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ABSTRACT. For a number field K, we consider K** the maximal tamely
ramified algebraic extension of K, and its Galois group G = Gal(K"*/K).
Choose a prime p such that p, ¢ K. Our guiding aim is to characterize
the finitely generated pro-p quotients of G%2. We give a unified point
of view by introducing the notion of stably inertially generated pro-p
groups G, for which linear groups are archetypes. This key notion is
compatible with local tame liftings as used in the Scholz-Reichardt The-
orem. We realize every finitely generated pro-p group G which is stably
inertially generated as a quotient of G%. Further examples of groups
that we realize as quotients of G% include congruence subgroups of spe-
cial linear groups over Z,[T1, - ,T,]. Finally, we give classes of groups
which cannot be realized as quotients of Gan.

Let K a number field. A variety X gives rise to p-adic representations
of Gk, the absolute Galois group of K, via the action on Hét(X/K,Zp) =
lim H., (X ik Z/p"). These Galois representations are ramified at finitely

many primes of K, the primes of bad reduction of X, and those with
residue characteristic p. They are also geometric at the primes above p
in the sense of Fontaine. The Fontaine-Mazur conjecture (see [5]) asserts
the converse: any irreducible p-adic representation of G satisfying the
conditions of being ramified at finitely many primes and being geometric at
those with residue characteristic p arises in the étale cohomology of some
variety over K.

A consequence of the conjecture (see [14] for the details) is the so-called
tame Fontaine-Mazur conjecture, which asserts that there are no irreducible
p-adic Galois representations with infinite image that are ramified at only
finitely many primes and all ramification is tame. In this paper we relax
the condition of finite sets of ramification but keep the tamely ramified
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condition. We therefore study G% = Gal(K'*/K), the Galois group of the
maximal tamely ramified extension of K and its maximal pro-p quotient.
This latter quotient has an infinite number of generators and is ramified at
all primes v whose norm is 1 mod p. Our line of inquiry is in the spirit of
[13] and [20] where p-adic Galois representations satisfying infinitely many
local conditions, including being unramified at p, were constructed.

We are interested in the following question:

Question. What are the finitely generated pro-p quotients of G ?

We make some first observations regarding these possible quotients.

— By a classical theorem of Scholz-Reichardt, for p odd, every finite p-
group G is a quotient of GFQ?. See Serre [23, Chapter 2, §2.1] for a treatment
which in fact generalizes their result. Shafarevich resolved the case of p = 2
by introducing the shrinking process; see also a recent work of Schmid [22].

— Recall that a pro-p group is called FAb if its open subgroups have
finite abelianization. Finitely generated quotients of G% are FADb by class
field theory.

— The previous constraint is also related to the tame Fontaine-Mazur con-
jecture which has only been established in the 1-dimensional setting (which
amounts to the FAb property of finite generated quotients of G%). This is
a good measure of both the importance and the difficulty of studying the
finitely generated quotients of G%. Much of this difficulty lies in the sub-
tleties of tame Galois cohomology - in the wild analogue (where all primes
above p are allowed to ramify), Poitou-Tate duality renders many of the
calculations much more straightforward.

Choose p such that p, ¢ K, where p, denotes the pth roots of unity.
We make this hypothesis to guarantee linear disjointness of various field
extensions which in turn allows us to apply Chebotarev’s theorem and suc-
cessively resolve obstruction problems. See Proposition 1.4. When p, ¢ K,
these issues are technically much more involved and it is not clear that for
a fixed number field K, the statements we prove for large enough p always
hold for p such that pu, < K. As s is in every number field, we require
p > 2. Under the assumption that K does not contain a primitive pth root of
unity, we use embedding techniques to characterize many finitely generated
pro-p groups G that can be realized as quotients of G%. These constructions
are explained below in Theorem A and its three corollaries C, D, and E. We
also give classes of groups that are not quotients of G%2; see Theorem E. To
obtain these results, we give a unified point of view by introducing the no-
tion of stably inertially generated pro-p groups G, for which linear groups are
archetypes. This key notion has a certain compatibility with local tame lift-
ings as used in the Scholz-Reichardt Theorem [23, Chapter 2, §2.1] extended
by Neukirch [17].

The tame p-adic Lie Galois extensions which we construct have the fur-
ther property that the set of primes that split completely is infinite. This
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phenomenon arises in the wild “finitely ramified case” when the p-adic Lie
group is nilpotent as observed in [8], Proposition 4.1. In that situation the
set of primes that split completely is related to the p-invariant of the rele-
vant p-adic Lie extension. Here we show that if one allows infinitely many
ramified primes, then infinitely many primes can split completely for the
groups SLF (Z,) below.

All generation statements in this paper refer to topological generators.
We will always denote by G a finitely generated pro-p group. We call an
element y # 1 of G inertial if there exists x € G such that

[:Evy] = y)\

for some 0 # A € Z,. We say a pro-p group G is inertially generated if it is
generated by inertial elements. Indeed, this definition is motivated by the
standard relation [0, 7] = 797! for the Galois group over Q, of its maximal
pro-p extension when ¢ =~ 1 mod p.

We say the pro-p group G is stably inertially generated if each group
P,(G) of the p-central series (P,,(G)),, of G is inertially generated. See §2.5
for the definitions and examples.

Our main theorem is:

Theorem A. Let G be a finitely generated pro-p group that is stably iner-
tially generated. Then there exists a Galois extension L/K in K*/K such
that Gal(L/K) =~ G. Moreover L can be taken such that the set of primes
of K that split completely in L is infinite.

Let us say few words regarding our strategy, which is classical. We filter
our pro-p group G with subgroups H,, such that

e G/Hy = (Z/p)? where d is the minimal number of generators of G
and
e H,/H,1 =7Z/p for n = 2.

We then construct G% — G/Hs as the base case of our induction and
inductively build compatible homomorphisms G% — G/H,. Taking the
limit solves the problem. It is easy to arrange that all obstructions are
local, but then one needs to remove the local obstructions. At each stage
of the induction we must allow ramification at another prime and make
certain there is no local obstruction to lifting to the next step at this new
prime. This requires a Galois cohomological argument and that G is stably
inertially generated.

We say G is torsion-generated if it is generated by elements of finite
order. We say it is stably torsion-generated if the subgroups P,(G) are
torsion-generated for all n > 1.

Corollary B. Let G be a stably torsion-generated pro-p group. Then G can
be realized as a quotient Gal(L/K) of G% and the extension L can be taken
such that the set of primes of K that split completely in L is infinite.
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This corollary can be compared to Serre’s pro-p version of the Scholz-
Reichardt Theorem [23, Theorem 2.1.11]. The latter theorem does not re-
quire G to be finitely generated, but it assumes that GG has finite exponent,
so, in particular, its elements are all of finite order. By a famous result of
Zelmanov, any finitely generated pro-p group G of finite exponent is itself
finite, so the pro-p version of Scholz-Reichardt becomes the classical result
in the finitely generated case.

Note that stably torsion-generated groups which have non-torsion ele-
ments exist. Consider the free group F» on two generators z and y. Let
{a;}, be an enumeration of the countably many elements of this group.
Impose the relations R = {a?"'} with m; — o0 in such a way that the
Golod-Shafarevich power series is negative on (0,1) (see Theorem 7.20 of
[15]). This implies the pro-p completion H of F5/(R) is infinite. Since the
words of Fy are dense in H, by a theorem of Zelmanov [25], H contains a
free pro-p group as a subgroup and is therefore not torsion.

Assume p > 2. For a complete Noetherian local ring A with maximal
ideal m such that A/m = F,, and k > 1, set

SLE (A) := ker (SLm(A) - SLm(A/mk)> .

Then,

SLi (A)/SLyt (A) = (m*/m* ) @ M), (),
where M0 (Z) denotes m x m integer matrices with trace 0. As A is Noe-
therian this is a finite dimensional vector space over I, so

ST.. (A) := projlim SLL (A4)/SLE (A)
k

is a pro-p group generated by any set of elements in SL! (A) lifting an Fp-

basis of SL}, (A4)/SL2,(A) = (m/m?)®z MY, (Z). The natural homomorphism
~1

SL! (A) — SL,,(A) is injective by the Krull intersection theorem and sur-

jective by the completeness of A. Therefore, SLﬁL(A) is a finitely generated
pro-p group for all k.

