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Abstract. For a number field K, we consider Kta the maximal tamely
ramified algebraic extension of K, and its Galois group Gta

K “ GalpKta
{Kq.

Choose an odd prime p. Our guiding aim is to characterize the finitely
generated pro-p quotients of Gta

K . We give a unified point of view by
introducing the notion of stably inertially generated pro-p groups G, for
which linear groups are archetypes. This key notion is compatible with
local tame liftings as used in the Scholz-Reichardt Theorem. We realize
every finitely generated pro-p group G which is stably inertially gener-
ated as a quotient of Gta

K . Further examples of groups that we realize as
quotients of Gta

K include congruence subgroups of special linear groups
over ZpvT1, ¨ ¨ ¨ , Tnw. Finally, we give classes of groups which cannot be
realized as quotients of Gta

Q .

Let K a number field. A non-singular projective variety X{K gives rise
to p-adic representations of GK , the absolute Galois group of K, via the ac-
tion on H i

étpX{K̄ ,Zpq :“ lim
Ð
H i

étpX{K̄ ,Z{pnq. These Galois representations
are ramified at finitely many primes of K which can only be primes of bad
reduction of X{K and those with residue characteristic p. They are also geo-
metric at the primes above p in the sense of Fontaine. The Fontaine-Mazur
conjecture (see [5]) asserts the converse: any irreducible p-adic represen-
tation of GK satisfying the conditions of being ramified at finitely many
primes and being geometric at those with residue characteristic p arises in
the étale cohomology of some variety over K.

A consequence of the conjecture (see [14] for the details) is the so-called
tame Fontaine-Mazur conjecture, which asserts that there are no irreducible
p-adic Galois representations with infinite image that are ramified at only
finitely many primes and ramification at primes dividing p is tame. In
this paper we relax the condition of finite sets of ramification but keep
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the tamely ramified condition. We therefore study Gta
K “ GalpKta{Kq, the

Galois group of the maximal tamely ramified extension of K and its maximal
pro-p quotient. This latter quotient has an infinite number of generators and
is ramified at all primes v whose norm is 1 mod p. Our line of inquiry is in the
spirit of [13] and [20] where p-adic Galois representations satisfying infinitely
many local conditions, including being unramified at p, were constructed.

We are interested in the following question:

Question. What are the finitely generated pro-p quotients of Gta
K?

We make some first observations regarding these possible quotients.
´ By a classical theorem of Scholz-Reichardt, for p odd, every finite p-

group G is a quotient of Gta
Q . See Serre [23, Chapter 2, §2.1] for a treatment

which in fact generalizes their result. Shafarevich resolved the case of p “ 2
by introducing the shrinking process; see also a recent work of Schmid [22].

´ Recall that a pro-p group is called FAb if its open subgroups have
finite abelianization. Finitely generated quotients of Gta

K are FAb by class
field theory.

´ The previous constraint is also related to the tame Fontaine-Mazur con-
jecture which has only been established in the 1-dimensional setting (which
amounts to the FAb property of finite generated quotients of Gta

K). This is
a good measure of both the importance and the difficulty of studying the
finitely generated quotients of Gta

K . Much of this difficulty lies in the sub-
tleties of tame Galois cohomology - in the wild analogue (where all primes
above p are allowed to ramify), Poitou-Tate duality renders many of the
calculations much more straightforward.

Let µp denotes the pth roots of unity and assume µp Ć K. We make
this hypothesis to guarantee linear disjointness of various field extensions
which in turn allows us to apply Chebotarev’s theorem and successively
resolve obstruction problems. See Proposition 1.4. As µ2 is in every number
field, we require p ą 2. Under the assumption µp Ć K, we use embedding
techniques to characterize many finitely generated pro-p groups G that can
be realized as quotients of Gta

K . These constructions are explained below
in Theorem A and its three corollaries C, D, and E. We also give classes
of groups that are not quotients of Gta

K ; see Theorem E. To obtain these
results, we give a unified point of view by introducing the notion of stably
inertially generated pro-p groups G, for which linear groups are archetypes.
This key notion has a certain compatibility with local tame liftings as used
in the Scholz-Reichardt Theorem [23, Chapter 2, §2.1] extended by Neukirch
[17]. At the end of the proof of Theorem A, we realize a stably inertially
generated G as the Galois group of a tamely ramified extension L{Q such
that L and K are linearly disjoint over Q. This allows us to base change
our result to K and realize G as a quotient of Gta

K even when µp Ă K.
The tame p-adic Lie Galois extensions which we construct have the fur-

ther property that the set of primes that split completely is infinite. This
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phenomenon arises in the wild “finitely ramified case” when the p-adic Lie
group is nilpotent as observed in [8], Proposition 4.1. In that situation the
set of primes that split completely is related to the µ-invariant of the rele-
vant p-adic Lie extension. Here we show that if one allows infinitely many
ramified primes, then infinitely many primes can split completely for the
groups SLkmpZpq below.

