Galois closure of K;, ¢, /K is
contained in, but possibly distinct from, Ky, ,.

Taking the compositum over all n > 1, we obtain the iterated extension F, =
UnFn attached to ¢, with Galois closure ¥, = UnJ, over F. Similarly for each ty € K,
we obtain a specialized iterated extension K¢ ¢, = UnKy t, with Galois closure over K
contained in Ky ¢, = UnKn t,. We put My, = Gal(F,/F) for the iterated monodromy
group of ¢ and for ty € K, we denote by M+, = Gal(X, +,/K) its specialization at to.

The group M, has a natural and faithful action on the tree T, hence comes equipped

IThis construction actually works for any perfect K as long as the derivative ¢’ is not identically zero in K[x].
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with a rooted tree representation M, — AutT,. For more on rooted trees and iterated
monodromy groups (in a more general context, in fact), see Nekrashevych [14] as well as
Bartholdi-Grigorchuk-Nekrashevych [1].

Since we are interested in finitely ramified towers (meaning those where only
finitely many places of the base field are ramified), we need to answer the following ques-
tion: which polynomials ¢ have the property that the corresponding iterated tower F, /F
as well as all of its specializations K, ¢, /K are finitely ramified?

We first recall some standard terminology from polynomial dynamics. We put

Ul(pdéf{reﬁch’(r) =0}, 'Bcpd:ef{@(r):rejz@} (1.2)

for the set of affine ramification and branch points, respectively. The elements of R,
and B, are also the critical points, respectively, critical values of ¢. The polynomial ¢
is called postcritically finite if every member of R, is a preperiodic point for ¢. In other
words, ¢ is postcritically finite exactly when the postcritical set P, that is, the union
of the orbits of critical points under the iterates of ¢, is a finite set. It has long been
known that the postcritical set plays a crucial role in the dynamics of the polynomial.
Indeed, the class of dynamical systems corresponding to postcritically finite polynomi-
als is a well-studied one, having gained prominence following a celebrated theorem of
Thurston, see, for example, Douady and Hubbard [8], Bielefeld-Fisher-Hubbard [3], as
well as the papers by Poirier [18, 17|, Pilgrim [16], and Pakovich [15]; the latter two con-
cern the connection with actions of Gal(Q/Q) on certain finite trees.

Our starting point is the following characterization of finitely ramified iterated

extensions.

Theorem 1.1. The iterated tower of function fields ¥, /F is finitely ramified if and only if
¢ is postcritically finite. If ¢ is postcritically finite, every specialization X, ¢, /K of this
tower is finitely ramified. O

The first assertion of the theorem is clear geometrically since Byon = B, U
©(By) U -+ U @™ 1(B,). The second assertion, however, is not a formal consequence
of the first; the proof we give for it proceeds via Proposition 3.2, where we derive a for-
mula for the discriminant of ®,,(x, t) (valid for an arbitrary polynomial ¢), giving a more
precise version of the theorem. The proof of Proposition 3.2 uses basic properties of re-
sultants.

For each postcritically finite ¢ € K[x|, and each to € K\ P, Theorem 1.1 provides

a surjection py ¢, : Gk,s - Mg, for an effectively determined finite set S = S ¢, of
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places of K (see Definition 3.5 and Corollary 3.7). We call p, , the iterated monodromy
representation attached to ¢ and t,.

The study of automorphism groups of rooted trees is a relatively new and quite
active topic in group theory (see [1, 2, 14]). The structure of nonabelian subgroups of
these automorphism groups appears to be quite different from that of linear p-adic
groups (see the papers just cited as well as Bux and Perez [7]). The natural action of it-
erated monodromy groups on rooted trees leads us to the expectation that iterated mon-
odromy representations p, ¢, attached to postcritically finite polynomials ¢ € K[x] have
the potential of revealing aspects of arithmetic fundamental groups which are not visi-
ble to p-adic representations; see the discussion in Section 7 as well as Boston's preprint
[4], where tree representations are suggested as the proper framework for studying fi-
nitely ramified tame extensions.

Since all finitely ramified p-adic Galois representations with infinite image are
expected, by a conjecture of Fontaine and Mazur, to be wildly (even deeply) ramified at
some prime of residue characteristic p, an immediate question is what can be said about
the presence of wild ramification in specialized iterated extensions X, t,/K. Experimen-
tation leads to the expectation that generically the primes of residue characteristic di-
viding d ramify deeply in X, ¢,/K. For example, if ¢(x) = x4 with d > 1 and K = Q,
then for all to € Q, the extensions X, ,/K are deeply ramified at all p dividing d. (See,
however, Questions 7.1 and 7.2 in Section 7.)

Under an assumption of good reduction for ¢, we prove a partial result toward
this expectation, namely for integral ty, we estimate from below the power of p divid-
ing the discriminant of @, (x, to). To be precise, in Section 4, we will prove the following
theorem.

Theorem 1.2. Let K be a number field. Suppose ¢ € K[x] is postcritically finite, has de-
gree divisible by p, and has good reduction at a valuation v of residue characteristic
p, that is, ¢ has v-integral coefficients with v-unital leading coefficient. Then for any
to € Ok,

v(disc ®n(x,t0)) = nd™v(p). (1.3)

O

Assuming @, (x, tp) is K-irreducible for all n, this estimate shows that the tower

of rings Ok [&nlt, ], where (&n]¢,) is a compatible sequence of roots of @, (x, to), is wildly
ramified at p. Note that Ox [&nt,] is an order inside the maximal order of K(&, ¢, ); it is the
discriminant of the latter which is our primary interest, but the theorem estimates the
discriminant of the former. This is one sense in which the above theorem is only a par-

tial answer to our question about wild ramification in iterated extensions. On the other
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hand, in Section 6, we illustrate with the tower corresponding to @(x) = x?> — 2, the pos-
sibility that the orders Z[&, i, ] (for a large set of to € Z) are maximal, giving examples of
monogene number fields.

The organization of this paper is as follows. In Section 2, we outline some pre-
liminary facts regarding postcritically finite polynomials, including a classification of
the very simplest examples for each degree, namely those that are critically fixed (every
critical point is fixed, also known as conservative) and simply ramified (every nontrivial
ramification index is 2). In Sections 3 and 4, we prove Theorems 1.1 and 1.2, respectively.
In Section 5, we describe the decomposition of unramified primes in iterated towers in
terms of simple properties of certain finite graphs. In Section 6, we study the quadratic
case in more detail, obtaining a recursion for writing down postcritically finite quadratic
polynomials, which give number fields of independent interest; we also discuss the ex-
ample x?—2 in detail, proving monogenicity of certain number fields. Finally, in Section 7,

we outline a number of questions and open problems.