Corollary C. For k,m,n > 1, the groups SLﬁl(Zp[[Tl, - T,]) are quo-
tients of G%. In particular each SL]fn(Zp) is a quotient of G'%2. Moreover
these quotients can be chosen to correspond to a Galois extension L/K in
which infinitely many primes split completely.

This result is (in spirit) an extension of those of [19], and [13] for SLy(Z,)
and [20] for SL2 (ZpﬂTl, s 7Tn]]>

The notion of stably inertially generated pro-p group is particularly well-
adapted for p-adic Lie groups. To each p-adic analytic group G one can
attach in a natural way a Q,-Lie algebra L¢ [16], [4]; we recall this principle
in §3.2. We focus on the case that Lq is simple. There are only two possi-
bilities: Lq is pluperfect or toral. We say a Lie algebra L is toral if ad, is



ON TAMELY RAMIFIED INFINITE GALOIS EXTENSIONS 5

semisimple for all x € L, and it is pluperfect if it admits no non-trivial toral
quotient algebra. See §3.3 for the definitions and further discussion of these
concepts. Using Theorem A we prove:

Corollary D. Let G be a p-adic analytic group with pluperfect Lie alge-
bra L. Then there exist homomorphisms p : G% — G such that the image
of p is open in G.

In the other direction, by class field theory one knows that uniform
abelian quotients of G are trivial. See §3.1 for the definition of a uni-
form group. In fact uniform abelian groups are a special case of a more
general family, uniform toral groups (the pro-p group is uniform and its Lie
algebra is toral). Examples of uniform toral FAb groups are those whose
Lie algebra is the set of trace zero elements of a skew field. See Section 3.5.

Theorem E. If the p-class field tower of K is finite then the pro-p group
G'%2 has no non-trivial uniform toral quotient. In particular, for a fived K,
the latter statement is true for all large enough primes p.

Uniform toral groups are finitely generated. Given a number field K, one
expects by Gras’ conjecture [6] that the Galois group over K of its maximal
pro-p extension unramified outside primes above p is free pro-p for p large
enough. The number of generators would be ro(K) + 1 where ro(K) is the
number of pairs of complex embeddings of K. The uniform toral FAb groups
of Theorem E are quotients of such groups for large enough r9(K), so they
provide (conjectural) examples of wildly ramified Galois groups that cannot
arise as quotients of G%. The Fontaine-Mazur conjecture for tame exten-
sions predicts Theorem E holds without the class field tower hypothesis.

In order to refine Corollary D consider the following context.

Let T be a (possibly infinite) set of primes of K, K'7 /K be the maximal
T-split extension of K in K%, and G T = Gal(K*™T/K).

Assuming the condition that Ip ¢ K, all the previous results can be
extended to Gta T without difficulty.

Set
ar =Y log N(a) ogRi - S 108 ) 10gN
qeT N(q) -1 qeT \/ B 1
where N(q) := #0xk/q.
For v|oo set
o — { $(v+logdm) v is real and aGRH { $(Z 4+~ +log8m) w is real
a v+ log2n v is complex v + log 87 v is complex

where v is Euler’s constant. Theorem F below, unlike Theorem E, requires
no condition on the p-class field tower of K.

Theorem F. Let di to be the absolute discriminant of K.
1) Take T such that ar + 3, aq > log+/|dk|. Then GtI?’T has no non-

trivial uniform toral quotient.
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2) Assume the GRH and T such that a%RH—i—ZMOO a(?RH > log+/|dk|. Then

ta,T . . .
G has no non-trivial uniform toral quotient.

In § 1 we establish the Galois cohomological machinery we need, Proposi-
tion 1.4 being the important technical result. In § 2 we perform the inductive
lifting process, making key use of Definition 2.6 to prove Theorem A. In § 3
we establish results on p-adic Lie algebras and classes of pro-p groups that
allow us to obtain the rest of our results.

Notations. Throughout this article p > 2 is an odd prime number and
G is a finitely generated pro-p group.

e Set G := G/[G,G], GP* := G®/(G™)P, and d(G) := dim GP¢.

e Let (P,(G)) be the p-central series of G: P;(G) = G and for n > 1,
Po+1(G) = P,(G)P[G, P,(G)]. The sequence (P, (G)) forms a basis of open
normal subgroups of G.

e All cohomology groups have coefficients in Z/p with trivial action so
we write H'(G) for H'(G,Z/p).

e K is a number field with pu, ¢ K and K* is the maximal tamely
ramified extension of K and G% = Gal(K*™/K).

e For a prime q of K we denote the cardinality of Ok /q by N(q).

e For a finite set of primes S of residue characteristic different from p,
set Kg to be the maximal pro-p extension of K unramified outside .S and
Gg = Gal(Kg/K).

o K, is the completion of K at the prime q, Gq := Gal(Ky/K,) and U,
is the group of units of K. We let o4 and 7, be, respectively, a Frobenius
element and a generator of inertia in the Galois group of the maximal pro-p
extension of K.

e J is the idele group of K. The subgroup U = ]_[q Uy < J are those
ideles that are locally units everywhere and Ug < U are those ideles in U
that are 1 at every q € S.

o Vg:={re K*|lze K7, Vge S;x e UK, " Vq} and Bg = (Vg/K*P)"
is called the Selmer group.

eFor ST, set Vi ={ze K*| ze K" VqeT andz e UK, Vq¢
S} and BF = (V5 /K*P)",

1. THE LOCAL-GLOBAL PRINCIPLE

1.1. The Shafarevich and Selmer groups. Let Z be a finite set of tame
primes and recall Gz is the Galois group of the maximal extension of K
unramified outside primes above Z. We will analyze our obstructions in
group cohomology via the exact restriction sequence

(1) 0 — 1% — H*(Gz) "% [ [ H*(Gy)
9z

where H12Z is defined as the kernel of the restriction map Resz. The groups
V; and Bz from the Notations are crucial to the study of Gz. We record
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two important results (parts (7) and (iv)) and several basic facts about these
groups.

Lemma 1.1. Let K be a number field. Then

(i) I1% — Bg.

(ZZ) S1c Sy — Vs, € Vg, .

(iii) Let Uk be the units of the number field K and Clg|p] be the p-torsion
of the class group of K. There is an exact sequence

1 - Ug /UL — Vg/K*P — Clg[p] — 1.

As pp & K we have dim By g = r1(K) + r2(K) — 1 + dim Clg[p].

(tv) There is a finite set Zy of dim B g tame primes such that Bz, = 0 so
H.[% =0 for any S 2 Zy.

(v) For S2T, VEYT < Vg.

(vi) Vp = UpJ? n K* so Vp/K*P = (UpJP n K*)/K*P ~ (UpJP n
JPK>)/JP.

(vii) Vi = (UrJ? [pesir Kq) 0 K* 50 VE[K*P = (UrJ? [Joeor Kq 0
JPK>)/JP.

Proof. (i) See [15, Chapter 11, Theorem 11.3].

(74) This is immediate from the definition.

(74i) One can alternatively define Vz = {a € K*|(«) = IP}. Let I be an
ideal representing a class of C' of CLk[p| so IP = (o). The map a — C' is
surjective and one easily sees the kernel is Uy /U%.

(tv) This is consequence of the finiteness of b : see for example Theorem
1.12 of [10].

(v), (vi) and (vii) These are immediate from the definitions. O

Remark 1.2. It is worth remarking the injection (i) above is an isomor-
phism if S contains all primes above p. The failure of this map to be sur-
jective in the tame setting can be thought of as the reason tame Galois co-
homology is difficult.

1.2. Global cohomology classes with given local conditions.

1.2.1. Proposition 1.3 below is Proposition 10.7.9 of [18]. The proof in [18]
invokes previous results from that text using Poitou-Tate duality. We give
a proof more in the spirit of §11.3 of [15], using only class field theory.