All generation statements in this paper refer to topological generators.
We will always denote by G a finitely generated pro-p group. We call an
element y ‰ 1 of G inertial if there exists x P G such that

rx, ys “ yλ

for some 0 ‰ λ P Zp. We say a pro-p group G is inertially generated if it is
generated by inertial elements. This definition is motivated by the standard
relation rσ, τ s “ τ q´1 for the Galois group over Qq of its maximal pro-p
extension when q ” 1 mod p, where σ is a Frobenius element and τ is a
generator of the inertia group.

We say the pro-p group G is stably inertially generated if each group
PnpGq of the p-central series pPnpGqq of G is inertially generated. See §2.5
for the definitions and examples.

Our main theorem is:

Theorem A. Let G be a finitely generated pro-p group that is stably iner-
tially generated. Then there exists a Galois extension L{K in Kta{K such
that GalpL{Kq – G. Moreover L can be taken such that the set of primes
of K that split completely in L is infinite.

Our strategy is classical. We filter our pro-p group G with subgroups Hn

such that
‚ G{H2 – pZ{pqd where d is the minimal number of generators of G

and
‚ Hn{Hn`1 – Z{p for n ě 2.

We then construct Gta
K ↠ G{H2 as the base case of our induction and

inductively build compatible homomorphisms Gta
K ↠ G{Hn. Taking the

limit solves the problem. It is easy to arrange that all obstructions are
local, but then one needs to remove the local obstructions. At each stage
of the induction we must allow ramification at another prime and make
certain there is no local obstruction to lifting to the next step at this new
prime. This requires a Galois cohomological argument and that G is stably
inertially generated.

We say G is torsion-generated if it is generated by elements of finite
order. We say it is stably torsion-generated if the subgroups PnpGq are
torsion-generated for all n ě 1.

Corollary B. Let G be a finitely generated pro-p group that is also stably
torsion-generated. Then G can be realized as a quotient GalpL{Kq of Gta

K
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and the extension L can be taken such that the set of primes of K that split
completely in L is infinite.

This corollary can be compared to Serre’s pro-p version of the Scholz-
Reichardt Theorem [23, Theorem 2.1.11]. The latter theorem does not re-
quire G to be finitely generated, but it assumes that G has finite exponent,
so, in particular, its elements are all of finite order. By a famous result of
Zelmanov, any finitely generated pro-p group G of finite exponent is itself
finite, so the pro-p version of Scholz-Reichardt becomes the classical result
in the finitely generated case.

Note that stably torsion-generated groups which have non-torsion ele-
ments exist. Consider the free group F2 on two generators x and y. Let
taiu

8
i“1 be an enumeration of the countably many elements of this group.

Impose the relations R “ tap
mi

i u with mi Ñ 8 in such a way that the
Golod-Shafarevich power series is negative on p0, 1q (see Theorem 7.20 of
[15]). This implies the pro-p completion H of F2{xRy is infinite. Since the
words of F2 are dense in H, it is stably torsion-generated and therefore a
quotient of Gta

K . By a theorem of Zelmanov [25], H contains a free pro-p
group as a subgroup and is therefore not torsion.

Assume p ą 2. For a complete Noetherian local ring A with maximal
ideal m such that A{m – Fq (a finite extension of Fp), and k ě 1, set

SLkmpAq :“ ker
´

SLmpAq Ñ SLmpA{mkq

¯

.

Then,
SLkmpAq{SLk`1

m pAq – pmk{mk`1q bZ M
0
mpZq,

where M0
mpZq denotes m ˆ m integer matrices with trace 0. As A is Noe-

therian this is a finite dimensional vector space over Fp, so

xSL
1
mpAq :“ proj lim

k
SL1

mpAq{SLkmpAq

is a pro-p group generated by any set of elements in SL1
mpAq lifting an Fp-

basis of SL1
mpAq{SL2

mpAq – pm{m2qbZM
0
mpZq. The natural homomorphism

SL1
mpAq Ñ xSL

1
mpAq is injective by the Krull intersection theorem and sur-

jective by the completeness of A. Therefore, SLkmpAq is a finitely generated
pro-p group for all k.