2 Preliminaries
2.1 The branched cover ¢°™ : P! — P!

In this section, K is a perfect field and ¢(x) = agx? + --- + ap € K[x] is a polynomial
of degree d > 1 whose derivative ¢’ is not identically 0. We maintain all other notation

introduced in Section 1.

Lemma 2.1. Foreachn > 1, ®,,(x,t) is separable and absolutely irreducible over K hence

irreducible over F. The ring K[¢, t] is integrally closed (in its fraction field F,,). O

Proof. All of this follows essentially from the fact that 0.®,(x,t) = 1 never vanishes.
The reader can easily check the absolute irreducibility of ®,,. For separability, assume
that @,,(x, t) has a multiple root, &,, say. Then &, is a root of 0, @, (x,t) = (¢°™)’(x). Since
¢’ is not identically 0, neither is (¢°™)’, and so &,, is algebraic over K, and then so is

= @°"(&,), a contradiction. Note that if ¢’ = 0, then @, (x, t) is not separable over F,
for in that case, every root of @, (x, t) is vacuously a root of 0, ®,,(x, t) and is therefore a
multiple root. Next, observe that K[&,,,t] = K[én] since t = ¢°™ (& ). Since K[&n,t] = K[én]
is K[t]-module of finite type, it cannot be a field; so K[&] is isomorphic to K[x]. Since K[x] is
normal, the same holds for K[&]. [ |

Thinking of ¢ as a branched cover P! — P! of degree d, the singular fibers are
those of cardinality less than d. Leaving aside co which is totally ramified, the points in

a singular fiber (the ramification points) are exactly the critical points, that is, the roots
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of @’: writing @(x) — @(r) = (x — ), (x) for any r € K, we have ¢'(r) = V() hence (x —1)?
divides @(x) — ¢(r) if and only if ¢’(r) = 0. The critical values (the images under ¢ of the
critical points), are the points having a singular fiber, that is, they are exactly the branch
points. In algebraic language, p € Kis in B,, if and only if ¢(x) — B has a multiple root,
which happens if and only if disc,(@(x) — t) has t = B as a root. In other words, 3 is a
branch point if and only if the system

P(x)=B, @' (x)=0 (2.1)

has a common root x = r, and these roots are the ramification points above 3. We could
adopt the convention that R, and B, are “multisets” where each critical point or critical
value occurs according to the multiplicity of the corresponding roots of ¢’, but to avoid

confusion, we will be explicit about the multiplicities by writing

¢'(x) =dag [ (x—r)m™@), (2.2)
TER

and putting, for § € B,

Me(o)= Y mile). (2.3)

T‘qu) ,(p(T‘):B

2.2 Global specializations

Here we wish to clarify the nature of the specialization maps ¥, — K associated with
specializing t to tp € K as well as the relationship between the iterated monodromy
group M, and its specializations M, +,. We do so by defining a notion of global special-
ization. Let Oz, be the integral closure of K[t] in F,. By integrality (and the going up
theorem), the maximal ideal (t — to) of K[t] extends to a prime ideal to of Og,, such that
to N K[t] = (t — to). The ring O, /to is integral over K, so is actually a field. Thus ¢, is
maximal, and Og,, /to is algebraic over K. So there are embeddings Oz, /to — K. Fix one,
and consider the associated map o: O5, — K with kernel t,. We call such a map a global
specialization associated with ty. The image of the global specialization, which is a field
Ko t,,1s independent of the choice of global specialization o.

Now we can define the specializations oy ¢, : Og, — Kand Of, — Kby restriction
of the global specialization. The field X, 1, can be defined as the image of O, — K, and
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can be shown to be independent of the choice of global specialization (associated with
to). However, K, ¢,, the image of Of, — K, depends on the global specialization o as well
as on the choice of &,,.

In this optic, the relationship between the groups M, = Gal(¥,/F) and the group
My 1, = Gal(K,/K) is elucidated as follows. Let Dy, be the decomposition group asso-
ciated to ty (consisting of the elements of Gal(F,,/F) fixing the chosen maximal ideal t,
of Oz, ). Then Dy, acts on Og,, /to, and therefore on X, t,. Thus we get a homomorphism
D, — Gal(K t,/K). As usual, this is a surjection, and if t( is not in the postcritical set,
then it is actually an isomorphism. Thus, for to € K\ Py, M, ¢, is isomorphic to a sub-

group D¢, of M, hence it too has an action on the rooted tree T,.

2.3 Dynamical systems on P!

Definition 2.2. Two self-maps ¢, } of P! defined over K (i.e., ¢,V € K(x)), are equivalent
over K (or K-conjugate) if there exists an automorphism y of P! (defined over K) such that

the diagram

P] —V>P1

l lw (2.4

e

commutes. In other words, ¢ and { are equivalent over K if and only if there exist a, b,
¢,d € K satisfying ad — bc # 0 such that @(x) = vy~ "{ry(x) where y(x) = (ax + b)/(cx + d).
The equivalence (or conjugacy) class of ¢, denoted [¢], is a dynamical system on P'. For
@ € C(x), we say [¢] is arithmetic if there exists P € Q(x) with [¢] = [].

Note that if ¢ € K[x] is a polynomial map, the images of ¢ under affine transfor-
mations y(x) = ax + b over K form exactly the set of polynomial maps K-isomorphic to
@. Also, if y takes @°™ to P°™ for n = 1, then it does so for all n > 1. Thus, the study of
iterations of ¢ and { coincide (they simply take place in different coordinates) precisely
when ¢ and { are conjugate. In particular, if [¢] = [\], then the iterated extensions F,
and J,, are isomorphic. For a more detailed discussion, including the relationship be-
tween fields of moduli and fields of definition of dynamical systems on P', we refer the
reader to Silverman [21].