Proposition 1.3. Let S 2 T be finite sets of primes. There is an exact
sequence

0~ HY(GE,Z/p) — H'(Gs.2/p) — | [ H'(Gq, Z/p) > Bip — Bs — 0
qeT

where Gg is the Galois group of the mazximal extension of K unramified out-
side S and Gg is the Galois group of the mazimal extension of K unramified
outside S split completely at T.
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Proof. Recall Ux < J are those ideles that are 1 at ¢ € X and units at
q ¢ X. Consider the sequence

UgJP n JPK™ 4, (US\TJp quT qu) NJPE” 1—[ K

0 o 7 %0

qeT

U3 J v J
Ug JPK* (UsgJP quT K{) K>
where 11 is the natural inclusion, vy is the projection to the T-coordinates,
13 is extension from T-coordinates to the ideles by including the component
1 at all ¢ ¢ T and taking the quotient by UgJPK*, and 14 is the natural

projection. We will prove this sequence is exact and dualizing will give the
result.

— 0

Exactness at the first, fourth and fifth terms is clear. We now show
the sequence is a complex. That 9 o ¢y is trivial follows from the fact
that, since S 2 T, it is trivial on UgJP. We show w3 0 99 is trivial. Let
us\rjit € (Us\rJ? [ Ljer Kq) 0 JPK* so we can write ug\rjit = j5y where
v € K* and thus ugpjPt = v € K where j = ji/j2. Up to pth powers of
ideles, we see v is a unit outside of S, a pth power at S\T and

Y3(2(us\riit)) = Ys(Pa(ug\ri®t)) = ¥3(va(v))

which has component v at q € T" and 1 elsewhere. Let 4g be the idele with
component 1 at q € S and ~y elsewhere. As -« is, up to pth powers, a unit
outside of S we see g € UsJP and v liigi3(1o(7y)) has component 1
at ¢ € S\T and 1 elsewhere. As y~! is a pth power at S\T, we have, in
J/(UsJP)K*,

P3(tha(ug\ritt)) = s(vha(7)) = v Miss(iha(y)) € JP

S0 13 0 19 is trivial and the sequence is a complex.

For exactness at the second term, consider x € ker(v2). We immediately
see z is a pth power at all primes of T" and since x € Ug\7J? quT K it is
a pth power at all primes of S\T', so z is a pth power at all primes of S, and
away from S, up to pth powers, it is a unit. Thus z € UgJP?. By hypothesis
x e JPK™ so x € im(¢).

We now check exactness at the third term. Let z € ker(¢3). Then
Y3(x) = ugjPy where ug € Ug, j is an idele and v € K*. As 13 is ‘extension
from T to the ideles by 1’, we see that for q € S\T, the g-component of
ugjPy is 1. As ug has component 1 at q € S and is a unit outside of .5,
we see jPy has g-component 1 at q € S\T and is a unit outside of S. This
implies

Pve Usr [ [ K3 0 JPE* < (UspJ? [ [ Kf) 0 JPK™
qeT qeT

and 12 (jP7y) has the same T-components as = so x € im(1)3) as desired. The
sequence at the beginning of the proof is exact.
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Recall that for a group G, we write GP¢! for its maximal abelian quotient
that is a vector space over F,. Using Lemma 1.1 (vi) with 7" replaced by S
gives the first term of (2) below. The second term comes from Lemma 1.1
(vii) with S playing the same role and T there replaced by S\T here. The
fourth and fifth terms come from the global Artin map.

S
Vs Vir 1—[ K

@ V7R T Kq?

~ Gy - (G -0
qeT

Dualizing and using the local Artin map for the third term completes the
proof. O

1.2.2.  'We will use Proposition 1.3 to control the image of

Resy,r: H' (Gnor) — H H'(Gy)
qeN

when R = {q}. The hypothesis i, ¢ K is crucial for linear disjointness of
various field extensions of K.

Proposition 1.4. Let N be a fized finite set of tame primes with K < L <

Ky and let (fy) € H HY(Gyq,Z/p). Assume (fy) is not in the image of the
qgeN

restriction map H'(Gy) — [Len HY(Gyq). Then there exist infinitely many

finite primes q such that (fq) € Im(Resy (g,). Moreover, the primes q can

be chosen such that

(1) q splits completely in L/K,
(ii) the p-adic valuation of N(q)—1 is larger than some given integer m.

Proof. Recall first the following commutative diagram obtained from apply-
ing Proposition 1.3 with (S,7) = (N,N) and (S,T) = (N u R,N). The
first two vertical maps are inflation maps and thus injective. The third map
is the identity. The fourth and fifth maps are duals of natural inclusions of
Lemma 1.1 (v) and (7).

HY(GN) s HY(G) —3 [y H'(Gy) —— B By
J J Resy R l l J’

HY(GN ) HY(Gnor) — = Tlyen H (Gq) 4 BY“" — Byor

By Lemma 1.1, Vév VR - Vév and we have the field diagram below with
three of the Galois groups indicated.
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K (m 4V3)

We are supposing (fg) € [ [ien H'(G,) is not in the image of Resy. Then
©((fg)) # 0 and (fy) is in the image of Resy.r <= ¢r((fy)) = 0, namely
(fq) — 0 under the fourth vertical map. For o € Vg and q ¢ N and of char-
acteristic different from p, we have a € Ug,KaXp so K (up, {/Vév) JK ()
is unramified at such a q. Using Chebotarev’s Theorem, choose a prime
q whose Frobenius in Bg = Gal (K (up, {/Vg) /K(,up)) spans the same
non-trivial line as ¢((fy)) € Bg. It is not hard to show to show all primes
of K(up,) above q have Frobenius elements in Gal (K <up, {/Vg) /K(up)>

that are nonzero scalar multiples of one another, so the choice is irrele-
vant. Taking R = {q}, we see a € VéVUR is locally a pth power at ¢ so

K (up, V}]zVUR> /K (pp) is the maximal sub-extension of K <up, {/@) JK ()
in which q splits completely so ¢r((f;)) = 0 as desired.

Since p, ¢ K and Vg c K, Gal (K (,up,</@> /K(,up)) is in the
(necessarily non-trivial) w-component under the action of Gal(K (u,)/K)),
where w is the cyclotomic character. As Gal(L(gpm)/K (11p)) is in the trivial
eigenspace, L(uym) and K (,up, (/@ ) are linearly disjoint over K (y,) and
we can choose ¢ to satisfy (i) and (i7). O

Remark 1.5. Proposition 1.4 is reminiscent of Proposition 3.4 of [20],
though that result invokes Poitou-Tate duality.

2. REALIZATION OF QUOTIENTS OF G

Let G be a finitely generated pro-p group. Let d := d(G) := dim H'(G)
denote the generator rank of G, that is, the minimum size of a generating
set of G.

We will realize groups G as quotients of G% by induction. To do this we
need a sequence of normal open subgroups (H,)n>2 of G such that:
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(i) Hy = [G,G|GP, and (), Hy, = 1;

(ii) for every m > 2, the quotient H,/H,1 is isomorphic to Z/p, and
is generated by the image of an inertial element y, of H,. Also see
Definition 2.6.

2.1. The first step of the inductive process. We will solve the main
problem of this paper by induction. Proposition 2.2 below is the base case.
Its proof uses the following result of Gras [7], Chapter V, Theorem 2.4:

Lemma 2.1. Let K be a number field, T a finite set of primes of K, and
q ¢ T a prime ideal of K. There exists a Z/p-extension L/K ramified at
exactly q (i.e. it is ramified at q and at no other prime) and such that a
finite set of primes T splits completely in L if and only if q splits completely

in K (Aap, @) /K.

This lemma, allows us to prove the base case of the induction that will be
the proof of Theorem 2.14 which is also Theorem A.

Proposition 2.2. Let K be a number field. There exists an elementary
abelian p-extension L/K with Gal(L/K) = (Z/p) ramified at {q1,...qq}
such that Dy, = Z/p, where Dy, is the decomposition group of q; in L/K.
One can also choose the q; such that the p-adic valuation of N(q;) — 1 is
larger than some given integer n;, for each i.