Corollary C. Let Fq{Fp be a finite extension and let A be a Noetherian
local ring with residue field Fq. For k ě 1 and m ě 2 the groups SLkmpAq

are quotients of Gta
K . In particular each SLkmpW pFqqq is a quotient of Gta

K .
Moreover these quotients can be chosen to correspond to a Galois extension
L{K in which infinitely many primes split completely.

This result is (in spirit) an extension of those of [19], and [13] for SL2pZpq
and [20] for SL2pZpvT1, ¨ ¨ ¨ , Tnwq.
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The notion of stably inertially generated pro-p group is particularly well-
adapted for p-adic Lie groups. To each p-adic analytic group G one can
attach in a natural way a Qp-Lie algebra LG [16], [4]; we recall this principle
in §3.1. We focus on the case that LG is simple. There are only two possi-
bilities: LG is pluperfect or toral. We say a Lie algebra L is toral if adx is
semisimple for all x P L, and it is pluperfect if it admits no non-trivial toral
quotient algebra. See §3.2 for the definitions and further discussion of these
concepts. Using Theorem A we prove:

Corollary D. Let G be a p-adic analytic group with pluperfect Lie alge-
bra LG. Then there exist homomorphisms ρ : Gta

K Ñ G such that the image
of ρ is open in G.

In the other direction, by class field theory one knows that uniform
abelian quotients of Gta

K are trivial. See §2.4.2 for the definition of a uniform
group. In fact uniform abelian groups are a special case of a more general
family, uniform toral groups (the pro-p group is uniform and its Lie algebra
is toral). Examples of uniform toral FAb groups are those whose Lie algebra
is the set of trace zero elements of a skew field. See Section 3.4.

Theorem E. If the p-class field tower of K is finite then the pro-p group
Gta
K has no non-trivial uniform toral quotient. In particular, for a fixed K,

the latter statement is true for all large enough primes p.

Uniform toral groups are finitely generated. Given a number field K, one
expects by Gras’ conjecture [6] that the Galois group over K of its maximal
pro-p extension unramified outside primes above p is free pro-p for p large
enough. The number of generators would be r2pKq ` 1 where r2pKq is the
number of pairs of complex embeddings of K. The uniform toral FAb groups
of Theorem E are quotients of such groups for large enough r2pKq, so they
provide (conjectural) examples of wildly ramified Galois groups that cannot
arise as quotients of Gta

K . The Fontaine-Mazur conjecture for tame exten-
sions predicts Theorem E holds without the class field tower hypothesis.

In order to refine Corollary D consider the following context.
Let T be a (possibly infinite) set of primes of K, Kta,T {K be the maximal

T -split pro-p extension of K in Kta, and Gta,T
K “ GalpKta,T {Kq.

Assuming the condition that µp Ć K, all the previous results can be
extended to Gta,T

K without difficulty.

Set

αT :“
ÿ

qPT

logNpqq

Npqq ´ 1 and αGRH
T :“

ÿ

qPT

logNpqq
a

Npqq ´ 1
,

where Npqq :“ #OK{q. Not that the two sums above diverge over the
rational primes and thus over the prime ideals of K, so αT and αGRH

T can
be made arbitrarily large.
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For v an archimedean prime, set

αv “

" 1
2pγ ` log 4πq v is real
γ ` log 2π v is complex and αGRH

v “

" 1
2pπ2 ` γ ` log 8πq v is real

γ ` log 8π v is complex

where γ is Euler’s constant. Theorem F below, unlike Theorem E, requires
no condition on the p-class field tower of K.

Theorem F. Let dK be the absolute discriminant of K.
1) Take T such that αT `

ř

v|8 αv ą log
a

|dK |. Then Gta,T
K has no non-

trivial uniform toral quotient.
2) Assume the GRH and T such that αGRH

T `
ř

v|8 αGRH
v ą log

a

|dK |. Then
Gta,T
K has no non-trivial uniform toral quotient.

In § 1 we establish the Galois cohomological machinery we need, Proposi-
tion 1.4 being the important technical result. In § 2 we perform the inductive
lifting process, making key use of Definition 2.10 to prove Theorem A. In
§ 3 we establish results on p-adic Lie algebras and classes of pro-p groups
that allow us to obtain the rest of our results.

Notations. Throughout this article p ą 2 is an odd prime number and
G is a finitely generated pro-p group.