When discussing the coefficients of a postcritically finite polynomial, it is often

convenient to normalize by working with monic postcritically finite polynomials.
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Lemma 2.3. Every polynomial ¢ € K[x] of degree d > 1 is equivalent over some finite
extension K’/K to a monic polynomial in K’[x]. Furthermore, if {p and ¢ are two K’-

equivalent monic polynomials for some finite extension K’/K, then

V(o) = Te(txt o)~ e, (2.5)

where ¢ is in K’ and ¢ is a (d — 1)th root of unity. O

Proof. Suppose ax? is the leading term of @. If y(x) = bx + ¢, theny '(x) =b 'x — b 'c.

1

Soy~! o @ oy(x) has leading term b4~ 'ax4. When we let b be a root of x4~! —a~!, we find

that y~' o @ oy is monic. Now let ¢ and { be monic equivalent polynomials in K’[x]. If
"o @ oy(x) has leading term b¢~'x4. Thus if p =y~ ' o @ oy, thenb

must be a (d — 1)th root of unity. [ |

v(x) =bx+c,theny~

2.4 Examples: critically fixed simply ramified polynomials

Postcritically finite polynomials can be classified in terms of certain combinatorial ob-
jects called Hubbard trees, see [3, 18, 17|, as well as [16] for their relationship, in the case
of two critical values, to dessins d’enfant of genus 0. Instead of describing this classi-
fication, in this subsection, we simply want to illustrate that postcritically finite poly-
nomials are in plentiful supply by describing some of the most simple families of exam-
ples. In order to avoid rationality questions, in this subsection we assume that K = K is
algebraically closed. To write down examples, we can make various simplifying assump-
tions; for example, we can limit the number of critical points (or values). If ¢ has only one
critical point and this point is fixed, we see quickly that ¢ is conjugate to x — x¢; special-
izations of this map constitute the classical theory of “pure” extensions. Another family
of examples is given by the Chebyshev polynomials which have only two critical values;
we study the quadratic one x> — 2 in Section 6. More generally, polynomials with two
critical values are called generalized Chebyshev polynomials or more commonly Shabat
polynomials; they have quite a rich structure, as can be seen from the survey of Shabat
and Zvonkin [20].

Here we make a different set of simplifying assumptions, and completely classify
the resulting postcritically finite dynamical systems for each degree d > 1. Namely, we
assume that the critical points are fixed and that all the ramification indices are 2; the
latter condition is equivalent to requiring that the polynomial has d — 1 critical points.
Other than ¢(x) = x4, this is the simplest family of postcritically finite polynomials. Tt
gives simple examples of postcritically finite polynomials not equivalent to any monic

polynomial with integer coefficients.
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Definition 2.4. A polynomial ¢ € K[x] of degree d > 1 is said to be critically fixed, simply
ramified (CFSR) if ¢ has d — 1 critical points, each of which is a fixed point for .

We note that any conjugate of a CFSR polynomial is also CFSR.

Example 2.5. If K does not have characteristic 2, the polynomial ¢(x) = x? has exactly
one critical point, x = 0, which is a fixed point. Thus ¢ is a CFSR polynomial. It is easy to

see that ¢ is the unique such polynomial, up to equivalence, of degree 2.

Example 2.6. Let K = Q. The polynomial ¢(x) = x> + (3/2)x has derivative ¢’(x) = 3x* +
3/2. Thus ¢ has two critical points +i/v/2. The fixed points of ¢ are 0 and the two critical
points, so ¢ is a CFSR polynomial.

This polynomial ¢ gives an example of a monic, post-critically finite polynomial
which does not have integral coefficients. Is there a monic polynomial 1 equivalent to
¢ with integer coefficients? By Lemma 2.3 we only need to consider polynomials of the

form

P(x) =@(x+c)—c or P(x)=—@(—x+c)+c. (2.6)

In the first case,

P(x) = (x+¢)* + %(x—l—c) —c=x>+3cx* + (302 + §>x+ (03 + %c) (2.7)

Let v be a place (valuation) in Q(c) above 2 normalized so that v(2) = 1. We want to find ¢
so that the coefficients are integral. So, v(3c? + 3/2) > 0. This implies v(c) = —1/2. Thus
the coefficient of x? is not 2-integral. A similar argument applies to the second case. We
conclude that there are no monic polynomials with integral coefficients equivalent to .

This gives an example of a post-critically finite polynomial not equivalent to any
monic polynomial with integral coefficients.

We will now assume that K has characteristic 0 (we already assumed it is alge-
braically closed). Thus, up to equivalence, CFSR polynomials can be taken to be monic.
In an effort to normalize further, consider the roots of the fixed point polynomial ¢(x)—x.
These include all d—1 critical points (roots of ¢’), but the polynomial is of degree d. Thus
there is a dth root r; here, we allow r to be one of the d — 1 critical points if ¢(x) —xhas a
double root. After conjugating by a translation y, we can assume that r = 0. In particular,

©(x) —x = d~"x@’(x). Conversely, suppose ¢ € K[x] is such that @(x) —x = d~"x@’(x).
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Then it is easy to see that neither ¢’(x) nor ¢(x) — x has multiple roots (differentiate
@ (x)—x = d "x@’(x) and substitute x = r, where r is any root of ¢’(x), to see that @ () # 0
and r # 0). In particular, ¢(x) is a CFSR polynomial. These observations motivate the

following.

Definition 2.7. Anormalized CFSR polynomial ¢ € K[x|is amonic polynomial with ¢(x)—
x =d "x@’(x).

The above argument gives the following.

Lemma 2.8. If K is algebraically closed, then every CFSR polynomial is equivalent to a
normalized CFSR polynomial. O

Next, we will show that over an algebraically closed field, there is, up to equiva-
lence, a unique CFSR polynomial of each degree.

Assume ¢ € F[x] is a normalized CFSR polynomial of degree d. We rewrite ¢(x) —
x =d "xe’'(x) as

e(x) =x+d "xp’(x). (2.8)
By differentiating this equation we get @’(x) =1+ d "o’(x) + d~"x@"(x), so

,_dixe"(x)
d—1

1
’ (p:x+d1x(d+xq) (x))de 1 5

"
d—1 i e T LS

(2.9)

Differentiating the first of these gives ¢”(x) = (1/(d—1))(0”(x) + x@""(x)). Soif d > 2,
@ (x) = (1/(d — 2))x¢""(x). Thus

_ d 1 2 1 " _ d (d*3)! 3. .m
©0) = T qa= X (d—ZX(‘O 0 ) =gt —a e

(2.10)

Continuing in this manner, we get that the nth derivative @™ (x) is (1/(d —n))x@™* 1 (x)
ifn < d.So,forn <d,
d (d—m)! L

(p:d_1x+ TR (x). (2.11)

In particular, if n = d, then

d x+lxd(p(d)(x): d x4+ x4, (2.12)

°0) =37t g a—1
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This gives uniqueness. Existence follows from the fact that @(x) = (d/(d — 1))x + x4 sat-

isfies the equation @(x) — x = d~'x@’(x) and so is a normalized CFSR polynomial.

