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Abstract. — We fix a prime p and construct new cases of pro-p extensions of number fields
with restricted ramification and splitting, whose Galois groups decompose as coproducts of
pro-p absolute Galois groups of local fields. As a consequence, these pro-p extensions satisfy
the strong Massey vanishing property and thus admit large unipotent quotients.

Introduction

Context. — The absolute Galois group of a field is a fundamental object in algebra
and arithmetic. A natural and longstanding question is:

Which profinite groups can be realized as absolute Galois groups of fields?

In general, fully understanding the structure of absolute Galois groups is highly myste-
rious and notoriously difficult. A common approach is therefore to fix a prime p and
study the maximal pro-p quotient, known as the pro-p absolute Galois group. For num-
ber fields, it is common to consider further quotients of the pro-p absolute Galois group
by restricting the ramification. In this context, presentations of pro-p groups in terms
of generators and relations play a central role. A pioneering result was given by Golod
and Shafarevich in the 1960s [4], who used the idea of presentation to construct the first
examples of infinite p-class field towers. Their method was systematically extended to the
setting of pro-p absolute Galois groups unramified outside finite sets S of primes, which
we denote by GS (a detailed introduction to these Galois groups can be found in [12]).
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When S contains all p-adic places (i.e. in the wildly ramified case), the study of GS mo-
tivated the development of the Poitou–Tate duality theory. Further study of these wildly
ramified pro-p extensions, often guided by analogies with the theory of Riemann surfaces,
produced explicit presentations of GS in various cases.
In the early 2000s, Labute [13] introduced the notion of mild pro-p groups (see §1.2 for
definition) for odd primes p to provide examples of tamely ramified GS of cohomological
dimension 2. These pro-p groups are infinite and FAB (i.e. every open subgroup has
finite abelianization), a property that follows from class field theory. This result was
later extended to the case p “ 2 by Labute and Mináč in [14]. Labute’s idea has since
inspired a range of further developments. Notably, Schmidt [34] proved a general result
showing that, by suitably enlarging the set S to allow additional tame ramification, the
Galois groups GS become mild.
Massey products, originally introduced in a geometrical context (see [19]) as finer group
invariants than cohomology algebras, were independantly used by Morishita [28] and
Vogel [37] to extract information about the presentations of GS. Gärtner [3] further
connected these results with mild presentations. Building on Dwyer’s works [2], which
established a connection between Massey products and unipotent representations, Mináč
and Tân conjectured the following two necessary conditions for pro-p groups to be iso-
morphic to the pro-p absolute Galois group GK of a field K.

piq The Kernel Unipotent Conjecture [23, Conjecture 1.3] predicts that the Zassenhaus
filtration of GK , when K contains a primitive p-th root of the unity ζp, is given by the
kernels of unipotent representations.

piiq The Massey vanishing conjecture, which is the main focus of this paper, was first
formulated in [25] under the assumption ζp P Kˆ, and later extended to a more general
form in [24]. The conjecture can be formally stated as follows:

Conjecture (Mináč-Tân). — Let GK be a pro-p absolute Galois group of a field K.
Then GK satisfies the Massey vanishing property.

We refer the reader to §1.1.1 for the relevant definitions. This conjecture has been the
subject of active research over a wide range of base fields (see, for example [21] for a
detailed overview of known results). In the arithmetic context, Mináč and Tân [25,
Theorem 4.3] showed the conjecture for GK , when K is a local field. Subsequently,
Guillot, Mináč, Topaz and Wittenberg [8] verified the Massey vanishing property in
the case n “ 4 and p “ 2, for GK when K is a number field. Finally, Harpaz and
Wittenberg [10] completely resolved the conjecture for number fields.
Let G be a pro-p group, and let n ě 3 be an integer. For an n-tuple pχ1, . . . , χnq of
homomorphisms from G to Fp, if the Massey product xχ1, . . . , χny is defined (see § 1.1.1
for definition), then the cup products χj Y χj`1 vanish for all 1 ď j ď n ´ 1. This
motivates the following properties on G, known as the strong Massey vanishing property:

If χj Y χj`1 “ 0 for all 1 ď j ď n ´ 1, then the Massey product xχ1, . . . χny vanishes.

Mináč and Tân [26] studied this property for pro-p absolute Galois groups. However, its
validity turns out to be more delicate. Harpaz and Wittenberg showed that the strong
Massey vanishing property does not hold for GK , when K is a number field containing
an 8-th primitive root of the unity [8, Appendix]. Merkurjev and Scavia [20] generalized
the previous argument for several other fields.
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By contrast, the third author, together with Mináč, Ramakrishna, and Tân [18] verified
the strong Massey vanishing property for GK , when K is a number field not containing
the p-th roots of unity, and its tame absolute quotient. These contrasting results illustrate
the increased complexity that the presence of the p-th roots of unity in K may bring to
the study of GK .

Results. — In this work, we study the strong Massey vanishing property in the context
of restricted ramification, and we use it to construct unipotent extensions of number
fields with small number of ramified primes. By a unipotent extension, we mean a Galois
extension whose Galois group is isomorphic to Un – UnpFpq, the group of n ˆ n upper
triangular unipotent matrices over Fp.
It has been observed that realizing a finite group as a Galois group comes at the cost of
introducing significant ramification. If K does not contain ζp, the generalization of the
Scholz-Reichardt method from Q to K already requires a nontrivial amount of ramifica-
tion. When ζp P K, the situation becomes considerably more difficult. For example, for
general fields K, no general reasonable upper bound is known for the number of ramified
primes needed to realize arbitrary 2-groups (see, for instance, [33]). This again shows
that the presence of ζp in the base field K affects the complexity of studying GK .
On the other hand, wild ramification enables the construction of a variety of finite p-
groups G as Galois groups over number fields unramified outside p. Specifically, for a
prime p and a number field K with r2 complex places, the Galois group of the maximal
pro-p extension of K unramified outside p is often a free pro-p group of rank r2 ` 1
(see p-rationality in §2.3). By the universal property of free pro-p groups, any finite p-
group G with generator rank at most r2`1 can then be realized as a Galois group over K,
unramified outside p. In particular, we can easily demonstrate that any finite p-group G
can be realized as a Galois group GalpL{K 1q over some number field K 1 such that the
extension L{K 1 is unramified outside p.
However, using only wild ramification has limitations when the base field is fixed, as the
generator rank of such Galois groups is bounded by r2 ` 1. To go beyond this, it is
necessary to allow tame ramification. Inspired by Wingberg [38], Movahhedi [29] and,
Jaulent and Sauzet [11], we study new situations where pro-p extensions with restricted
ramification and splitting condition is a coproduct of free and Demushkin components.
These groups check the strong Massey vanishing property, which allows us in the best
situation to infer unipotent quotients with generator rank 2r2 ` 2, which is twice the
maximal generator rank allowed in the purely wild case.

Let us introduce notations before stating our results. Let K be a number field of signa-
ture pr1, r2q. Let S and T be finite sets of primes of K such that T is disjoint from S,
and let Sp denote the set of primes of K lying above p. Define

δS –
ÿ

pPSXSp

rKp : Qps, rTS – δS ´ pr1 ` r2 ´ 1 ` |T |q.