Proof. We want an extension L/K with Gal(L/K) = G = (Z/p)? where the
primes q; that ramify have no residue field extension. This argument is a
variant of the split case of the Theorem of Scholz-Reichardt and uses the

governing extension K (,up, VQT) /K of Lemma 2.1. For any n; > 1, we
first use Chebotarev’s theorem to choose q; of K that splits completely in

K(Mpnlv%)/f(-

By Lemma 2.1, we see there is a Z/p-extension L;/K ramified at exactly
q1-

Now set T' = {q1}. Assume ny > 1 is given and apply Lemma 2.1 with the
additional requirements that qo splits completely in Li/K and K (ppn2)/K.
Then there is a Z/p-extension Ls/K ramified at exactly q2 in which q; splits.
As g9 splits in Ly/K, we see both ¢ and g2 have decomposition group Z/p
in Gal(L1Lo/K) = (Z/p)?.

Now set T = {q1,q2} and use Lemma 2.1 to find a qs that also splits
completely in LjLy/K and K (u,ns)/K. Continuing in this fashion, set L =
Li1Ls--- Ly to obtain the result. U

2.2. The embedding problem. Let G be a finitely generated pro-p group
filtered by a sequence of normal subgroups GP[G,G] = Hy > H3 > --- of G
such that for n > 2, H,/H,+1 = Z/p.

Consider the central extension

1 — Hy,/Hyy — G/Hpi1 %5 G/H, — 1,
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where g, is the natural map and H,/H,+1 = Z/p so the p-group G/H,, acts
trivially on H,,/H,+1. Since Hy = GP|G, G], the Frattini subgroup of G, we
have for n > 2,
d(G) = d(G/Hy) = d(G/Hnt1),

where d denotes the minimal number of generators. This implies the group
extension is not split.

Let T be a pro-p group, and for some n > 2, let f, : I' - G/H, be a
surjective homomorphism and consider the embedding problem:

pn+1
lpn
.
1—— H,/Hyt1 —— G/Hyp i1 T G/H, (&n)

As G/Hp4+1 — G/H,, is not split, the homomorphism p,1; is surjective if it
exists.

The embedding problem is controlled by H?(T') := H*(T,Z/p). Let e,
be the element in H?(G/H,) corresponding to the group extension:

(3) 1 — Hy/Hyi1 = Z)p —> G/Hpsr —> G/H, — 1.

As d = d(G/H,) = d(G/Hp+1) we see g, # 0, that is the exact sequence (3)
does not split.
Let us recall:

Theorem 2.3. Let Inf : H?(G/H,) — H?*(T') be the inflation map. The
embedding problem (&) has a solution if and only if Inf(e,) = 0. Moreover,
since n = 2, any solution is always proper, that is ppy1 is surjective. The set

of solutions (modulo equivalence) of (&) is a principal homogeneous space
over HY(T).

Proof. Proposition 3.5.9 and 3.5.11 of [18]. O

2.3. The strategy. Given n > 2, let K,,/K be a Galois extension in K
such that Gal(K,,/K) = G/H,. Set I';, = Gal(K,,/K).

Let S, be the finite set of tame primes ramified in L, /K. Recall Kg, is
the maximal extension of K unramified outside S,, and Gg, = Gal(Kg, /K).
Observe that L, < Kg,. We assume S,, contains Zj as in Lemma 1.1, (iv)
so I3 = 0.

By Theorem 2.3 applied to I' := Gg,, we note that if there is no local
obstruction at any q € S, to lifting G/H,, to G/H, 1, then the embedding
problem (&) has a solution in Kg, /K.

The question is then: How do we create a situation for which there is no
local obstruction for every quotient of G ¢

Our strategy is as follows: By Proposition 2.2 there is a map Gg, —
G/P(G) ramified at {q1,...,q4}. As S2 = {q1,...,94} U 2o, we see Hl%2 =0
by Lemma 1.1 (iv). We will later show for each q € Sy there are lifts
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of G — Gs, - G/P2(G) to G — G so Theorem 2.3 and (1) give a
solution to (&). We then use the H' group (and the principal homogenous
space property, see Theorem 2.3) to obtain a new solution for (&3) with no
obstructions for (&3) at q € Se. This requires introducing ramification at a
new prime ¢ in such a manner that Gz — G/Hy can be lifted to G5 — G.
Thus there is no local obstruction to (&3) at q as well so a solution exists
and we can repeat the process. For this, we use Proposition 1.4 with the
fields K, here playing the role of L there.

2.4. Lifting local homomorphisms. We retain the notations of the pre-
vious sections. In particular, we suppose given a sub-extension K, /K of
Ks, /K, with Galois group I';, = G/H,.

Recall we have the exact sequence

0— ]-H?S‘n - HQ(GSn) - (—quan2(Gq)

where S, © Zp of Lemma 1.1 (iv) so I_H%n = 0. Thus the embedding
problem (&),) has a solution exactly when it has a local solution for every
q € S,. The question is then reduced to the lifting problem of ramified
quotients in G of tame local groups.

Recall that all tame primes we consider satisfy N(q) = 1 mod p. For
these q the pro-p completion of G is Z;, x Zj. In this pro-p completion, let
7q € G4 be a generator of the inertia, and o4 be the Frobenius. They satisfy
the unique relation [og, 74| = chv(q)_l. See [15, §10.1 ].

For each q in our set of primes which may be ramified, we will give a local
plan, that is a homomorphism p, : G4 — G lifting pqn : Gq — G/Hp.

Gq
?Pq‘ . Jpq .
G;» G/H,

For q € Zy we choose the local plan to be any unramified map from G4 — G
lifting the image of o4 € G/H, to an element of G. The existence follows
immediately from the fact that there are no obstructions to lifting problems
with G = Z,, namely the p-cohomological dimension is one. We explain
some specific ramified local plans in § 2.4.1 and 2.4.2 and give a general
overview in § 2.5.2.

2.4.1. Torsion pro-p groups. This is the idea of the proof of the Scholz-
Reichardt theorem. Suppose that G contains an element y of order p™. Take
a prime q with p™ | N(q) — 1. Suppose a representation pq, : G — G/Hj,
defined by pgn(0q) = T and py,(7g) = ¥ is given. Since yN(@W=1 = 1, the
map pq : Gq — G given by pq(0q) = 1 and p4(7q) = v is a local plan; in
particular, pq is a lift of pg,, from G/H,, to G. This is why we need to specify
vp(N(q) — 1) in advance.
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2.4.2. Torsion-free pro-p groups. When the pro-p group G is torsion-free,
the situation is relatively rigid.

Lemma 2.4. Let Gg be a torsion-free p-adic analytic group of dimension d,
and let ¢ : Gg — D be a continuous morphism of Gog to an analytic group
D having the same dimension. Then ¢ is an isomorphism.

Proof. As ¢ is surjective, ker(y) is analytic of dimension zero and hence
finite. As Gy is torsion-free, ker(y) = 1. O

Proposition 2.5. Let D be the decomposition group at q 1 p in some torsion-
free Galois group G. If pq: Gq — D is such that pq(1q) is infinite then pq is
an isomorphism.

Proof. The image of 7; being infinite forces the image of o4 to be infinite as
well. As the decomposition group is p-adic analytic, the result follows from
Lemma 2.4. [l

Proposition 2.5 shows that if there is tame ramification in a torsion-free
pro-p group G, then G must “contain G”.

2.5. Stably inertially generated pro-p groups. Let G be a finitely gen-
erated pro-p group. Let (P,(G)) denote the p-central series of G, meaning
that P,(G) := G, and P,,11(G) := P,(G)P|G, P,(G)].

2.5.1. Some Definitions.

Definition 2.6. Suppose H is a pro-p group, 1 #y e H. We call y inertial
if there exists x € H such that [z,y] = yaplC with a € Z, and k > 1.

Remark 2.7. 1) A torsion element y # 1 is inertial. Indeed, take x = 1,
a =1 and p* to be the order of y.

2) For an element y as above, we can replace x by a suitable power xP". This
allows us to assume x € Hy 1 < Ho for any n. This change shifts k to k+t.

Definition 2.8. A pro-p group H is called inertially generated if it can be
generated by inertial elements yi,--- ,yq. A finitely generated pro-p group
G is called stably inertially generated, if the P,(G) are inertially generated.

Stably inertially generated pro-p groups G are FAb. Indeed, for every n,
the abelianization P2°(G) of P,(G) is generated by (the classes of) inertial
elements, which are torsion in P2 (G). Now it is easy to see that the finite-
ness of the P%(G) implies the finiteness of U for every open subgroup U
of G.