Proposition 2.9. The polynomial (d/(d —1))x + x¢ is the unique normalized CFSR poly-
nomial of degree d. O

Remark 2.10. By Proposition 2.9, all CFSR polynomials over the complex numbers are
equivalent to a monic polynomial with algebraic coefficients and the same is true for all
critically fixed polynomials by a theorem of Tischler [23] (see Pakovich [15] for more on
critically fixed polynomials). In fact, any post-critically finite rational function over the

complex numbers is equivalent to one with algebraic coefficients (see [6, Theorem 3.17]).

(We are grateful to Pilgrim for the latter remark.)

3 Discriminant formulae

In this section, we prove Theorem 1.1 by giving an explicit formula in terms of branch
points for the discriminant of ®,,(x,t). We continue to assume that K is a number field,;
however, Propositions 3.1 and 3.2 are true for general K as long as the degrees (6 and d)

are not divisible by the characteristic of K. Recall the formula

Res(P,R) = (—1)de8Pde8R Reg(R P) = (—1)deg P degRy(R)degP HP(Gj), (3.1)

for the resultant of two polynomials P, R in x, where R = L(R) [[;(x — 0;). Also, for the

discriminant of P, we have
disc(P) = (—1)44=D/21(P)~T Res(P, P'), (3.2)

where d = deg P. See, for example, Lang [13, Chapter V, Section 10].

Proposition 3.1. For{ € K[x] of degree 5 with leading coefficient 1({) = «,

disc, ((x) —t) = (—1)7 1727258651 TT (£ — p)Met¥). (3.3)
BEBy O
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Proof. By (3.2) and then (3.1), we have

discy (P(x) —t) = (=1)°C" D/ 2o~ Res, (P(x) —t, ¥’ (x))

= (=1)%®"1/2a" ! Res, (q)(x) —t,50 ] (xr)mr(‘b)>

TERY

_ (_])6(871)/2“71 (_1)6(6—1)(6(x>5 H (1])(1‘) _t)m,(q,)

reRy (3.4)
_ (_1)6(6—1)/2(_1)6(6—1)(_1)6—166a6—1 H (t—l])(T‘))mr(w)
TERY
— (_1)(571)(6*2)/2550(571 H (t— B)MBN’).
BEBy [ |
Proposition 3.2. For ¢ € K[x] of degree d with l(¢) = a,andn > 1,
discy (q)n) —= (_])(dh,])(dnfz)/zdnd“ a(dnq)z/(dq) H (t— B)MM“’O"). (3.5)
ﬁegwon D

Proof. We apply Proposition 3.1 with {p = ¢°", noting that degy = d™ and l({) =
qld™=n/(@a-1) |

Definition 3.3. Let v be a place of K. A polynomial ¢ € K[x] has good reduction at v if
every coefficient of ¢ has nonnegative v-valuation and the leading coefficient of ¢ has
zero v-valuation. In other words, ¢ has good reduction when it is v-integral with v-unital
leading coefficient. Obviously, if ¢ has good reduction at v, then so does each iterate @°™.
Also note that if a polynomial has good reduction at v, then the roots of ¢ are v-integral
in the sense that they have nonnegative valuation (for extensions of v to the splitting field
of ¢).

A basic result of algebraic number theory is the following.

Lemma 3.4. Let K(x) be an extension of K generated by a root of a polynomial f € KJx]
where discf # 0 (but not necessarily irreducible). If f has good reduction at a place v of
K, then v(disc K(«)/K) < v(discf). O

Definition 3.5. Let ¢ € K[x] be a polynomial of degree d with leading coefficient 1(¢) = a,
v a place of K, and to € K\ P, an element outside the postcritical set. The pair (v, to) is
called ¢-exceptional if either (i) ¢ has bad reduction at v, (ii) v(to) < 0, (iii) v(d) > 0, or
(iv) v(Normy/ k (to —v)) # O for some v € P, where K’ is the extension of K generated

by P,. Define S, ¢, to be the set of real infinite places of K together with finite places v
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such that (v, to) is @-exceptional. Observe that S, (, is a finite set if ¢ is postcritically
finite.

We now state and prove the following version of Theorem 1.1.

Theorem 3.6. Let ¢ € K[x] be a postcritically finite polynomial of degree d where K is a
number field, and let ty € K be outside the postcritical set P,. Then K, ¢, /K, and hence

Ko t,/K, are unramified outside the set S, . O

Proof. Let v be a finite place of Ok outside Sy, 1,. It is enough to show that v(disc Ky +,/
K) = 0 for general n. Since v is outside S ,, the polynomial @, (x,to) has good reduc-
tion at v. By Lemma 3.4, v(disc Ky, ¢, /K) < v(discy @n(x,1t0)), so it is enough to show that
v(discy Oy (x,10)) = 0.

By the discriminant formula (3.2) and the matrix definition of resultant, the dis-
criminant discy @, (x,tp) is obtained by evaluating the t-polynomial disc, @, (x,t) at
t = to. So by Proposition 3.2,

disc, @n(X’ to) _ (_])(d“—U(d“—Z)/Zdnd“ ald"=1?/(d-1) H (to _ B)Ms(w"")_
Begwon
(3.6)

Now extend v to a valuation v’ of the extension K’ of K generated by the ramification
points of ©°™. Since ®,,(x, tp) has good reduction at v, and v(d) = 0, it follows that its de-
rivative, (¢°™)’, also has good reduction. So each ramification point r of ¢°™ has nonneg-
ative v’-valuation. Thus the corresponding branch point 3 = ¢@°™(r) also has nonnegative
v’-valuation. So, for each branch point (3, the element t, — f € K’ and its conjugates over
K have nonnegative v’-valuation. Since v is outside S ¢,, the norm of each such to — 3 has
zero v-valuation, so v/(to — ) = 0. In addition, v(d) = v(a) = 0 since v is outside S, ¢,.
Thus v(discy, @, (x,t0)) = 0. [ ]