LetKT
S be the maximal pro-p extension ofK unramified outside S and totally decomposed

at T , and set GT
S – GalpKT

S {Kq and GT,ab
S – GT

S{rGT
S , G

T
S s. For the definition of the

strong Massey vanishing property, see Definition 1.2 in §1.1.1.
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Theorem A. — Suppose that GT,ab
S » Zr

T
S
p . Then there exist infinitely many sets N of

tame primes of K with |N | “ rTS such that GT
SYN satisfies the strong Massey vanishing

property. As a consequence, if rTS ě 2, then there exists a surjective homorphism

ρS : GT
SYN ↠ U2rTS `1,

where U2rTS `1 denotes the group of upper-unitriangular matrices of size 2rTS ` 1 over Fp.

As initiated in [18] and inspired by [1], we can lift the coefficients of the map GT
SYN ↠

U2rTS `1 to Z{pm – Z{pmZ, provided that the set N of primes and the integer m are
suitably chosen. Furthermore, if the matrix is not required to be of maximal size 2rTS `1,
one can work over Z{pm for any m. For instance:

Theorem B. — Let K be a number field with r2 ě 2, and assume the Gras and Leopoldt
Conjectures. Fix an integer m ě 1. Then, for all sufficiently large primes p, there exist
infinitely many sets N of r2 tame primes such that there exists a surjective homomor-
phism GSpYN ↠ U2r2`2pZ{pmq.

Here Un`1pZ{pmq denotes the group of upper-triangular unipotent pn`1qˆpn`1q-matrices
with entries in Z{pm. A more general version that incorporates splitting conditions is
given in Heuristic 2 in §2.6.2.
Gras’s Conjecture is central in this kind of study, and we refer the reader to Conjecture 2.9
in §2.3 for a more precise formulation.

This paper is organised in two parts. The first part focuses on group-theoretic results on
the strong Massey vanishing property and unipotent representations. The second part
studies arithmetic applications and proves our results. For the computations, we have
used the program PARI/GP [36].

Notations. — We fix a prime number p.
‚ For a Zp-module A, the number dpA refers to the dimension of A{Ap over Fp, and rkZpA
denotes the Zp-rank of A, which is the dimension over Qp of Qp bZp A.
‚ If X is a set, we denote by |X| its cardinality.
‚ We denote by Γ a finitely presented pro-p group.
‚ Almost all cohomology groups H ipΓ,Fpq have Fp-coefficients with trivial action so in
those cases we simply write H ipΓq. We denote by dpΓ – h1pΓq the generator rank of Γ,
and by h2pΓq its relation rank.
‚ Set FratpΓq – ΓprΓ,Γs to be the Frattini subgroup of Γ. For every homomorphism
ρ : Γ Ñ Γ1 of finitely generated pro-p groups, we denote by ρFrat : Γ{FratpΓq Ñ Γ1{FratpΓ1q

the induced homomorphism.

1. Group Theory

1.1. Massey vanishing property and liftings. — Let n ě 3 be an integer, and
let Un`1 be the group of all upper-triangular unipotent pn ` 1q ˆ pn ` 1q-matrices with
entries in Fp. We denote by Zn`1 the subgroup of Un`1 with all off-diagonal entries 0
except at position p1, n ` 1q. This subgroup is the center of Un`1 and is isomorphic
to Fp. We define the quotient group Un`1 – Un`1{Zn`1, which can be seen as the class
of matrices where the p1, n ` 1q-entry is formally removed.
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Let ψ : Un`1 Ñ Un`1 be the canonical surjection, and define the maps

φ : Un`1 Ñ Fnp , M ÞÑ pM1,2, . . . ,Mn,n`1q, φ : Un`1 Ñ Fnp , M ÞÑ pM1,2, . . . ,Mn,n`1q.

For each continuous group homomorphism ρ : Γ Ñ Un`1 and each 1 ď i ă j ď n` 1, we
denote by ρi,j the pi, jq-th coordinate function :

ρi,j : Γ Ñ Fp, g ÞÑ ρpgqi,j.

We use similar notation for homomorphisms ρ : Γ Ñ Un`1. Note that ρi,i`1 (resp. ρi,i`1)
is a group homomorphism for each 1 ď i ď n ´ 1.
By definition, we have the commutative diagram of groups:

1 // Zn`1
// Un`1

ψ
//

φ
"" ""

Un`1

φ
����

// 1

Fnp

1.1.1. Massey vanishing properties. — For each n-tuple χ – pχ1, . . . , χnq of elements
in H1pΓq, we denote by θχ the map :

θχ : Γ Ñ Fnp , g ÞÑ pχ1pgq, . . . , χnpgqq.

Definition 1.1. — We say that:
´ The Massey product xχ1, . . . , χny is defined if θχ lifts to Un`1, i.e. there exists a

morphism ρχ : Γ Ñ Un`1 such that θχ – φ ˝ ρχ.
´ The Massey product xχ1, . . . , χny vanishes if θχ lifts to Un`1, i.e. there exists a

morphism ρχ : Γ Ñ Un`1 such that θχ “ φ ˝ ρχ.

The existence of a homomorphic lift of θχ to Un`1 (which is the definition of the Massey
product) is related to the existence of a subset of H2pΓq (see [2, Theorem 2.4]), which
is called the Massey product and denoted by xχ1, . . . , χny. Observe that if a Massey
product xχ1, . . . , χny vanishes, then it is necessarily defined. If the Massey product is
defined, then an easy cohomological computation shows that χu Yχu`1 “ 0 for every 1 ď

u ď n ´ 1.

Definition 1.2 (Massey vanishing property). — We say that a pro-p group Γ

´ satisfies the Massey vanishing property if every defined Massey product vanishes,
´ satisfies the strong Massey vanishing property if for every n-tuple pχ1, . . . , χnq of

elements in H1pΓq satisfying χu Y χu`1 “ 0 for each 1 ď u ď n ´ 1, the Massey
product xχ1, . . . , χny vanishes.

1.1.2. Liftings and m-strong Massey vanishing property. — For every integer m ě 1,
set Z{pm – Z{pmZ. Let Un`1pZ{pmq be the group of all upper-triangular unipotent pn`

1q ˆ pn ` 1q-matrices with entries in Z{pm. We define the surjective morphism

φm : Un`1pZ{pmq Ñ Fnp ; M ÞÑ pM1,2; . . . ;Mn´1,nq,

where Mi,j is the image of Mi,j modulo pZ{pm. Note that when m “ 1, the map φ1

coincides with φ defined previously.
Building on ideas from [1], the third author, together with Mináč, Ramakrishna and
Tân [18], also introduced the following group-theoretic property, which they studied in
the context of (tame) absolute Galois groups:
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Definition 1.3 (m-strong Massey vanishing property). — We say that a pro-p
group Γ satisfies the m-strong Massey vanishing property if, for every n-tuple pχ1, . . . , χnq

of elements in H1pΓqn satisfying χi Y χi`1 “ 0 for each 1 ď i ď n ´ 1, there exists a
morphism ρm,χ : Γ Ñ Un`1pZ{pmq such that the following diagram commutes:

Γ Un`1pZ{pmq

Fnp

ρm,χ

θχ
φm

We also say that ρm,χ is a lifting of θχ (over Z{pm).

If m “ 1, this is the usual strong Massey vanishing property.
We now use the m-strong Massey vanishing property to lift unipotent surjections with
coefficients in Fp to unipotent surjections with coefficients in Z{pm.

Lemma 1.4. — For every integer m ě 1, the morphism induced by φm denoted by

φFrat
m : Un`1pZ{pmq{FratpUn`1pZ{pmqq Ñ Fnp

is an isomorphism.