Remark 2.9. We have (rq) = I; < Gq < G%. If the class number of
K is prime to p, then the I generate G% and [oq, 74| = Tév(q)fl so G%2 is

inertially generated. We expect it is not stably inertially generated. Inertially
generated pro-p groups that are not stably inertially generated exist.
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Example 2.10. Let Gy := {t) x H be the semi-direct product of H =
{ay, -+ ap_1)y = ZE71 by (t) of order p with the action:

_1a

-1 _ . -1 _ . . -1 _ . -1 _ -
ta1t™ "~ = ag; tagt™ " =ag; -+ ; tap_ot " = ap_1; tap_ 1t T = A, 10, 9"

This is well-defined. Note Go/[Go,Go| = {t,a1) = Z/p x Z/p, hence Gy is
generated by t and ait. A simple computation shows that (a1t)P =1, so we
have the relations t? = (a1t)? = 1 and Gy is inertially generated, but not
FAb (the subgroup H is open) and therefore not stably inertially generated.

Remark 2.11. Set gt,, := gt,,(G) := P(G)/Puy1(G) and d,, := dim gr,,(G).
As G is finitely generated, we have d,, < o. Recall that the map © — P
sends gt (G) to gt,.1(G). By Nakayama’s Lemma, it is easy to see that
if gt,, is generated by the images of inertial elements y;, then P,(G) is in-
ertially generated (the conjuguate of a inertial element is still inertial). In
particular if P, (QG) is inertially generated, the map x — xP produces inertial
elements in P,+1(G). As we will see, the power of uniform groups is that
this map induces an isomorphism between gt,, and gt for everyn = 1; so
a uniform group G is stably inertially generated if and only if G is inertially
generated.

Example 2.12. The pro-p group SL3 is stably inertially generated.
Let G = SL(Z,) = ker (SLa(Z,,) — SLa(Z/p)). Set

B 1 p B 1 0 B 1+0p P
m_(o 1>’y_(p 1>’Z_( —p 1—p>EG'

The group G 1is topologically generated by the elements x,vy, z.
Given a prime q with p | N(q) — 1, let o € Z,, be the square root of N(q)
that is 1 mod p. Set

Q 0 ata”t —at+a”!
_ — 2 2
5= < 0 ot >’ t= ( _ata”l ata”! €G.
2 2
It is a routine computation to check the relations

[S,J:] _ xN(CI)—l, [8_1,y] _ yN(CI)—17 and [t,z] — N@)-1

These are identical to the relation of a tame local group G4, namely (o4, 4] =
N(q)—1
Tq

, where oq is a lift of the Frobenius and 74 a generator of the ram-
ification. Thus we will be able to create local plans for G = SL3(Z,). One
also observes that for every n, the subgroups P,(G) are topologically gener-
ated by the elements zP",yP", 2P" , which also are compatible with tame local
relations.

If G is stably inertially generated then there exists a sequence of sub-
groups H,, as in the beginning of Section 2.

Lemma 2.13. If G is stably inertially generated then there exists a sequence
of normal open subgroups (Hy,)n=2 of G such that:

(i) Hi = G, Hy = [G,G|G?, and ", Hn = 1;

1 -1 -1
-.al .
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(ii) the quotient Hy/Ho =~ (Z/p)® can be generated by the image of in-
ertial elements y1,--- ,yq of G for which there exists some x; € Ha
with [z;,y;] = yf”’ki where a; € Z,; and k; = 1;

(1i1) for every m = 2, the quotient H,/H,11 is isomorphic to Z/p, and
is generated by the image of inertial element y € H,, for which there
exists some x € Hy, 1 with [x,y] = y®* where a € Zy and k> 1.

Proof. (i) follows as G is a finitely generated pro-p group and (iz) and (#i7)
follow from the definition of stably inertially generated and Remark 2.7. [

2.5.2. The local plan. Let y € H,\Hp+1 be a inertial element. By Re-
mark 2.7 we can take z in H,,q such that [z,y] = yapk for some a € Z;,
and k > 1. Take a prime q such that N(q) = 1 + bp* with b € Z,, (we are
again specifying a lower bound for v,(N(q) — 1) in advance), and consider
the reduction map pqpn : Gy — Dy © G/H,,, where Dy, is a decomposition
group at q in G/Hy, that sends o4 to 1 and 74 to 7.

log, (1 + bp*)
~ log,(1 + ap”)
oq — 2% and 74 — y is easily seen to be a local plan for G4 into G. In

particular, pq lifts pq,. Thus there is no obstruction to lift pqn from Dg,,
to G/Hn+1.

Set « € Zp. The homomorphism p; : G — G, sending

2.6. The result. Let G be a stably inertially generated pro-p group. Recall
the various primes we have used:

e 7 is a set of primes chosen via Lemma 1.1 (iv). This set guarantees
that for all S, © Z, the Hl?gn groups we consider are trivial. The
local plan for any prime in Zj is unramified.

e Theset {q1,...,qq} of Proposition 2.2 is chosen to give a map Gg, —
G/Hs =~ (Z/p)? where each I, = Dy, = G/Hs is Z/p where I, is the
inertia group. From §2.5.2, there is a local plan Gy, — G for each 1.

e The prime q of Proposition 1.4 is used once we have solved (&) to
provide a global cohomology class that solves all the local plans at
primes in S,,. We will choose g so that it has a local plan and we
can continue the inductive lifting process.

In this section we prove:

Theorem 2.14 (Theorem A). Let G be a finitely and stably inertially gen-
erated pro-p group. Then there exists a Galois extension L/K in K*%/K
such that Gal(L/K) = G. Moreover the extension L/K can be taken such
that the set of primes splitting completely is infinite.

Proof. We consider a sequence of normal open subgroup H, of G as in
Lemma 2.13. The proof is by induction. We will explain the complete
splitting at the end of the proof. Recall d is the generator rank of G.

e Since G is stably inertially generated, we see G = (y1,--- ,¥yq) where
the y; are inertial and x; € Po(G) satisfy the relation [z;, y;] = yi** "
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Proposition 2.2 gives the first step. Namely we obtain Ko/K with Gal(Ky/K) =~
(Z/p)?¢, K2/K is ramified at {q1,...,qq4} and Z/p =~ D,, = Gal(Ks/K). Set
Sa ={q1, -+ ,q4} U Zp so Hl?g2 = 0 by Lemma 1.1 (iv).
Let po : G5, — G/H> be the homomorphism sending 74, to ¥; and oy, to
1 and recall we have a local plan for each Gy, i =1,--- ,d.
By Theorem 2.3 there exists a Z/p-extension of K5/K» in Kg,/K, Galois
over K, solving the lifting problem (&), that is, we have a map Gg, - G/Hs.

e The problem now is that the decomposition group Dy at q € Sz in
Gal(K5/K) may not be liftable to G/Hy, that is we may be off the local
plan. However, the local plan to G/Hj3 does exist and by Theorem 2.3
differs from our local solution to (&) by an element of f; € H'(G,). By

Lemma 2.13, the quotient Hy/Hs is generated by the image of an inertial
element y € G for which there exists some x € Hs such that [z, y] = yapk.

We use Proposition 1.4 with N = Sy and R = {q} with § splitting
completely in Ko/K, (fy) € Im(yr) and v,(N(q) — 1) = k.

Hence there exists g € H'(Gs,or) with glg, = fqVg € S2. We may
act on our solution to (&2) by g to produce another solution for which all
local obstructions at q € S to lifting to G/H, vanish; it is on all local plans
at So. We denote by K3 the fixed field of the resulting homomorphism
Gs,or — G/Hs.