‚ Set Gab :“ G{rG,Gs, Gp,el :“ Gab{pGabqp, and dpGq :“ dimGp,el.
‚ Let pPnpGqq be the p-central series of G: P1pGq “ G and for n ě 1,

Pn`1pGq “ PnpGqprG,PnpGqs. The sequence pPnpGqq forms a basis of open
normal subgroups of G.

‚ All cohomology groups have coefficients in Z{p with trivial action so
we write H ipGq for H ipG,Z{pq.

‚ K is a number field with µp Ć K and Kta is the maximal tamely
ramified extension of K and Gta

K “ GalpKta{Kq.
‚ For a prime q of K we denote the cardinality of OK{q by Npqq.
‚ For a finite set of primes S of residue characteristic different from p,

set KS to be the maximal pro-p extension of K unramified outside S and
GS “ GalpKS{Kq.

‚ Our tame primes q of K will satisfy Npqq ” 1 mod p. Let Kq is the
completion of K at q and Uq be the group of units of Kq. Let σq and τq
be, respectively, a Frobenius element and a generator of inertia in Gq, the
Galois group of the maximal pro-p extension of Kq.

‚ J is the group of idèles of K. The subgroup U “
ś

q Uq Ă J are those
idèles that are locally units everywhere and US Ă U are those idèles in U
that are 1 at every q P S.

‚ VS :“ tx P Kˆ|x P Kˆp
q , @q P S;x P UqK

ˆp
q @qu and BS “ pVS{Kˆpq^

is called the Selmer group. (Note that X^ indicates the dual of X.)
‚ For S Ě T , set V S

T “ tx P Kˆ | x P Kˆp
q @ q P T and x P UqK

ˆp
q @ q R

Su and BS
T “ pV S

T {Kˆpq^.
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1. The local-global principle

1.1. The Shafarevich group X2
S and Selmer group BS. Let S be a

finite set of tame primes, i.e., primes whose residue characteristics are 1
mod p, and recall GS is the Galois group of the maximal pro-p extension of
K unramified outside primes above S. We will analyze our obstructions in
group cohomology via the exact restriction sequence

0 Ñ X2
S Ñ H2pGSq

ResS
ÝÑ

ź

qPS

H2pGqq(1)

where the Shafarevich group X2
S is defined as the kernel of the restriction

map ResS . The groups VS and BS from the Notations are crucial to the
study of GS . We record two important results (parts piq and pivq) and
several basic facts about these groups.

Lemma 1.1. Let K be a number field. Then
(i) X2

S ãÑ BS.
(ii) S1 Ă S2 ùñ VS2 Ď VS1.
(iii) Let UK be the units of the number field K and ClKrps be the p-torsion
of the class group of K. There is an exact sequence

1 Ñ UK{UpK Ñ VH{Kˆp Ñ ClKrps Ñ 1.

As µp Ć K we have dimBK,H “ r1pKq ` r2pKq ´ 1 ` dimClKrps.
(iv) There is a finite set Z0 of dimBK,H tame primes such that BZ0 “ 0 so
X2

S “ 0 for any S Ě Z0.
(v) For S Ě T , V SYT

T Ď V S
H.

(vi) VT “ UTJ
p X Kˆ so VT {Kˆp “ pUTJ

p X Kˆq{Kˆp – pUTJ
p X

JpKˆq{Jp.
(vii) V S

T “ pUTJ
p

ś

qPSzT K
ˆ
q q X Kˆ so V S

T {Kˆp “ pUTJ
p

ś

qPSzT K
ˆ
q X

JpKˆq{Jp.

Proof. piq See [15, Chapter 11, Theorem 11.3].
piiq This is immediate from the definition.
piiiq One can alternatively define VH “ tα P Kˆ|pαq “ Ipu. Let I be an
ideal representing a class of C of ClKrps so Ip “ pαq. The map α ÞÑ C
is surjective and one easily sees the kernel is UK{UpK . See also Proposition
10.7.2 of [18].
pivq This is consequence of the finiteness of BK,H: see for example Theorem
1.12 of [10].
pvq, pviq and pviiq These are immediate from the definitions. □
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Remark 1.2. It is worth remarking the injection piq above is an isomor-
phism if S contains all primes above p. The failure of this map to be sur-
jective in the tame setting can be thought of as the reason tame Galois co-
homology is difficult.