Proof. — Clearly FratpFnp q “ 0. Let us denote by In`1 the identity matrix and by ϵi,j
the elementary pn ` 1q ˆ pn ` 1q-matrix whose entry is equal to one in pi, jq, and zero
everywhere else. An easy computation shows that:

rUn`1pZ{pmq,Un`1pZ{pmqs “ xIn`1 ` aϵi,j; a P Z{pm and j ´ i ě 2y.

Furthermore,

Un`1pZ{pmq
p

¨ rUn`1pZ{pmq,Un`1pZ{pmqs “ P ` rUn`1pZ{pmq,Un`1pZ{pmqs,

where P is the additive subgroup generated by tpbϵi,j; b P Z{pm, j ´ i “ 1u.
This implies that the kernel of φm is exactly FratpUn`1pZ{pmqq. Thus φFrat

m is an isomor-
phism.

As an application, we infer:

Proposition 1.5. — Assume that Γ satisfies the m-strong Massey vanishing property.
Suppose moreover that there exists an n-tuple χ – pχ1, . . . , χnq in H1pΓqn satisfying the
following conditions:

´ the map θχ : Γ Ñ Fnp is surjective,
´ for every 1 ď u ď n ´ 1, we have χu Y χu`1 “ 0.

Then there exists a surjective homomorphism ρm,χ : Γ Ñ Un`1pZ{pmq lifting θχ. More-
over, all such liftings are surjective.

Proof. — From the m-strong Massey vanishing property, there exists ρm,χ : Γ Ñ

Un`1pZ{pmq which lifts θχ in Z{pm. Let us recall from Lemma 1.4 that we have the
isomorphism

φFrat
m : Un`1pZ{pmq{FratpUn`1pZ{pmqq » Fnp .

Thus we infer the commutative diagram:
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Γ{FratpΓq » Fdp Un`1pZ{pmq{FratpUn`1pZ{pmqq

Fnp

θFratχ

ρFratm,χ

φFrat
m

Since θχ is surjective and φFrat
m is an isomorphism, the map ρFratm,χ is surjective. By

Burnside Lemma, we conclude that the map ρm,χ is also surjective.

1.2. Mildness. — Let us consider a finitely presented pro-p group Γ with a presentation
(not necessarily minimal):

pPΓq – xx1, . . . xd | l1, . . . , lry.

Alternatively, we have a presentation 1 Ñ R Ñ F Ñ Γ Ñ 1, where F is pro-p free on d
generators and R is the closed normal subgroup of F generated by the li’s.
We denote by EpΓq the completed group ring of Γ over Fp filtered by EnpΓq, the n-th
power of the augmentation ideal.
The Magnus isomorphism (see [15, Chapitre II, 3.1.4 and Appendice A.3]) provides an
isomorphism ϕ of filtered algebras between EpF q and E – FpxxX1, . . . , Xdyy, the algebra
of noncommutative series in X1, . . . Xd over Fp, where every Xi is assigned degree 1. The
isomorphism ϕ is characterized by ϕpxiq – Xi ` 1.
Let us choose an order ąX on tX1, . . . , Xdu, and extend it to an order on monomials
on E. To fix the ideas, we take the order Xd ąX Xd´1 ąX ¨ ¨ ¨ ąX X1. This is always
possible after relabeling the Xi’s.
We define pli as the leading monomial of the series ϕpliq ´ 1.

Definition 1.6 (Mild groups). — In this paper, we say that the presentation pPΓq is
(quadratic) mild (for an order ąX) if for every i, we have pli – Xi2Xi1 (with i2 ą i1), and
for every i, j, we have Xi2 ‰ Xj1 .

This is (a special case of) the notion used by Labute in [13, §1] to produce examples of
pro-p group GS of cohomological dimension 2.

Proposition 1.7. — If pPΓq is mild, then the presentation is minimal and Γ has coho-
mological dimension 2.

Proof. — See [13, Theorem 5.1].

Remark 1.8 (Koszulity and Mildness). — Following our definition, using [13, The-
orem 5.1] and [9, Proposition 1], we can easily show that if the group Γ admits a mild
presentation, then the algebra H‚pΓq is Koszul. Positselski [31] conjectured that pro-p
absolute Galois groups of fields containing the p-th roots of the unity has Koszul cohomol-
ogy ring, which is a stronger property than the Bloch-Kato conjecture. This conjecture
was investigated by Mináč and his collaborators in [22] and [27].

1.3. The property pPmq and the class Dm. — Set m ě 1. We define the prop-
erty pPmq that we study for the rest of the paper:

Definition 1.9. — We say that a group Γ satisfies the property pPmq if:
piq the group Γ checks the m-strong Massey vanishing property,
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piiq the group Γ admits a mild quadratic presentation or is free,
piiiq every open subgroup of Γ checks piq and piiq.

We now define the class Dm of pro-p absolute Galois groups Γ of local fields with charac-
teristic of residue fields different from p, which either:
´ do not contain the p-th roots of the unity, so Γ » Zp [12, Theorem 10.1],
´ contain the pm-th roots of the unity, so Γ is Demushkin of rank 2 [12, Theorem 10.2].
Unipotent representations on this class were studied by Conti, Demarche and Florence
in [1]. We easily observe that if m ě m1 then Dm is a subclass of Dm1 .

Proposition 1.10. — The class Dm checks the property pPmq.

Proof. — Take Γ in Dm. We check piq, piiq and piiiq. If Γ » Zp, this is clear. So we
assume that Γ ‰ Zp.
piq From [26, Proposition 4.1], we observe that every group in Dm checks the strong
Massey vanishing property. Let pχ1, . . . χnq be an n-tuple in H1pΓqn satisfying χu Y

χu`1 “ 0. By the strong Massey vanishing property, there exists ρχ : Γ Ñ Un`1 lifting θχ.
Using [1, Corollary], we infer a morphism ρm,χ : Γ Ñ Un`1pZ{pmq which lifts ρχ, thus
lifts θχ. Consequently Γ satisfies the m-strong Massey vanishing property.
piiq Using [12, Theorem 10.2], we observe that Γ admits a presentation with two gener-
ators x2, x1 and one relation l1 which checks pl1 “ X2X1, for the order X2 ą X1, so it is
mild.
piiiq Every open subgroup H of Γ is in Dm (see for example [30, Proposition 7.5.9,
Chapter VII]), so satisfies piq and piiq.

1.4. Coproducts and the class Dm. — We denote by
š

the coproduct in the cate-
gory of pro-p groups. This is the pro-p completion of the abstract free product in groups.
For further details, we refer the reader to [32, Chapter 9] and [30, Chapter IV].
Let tG1, . . . , Gku be a family of finitely generated pro-p groups, and set G –

šk
i“1Gi.

We observe that we have natural injective morphisms ιj : Gj Ñ G for every 1 ď j ď k,
and we infer:

Proposition 1.11 (Universal property). — For every pro-p group M and family of
maps t ρj : Gi Ñ Mu1ďjďk, there exists a unique map:

ρ : G Ñ M,

that we denote by ρ –
šk

i“1 ρi, such that for each j the following diagram commutes:
Gj G

M

ρj

ιj

ρ

Proof. — See [32, Proposition 9.1.2].

Let us observe that we have a map

Res1 : H
1
pGq Ñ

k
à

i“1

H1
pGiq, χu ÞÑ pχu ˝ ι1, . . . , χu ˝ ιkq.