Corollary 3.7. Let ¢ € K[x| be a postcritically finite polynomial of degree d > 1 where K
is a number field. For ty € K\ P, the action of Gal(K/K) on X, , induces an iterated

monodromy representation py ¢, : Gk,s = My t,, Where S =S ¢, . O

4 Polynomials with good reduction

We are interested in the ramification behavior of K,, {,/K, and hence the valuation of
disc(Kyn ,/K), especially for places of K of residual characteristic dividing the degree
d of @. As in Lemma 3.4, if ®,,(x,tp) has good reduction at v, then the v-adic behavior of

disc(®n (x,t0)) gives bounds, often sharp, for the v-adic behavior of disc(Kn ¢, /K).
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Our aim here is to prove Theorem 1.2. Throughout this section, we suppose K is
a characteristic 0 field equipped with an ultrametric valuation v having valuation ring
0, ={a € K:v(x) > 0}; we assume that v(K*) = Z. The residue field of K with respect to v
is denoted k,. We assume that k,, has positive characteristic p > 0.

Lemma 4.1. Suppose K’ is an algebraic extension of K and fix an extension v’ of v to K'.
Let ¢ € K[x] be a polynomial of degree d > 2 with good reduction at v. If « € K’ has
v/(o) < 0, then « is not preperiodic for ¢. O

Proof. Suppose B € K’ has v/(f3) < 0. Since the leading coefficient of ¢ is a v-adic unit,
there is a unique term in the sum @(f) = Z]fizo a;B’ with minimal valuation, namely
aqpd. Since v’ is ultrametric, we have v/(¢(B)) = d - v/(B) < v/(B). Applying this prin-
ciple to &, @(), 9°?(«), ..., we obtain v/(°™(«x)) = d™v/(«) — —oo. Thus, the set {@°™(x)}

cannot be finite since {v'(¢°™(«))}is not finite. [ |
Definition 4.2. Forf € K[x], put rd,(f) = (1/deg f)v(disc f) for the v-root discriminant of f.
We now state and prove the following version of Theorem 1.2.

Theorem 4.3. Let ¢ € K[x] be a postcritically finite polynomial of degree d > 2 with good
reduction at v, and let ty € O,,. Then, forn > 1,

nv(d) < d, (O (x, o)) <v(d)+ > v/(to—v (4.1)
vePy,

where v’ is the extension of v to K’, the field obtained by adjoining the elements of the
postcritical set P, to K. In particular, the v-root discriminant of ®,,(x, to) is bounded as

n goes to infinity if and only if the residual characteristic p of v does not divide d. O

Proof. Proposition 3.2 yields the following:

M
rd, (P (x,t0)) =nv(d) + Z d—fv'(to —B). (4.2)
ﬁe'Bq,on
By Lemma 4.1, v'(to — 3) > 0. The result now follows since Mg = Mp(¢°") < d™. [ |

Example 4.4. It is not difficult to write down polynomials ¢ € Z[x] such that there is no
wild ramification in the iterated tower of ¢. If a strengthening of Theorem 1.2 for field
discriminants (as opposed to polynomial discriminants) holds, then such a polynomial,
if monic, will not be postcritically finite, so the resulting iterated tower of function fields
will be infinitely ramified. Here is a quadratic example. Let @(x) = x* + x + p with u € Z.
Then discy (®n(x,t)) is odd for all t € Z (for instance by Proposition 3.2). However, ¢ is
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not postcritically finite. Indeed, its only critical pointis r = —1/2. For v = ord,, the 2-adic

valuation of Z, v(r) = —1 is negative, hence by Lemma 4.1, ¢ is not postcritically finite.

5 Prime decomposition in towers

In this section, K is a number field. We now describe, in terms of certain graphs, how
primes of Knot dividing the discriminant of ®,,(x, to) (assumed to be irreducible) decom-
pose when we adjoin a root of this polynomial. A simple consequence of this description
is that no finite prime of K splits completely in K, ¢, /K.

We first set up some notation. We assume ¢ € Og[x] is postcritically finite. Re-
call the notation from Section 1 regarding F,, = F(&n). Fixing to € Ok, we assume that
@, (x,to) is irreducible over K for all n > 1 and choose a coherent system (&, ¢, ) of their
roots so that K,, t, = K(&nlt, ). For the rest of this section, we assume p is a prime of
Ox which is not in S, {, (see Definition 3.5). For such p, the splitting of p in the ring of
integers of K, ¢, coincides with the splitting of p in the ring O [&nlt, ]; the latter factor-
ization mirrors exactly the factorization of the polynomial @, (x, to) over the residue field
Fp, = Ox/p.

For example, the primes of degree 1in Ok [&nt,] which lie over p correspond to the
roots of ¢°™(x) — to over F,, that is, the points in F, whose image under the nth iterate
of ¢ is the image to of to in F,,. A prime of degree k lying over p corresponds to a Galois
orbit of k points defined over a degree k extension of F, mapping to to by ¢°™. Such data
is conveniently summarized in terms of certain directed graphs we now define.

For k > 1, let F, i be a degree k extension of the residue field F,. We denote by
I'p.p x the following directed graph: the vertices are the elements of F, x and the graph
has a directed edge v — w if and only if ¢(v) = w. After we choose an ordering Aq,...,Aq
of the elements of Fy i, the adjacency matrix A, ,  of T, , « has ij entry 1if @(Ay) =N
and 0 otherwise. We write I'y, ,, Ay, forly , 1 and Ag p 1.

For calculations, it is useful to note that Agen , x = A In other words, the

n
ke
in-degree of a vertex vin I'on , i is the number of length n path:(:n I'p,px ending at v. For
example, let ty = to + p be the vertex corresponding to the reduction of to modulo p. Then
the following quantities all coincide:
(a) the number of degree 1 primes of Ok [énlt,] Over p,
(b) the in-degree of to on yon 4,
(c) the sum of the entries in the column of AY, | corresponding to to,
(d) the number of length n paths on T, , ending at to.
Note that, by (c), for example, there are at most |F,| = Np degree 1 primes of K, ,
lying over p, hence p does not split completely in K, ¢, /K.
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More generally, we can count the number of primes of any given degree over p by
taking into account the action of Gal(F,/F,). Namely, the graph T, , « has the following
additional structure: each vertex is “colored,” we will say weighted, by a positive divisor
m of k where m is the exact degree of that vertex over IF,. Furthermore, every directed
edge has the property that the weight of the initial vertex is a multiple of the weight of
the terminal vertex. Also Gal(F, i /F,) acts on the graph and the weight of a vertex equals
the size of its orbit under this action.