1.2. Global cohomology classes with given local conditions.

1.2.1. Proposition 1.3 below is Proposition 10.7.9 of [18]. The proof in [18]
invokes previous results from that text using Poitou-Tate duality. We give
a proof more in the spirit of §11.3 of [15], using only class field theory.

Proposition 1.3. Let S Ě T be finite sets of primes. There is an exact
sequence

0 Ñ H1pGTS ,Z{pq Ñ H1pGS ,Z{pq Ñ
ź

qPT

H1pGq,Z{pq Ñ BS
SzT Ñ BS Ñ 0

where GS is the Galois group of the maximal pro-p extension of K unramified
outside S and GTS is the Galois group of the maximal pro-p extension of K
that is unramified outside S and splits completely at T .

Proof. Recall UX Ă J are those idèles that are 1 at q P X and units at
q R X. Consider the sequence

0 Ñ
USJ

p X JpKˆ

Jp
ψ1
Ñ

pUSzTJ
p

ś

qPT K
ˆ
q q X JpKˆ

Jp
ψ2
Ñ

ź

qPT

Kˆ
q

Kˆp
q

ψ3
Ñ

J

USJpKˆ

ψ4
Ñ

J

pUSJp
ś

qPT K
ˆ
q qKˆ

Ñ 0

where ψ1 is the natural inclusion, ψ2 is the projection to the T -coordinates,
ψ3 is extension from T -coordinates to the idèles by including the component
1 at all q R T and taking the quotient by USJ

pKˆ, and ψ4 is the natural
projection. We will prove this sequence is exact and dualizing will give the
result.

Exactness at the first, fourth and fifth terms is clear. We now show
the sequence is a complex. That ψ2 ˝ ψ1 is trivial follows from the fact
that, since S Ě T , it is trivial on USJ

p. We show ψ3 ˝ ψ2 is trivial. Let
uSzT j

p
1t P pUSzTJ

p
ś

qPT K
ˆ
q q X JpKˆ so we can write uSzT j

p
1t “ jp2γ where

γ P Kˆ and thus uSzT j
pt “ γ P Kˆ where j “ j1{j2. Up to pth powers of

idèles, we see γ is a unit outside of S, a pth power at SzT and
ψ3pψ2puSzT j

p
1tqq “ ψ3pψ2puSzT j

ptqq “ ψ3pψ2pγqq

which has component γ at q P T and 1 elsewhere. Let ũS be the idèle with
component 1 at q P S and γ elsewhere. As γ is, up to pth powers, a unit
outside of S we see ũS P USJ

p and γ´1ũSψ3pψ2pγqq has component γ´1

at q P SzT and 1 elsewhere. As γ´1 is a pth power at SzT , we have, in
J{pUSJ

pqKˆ,
ψ3pψ2puSzT j

p
1tqq “ ψ3pψ2pγqq “ γ´1ũSψ3pψ2pγqq P Jp
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so ψ3 ˝ ψ2 is trivial and the sequence is a complex.
For exactness at the second term, consider x P kerpψ2q. We immediately

see x is a pth power at all primes of T and since x P USzTJ
p

ś

qPT K
ˆ
q it is

a pth power at all primes of SzT , so x is a pth power at all primes of S, and
away from S, up to pth powers, it is a unit. Thus x P USJ

p. By hypothesis
x P JpKˆ so x P impψ1q.

We now check exactness at the third term. Let x P kerpψ3q. Then
ψ3pxq “ uSj

pγ where uS P US , j is an idèle and γ P Kˆ. As ψ3 is ‘extension
from T to the idèles by 1’, we see that for q P SzT , the q-component of
uSj

pγ is 1. As uS has component 1 at q P S and is a unit outside of S,
we see jpγ has q-component 1 at q P SzT and is a unit outside of S. This
implies

jpγ P pUSzT

ź

qPT

Kˆ
q q X JpKˆ Ď pUSzTJ

p
ź

qPT

Kˆ
q q X JpKˆ

and ψ2pjpγq has the same T -components as x so x P impψ2q as desired. The
sequence at the beginning of the proof is exact.

Recall that for a group G, we write Gp,el for its maximal abelian quotient
that is a vector space over Fp. Using Lemma 1.1 pviq with T replaced by S
gives the first term of (2) below. The second term comes from Lemma 1.1
pviiq with S playing the same role and T there replaced by SzT here. The
fourth and fifth terms come from the global Artin map.

(2) 0 Ñ
VS
Kˆp

Ñ
V S
SzT

Kˆp
Ñ

ź

qPT

Kˆ
q

Kˆp
q

Ñ Gp,elS Ñ pGTS qp,el Ñ 0.