8



By Proposition 1.11 this map is bijective, and we identify every element χ in H1pGiq

with an element rχ in H1pGq verifying rχpιipgqq “ χpgq for every g P Gi, and rχpιjpGjqq “ 0
for j ‰ i.

Proposition 1.12. — For every integer n ě 1, we have an isomorphism

Resn : H
n
pGq »

k
à

i“1

Hn
pGiq

Furthermore for every pair i ‰ j, the image of the following map is trivial:

Y : H1
pGiq ˆ H1

pGjq Ñ H2
pGq, pχ1, χ2q ÞÑ Ăχ1 Y Ăχ2.

Proof. — The isomorphism comes from [30, Theorem p4.1.4q] and the previous discus-
sion. The computation on the coproduct is also well known, but let us propose an al-
ternative proof using unipotent representations, inspired by [26, Lemma 4.7]. The proof
follows easily by induction from the case G – G1

š

G2. Take χ1 in H1pG1q and χ2

in H1pG2q. We define morphisms ρ1 : G1 Ñ U3 and ρ2 : G2 Ñ U3 by:

ρ1 : g1 ÞÑ

»

–

1 χ1pg1q 0
0 1 0
0 0 1

fi

fl and ρ2 : g2 ÞÑ

»

–

1 0 0
0 1 χ2pg2q
0 0 1

fi

fl

Then using the universal property, we infer a morphism ρ – pρ1
š

ρ2q : G Ñ U3 which
satisfies ρ1,2 “ Ăχ1 and ρ2,3 “ Ăχ2. Furthermore, an easy computation implies Ăχ1 Y Ăχ2 “

0.

1.4.1. Mildness. — Now let us assume that, for each i “ 1, . . . , k, the group Gi is either
free or admits a mild presentation pPGi

q. In this case, the universal property implies the
following:

Corollary 1.13. — The group G –
šk

i“1Gi either admits a mild presentation, or is
pro-p free.

Proof. — If every Gi » Zp, then G is pro-p free. Now to simplify the notations, we
assume that for every i, the pro-p group Gi is not free (the mixed case is very similar).
Thus for every i the group Gi admits a mild presentation:

pPGi
q – xxi,1, . . . , xi,di | li,1, . . . , li,riy,

and we have xli,j – Xi,j2Xi,j1 , where Xi,j2 ą Xi,j1 and j2 ą j1.
By Proposition 1.11, the group G admits a presentation:

pPGq – xx1,1, . . . , x1,d1 , . . . , xk,dk | l1,1, . . . , l1,r1 , . . . , lk,rky.

Considering the order: Xk,dk ąX Xk,dk´1 ąX ¨ ¨ ¨ ąX Xk,1 ąX ¨ ¨ ¨ ąX X1,1, we conclude
that the presentation pPGq is mild.

1.4.2. Open subgroups and the class Dm. — We define Dm as the closure of Dm with
respect to finite coproducts. Concretely, the pro-p groups in Dm are described by pro-p
groups G –

šk
i“1Gi, where tG1, . . . , Gku is a family of pro-p groups in Dm. A profinite

version of the Kurosh subgroup Theorem [30, Theorem p4.2.1q] allows us to show the
following result:

Corollary 1.14. — Suppose that the pro-p groups G1, ¨ ¨ ¨ , Gk are in Dm. Set G “
šk

i“1Gi. Then every open subgroup H of G is a coproduct of groups in Dm.
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Proof. — By [30, Theorem p4.2.1q], the group H is a coproduct of groups that are either
isomorphic to an open subgroup of some Gi, or to a free pro-p group. We conclude by
applying Proposition 1.10.

1.4.3. The property pPmq and the class Dm. — We show here that the class Dm satisfies
the property pPmq

Theorem 1.15. — Assume that G is a pro-p group in Dm, then G satisfies pPmq.

Proof. — If G is free, the proof is easy. Let us consider a family G1, . . . , Gk such
that G –

šk
i“1Gi, and assume that every Gi is mild (the proof of the mixed case is

very similar). We observe from Corollary 1.13 that G is mild, so checks piiq. Further-
more, from Corollary 1.14, every open subgroup of G is in Dm. To conclude, we only need
to show that G satisfies the m-strong Massey vanishing property. This is a well-known
result, but let us give a proof.
From Proposition 1.12, we observe that

H1
pGq »

k
à

i“1

H1
pGiq, and Ąχi,a Y Ăχj,b “ 0 for i ‰ j

for every χi,a P H1pGiq and χj,b P H1pGjq.
Let us consider pχ1, . . . , χnq an n-tuple of elements in H1pGq such that χu Y χu`1 “ 0.
We construct a morphism ρ : G Ñ Un`1pZ{pmq such that ρu,u`1 ” χu pmod pq for each
1 ď u ď n. For this purpose, we write

χu –

k
ÿ

j“1

Ąχj,u, where χj,u – χu ˝ ιj is in H1
pGjq.

As Res2 is an isomorphism that satisfies Res2pa Y bq “ Res1paq Y Res1pbq, we infer that:

χu Y χu`1 –

k
ÿ

j“1

Ąχj,u Y Čχj,u`1 “ 0 ùñ Ąχj,u Y Čχj,u`1 “ 0, for every j.

Since Gj satisfies the m-strong Massey vanishing property, we can construct ρj : Gj Ñ

Un`1pZ{pmq such that pρjqu,u`1 ” χj,u pmod pq.
By the universal property, we infer a map ρ : G Ñ Un`1pZ{pmq, which satisfies ρu,u`1 ”
ř

j Ąχj,u – χu pmod pq.

Let us give consequences on unipotent quotients of G.

Proposition 1.16. — Assume that G is in DmzDm, i.e., G is a coproduct of at least
two factors. Then the group Un`1pZ{pmq is a quotient of G if and only if n ď h1pGq.

Proof. — If Un`1pZ{pmq is a quotient of G, then we infer a surjection G{FratpGq » Fh
1pGq
p

to Un`1pZ{pmq{FratpUn`1pZ{pmqq » Fnp . Thus, we obtain h1pGq ě n.
Conversely, we assume that h1pGq ě n, and let us write G – G1

š

. . .
š

Gk where k ě 2
and eachGi lies in Dm. By Theorem 1.15, the pro-p group G satisfies them-strong Massey
vanishing property. Using Proposition 1.12, we can construct an n-tuple pχ1, . . . , χnq of
characters of G such that χu Y χu`1 “ 0 for every 1 ď u ď n ´ 1.
To simplify the discussion, let us assume that none of the groups Gi is isomorphic to Zp.
For each 1 ď i ď k we choose tχi,1, χi,2u a basis of H1pGiq, and we define χi – χi,1
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if i ď k and χi – χi´k,2 if i ą k. This family is well defined since h1pGq – 2k ě n, and
the associated map θχ : G Ñ Fnp is surjective. We conclude using Proposition 1.5.

Remark 1.17. — Assume that G P DmzDm, and is given in the form:

G –

ˆ k1
ž

i“1

Gi

˙

ž

ˆ k2
ž

j“1

Hj

˙

,

where each Gi is a Demushkin group of rank 2 in Dm, and each Hj is isomorphic to Zp.
In particular, we have h1pGq “ 2k1 ` k2. The pro-p group G admits a free quotient of
rank k1 ` k2. Using Lemma 1.4, we infer that for every integer l, the pro-p group G
admits Un`1pZ{plq as a quotient, whenever n ď k1 ` k2. However, thanks to the prop-
erty pPmq, we can go beyond this bound: more precisely, we can construct a surjection
from G onto Un`1pZ{pmq for any n ď 2k1 ` k2.