As we allowed ramification at q, we need to form a local plan at g com-
patible with our solution to (&2). We have D53 = I3 = (y) = Hao/Hs = Z/p
where Dg3 < G/H3 is the image of G. Our local plan is Gz — G where
o +— x¢ for suitable a as in § 2.5.2 and 75 — y. Thus we have local plans
for all g € S3 := Sy U {q} and we are on all of them with our new solution
to (éag)

We then continue the process by induction. Set L = | J,, K, © K**. Then
Gal(L/K) = G.

e If we want the set of primes splitting completely in L/K to be infinite,
we proceed as follows. Let us choose a prime vy that splits completely in
Ky/K. Set To = {va}. The local plan for te is the trivial homomorphism
Gr, — G. As previously there exists a Z/p-extension of K45/Ks in Kg, /K,
Galois over K, solving the lifting problem (&3). Recall that the problem is
that the decomposition group Dy at q € Sz in K5/K may be not be lifted
in G/Hy4, and that vy may not split completely in K45/K (we can assume
that to is unramified in K}/K). Choose f., € H'(G,,) such that acting on
our solution to (&2) gives trivial decomposition group at vy € To. We again
use Proposition 1.4 with N = S5 u 715 to find a global g € Hl(GNu{q}) with
gla, = fq for all ¢ € N. Acting by this class on our first solution to (&)
gives a solution on the local plan at all g € N and split completely at tg € T5.

Now take a prime t3 ¢ Ty that splits completely in K3/K. Put T3 =
T5 v {r3} and continue the process. For all n > 2 we have

(i) TohcTsc---cTyc---,



18 FARSHID HAJIR, MICHAEL LARSEN, CHRISTIAN MAIRE, RAVI RAMAKRISHNA
(737) and for every n, k, the primes of T, split in K, /K.
Set T' = | J,, T- Then T is infinite, and each prime of T" splits completely
in L/K. O

Remark 2.15. We use at most log, |G/H,| tame primes to realize G/H,
as Galois quotient of G'2.

Corollary B follows immediately from Theorem A and Remark 2.7. It re-
mains to prove Corollaries C and D and Theorems E and F. See, respectively,
Theorems 3.28 and 3.22, Corollary 3.26 and Theorem 3.27.

3. LINEAR GROUPS AND LIE ALGEBRAS

The group-theoretic results in this section apply to p = 2, though our
Galois theoretic applications still require p, 4~ K.

3.1. Definitions. Let G be a finitely generated pro-p group. Recall that
P, (G) denotes the p-central descending series of G, gt,,(G) = P, (G)/Pn+1(G),
and d,, = dim gr,,(G).

The pro-p group G is called uniform if

e G/GP is abelian where GP is the normal closure of the subgroup
generated by all pth powers in G,
e and if for every n > 1 the map

P
(4> gtn(G) = gtn+1(G)
induces an isomorphism.

In this case, gt,(G) = (Z/p)? for an integer d called the dimension of G. In
particular, d,, = d for every n > 2.

Example 3.1. Fork > 1, set SL¥, := ker (SL»,(Z,) — SLin(Z/p*)) (modulo
2k+1 for p = 2). Then G = SLL, is uniform of dimension m? — 1 and for
k=1, Py(G) = SLE . See [4, Chapter 5, Theorem 5.2].

Remark 3.2. By (4) it is immediate that an inertially generated uniform
group is stably inertially generated.

Definition 3.3. A pro-p group G is called p-adic analytic if G is a closed
subgroup of GLy,(Zy) for some m.

Uniform groups are the primary building blocks of p-adic analytic groups.

Theorem 3.4. A finitely generated pro-p group G is p-adic analytic if and
only if it contains a uniform group H as an open subgroup.

Proof. See [4, Interlude A and §4, Corollary 4.1]. O
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3.2. A dictionary: Lie algebras and p-adic analytic groups. We will
consider both finitely generated Z,-Lie algebras, i.e. L = Zg and Lie alge-
bras over p-adic fields.

Definition 3.5. The Z,-Lie algebra L is called powerful if [L L] < 2pL.
One has [4, Theorem 9.10]:

Theorem 3.6. There is an equivalence of categories between powerful Z,-
Lie algebras L and uniform groups G.

As usual, this is obtained via a log map sending a uniform group G to
a unique (up to isomorphism) powerful Z,-Lie algebra L(G) and an ex-
ponential map exp sending a powerful Lie algebra L to a unique (up to
isomorphism) powerful group G. We set Lg := L(G) ®z, Q.

Given a uniform group G with z,y € L(G), set a = exp(x) and § =
exp(y). The Lie bracket is defined in L(G) as follows:

[z y] := log <lj£n[ap”’ Bpn]p—%)

where for g € P,.1(G), we set g? " to be the unique go € G such that

9% =9

When G is only p-adic analytic as opposed to uniform, one chooses a
uniform open subgroup Gy of G, and sets Lg := Lg,. Of course, Lg does
not depend on the choice of Gy.

A Lie algebra over a field is called perfect if [L L] = L. We recall a well-
known result useful in our arithmetic context, e.g. for FAb pro-p groups.

Proposition 3.7. Let G be a p-adic analytic group G with Lie algebra L¢.
The following assertions are equivalent:
(1) the pro-p group G is FAb;
(1) the Lie algebra Lg over Q, is perfect;
(#31) the abelianization G of G is finite.

Proof. This is classical. See for example [9, Proposition 3.18]. O

Example 3.8. Semisimple Lie algebras are perfect. In particular the groups
SLE are FAb.

3.3. Toral and Pluperfect Lie algebras. Throughout this section, we
will always assume that Lie algebras are finite-dimensional over a field F.

Definition 3.9. A Lie algebra L is called toral if for every x € L, the adjoint
endomorphism ad, : y — [z y] is semisimple.

Abelian Lie algebras are toral as the adjoint ad, is the zero map for every
relL.

Proposition 3.10. Let L be a toral Lie algebra. There is no element x € L
such that ad, has a nonzero eigenvalue X\ € F. In particular, if for every
x € L, the characteristic polynomial of ad, splits over F', then L is abelian.
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Proof. If ad, has a non-zero eigenvalue A with eigenvector y, then
adi(m) = —ady(ad;(y)) = —ady(Ay) = 0.

By the toral hypothesis ad, is semisimple, so 0 = ad,(z) = —ad,(y) = —Ay,
contrary to the assumption that A # 0.

Suppose now that L is not abelian and choose x not in the center of L.
As ad, is semisimple it implies that ad, has non-trivial eigenvalues A € F
(by hypothesis), which is impossible by the previous observation. O

In particular, if F' is algebraically closed, toral is equivalent to abelian.

Lemma 3.11. Every non-trivial toral Lie algebra L has a non-trivial toral
quotient M which is either simple or abelian.

Proof. If V is a finite dimensional vector space, W is a subspace of V,
and T: V — V is semisimple and satisfies T(WW) < W, then T induces a
semisimple linear transformation on V/W. Applying this to ad, for x € L,
it follows that every quotient of a toral Lie algebra L is again toral. Every
non-trivial Lie algebra has a non-trivial quotient which is either simple or
abelian. O

Definition 3.12. A Lie algebra L is called pluperfect if every toral quotient
L/1, is trivial.

A pluperfect Lie algebra is perfect: If L is not perfect, then L/[L, L] is a
non-trivial abelian Lie algebra, and therefore a toral quotient of L, so L is
not pluperfect.

Observe that a simple Lie algebra is either toral or pluperfect but not
both. Over an algebraically closed field, it cannot be toral, so it must be
pluperfect.

Proposition 3.13. A non-trivial Lie algebra L is pluperfect if and only if
L is perfect and L/Rad(L) is a direct sum of pluperfect simple Lie algebras.

Proof. Let L be pluperfect. If [L L] is a proper ideal of L, then L/[L L] is a
non-trivial abelian and hence toral quotient of L, so L is perfect. Moreover,
L/Rad(L) is semisimple quotient of L, so it can be written as a (possibly
empty) direct sum L1 @®---@ L,, of simple Lie algebras. Each L; is therefore
a simple quotient of L, so L; is not toral and must therefore be pluperfect.
Conversely, suppose L has a non-trivial toral quotient L/I. By Lemma 3.11,
we may assume that L/I is either abelian or that it is simple. In the first
case, L cannot be perfect. So we assume that L/I is simple. The image of
Rad(L) in L/I is a solvable ideal, so it must be (0), so I © Rad(L), and we
may think of L/I as a quotient of L/Rad(L) = L1 ®---@® L, where each L;
is simple. However, all maximal proper ideals of a semisimple Lie algebra
are kernels of projection maps L — L;, so L/I must be isomorphic to one of
the L;, which means that at least one of the summands of L/Rad(L) is not
pluperfect. O
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Over an algebraically closed field, therefore, a Lie algebra is pluperfect if
and only if it is perfect.