Summarizing the discussion, we have the following proposition describing prime

decomposition in K,, {, /K in terms of graphs.

Proposition 5.1. Suppose ¢ € Ox|[x] is postcritically finite and that to € Ok is such that
®,,(x,10) is irreducible over K for all n > 1. Suppose p C Ok is not in S, {,. Then, for
k > 1, the number of degree k primes of K,, , lying over p is N/k, where N is the number
of paths of length k on I, , « which start with a vertex of weight k and end at to, the

weight 1 vertex corresponding to the image of to in IF,. O

Remark 5.2. Alternatively, one could take the quotient graph of I';, , « by identifying ver-
tices which are in the same orbit of Gal(F, «/F,), and give a vertex in the new graph the
weight equal to the number of points identified. Then the degree k primes of K, ¢, ly-
ing over p are in bijective correspondence with the paths of length n on the quotient
graph starting with a vertex of weight k and ending at ty. We should note that as long

asp ¢ S¢,1,, the decomposition of p in K, , depends only on the residue of to modulo p.

For a fixed pair (p,k) and n tending to infinity, each graph I'yon , « has Np* ver-
tices and an equal number of edges, hence is one of a finite number of graphs. Therefore,
the sequence Ipen p x, 1 = 1,2,... is always eventually periodic. In fact, it is relatively
simple to describe exactly what happens to the sequence of graphs in our situation.
Each connected component of Iy, , i« consists of a unique cycle or “loop” with a number
of “arms” emanating from it. The minimal period of the sequence (I'yon ) is the low-
est common multiple of the length of the unique loop in each connected component of
I'p.p.x and the preperiod is the least common multiple of the length of the longest arm
in each connected component of I'y, , «. All of these facts are easily verified and left as
amusing exercises for the reader. A highly interesting question is whether one can cap-
ture the graph-theoretical description of prime decomposition in iterated extensions via

appropriate zeta and L-functions. Here, we settle for a typical example as an illustration.

Example 5.3. Let @(x) = x?> +1i € Z[i]. Let p = (3 + 2i) be a prime of norm 13. We map
Z[i] — F, ~ Fy3 by sending i — 8, and list the elements of F13 as 0,1,2,...,12. We write
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Figure 5.1 Thegraph Ty ;.
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3 1 10
Figure 5.2 The graph Tl .2 ,.
down the adjacency matrix A, ,:

06000O0O0OOCOTOOO0OO
06000O0O0OO0COOTOOO
06000 0O0O0O0COOOO0OO 0TI
0600001 00O0O0O0CO0OO0OO®O
06000O0O0OOCOOOCOTO
6000O0O0OOCTOOOO0OO

App=10 0 0 0 0 1T 0 0 0 0 0 0 Of- (5.1)
060000O0T1O0O0O0O0CO0OO0OO®O
0000O0O0OOCTOOOOO
06000O0O0OOCOOOCOTO
60001 00O0O0O0CO0O0OOQ0
00000O0O0OO0OCOO0OOGO0OO 0TI
0000O0O0O0COOTOOO

The graphs for ¢ and @°? are drawn in Figures 5.1 and 5.2, respectively.
Note that I, , has two connected components, one with a loop of length 2 and the
other with a loop of length 3. The longest arm in each component has length 2. The reader

can check either by taking powers of the adjacency matrix or by drawing the graphs that
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Table 5.1

Number of
n Degrees of irreducible factors of @°™(x) — 11/F;3 degree 1

factors
1 151 2
2 1;151;51 4
3 1;152;2;2 2
4 1;1;2;2;2;2;2:4 2
5 1;1515152;2;2;2;4;4;4;4;4 4
6 1;152;2;2;2;2;2;2;4;4;4;4;4;4;8;8;8 2
7 1;152;2;2;2;2;2;2;2;2;,4;,4;4;4,4;,4;4;4;4,8;8;8;8;8;8;8;8;8 2

I'p,p occurs only once in the sequence I'yon ,,, but starting with n = 2, the sequence has
period 6. Note that 6 is the product of the lengths of the loops in the connected compo-
nents of ', ,. With base field K = F,,, the number of degree 1 places in F,, over the prime
(t—11)forn =1,2,3,... is the periodic sequence 2,4,2,2,4,2,... of period 3. As a check
on the calculations, we verified using GP-PARI that with @(x) = x? + 8, the polynomi-
als @°"(x) — 11 forn = 1,2,...,7, factor over Fy3 into distinct irreducible factors of the
degrees listed in Table 5.1.

6 Quadratic polynomials

In this section, we make a few remarks and give some examples concerning quadratic
polynomials. By applying automorphisms of P!, we bring each quadratic polynomial to a
standard form ¢(x) = x? —r. We then write down recurrence conditions for postcriticality
of ¢. The minimal number fields over which preperiodic points of prescribed preperiod
m and period n for such quadratic polynomials are defined form an interesting family of
number fields in their own right.

6.1 Normal form

Put

@(x) = ax? + bx + ¢ € K[x]. (6.1)
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Let 8, = —b?/(4a) + c. It is the unique branch point for the cover of P' given by the poly-
nomial ¢(x), that is, B, = {84,}. Theorem 1.1 now simplifies as follows: F, /F is finitely
ramified if and only if §,, is preperiodic for .

If W(x) = ax? + bx + c is quadratic, we take y(x) = x/a, so that y~'(x) = ax. We
then have that

v "y (x) = x* + bx + ac (6.2)

is monic. Note that y fixes 0. Since an isomorphism from ¢ to 1 carries B, to By,, apply-

ing a K-automorphism taking 6, to 0, we see that 1 is conjugate to ¢, where

@(x) = (x-!— g)z (6.3)

We leave to the reader the exercise that for each quadratic { € K[x], there is a unique
r € K such that 1 is conjugate to (x —r)2. Note that via the automorphism y(x) = x + 1, the
maps x> — rand (x — 1)? are K-isomorphic.