2. Arithmetic applications

2.1. Notations. — Let K be a number field. Denote by
‚ pr1, r2q – pr1,K , r2,Kq the signature of K,
‚ Sp the set of p-adic places of K,
‚ S a finite set of places of K; set S 1

p – S X Sp,
‚ Kv the completion of K at each place v of K, and Uv the group of units of Kv,
‚ Gv the Galois group of the maximal pro-p extension of Kv; Iv its inertia subgroup,

and Fv “ Gv{Iv,
‚ δS –

ř

vPS1
p

rKv : Qps, so that δS “ δS1
p
,

‚ A finite prime q of K is called tame if Npqq ” 1 pmod pq, and more generally, m-
tame if Npqq ” 1 pmod pmq for some integer m ě 1,

‚ For a set N “ tq1, ¨ ¨ ¨ , qnu of tame primes, we write mN – mintvppNpqq ´ 1q, q P

Nu, where vp is the discrete p-adic valuation on Z,
‚ For each place v, let Uv – lim

ÐÝ
n

Uv{U
pn

v be the pro-p completion of Uv. Then de-

fine US –
ź

vPS

Uv,

‚ T a finite set of places of K, disjoint from S; set ET – ET
K the pro-p completion of

the group of T -units of K,
‚ φTS : ET Ñ US the diagonal embedding of ET into US,
‚ KT

S {K the maximal pro-p extension of K unramified outside S and totally decom-
posed at T ; GT

S – GT
K,S – GalpKT

S {Kq, and GS – GH

S ,
‚ KT,ab

S is the maximal abelian extension of K in KT
S ; set GT,ab

S – GalpKT,ab
S {Kq,

‚ KT,p,el
S is the maximal elementary abelian extension of K in KT

S ; set pGT
S qp,el –

GalpKT,p,el
S {Kq,

‚ T T
S the Zp-torsion part of GT,ab

S ,
‚ rTS – rkZpG

T,ab
S , rS – rH

S ,
In our work, infinite places play a limited role in arguments. We focus on finite places
and distinguish them by notation according to their roles: p denotes a p-adic place, q a
non-p-adic (tame) place where ramification may occur (see Remark 2.7), and l a place at
which splitting conditions are imposed.
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2.2. Classical results. — Most of the results in this section are well-known; see for
example [16, §1], [30, Chapter X]. Since Shafarevich and Koch, we know that GT

S is
finitely presented as in the following theorem.

Theorem 2.1. — Suppose that S is not empty. Then, we have

1 ´ h1pGT
S q ` h2pGT

S q ď r1 ` r2 ` |T | ´ δS.

When S 1
p “ H, the pro-p group GT

S is FAB. More generally, we have

Proposition 2.2. — One has rTS “ rkZp

`

cokerpφTS q
˘

. Thus if φTS is injective then

rTS “ δS ´ pr1 ` r2 ´ 1 ` |T |q.

Conversely, if T is disjoint from S and we have the previous equality, then φTS is injective.

As a consequence, we have (see. [16, Lemma 1.3]):

Corollary 2.3. — Suppose that S ‰ H. Then rkZpH2pG
T
S ,Zpq ď rkZp

`

kerpφTS q
˘

,
where H2 denotes the second group homology.

By duality, we have an isomorphism H2pG,Q{Zq – H2pG,Zpq for a pro-p group G.
Corollary 2.3 allows us to find many instances where the following lemma is particularly
useful.

Lemma 2.4. — Let ψ : Γ ↠ G be a surjective morphism of pro-p groups. Suppose
moreover that H2pG,Q{Zq “ 0. Then ψ is an isomorphism if and only if ψ induces an
isomorphism between Γab and Gab.

Proof. — See [29, Lemma 2].

In particular, we have the following practical criterion for determining when GT
S is free.

Proposition 2.5. — A pro-p group G is free if and only if Gab is torsion-free
and H2pG,Q{Zq “ 0. In particular, if kerpφTS q “ 1 and T T

S “ 1, then GT
S is free

pro-p. Furthermore, we have h1pGT
S q “ 1 ` δS ´ pr1 ` r2 ` |T |q.

Proof. — Consider a minimal presentation

1 Ñ R Ñ F Ñ G Ñ 1.

Since Gab is torsion free, we have Gab » F ab. Therefore, by Lemma 2.4, we conclude
that F » G. Now, let K, S, and T be as in the statement of Proposition 2.5. In this
setting, the vanishing of H2pGT

S ,Q{Zq follows from Corollary 2.3. Lastly, the formula
for h1pGT

S q follows from the assumption T T
S “ 1, together with the Burnside Basis lemma

and Proposition 2.2.

Remark 2.6. — A non-p-adic place is not ramified in a free pro-p extension. Hence,
if GT

S is free, then we have KT
S “ KT

S1
p
.

Remark 2.7. — (see [12, §10]) A finite non-p-adic prime q ramifies in a pro-p extension
if and only if its norm Npqq in N satisfies Npqq ” 1 pmod pq. It is well known that the
following conditions are equivalent:

– q is m-tame;
– Gq belongs to the class DmzDm´1;
– q splits completely in Kpζpmq{K.
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Remark 2.8. — When S “ Sp and T “ H, the conditions kerpφSpq “ 1 and TSp “ 1
together are equivalent to the freeness of GSp by Euler-Poincaré characteristic formula
(see [30, Corollary 8.7.5]).

2.3. The coproduct decomposition of GS. — In this subsection we explain that in
many cases the Galois group GS belongs to the class Dm for some integer m ě 1.
One important guiding principle in the study of GS has been to use presentations of Gv
at the places v P S, which are well-known as explained in § 1.3.

For each place v we have a natural restriction map Gv Ñ GS corresponding to a fixed
embedding kS ãÑ kv. When v R S, this map factors through the quotient Gv Ñ Gv{Iv –

Fv. Using Proposition 1.11, for each subset S0 of S we obtain a canonical morphism

ψS,S0 :
ž

vPS0

Gv ÝÑ GS.

By the Burnside Basis theorem the map ψS,S0 is surjective if and only if GS0

SzS0
is trivial.

If ψS,S0 is not surjective, we choose a finite set W of primes of K disjoint from S such
that GS0YW

SzS0
is trivial. Then, we obtain a surjective map

ψS,S0,W :

ˆ

ž

vPS0

Gv

˙

ž

ˆ

ž

wPW

Fw

˙

↠ GS.

Inspired by the theory of Riemann surfaces, several studies have investigated the problem
of finding conditions under which the map ψS,S0,W is an isomorphism (see [30, Chapter
X, §5 and §9]). This situation serves as a starting point for our study of GT

S .
To illustrate the relevance of such cases, suppose that the map ψS,S0,W is an isomorphism.
Assume moreover that S0 contains at least one tame prime and that each local Galois
group Gv with v P S0 X Sp is free. Then GS belongs to the class Dm, where m “ mS1

0

for the maximal subset S 1
0 Ď S0 consisting of tame primes. By Theorem 1.15, it follows

that GS satisfies the property pPmq.