Dualizing and using the local Artin map for the third term completes the
proof. □

1.2.2. We will use Proposition 1.3 to control the image of

ResN,R : H1pGNYRq Ñ
ź

qPN

H1pGqq

when R “ tq̃u. The hypothesis µp Ć K is crucial for linear disjointness of
various field extensions of K.

Proposition 1.4. Let N be a fixed finite set of tame primes with L{K a
finite Galois extension in KN{K. Let pfqq P

ź

qPN

H1pGq,Z{pq. Assume pfqq

is not in the image of the restriction map H1pGN q Ñ
ś

qPN H
1pGqq. Then

there exist infinitely many finite primes q̃ such that pfqq P ImpResN,tq̃uq.
Moreover, the primes q̃ can be chosen such that

piq q̃ splits completely in L{K,
piiq the p-adic valuation of Npq̃q´1 is larger than some given integer m.
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Proof. Recall first the following commutative diagram obtained from apply-
ing Proposition 1.3 with pS, T q “ pN,Nq and pS, T q “ pN Y R,Nq. The
first two vertical maps are inflation maps and thus injective. The third map
is the identity. The fourth and fifth maps are duals of natural inclusions of
Lemma 1.1 pvq and piiq.

H1pGNN q
� � Inf //

��

H1pGN q
ResN//

��

ś

qPN H
1pGqq

φ
//

��

BN
H

// //

��

BN

��

H1pGNNYRq
� � Inf // H1pGNYRq

ResN,R
//
ś

qPN H
1pGqq

φR
// BNYR

R
// // BNYR

By Lemma 1.1, V NYR
R Ă V N

H and we have the field diagram below with
three of the Galois groups indicated.

L K
´

µp, p

b

V N
H

¯

Kpµpmq K
´

µp,
p

b

V NYR
R

¯

xφppfqqqy“xFrobq̃y

Kpµpq BNYR

R

BN

H

K

We are supposing pfqq P
ś

qPN H
1pGqq is not in the image of ResN . Then

φppfqqq ‰ 0 and pfqq is in the image of ResN,R ðñ φRppfqqq “ 0, namely
φppfqqq ÞÑ 0 under the fourth vertical map. For α P V N

H and q̃ R N and of
characteristic different from p, we have α P Uq̃K

ˆp
q̃ so K

´

µp, p

b

V N
H

¯

{Kpµpq

is unramified at such a q̃. Using Chebotarev’s Theorem, choose a prime q̃

whose Frobenius in BN
H “ Gal

´

K
´

µp, p

b

V N
H

¯

{Kpµpq
¯

spans the same non-
trivial line as φppfqqq P BN

H. It is not hard to show all primes of Kpµpq above
q̃ have Frobenius elements in Gal

´

K
´

µp, p

b

V N
H

¯

{Kpµpq
¯

that are nonzero
scalar multiples of one another, so the choice is irrelevant. Taking R “ tq̃u,
we see α P V NYR

R is locally a pth power at q̃ so K
´

µp,
p

b

V NYR
R

¯

{Kpµpq

is the maximal sub-extension of K
´

µp, p

b

V N
H

¯

{Kpµpq in which q̃ splits
completely so φRppfqqq “ 0 as desired.

Since µp Ć K and V N
H Ă K, Gal

´

K
´

µp, p

b

V N
H

¯

{Kpµpq
¯

is in the
(necessarily non-trivial) ω-component under the action of GalpKpµpq{Kq),
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where ω is the cyclotomic character. As GalpLpµpmq{Kpµpqq is in the trivial
eigenspace, Lpµpmq and K

´

µp, p

b

V N
H

¯

are linearly disjoint over Kpµpq and
we can choose q̃ to satisfy piq and piiq. □

Remark 1.5. Proposition 1.4 is reminiscent of Proposition 3.4 of [20],
though that result invokes Poitou-Tate duality.

2. Realization of quotients of Gta
K

Let G be a finitely generated pro-p group. Let d :“ dpGq :“ dimH1pGq

denote the generator rank of G, that is, the minimum size of a generating
set of G.

We will realize groups G as quotients of Gta
K by induction. To do this we

need a sequence of normal open subgroups pHnqně2 of G such that:
piq H2 “ rG,GsGp, and

Ş

nHn “ 1;
piiq for every n ě 2, the quotient Hn{Hn`1 is isomorphic to Z{p, and

is generated by the image of an inertial element yn of Hn. Also see
Definition 2.10.