2

Now consider a normalized quadratic polynomial ¢ (x) = x= — r. We have

0°(0)=0,  ¢°'(0)=-,
(POZ (64)

0)=r(r—1), P32 0) =r(r* —2r* +1-1),....

Forn > 0, consider the recurrence g,, 1 = rg2 — 1 with initial condition go = 0. Then ¢ is

postcritically finite if and only if r is a root of g, — g for some m # n.

Exercises. (i) If r € Z and @(x) = (x — r)? has periodic branch points, then r € {0, 1, 2}.
(ii) If @(x) = ax? + bx + ¢ € Q[x| has preperiodic branch point, then b/2 is an
algebraic integer.

6.2 The polynomial @(x) = x* —2

In this subsection, we turn to an example which was the starting point of this paper.
We learned from Lemmermeyer the classical fact that the cyclotomic Z;-extension of Q

can be written as Q(6,,), where 6,, = \/2 + 42+ -+ /2. Indeed, using the half-angle

formula for cosines, one easily establishes that the nested square root expression given

above evaluates 2 cos(mr/2™""). What attracted our attention here was that in the result-
ing recurrence-tower, the number of ramified primes is finite (indeed only 2 ramifies,
and it does so totally and deeply). Since the 6,, are roots of the nth-iterate equation

@, (x,0) = @°™(x) — 0, where @(x) = x? — 2, it was natural to wonder whether for every
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t € K=Q ¢°*(x) — t = 0 cuts out a finitely ramified tower. That this is so is guaran-
teed by Theorem 1.1 since x*> — 2 is postcritically finite. Indeed, it is the first member of
the Chebyshev family of postcritically finite polynomials. For more details see [1, Propo-
sition 5.6] where the iterated monodromy group of any Chebyshev polynomial of degree
d > 1is shown to be infinite dihedral.

For the rest of this subsection, let ¢(x) = x? — 2. Here we will verify that another
property of the cyclotomic Z,-tower (the specialization of the tower at t = 0) holds for
many values of ty € Z, namely that a root of @, (x, to) generates over Z the ring of integers

of the number field it cuts out.

Lemma 6.1. Forty € Z, to = 0,1mod 4, the polynomial ¢°™(x) — t¢ is irreducible over Q.
U

Proof. We note that ¢°™(0) = -2, ¢°™(£1) = —1. If to = Omod 4, we apply the Eisenstein

criterion to ¢°™(x) at the prime 2. If t = 1mod 4, we use ¢°™(x + 1) instead. [ |

Proposition 6.2. If ty € Z is congruent to 0, 1 modulo 4, and if ty + 2 and ty — 2 are square-
free, then for n > 1, the stem field K,, = Q[x]/(®n(x,1o)) of the polynomial @, (x,to) =

@°"(x) — to is monogene, as disc K, = disc @, (x, to). O

Proof. Letting D,, = disc(®(x,10)), a simple calculation from Proposition 3.2 gives for
n>1,

Dn i =42" D2, (-2) (6.5)
or

Dny1 =42 D% (2 to) (6.6)

since @°™(+2) = 2. Also, forn = 1, we have D1 = 4(to + 2).

We need to compare D,, with the discriminant d,, of the ring of integers of K,,. For
n = 1, we clearly have d,, = Dy, since ty + 2 is square-free. For n > 1, we now determine
the ramification for each extension K, ;1 /K.

We first remark that Ky, ;1 = K (v/0,, + 2), with ®,,(8,,) = 0. Next we observe that
Ni,. /0(0n +2) = @ (—2,10) = ¢°™(—2) —to = 2 — to. Hence, for n > 1, in the extension
Kn+1/Kn, only the places dividing 2(2 — to) are allowed to ramify. We first examine the
tame ramification. Suppose | is a prime divisor of 2 — ty. Then 2 + to = 4mod1 and so
lis split in K;/Q. Let 1 be an odd prime divisor of to — 2. Since Ny, ,g(0n +2) = 2 — to,
there exists a prime [,, of K, lying over 1 which is ramified in K, ;1 /K. In fact, there are

two primes over lin K;. One of them is totally ramified in K,, /K;. The other is unramified.
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Therefore, the valuation v, at the prime ideal [, of the different of the extension Ky, ;1 /Ky
is precisely2 —1 =1.

It remains to study the wild ramification. Forn > 1, we put

On if tp = 0(mod4),
Ty = (6.7)
140, ifto=1(mod4).

We note that 2 is ramified in K; /Q and that 7t; is a uniformizer for the unique place p; of
K; lying over 2. We will proceed by induction. Suppose, for some n > 1, that 2 is totally
ramified in K, /Q and that 7t,, is a uniformizer of the unique place p,, of K, lying over 2.
We claim that 1+, is not a square modulo nﬁ"“ +1.To see this, we suppose that 1+, is

a square modulo ﬂi““ *+1, Since the residue field is F,, we get, in the case to = 1(mod 4),
2+6n:1+nn:(1+ann)2(mod7rﬁn”), (6.8)

with a € Z,, which is impossible. Thus, for to = 1mod4, the Kummer theory tells us
that K, 1/K,, is ramified at the unique place above 2. For to = O mod 4, the argument is
simpler, since, in that case, the valuation of 2 + 0,, at 7, is the same as that of 6,,, namely
1. By Kummer theory, K, ;1/K;, is ramified at the unique place above 2. In conclusion,
Kn41/Q is totally ramified at 2.

If to = Omod4, it is clear that 0,,,1 is a uniformizer of the unique place of K, ;1
lying over 2. The same holds for 14-0,,.; when to = 1mod 4;note that N, /x, (146n41) =
—(0n, + 1). This completes the induction step.

Next, we calculate conductors. Let o be a generator of the Galois group Gal(K 1/

Ky ). Assume to = Omod4. Then 0,1 = 7,17 and

(V2+6,)° " —1=-2. (6.9)

The valuation at p, .7 of 2 is 2"*'. Hence, the element o belongs to G,~.1, but not
to Gyni147 (we are using the higher ramification groups in the lower numbering).