The notion of p-rationality naturally emerges in this context and will play a central
role in what follows. Throughout, we make the additional assumption that K is totally
imaginary when p “ 2. Then, the cohomological dimension of GSp is always less than or
equal 2. Following [29, Definition 1], we say that a number field K is p-rational if GSp

is free. While this condition may seem technical, the case Qpζpq with p regular provides
a classical example (see [35, §4]). In recent years, there has been growing interest in
p-rationality for multiquadratic fields. Additionally, we recall the following fundamental
conjecture due to Gras.

Conjecture 2.9 (Gras [7], Conjecture 8.11). — Given a number field K, we
have TSp “ 1 for p " 0, and so from Leopoldt Conjecture the field K is p-rational
for p " 0.

The role of p-rationality is highlighted in the following theorem.

Theorem 2.10 (Satz 3.1 of [38], Théorème 2 of [29]). — Assume that S con-
tains Sp. The following conditions are equivalent:
piq The field K is p-rational and the Frobenius automorphisms at the places of SzSp form
a basis of pGSpqp,el.
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piiq The map
ψS,SzSp,H :

ž

qPSzSp

Gq ÝÑ GS

is an isomorphism.

As a result, once a number field is p-rational, we can find many sets N of tame primes
such that GSpYN belongs to D . We explore this idea further with GT

S in the next section.

Remark 2.11. — In [39], Wingberg established the necessary and sufficient condition
on pK,Sq for the free pro-p product decomposition of GS in a more general setting.
Theorem 6 of [39], whose proof does not require ζp P K, recovers Theorem 2.10. The
free pro-p product decomposition of GSp into a free pro-p group and Demushkin groups
of rank greater than 2, corresponding to the absolute pro-p Galois group of a p-adic local
field containing ζp [30, Theorem 7.5.14], is in principle possible. This was studied further
in [11] through explicit examples.

2.4. On the freeness of GT
S . — We now aim to extend Theorem 2.10, originally stated

for GS, to the setting of GT
S , while also allowing the set S not to contain Sp. Generally,

the difficulty in studying (pro-p) Galois groups comes from the absence of a general theory
of Galois cohomology. We use Corollary 2.3 and Lemma 2.4, which offer a more heuristic
and direct approach, thereby avoiding the need for deep cohomological machinery. In this
respect, our approach differs from that of [29, 39], which used the Poitou–Tate duality.
In particular, we proceed under the assumption that GT

S is free.
Nevertheless, proving the freeness of GT

S is a highly non-trivial and transcendental prob-
lem. Rather than pursuing a direct proof, we provide a heuristic argument which suggests
that GT

S is free in many cases. As shown in Proposition 2.5, two properties would be es-
sential: the injectivity of φTS and the triviality of T T

S .
The relationship between the injectivity of φTS and the Schanuel Conjecture is well-known.
For instance, we have:

Proposition 2.12. — Let K be a Galois extension over an imaginary quadratic field k
with Galois group G. Let p be a prime that splits in k, and fix a prime p of k above p.
Let Sp denote the set of primes of K lying above p, and let S be a finite set of primes of K
containing Sp. If G is abelian, then φTS is injective for T “ tlu, where l is any non-p-adic
prime of K. Moreover, assuming Schanuel’s Conjecture, the injectivity of φtlu

S holds for
arbitrary Galois extension K{k.

Proof. — See [17, §3] and [5, Chapter III, Corollary 3.6.5]

In [7], Gras introduced a heuristic argument for Conjecture 2.9. Building on his approach,
we anticipate the following heuristic:

Heuristic 1. — Let K be a number field, and let T be a fixed finite set of primes of K
such that for each l P T , the completion Kl is equal to Qℓ for ℓ lying below l. As-
sume that |T |ďr2. Then, under Conjecture 2.9, the number of p for which kerpφTSp

q ‰ 1

or T T
Sp

‰ 1 is expected to be finite.

In fact, if GS is known to be free, it becomes straightforward to obtain a sufficient
condition for the freeness of GT

S . To streamline our discussion, we introduce the following
definition.
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Definition 2.13. — Let S and T be two finite disjoint sets of places of K. A set of
places W , disjoint with S Y T , is said to be pS, T q-primitive if the Frobenius automor-
phisms in pGT

S qp,el at W are linearly independent over Fp. If the Frobenius automorphisms
in pGT

S qp,el at W are a basis over Fp, we say that W is maximal pS, T q-primitive. In the
special case T “ H, we simply call such a set S-primitive.

We note that in [29], the term primitivity was used to refer to Sp-primitivity in the
context of p-rational fields. We have the following proposition.

Proposition 2.14. — Suppose that GS is a free pro-p group. For any S-primitive set T ,
the group GT

S is also free pro-p. Moreover, if kerpφSq “ 1, then we also have kerpφTS q “ 1.

Proof. — Let R be the normal subgroup of GS generated by the Frobenius automor-
phisms at T . By the freeness of GS, we have the exact sequence

0 Ñ H1
pGT

S q Ñ H1
pGSq Ñ H1

pRq
GT

S Ñ H2
pGT

S q Ñ 0.

From the S-primitivity of T , we deduce that h1pGT
S q “ h1pGSq ´ |T |. Moreover, since R

is the closed normal subgroup generated by the Frobenius automorphisms at T , we
have dpH

1pRqG
T
S ď |T |. Thus, equality must hold: dpH1pRqG

T
S “ |T |, which implies

that h2pGT
S q “ 0. Hence GT

S is free. The second claim follows from the chain of equalities

|T | “ dpGS ´ dpG
T
S “ rS ´ rTS “ rkZp kerpφSq ´ rkZp kerpφ

T
S q ` |T |,

which shows that kerpφTS q “ 1, since by hypothesis we have kerpφSq “ 1.

As a consequence of the Chebotarev density theorem, once the freeness of GS is estab-
lished, one can find many sets T such that GT

S is also free. In contrast, the heuristic we
employ takes a different perspective: it fixes K and T , and studies the freeness of GT

Sp

as p varies.

Supporting argument for Heuristic 1. — By the Gras conjecture, we can assume without
loss of generality that GSp is free of rank r2 ` 1. According to the Chebotarev density
theorem, for each fixed p, the Frobenius automorphism of primes l in pGSpqp,el is equidis-
tributed as l varies. Since the Dirichlet density of the set of primes l with Kl ‰ Qℓ is
zero, the equidistribution still holds when restricting to primes with Kl “ Qℓ. Hence,
for a fixed l P T , it is reasonable to heuristically expect the Frobenius automorphism
in Gp,el

Sp
at l to be equidistributed as p varies. The group GT

Sp
is free of rank r2 ` 1 ´ |T |

unless the Frobenius automorphisms in pGSpqp,el associated to the places in T are linearly
dependent. Hence, the probability Ppp,K, T q that GT

Sp
is not free of rank r2 ` 1 ´ |T | is

equal to

1 ´

|T |
ź

i“1

ˆ

1 ´
1

pr2´i`2

˙

.

One can check that the infinite sum
ř

p Ppp,K, T q is bounded above. The claim about
finiteness then follows from the Borel-Cantelli lemma (see the beginning of [7, §4.1]).

Remark 2.15. — (i) While our heuristic is formulated under the assumption of the
Gras Conjecture, it is worth noting that the argument in [7] can be used to heuris-
tically recover both the conjecture on GSp and the same expectation on GT

Sp
, simul-

taneously and from the same reasoning. Unlike our heuristic, [7] uses the equidistri-
bution of the generalized Fermat quotient (ex. [7, §4.2.1.(ii)]) and the heuristic on
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the existence of a binomial probability law ([6, §4.4], [7, §7]), as observed through
numerical experiments.