3.4. Inertially generated Lie algebras. Throughout this section, we will
always assume that Lie algebras L are finite-dimensional over a field F' of
characteristic 0. We introduce the notion of inertially generated Lie algebras
as an analog of inertially generated pro-p groups.

Definition 3.14. A nonzero element y of a Lie algebra L is called inertial
if it is an eigenvector with nonzero eigenvalue of the adjoint ad, for some x.
A Lie algebra L over a field F is called inertially generated if there exists
an F-basis {y1,- - ,yq} with each y; inertial.

An inertial element is strongly ad-nilpotent (see [11, §16.1]) and therefore
ad-nilpotent (see [11, §15.1]).

Proposition 3.15. Any inertially generated Lie algebra L is pluperfect.

Proof. Any quotient of an inertially generated Lie algebra L is again in-
ertially generated. If I is an ideal of L such that L/I is toral, then by
Proposition 3.10, L/I has no inertial elements, so L/I is trivial. Thus, L is
pluperfect. O

The converse is true in characteristic 0. To prove this, we begin with a
lemma.

Lemma 3.16. Let L be a Lie algebra spanned by ad-nilpotent elements.
Then the span I of the set of inertial elements in L is an ideal.

Proof. If z is any ad-nilpotent element of L, then ad‘zﬁmL = 0 and the
function
dim L—1 ]
ad’ (y)
y — exp(ad;)(z) = ZZ;) i
is a Lie algebra automorphism of L (see [11, §2.3]). As being inertial is a
characteristic property of a Lie algebra, we see that y inertial implies

dim L—1

miad: (y)
exp(mads)(y) =y, T
i=0
is inertial. By the linear independence of the sequences 1, m, m?2, ..., mdmLi-l
ad’
as m ranges from 1 to dim L, it follows that each Z,|(y) lies in I. Taking
7!
1 = 1 we see ad, preserves I. Since the nilpotent elements span L, I is
preserved by ad, for all z € L, so it is an ideal. ([l

Theorem 3.17. A pluperfect Lie algebra L is inertially generated.

Proof. We consider first the case that L is a simple Lie algebra. Since it
is pluperfect, it is not toral, so there exists x € L such that ad, is not
semisimple. As L is semisimple and F' is of characteristic 0, = admits a
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Jordan-Chevalley decomposition x = x5 + z,, with ad,, non-zero and nilpo-
tent.
By the Jacobson-Morozov theorem, there exists an injective homomor-

phism i: slo — L sending e := (8 (1)> to z,. As e is inertial in slo, it
follows that x,, = i(e) is inertial in L.

Let G denote the algebraic subgroup of GL(L) which stabilizes the Lie
bracket. The Lie algebra of G consists of derivations of L, and as L is
semisimple, it coincides with L. Let G° denote its identity component,
which is a simple algebraic group with Lie algebra L. As F' is perfect and
infinite, G°(F) is Zariski-dense in G° [21], so L, which is irreducible as
a G°-representation, is likewise irreducible over G°(F'). Since it contains
at least one inertial element and inertial elements map to inertial elements
under conjugation by elements of G°(F'), L is inertially generated. It follows
immediately that for any semisimple Lie algebra, pluperfect implies inertially
generated.

Now let L be an arbitrary pluperfect Lie algebra, and let M := L/Rad(L).
As M is a quotient of L, it is likewise pluperfect and therefore inertially
generated. By the Lie-Malcev theorem, there exists an embedding of Lie
algebras j: M — L whose composition with the quotient morphism L — M
gives the identity. By the comment after Definition 3.14, j(M) is spanned
by strongly ad-nilpotent elements. On the other hand, L is perfect, so by
[3, §5, Théoreme 1|, Rad(L) is nilpotent, so L is spanned by ad-nilpotent
elements. By Lemma 3.16, the span I of inertial elements is an ideal of L.

Now, j(M) < I, so Rad(L) maps onto L/I, which implies that L/I is
nilpotent. If L/T # 0, it has a non-trivial abelian quotient, contrary to the
fact that L is perfect. Therefore, I = L, and L is inertially generated. [J

Corollary 3.18. Let L < sl,(F) be simple over F. Suppose that there
exists x € L such that ad, has a nonzero eigenvalue. Then L is inertially
generated. In particular this is the case if ad, has two different eigenvalues

Al,)\QEF.

Proof. By Proposition 3.10, L is pluperfect and Theorem 3.17 shows it is
inertially generated. For the second part, observe that if x4 is the semisimple
part of z, then x; € L since L is simple. In particular, it is not difficult to
see that A\; — A2 is a nonzero eigenvalue of ad,, in F. O

Proposition 3.19. Let L be a simple Lie algebra and G° the identity com-
ponent of the algebraic group of automorphisms of L. Then L is pluperfect
if and only G° is isotropic, i.e., of positive rank over F.

Proof. By [2, Corollaire 8.5], G° is isotropic if and only if it has a non-trivial
unipotent subgroup defined over F'. Any non-zero tangent vector of such a
subgroup is ad-nilpotent in L.

Conversely, if G° is pluperfect, it is inertially generated, so L contains
a non-zero ad-nilpotent element x, which determines a homomorphism of
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algebraic groups t — exp(ad(tz)) from the additive group to G°. Thus, G°
contains a unipotent subgroup, so it must be isotropic. [l

3.5. Examples over local fields. Let F' be R or a p-adic field. A simple
group G p is anisotropic if and only its group of F-points is compact [1,
§6.4]. In the real case, this amounts to L being a compact Lie algebra. In
the p-adic case, the only anisotropic, simply connected, absolutely simple
algebraic groups are inner forms of A,, [24, §3.3.3]. At the Lie algebra level,
L consists of the elements of reduced trace zero in a division algebra D
whose center is a finite extension of Q,. We can see this explicitly.

Proposition 3.20. Let D be a division algebra over Q, so D is a Lie algebra
with the bracket [xy| = xy — yx. Let Dy be the Lie subalgebra of elements
of trace zero. The Lie algebra Dy is simple and perfect, but not pluperfect.

Proof. As Dy ® Q, = sl,, which is simple, Dy is simple. One then has to
verify that for every x € Dg, the adjoint ad, is semisimple. But, since Dy is
simple, if we write ad, = ad,, +ad;, , with semisimple and nilpotent parts =
and z,, then x5 and z,, are in Dy. Since elements of Dy have multiplicative
inverses, x, = 0, and then = x, implying that ad, = ad,,. ([

Recall that division algebras over Q, are classified by the Brauer group
of Qp, which is isomorphic to Q/Z. For p > 2, let D = (a, p) be the (unique
up to isomorphism) nonsplit quaternion algebra over Q,, where a is not a
square mod p. Let Dy be the pure quaternions corresponding to quaternion
elements of zero trace, that is a simple Lie algebra L of dimension 3 which
is not pluperfect. Hence the explicitly described Lie algebra is perfect but
not pluperfect:

(@,y,2 | [vy] = pz, [z 2] = pay, [y z] = p*x).

The uniform group is described in the following example.

Example 3.21. Recall p is odd. Let a € 7Z such that a is not a square mod

p. Set U = ( (1) g ), and consider the two following matrices of SLy(Zy):

_ U 0 _ 0 CLIQ

A—( 0 —U) (mdB—<1.2 0 )
0 aU

-U 0
Qyp-algebra generated by 14, A, B, AB is isomorphic to the quaternion algebra
(a,p).

Set Ag = pA, By = pB, Cy = pAB, and put x = exp(Ap),y = exp(By), z =
exp(Cy) € SL4(Zy). Then the sub-group G of SL4(Z,) generated by x, y and
z 1s uniform of dimension 3 and has toral Lie algebra.

Then A% = ply, B> = aly and AB = —BA = . Hence, the

3.6. Applications.



24 FARSHID HAJIR, MICHAEL LARSEN, CHRISTIAN MAIRE, RAVI RAMAKRISHNA

3.6.1. Uniform groups with pluperfect Lie algebras. We prove our second
main result.

Theorem 3.22 (Corollary D). Every p-adic analytic group G with pluperfect
Lie algebra Lg has a uniform open subgroup Gy which is quotient of G'2.