Consequently,

Voo (0(Kn1/Kn)) = 3 (460 1) =271 41, (6.10)

1

where v, ,, is the valuation at pn;1 and 9(K,41/Ky) is the different of the extension
Kn+1 /Kn
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Assume now to = 1mod4. Thenm, =1+ 06, and

- 20041
140,)7 1= 2l 6.11
(1+6n) 1= O (6.11)
Hence, the element o belongs to G,~+1_7, but not to G,~+1. Consequently,
Voo (0(Kna1/Kn)) =Y (#Gi—1) =211 (6.12)

i

Now we are able to determine the discriminant of K, /Q. First note that for ty =
O0mod4, (to —2)/2 (which is odd) is the tame part of N ., ,00(Kns1/Kn). If to = Tmod4,
then to — 2 (which is odd) is the tame part of N¢ _ , g0(Kni1/Ky). Thus, we have the

recurrence formula

+dni1 = diNk, ., /00(Kni1/Kn)

— a2 (to—2)22"" (6.13)

= di (to —2)4%",

which coincides up to sign with the recurrence (6.6) for D,,. We also have the coincidence
of initial conditions, d; = D;. Since D,,/d,, is a square, we conclude that d,, = D, for all
n, and so Ok, = Z[0n]. |

7 Iterated monodromy representations: questions

In this section, we discuss in a bit more detail conjectural and known properties of iter-
ated monodromy representations, especially as compared with those of p-adic represen-
tations. We also list a number of open problems.

We first recall a conjecture of Fontaine and Mazur: if K is a number field and S
is a finite set of places of K none of which has residue characteristic p, then all finite-
dimensional p-adic representations of Gk s factor through a finite quotient (see [10, Con-
jecture 5a] as well as Kisin and Wortmann [12]). On the other hand, infinite tamely and
finitely ramified extensions of number fields do exist (and are in plentiful supply) thanks
to the criterion of Golod and Shafarevich, see, for example, Roquette [19]. Thus, at least
for certain pairs K, S, there is a sizeable portion of Gk s which is predicted to be invisible
to finite-dimensional p-adic representations.

When S contains all places above p, it is also expected, by a conjecture of Boston
[5] (which we recall below), that p-adic representations do not capture all of Gk s. Sup-

pose p : Gks — GLn(F,) is a residual representation of Gk s. By Mazur's theory of
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deformations, there exist a universal ring R(p) (local, Noetherian, and complete) and a
versal deformation p : Gk, s — GLm(R(p)) such that p is the restriction of p. Let L = L;
be the subfield of Ks fixed by ker p. We put H = H; = Gal(M/L) where M is the maximal
pro-p extension of L inside Ks. If S contains all place above p (p odd, or for p even we
assume K is totally complex), then the cohomological dimension of H is at most 2. If L is
not totally real, the purely group-theoretical Conjecture B of Boston [5] concerning the
rank-growth of subgroups of GL,,(R(p)) then implies the noninjectivity conjecture (see
[5, page 91]): p forgets a nontrivial part of H.

How can one shed light on those sides of arithmetic fundamental groups which
are apparently not illuminated by the theory p-adic representations? As a counterpoint
to the Fontaine-Mazur conjecture, a conjecture of Boston [4] asserts that infinite tame
quotients of Gk s possess faithful actions on rooted trees. Iterated monodromy groups
are canonically equipped with such an action [14]. It is therefore natural to seek such
representations via specializations of iterated towers of postcritically finite polynomi-
als, in the wild case as well as in the tame case. In the wild case, it would be interesting
to produce iterated monodromy representations whose image does not have any infinite
p-adic analytic quotients. Since very little is known about the structure of infinite tamely
and finitely ramified extensions of number fields, the following question is of particular

interest.

Question 7.1. Are there a number field K and a rational function ¢ onP' /K of degree d > 1
as well as a specialization at to € K of (1.1) such that
(i) foreachn > 1, @, (x,tp) is irreducible over K (i.e., Kn ¢, = K(&nlt,) is a field of
degree d™ over K),
(ii) there is a finite set S of places of K such that K, +,/K is unramified outside S
foralln > 1, and such that

(iii) S does not contain any primes dividing d?

By Theorem 1.1, it is possible to fulfill (ii) by taking ¢ to be a postcritically finite
polynomial. Satisfying (i) is not too difficult either, since we can arrange a place of K to
ramify totally in K,, (essentially an Eisenstein condition, see, e.g., Lemma 6.1). Condition
(iii) asks that K, /K be tamely ramified. It is not difficult to arrange (i) and (iii) simulta-
neously by imposing congruence conditions (e.g., see Example 5.3). However, satisfying
all conditions together appears to be quite difficult.

A positive answer to Question 7.1 would provide, for the first time, an explicit
step-by-step method for constructing an infinite tamely and finitely ramified extension
of a number field. The only method for producing such towers, the Golod-Shafarevich

criterion, is effective but not constructive. On the other hand, a negative answer would
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assert that an analogue of the Fontaine-Mazur conjecture holds for finitely ramified it-
erated extensions. We should mention that for the function field of a curve over a finite
field with a square number of elements, recursive constructions of Garcia-Stichtenoth
(see, e.g., [11]) for tamely and finitely ramified extensions exist; that such constructions
always arise from modular curves is a conjecture of Elkies [9].

The root discriminant of a number field of degree n over Q is the nth root of the
absolute value of its discriminant. Recall that an algebraic extension L over a number
field K is called asymptotically good if (i) L/K is infinite, and (ii) for every sequence of
distinct intermediate subfields of L/K, the root discriminant remains bounded. A more

general and more concise version of Question 7.1 is the following.

Question 7.2. Are there a rational function ¢ on P' defined over a number field K, and a

to € Ksuch that the resulting specialized iterated tower K, +, /K is asymptotically good?

Under the assumption of good reduction of the polynomial ¢, the analogue of this
question where we replace the number field discriminant with the polynomial discrimi-
nant, has a negative answer by Theorem 1.2. Namely, for a polynomial P € Q|x] of degree
d > 1, define its root discriminant by rd(P) = | disc(P)|'/¢. An immediate consequence of
Theorem 1.2 is the following.

Corollary 7.3. If ¢ € Q[x] is postcritically finite, has degree divisible by p, and has good
reduction at p, then for any ty € Z, the sequence of polynomials (@ (x,tp)) is asymptoti-
cally bad in the sense that rd, (9, (x, to)) tends to infinity with n. O

This result is in agreement with a conjecture of Simon [22], to the effect that any
infinite sequence of distinct polynomials over Z is asymptotically bad. Thus, to tackle
Questions 7.1 and 7.2, one would very likely have to understand the index of the order

Ox[&nlto] In Ok, -
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