(ii) Our assumption that Kl “ Qℓ was made mainly for simplicity. For example, if K
is a Galois number field and the decomposition subgroup Dl of G – GpK{Qq at l
is nontrivial, then the Frobenius automorphism at l lies in the sub-FprGalpK{Qqs-
module of pGSpqp,el on which Dl acts trivially. The presence of such a non-trivial
Galois action can create an obstruction to deducing the finiteness of the set of primes
as predicted in Heuristic 1. Nevertheless, the overall heuristic suggests that such
primes, though possibly infinite, are still very rare.

Remark 2.16. — We may attempt to apply the idea from the proof of Proposition 2.14
to obtain a free quotient GT

Sp
from a non-free pro-p group GSp . However, this is not

straightforward. Controlling the Frobenius elements in Gab
S at T is subtle, and for GT,ab

Sp

to be torsion-free, the map φTSp
must fail to be injective. As a consequence, under the

Leopoldt Conjecture, for any non-p-adic prime l, the group Gtlu
Sp

is not free unless GSp is.

2.5. Proof of Theorem A. — We now prove Theorem A, beginning with the following
result:

Proposition 2.17. — Assume that φTS is injective. Let N “ tq1, ¨ ¨ ¨ , qsu be a finite set
of tame primes. Then

GalpKT,ab
SYN{KT,ab

S q » Z{pn1 ˆ ¨ ¨ ¨ ˆ Z{pnr ,

where ni “ vppNpqiq ´ 1q. If moreover T T
S “ 1, then we have

GT,ab
SYN » Zr

T
S
p ˆ Z{pn1 ˆ ¨ ¨ ¨ ˆ Z{pnr ¨

Proof. — From the commutative diagram

0 ET USYN pGT
SYNqab ClT 0

0 ET US pGT
S qab ClT 0

and the Snake lemma, we infer that GalpKT,ab
SYN{KT,ab

S q is isomorphic to the kernel of
the map USYN{φSYNpET q Ñ US{φSpET q. Here, ClT denotes the quotient of the p-class
group of K by the subgroup generated the ideal classes of the primes in T . We deduce
the claim by applying the Snake lemma once more to

0 ET USYN USYN{φSYNpET q 0

0 ET US US{φSpET q 0

The second claim follows from the first one by the Zp-freeness of pGT
S qab.

The following result corresponds to Theorem A in the introduction. For additional ex-
planation, see also Remark 2.19.

Theorem 2.18 (Theorem A). — Let S, T , N Ă M be four sets of primes of K such
that
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piq the map φTS is injective,
piiq the torsion part T T

S of pGT
S qab is trival,

piiiq the primes q in N are tame,
pivq the set M is maximal pS, T q-primitive.

Then the natural map ψTSYN,N,MzN :
´

š

qPN Gq

¯

š

´

š

lPMzN Fl

¯

ÝÑ GT
SYN is an isomor-

phism. In particular, the pro-p group GT
SYN satisfies pPmN

q, and consequently the mN -
strong Massey vanishing property, where mN – mintvppNpqq ´ 1q, q P Nu.

Proof. — By Proposition 2.5 and the assumptions piq and piiq, the group GT
S is free of

rank rTS . Consider the natural map

ψTSYN,N,MzN :

˜

ž

qPN

Gq

¸

ž

¨

˝

ž

lPMzN

Fl

˛

‚ÝÑ GT
SYN .

By assumption pivq, the map ψTSYN,N,MzN is surjective. Hence, by Proposition 2.17, it
induces an epimorphism on the abelianizations between isomorphic finitely generated Zp-
modules. By the structure theorem for finitely generated modules over Zp, it follows that
the map on the abelianizations is an isomorphism.
Moreover, assumption piq and Corollary 2.3 together imply that H2pGT

S ,Q{Zq “ 0.
Therefore by Lemma 2.4, the map ψTSYN,N,MzN is an isomorphism. As a consequence,
the group GT

SYN belongs to the class DmN
and, by Theorem 1.15, it satisfies the prop-

erty pPmN
q.

Remark 2.19. — The hypothesis pGT
S qab » Zr

T
S
p in Theorem A immediately yields piiq in

Theorem 2.18. Furthermore, if T is disjoint from S, then by Proposition 2.2, condition piq
also holds. Applying the arguments from the previous proof and using the Chebotarev
density theorem, we can find infinitely many sets N of size rTS such that

ψTSYN,N,H :

˜

ž

qPN

Gq

¸

ÝÑ GT
SYN

is an isomorphism. By using Proposition 1.16 (and Remark 1.17 with k2 “ 0), this
establishes Theorem A as stated in the introduction.

Example 2.20. — Consider the multiquadratic field K “ Qp
?

´1,
?
2,

?
7,

?
19q, and

take p “ 3. Let N be a set consisting of one prime of K lying over each of the rational
primes 19, 31, 199, and let T be a set consisting of one prime of K lying over each of 53
and 89. Then, we have

GT
S3YN –

ˆ

ž

vPN

Gv

˙

ž

F

where F is the free pro-3 group of rank 4.

Corollary 2.21. — Let K be a number field, and S Ă Sp such that:
piq the map φS is injective,

piiq TS “ 1.
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Assume moreover that rS ě 2. Then there exists infinitely many sets N of tame primes,
with |N | “ rS, such that

GSYN ↠ U2rS`1¨

As a consequence, there exists a U2rS`1-extension of K unramified outside S Y N .

Remark 2.22. — Corollary 2.21 is a direct consequence of Theorem 2.18 and Proposi-
tion 1.16. Observe that if rS “ 1 then, for N “ tqu, the group GSYN is a Demushkin
group of rank 2. Thus U3 is not a quotient of GSYN .

2.6. Lifting Massey Products to Z{pm. — In this subsection, we enlarge S to con-
struct surjective unipotent representations GT

SYN Ñ UnpZ{pmq for m ą 1. Theorem 2.18
provides situations where GT

SYN lies in DmN
and satisfies pPmN

q. By Proposition 1.16,
this leads to a surjective homomorphism GT

SYN Ñ U2rTS `1pZ{pmN q. However, in certain
cases, the conditions piiiq and pivq of Theorem 2.18 may be incompatible, creating an
obstruction to constructing unipotent representations with both rank n “ 2rTS ` 1 and
large m.

2.6.1. Obstruction to full rank with large coefficients. — Let ν be the largest integer ě 0
such that Kpζpν q “ Kpζpq. Let K1,p be the Fp-extension of K contained in Kpζpν`1q.
For simplicity of notation, we write K1 for K1,p throughout, except in the supporting
argument of Heuristic 2. We note that K1pζpq “ K1pζpν`1q.

Proposition 2.23. — Let K be a number field and let S and T be finite sets of primes
of K such that kerpφTS q “ 1 and T T

S “ 1. There exist infinitely many sets N of tame
primes of size rTS such that

GT
SYN –

ž

qPN

Gq,

where each Gq is a Demushkin group in Dν. As a consequence, if rTS ě 2, there exists a
surjective homomorphism

GT
SYN ↠ U2rTS `1pZ{pνq.