Proof. Let G be a p-adic analytic group of Lie algebra Lg. Theorem 3.17
implies that L = Zf;l Qps; for some inertial elements s; Take a powerful
Zy-Lie subalgebra of L as follows: multiply the elements s; by p* for large
k so that L' := Zle Zps; is powerful. Set Gy = exp(L’). The group
Gy is uniform and generated by the exponentials of the inertial elements
T; = pksi. In the proof of Theorem 3.17 we saw that each x; is in a SLo-
triple so there exist v;,2; € L', after multiplying by p* for large k, such
that
(2 @] = 2p" @i [ziyi] = =2p™vis [ziws] = p™ 2

for some m > 1. These relations are the same as those satisfied by the
matrices

(0 p™ B 0 O (" 0
A_<0 0),3_(pm 0),and0—<0 _pm>

in SLo. Exponentiating the various SLo-triples in L, we see G contains a
uniform open subgroup Gy that is inertially generated. By Remark 3.2, Gy
is stably inertially generated. Theorem 2.14 gives the result. ([l

Sometimes the lattice to take in L¢ is natural, as is the case for the linear
groups SL. .

Example 3.23. Let gl,, := gl,,(Zy,) the Z,-Lie algebra of matrices with
coefficients in Z,. Denote by FE; ; the elementary matrices of gl,,, where 1
has been replaced by p, and fori=1,--- ,m—1, set By = E;; — Eiy1,41 +
Eiiv1— Fit1,.

Let sl,, < gl,, be the sub-Lie-algebra of gl,, generated by the E;; and
E; (all have trace zero). The Zy-Lie algebra sl,, is powerful. Set y;; =
exp(FE; ), i # j, and y; = exp(E;). The y;; and y; generate SL!. (Z,).

It is easy to see that the y;; and y; are inertial so SL}n is inertially
generated, and then stably inertially generated by Remark 3.2.

One then obtains part of Corollary C. The full result is given in § 3.7.

Theorem 3.24. For everym = 2 and k = 2, the pro-p groups SLfn(Zp) are
quotients of G%.

Proof. The SL%(ZP) are uniform, and stably inertially generated by Exam-
ple 3.23. Apply Theorem 2.14. O

3.6.2. Toral uniform extensions. As Zy,-extensions of number fields are only
wildly ramified, there is no tame ramification in an abelian uniform extension
of a number field K. This is also a consequence of the following Proposition.
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Proposition 3.25. In a toral uniform extension of a number field K, there
is no tame ramification.

Proof. Suppose that there is tame ramification at ¢ in a non-trivial toral
uniform extension. By Proposition 2.5 this would imply a relation of the
form [a, 8] = BN (@=1 in the uniform group which produces the relation
[xy] = log,(N(q))y in L(G) where z = log(a) and y = log(f3). Indeed,
some elementary p-adic analysis yields

[ y] = log, (lim[a”", 371" ) = log, (tim (5" V@)”™") ~ log, (N (a))y,

where log,, is the usual p-adic logarithm. Since log,(N(q)) # 0, this contra-
dicts Proposition 3.10. U

Corollary 3.26 (Theorem E). If the Hilbert p-class field tower of K is
finite, then there is no non-trivial toral uniform quotient of G%.

Proof. Let G be a non-trivial toral uniform pro-p group. If G is quotient of
G"2, then since the p-class field tower of K is finite, there is tame ramification
in the corresponding extension contradicting Proposition 3.25. ([

In particular, the group of Example 3.21 is not quotient of G2.
Recall the Fontaine-Mazur conjecture for tame extensions predicts this
result holds without the class field tower hypothesis.

To conclude this section, we finish with an extension of the previous
result.

Theorem 3.27 (Theorem F). Let di to be the absolute discriminant of K.
(1) Take T such that ar + 3, aq > log+/|dk|. Then G?’T has no non-

trivial uniform toral quotient.
(2) Assume the GRH and T such that oGR1 + ) GRH > Nog \/|dk].

v|oo CYCI
T . . )
Then G}?’ has no non-trivial uniform toral quotient.

Proof. We proceed by contradiction. Suppose G?’T has a non-trivial uni-
form toral quotient G = Gal(L/K) with L ¢ K*. Then by Proposition
3.25, L/K is unramified. We use Theorem 1 and Proposition 1 of [12]: in an
infinite unramified extension L/K one unconditionally has ap + Zwoo aq <

log\/|dK|, and assuming the GRH one has aS*H + 2000 ozqGRH < log/|dk]|,
contradicting our assumption. O

3.7. Lifting to the special linear group over complete local Noe-
therian rings. The result below follows immediately from Theorem 2.14.
The prime p is odd.

Theorem 3.28 (Corollary C). For any complete Noetherian local ring A
with residue field I, SL%(A) is a quotient of G% and can correspond to a
Galois extension L/K in which infinitely many primes split completely.
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Proof. We first prove the result for the ring A = Z,[T1,--- ,T}].

The proof is an extension of Example 2.12, with the technical difficulty
that we cannot use the exponential map.

First by Proposition 13.29 of [4], the sequence (SLX (Z,[T%, -, T,]))
corresponds to the p-central series of SLE (Z, [Ty, -, Tn]).

Set m = (p,T1,---,T;) the maximal ideal of Z,[T1,---,T;]). Hence, it
suffices to prove that for each k > 1,

SLfn(Zp[[Th T 7Tn])/SLfn+l(Zp[T17 T 7Tn]]) = mk/mk+1 Xz MT??,<Z)

k

is spanned by the images of inertial elements of SLE (Z,[T1,--- , T,]).
We consider first the case m = 2. If ap + -+ + a, = k, the following
relations hold in SL(Z, [Ty, -+, Tn]):

(07 ) 6 (T W)

1 paOTlfll ...Tan (pF-1)2
— n
6 )

1-p5H~t 0 1 0\ (1-p" 0
0 1—pt) \poTi* - T 1 0 (1-p"H!

B 1 O (p _1)2
~\prorpr e 1 '

9

Also, if
1 1 (l—p’“)Jrél—p’“)*1 (l—p’“)—él—p’“)*1
N= (-1 —1>’ D= A=pt)=(ph)™ (Apelph ™

then N is nilpotent and DND™! = (p*¥ — 1)2N, so

D(I + paoTlal . TgnN)D—l _ (I + paoTlal .. _Tan)(pk_1)27

and m*/m**!' ®; MY (Z) is spanned by inertial elements.

To finish the proof for general m, consider all embeddings of SLS (Zp[T1,---
in SLY (Z,[Ty,- -+ ,T,]) which come from choosing an ordered pair of stan-
dard basis vectors. Together the images of all the inertial elements in
SL5(Z,[T1, - -+, T,,]) which we just constructed will span m* /m* 1@z M0, (Z)
because the span of all images of MY(Z) in MY (Z) obtained by choosing
pairs of basis elements of Z™ generates M (Z).

For the general case, observe first that A is isomorphic to Zy[T1, - -+ , T,]/I
for some ideal I. It is then sufficient to prove that the reduction map
SLE (Z,[T,--- ,T,]) — SLF,(A) is surjective. Then take x € SL¥ (A) and
lift it to an m x m matrix ¢ with entries in Zy[ 17, - - - , T}, ]| which is congruent
to 1 mod m*. Say the determinant is d. Then d is 1 mod m* ~ I and is an
unit of Z,[T1, - - -, Ty]; in particular d~! is 1 mod m* ~ I. Multiply the first

,Tn])
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row of ¢ by d™! to get ¢’. Then ¢’ € SLF,(Z,[T1,---,T,]) and ¢ mod T is
exactly . O

The interest of Theorem 3.28 is that the groups SLX (Z,[Ty, -, Ty])
provide examples of quotients of G% which are “between” p-adic Lie groups
and Golod-Shafarevich groups. There is no known infinite pro-p quotient of
G2 ramified at finitely many primes that is not virtually Golod-Shafarevich,
i.e. contains on open subgroup that is Golod-Shafarevich. See [4, Chapter
13] for more details.
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