2.1. The first step of the inductive process. We will solve the main
problem of this paper by induction. Proposition 2.2 below is the base case.
Its proof uses the following result of Gras [7], Chapter V, Theorem 2.4:

Lemma 2.1. Let K be a number field, T a finite set of primes of K, and
q R T a tame prime ideal of K. There exists a Z{p-extension L{K ramified
at exactly q (i.e. it is ramified at q and at no other prime) and such that the
finite set of primes T splits completely in L if and only if q splits completely
in K

´

µp, p

b

V T
H

¯

{K.

This lemma allows us to prove the base case of the induction that will be
the proof of Theorem 2.19 which is also Theorem A.

Proposition 2.2. Suppose K is a number field and d is a positive inte-
ger. There exist d distinct tame prime ideals q1, . . . , qd of K and a Galois
extension L{K with Galois group pZ{pZqd such that the set of prime ideals
that ramify in L{K is exactly tq1, . . . , qdu and such that Dqi “ Z{pZ for
i “ 1, . . . , d, where Dqi is the decomposition group of qi in L{K. One can
also choose the qi such that the p-adic valuation of Npqiq ´ 1 is larger than
some given integer ni, for each i.

Proof. We want an extension L{K with GalpL{Kq – G – pZ{pqd where the
primes qi that ramify have no residue field extension. This argument is a
variant of the split case of the Theorem of Scholz-Reichardt and uses the
governing extension K

´

µp, p

b

V T
H

¯

{K of Lemma 2.1. For any n1 ě 1, we
first use Chebotarev’s theorem to choose q1 of K that splits completely in
K

`

µpn1 , p
a

VH

˘

{K.
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By Lemma 2.1, we see there is a Z{p-extension L1{K ramified at exactly
q1.

Now set T “ tq1u. Assume n2 ě 1 is given and apply Lemma 2.1 with the
additional requirements that q2 splits completely in L1{K and Kpµpn2 q{K.
Then there is a Z{p-extension L2{K ramified at exactly q2 in which q1 splits.
As q2 splits in L1{K, we see both q1 and q2 have decomposition group Z{p
in GalpL1L2{Kq – pZ{pq2.

Now set T “ tq1, q2u and use Lemma 2.1 to find a q3 that also splits
completely in L1L2{K and Kpµpn3 q{K. Continuing in this fashion, set L “

L1L2 ¨ ¨ ¨Ld to obtain the result. □

2.2. The embedding problem. Let G be a finitely generated pro-p group
filtered by a sequence of normal subgroups GprG,Gs “ H2 Ą H3 Ą ¨ ¨ ¨ of G
such that for n ě 2, Hn{Hn`1 – Z{p.

Consider the central extension
1 Ñ Hn{Hn`1 Ñ G{Hn`1

gn
Ñ G{Hn Ñ 1,

where gn is the natural map and Hn{Hn`1 – Z{p so the p-group G{Hn acts
trivially on Hn{Hn`1. Since H2 “ GprG,Gs, the Frattini subgroup of G, we
have for n ě 2,

dpGq “ dpG{Hnq “ dpG{Hn`1q,

where d denotes the minimal number of generators. This implies the group
extension is not split.

Let Γ be a pro-p group, and for some n ě 2, let fn : Γ ↠ G{Hn be a
surjective homomorphism and consider the embedding problem:

Γ
?ρn`1

yy

ρn
����

1 // Hn{Hn`1 // G{Hn`1 gn

// // G{Hn pEnq

As G{Hn`1 Ñ G{Hn is not split, the homomorphism ρn`1 is surjective if it
exists.

The embedding problem is controlled by H2pΓq :“ H2pΓ,Z{pq. Let εn
be the element in H2pG{Hnq corresponding to the group extension:

1 ÝÑ Hn{Hn`1 “ Z{p ÝÑ G{Hn`1 ÝÑ G{Hn ÝÑ 1.(3)
As the exact sequence p3q does not split, we have εn ‰ 0.

Let us recall:

Theorem 2.3. Let Inf : H2pG{Hnq Ñ H2pΓq be the inflation map. The
embedding problem pEnq has a solution if and only if Infpεnq “ 0. Moreover,
since n ě 2, any solution is always proper, that is ρn`1 is surjective. The set
of solutions (modulo equivalence) of pEnq is a principal homogeneous space
over H1pΓq.