Proof. — By Chebotarev density theorem, we can find a finite set N of primes whose
Frobenius at GalpKT,p,el

S pζpq{Kq form a basis of the subgroup GalpKT,p,el
S pζpq{Kpζpqq. Via

the isomorphism
GalpKT,p,el

S pζpq{Kpζpqq – pGT
S q

p,el,

this implies that N is pS, T q-primitive. Moreover, since the Frobenius automorphism
at each q P N fixes Kpζpq “ Kpζpν q, it follows from Remark 2.7 that each q is ν-tame.
Therefore, by Theorem 2.18, the group GT

SYN satisfies the property pPνq. The conclusion
then follows from Proposition 1.16.

Proposition 2.24. — Let K be a number field, and let S and T be finite sets of primes
of K such that kerpφTS q “ 1 and T T

S “ 1. Let m ą ν be an integer.

p1q If K1 is not contained in KT,p,el
S , then there exist infinitely many sets N of tame

primes such that GT
SYN is isomorphic to the coproduct of rTS Demushkin groups,

each belonging to the class Dm. As a consequence, if rTS ě 2, there is a surjective
homomorphism GT

SYN Ñ U2rTS `1pZ{pmq.
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p2q If K1 Ď KT,p,el
S , then no such set N of size rTS exists. However, there exist sets N0

with |N0| “ rTS ´ 1 such that, for any M Ě N0, the group GT
SYM is a coproduct of

the form
ˆ

ž

qPN0

Gq

˙

ž

G1,

where each Gq for q P N0 belongs to Dm, and G1 is either isomorphic to Zp or a
Demushkin group in the class Dν but not in Dν`1. As a consequence, if rTS ě 2,
there is a surjective homomorphism GT

SYN 1 Ñ U2rTS
pZ{pmq.

Proof. — If the intersection Kpζpmq XKT,p,el
S is strictly larger than K, then it must coin-

cide withK1. Therefore, the first claim follows directly from the proof of Proposition 2.23.
Assume now that K1 Ď KT

S . In this case, we can construct a set N0 of size rTS ´ 1
satisfying the desired property, by using the same argument as in Proposition 2.23 to the
isomorphism

GalpKT,p,el
S pζpmq{Kpζpmqq – GalpKT,p,el

S {K1q.

Let N0 Y tq1u be a maximal pS, T q-primitive set. If q1 is not tame, then GT
SYM “ GT

SYN0

by Remark 2.7. If q1 is tame, then it is not m-tame. Otherwise, the Frobenius at q1

would fix Kpζpmq XKT,p,el
S “ K1, which contradicts |N0| “ dimpGalpK

T,p,el
S {K1q. Hence,

in this case, the pro-p group GT
SYM is a coproduct of

š

qPN0
Gq P Dm and Gq1 P Dν .

In both cases,
š

qPN0
Gq

š

Zp is a quotient of GT
SYM , and the claim on the unipotent

representation follows.

Remark 2.25. — As shown in the proof of the above proposition, the inclusion K1 Ď

KT
S can be viewed as an obstruction to constructing a set N for which GT

SYN becomes
the coproduct of the maximal number of Demushkin groups in Dm for m ą ν.

As a complement to Corollary 2.21, we now state the following result, which corresponds
to Theorem B in the introduction. Note that K1 Ă KSp .

Corollary 2.26 (Theorem B). — Let K be a number field with r2 ě 2, and assume
the Gras and Leopoldt Conjectures. Then there exists a constant p0 such that for all
primes p ą p0, and for any integer m ě 1, there exists a Galois extension L{K with
Galois group

GalpL{Kq – U2r2`2pZ{pmq,

which is unramified outside Sp Y N , where N is a set of r2 tame primes.
More precisely, for each such p and m, there exist infinitely many sets N of r2 tame
primes such that there exists a surjective group homomorphism

GSpYN ↠ U2r2`2pZ{pmq.

Remark 2.27. — When K does not contain the p-th roots of the unity, the theorem of
Scholz and Reichardt demonstrates the existence of a Galois extension L{K with Galois
group isomorphic to Un`1pZ{pmq which is unramified outside a set N0 of tame primes of
size

|N0| “ pdpClK ` dpEKq ` n ` pnm ´ 1qpnm ´ 2q,

where ClK is the class group of K. This shows that constructing unipotent Galois exten-
sions using only tame ramification requires a significantly large amount of ramification.
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2.6.2. Splitting and Obstructions. — As discussed earlier, the obstruction to construct-
ing a unipotent representation GT

SYN Ñ U2rTS `1pZ{pmq for m ą ν, lies entirely in the
relationship between K1 and KT

S . We now continue the discussion, with particular focus
on the role of T .
If there is a prime l P T which does not split in K1, then K1 ⊈ KT

S . We can always find
this situation by enlarging T by one element.

Proposition 2.28. — Let K, S, and T be such that kerpφTS q “ 1 and T T
S “ 1. Then

there exists a Chebotarev density set of primes l R T Y S such that tlu is pS, T q-primitive
and K1 Ć K

TYtlu
S .

Proof. — It suffices to take l that is inert in K1.

In the same spirit as § 2.4, we study the inclusion K1,p Ă KT
Sp

for fixed K and T , for
varying prime numbers p. For a fixed integer a, a prime p is called a Wieferich prime to
the base a if

ap´1
” 1 pmod p2q.

According to the Gras’s heuristic involving a binomial probability law, the number of
Wieferich primes to a fixed base a is expected to be finite ([6, Théorème 4.9]). This
perspective is closely connected to Gras Conjecture and motivates the following heuristic.

Heuristic 2. — Let K be a number field, and let T ‰ H be a fixed set of primes as in
Heuristic 1. Then, it is expected that there exists an integer p0 P N such that for every
prime p ą p0 and every integer m ě 1, there exist infinitely many sets N of tame primes
for which the group GT

SpYN is the coproduct of rTS Demushkin groups in the class Dm.
As a consequence, there exist Galois extensions of K with Galois group isomorphic
to U2rTS `1pZ{pmq, unramified outside Sp Y N and totally decomposed at T .

Supporting argument. — According to Heuristic 1, it is expected that kerpφTSp
q “ 1

and T T
Sp

“ 1 for all but finitely many primes p. Let l P T be fixed, and let l be the
rational prime below l. For all but finitely many primes p, the field K1,p is the composi-
tum of K and Q1,p. The prime l splits in K1,p if and only if Q1,p Ď Kl, which in turn holds
if and only if l splits in Q1,p for p ą rK : Qs. This is equivalent to p being a Wieferich
prime to the base l. By [6, Théorème 4.9], the number of such primes p is expected to
be finite.

We conclude this paper with a numerical example that illustrates our results.

Example 2.29. — Let K “ Qpi,
?
2,

?
7q, which is the splitting field of the polynomial

fpxq “ x8 ´ 32x6 ` 344x4 ´ 512x2 ` 1936.

Fix a root θ of fpxq, and consider the following prime ideals in OK :

q1 “ p163, θ2 ` 10q, q2 “ p37, θ2 ´ 6θ ` 7q,

q3 “ p2341, θ2 ` 306θ ´ 551q, q4 “ p73, θ2 ´ 10θ ` 18q,

l “

ˆ

241,
´241θ7

5280
`

10363θ5

5280
´

39283θ3

1320
` θ2 `

212821θ

1320
´ 82

˙

.

Let N “ tq1, q2, q3, q4u and T “ tlu. Then the union N Y T is S3-primitive, and the
Galois group GT

S3YN is isomorphic to the coproduct
š

1ďiď4 Gqi , and hence belongs to the
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class D2. As a consequence, there exists a U9pZ{9q-extension of K which is unramified
outside S3 Y N and totally splitting at l.
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