Proof. Proposition 3.5.9 and 3.5.11 of [18]. □
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2.3. The strategy. Given n ě 2, let Kn{K be a Galois extension in Kta

such that GalpKn{Kq – G{Hn. Set Γn “ GalpKn{Kq.
Let Sn be the finite set of tame primes ramified in Ln{K. Recall KSn

is the maximal pro-p extension of K unramified outside Sn and GSn “

GalpKSn{Kq. Observe that Ln Ă KSn . We assume Sn contains Z0 as
in Lemma 1.1, pivq so X2

Sn
:“ Ker

`

H2pGSnq Ñ ‘vPSnH
2pGvq

˘

is trivial.
Thus any global obstruction to the embedding problem is realized locally, so
Theorem 2.3 implies that if the embedding problem pEnq has local solutions
everywhere, it has a global solution in KSn{K.

The question is then: How do we create a situation for which there is no
local obstruction for every quotient of G?

Our strategy is as follows: By Proposition 2.2 there is a map GS2 ↠
G{P2pGq ramified at tq1, . . . , qdu. As S2 “ tq1, . . . , qduYZ0, we see X2

S2 “ 0
by Lemma 1.1 pivq. We will later show for each q P S2 there are lifts
of Gq Ñ GS2 ↠ G{P2pGq to Gq Ñ G so Theorem 2.3 and p1q give a
solution to (E2). We then use the H1 group (and the principal homogenous
space property, see Theorem 2.3) to obtain a new solution for pE2q with no
obstructions for (E3) at q P S2. This requires introducing ramification at a
new prime q̃ in such a manner that Gq̃ Ñ G{H2 can be lifted to Gq̃ Ñ G.
Thus there is no local obstruction to (E3) at q̃ as well so a solution exists
and we can repeat the process. For this, we use Proposition 1.4 with the
fields Kn here playing the role of L there.

2.4. Lifting local homomorphisms. We retain the notations of the pre-
vious sections. In particular, we suppose given a sub-extension Kn{K of
KSn{K, with Galois group Γn – G{Hn.

Recall X2
Sn

“ 0 so the embedding problem pEnq has a solution exactly
when it has a local solution for every q P Sn. The question is then reduced
to the lifting problem of ramified quotients in G of tame local groups.

Recall that all tame primes we consider satisfy Npqq ” 1 mod p. For
these q the pro-p the Galois group Gq of the maximal pro-p extension of Kq

is Zp ¸ Zp. Let τq P Gq be a generator of the inertia and σq be a Frobenius.
They satisfy the unique relation rσq, τqs “ τ

Npqq´1
q . See [15, §10.1 ].

For each q in our set of primes which may be ramified, we will give a local
plan, that is a homomorphism ρq : Gq Ñ G lifting ρq,n : Gq Ñ G{Hn.

Gq

?ρq

}}

ρq,n

��

G // // G{Hn

For q P Z0 we choose the local plan to be any unramified map from Gq Ñ G
lifting the image of σq P G{Hn to an element of G. The existence follows
immediately from the fact that there are no obstructions to lifting problems



14 FARSHID HAJIR, MICHAEL LARSEN, CHRISTIAN MAIRE, RAVI RAMAKRISHNA

with G “ Zp, namely the p-cohomological dimension is one. We explain
some specific ramified local plans in § 2.4.1 and 2.4.2 and give a general
overview in § 2.5.2.

2.4.1. Torsion pro-p groups. This is the idea of the proof of the Scholz-
Reichardt theorem. Suppose that G contains an element y of order pm. Take
a prime q with pm | Npqq ´ 1. Suppose a representation ρq,n : Gq ÝÑ G{Hn

defined by ρq,npσqq “ 1 and ρq,npτqq “ ȳ is given. Since yNpqq´1 “ 1, the
map ρq : Gq Ñ G given by ρqpσqq “ 1 and ρqpτqq “ y is a local plan; in
particular, ρq is a lift of ρq,n from G{Hn to G. This is why we need to specify
vppNpqq ´ 1q in advance.

2.4.2. Uniform pro-p groups.

Definition 2.4. A pro-p group G is called p-adic analytic if G is a closed
subgroup of GLmpZpq for some m.

Let G be a finitely generated pro-p group. Recall that PnpGq denotes
the p-central descending series of G, grnpGq “ PnpGq{Pn`1pGq, and dn “

dim grnpGq.

Definition 2.5. For p ą 2, a pro-p group G is called uniform if
‚ G{Gp is abelian where Gp is the normal closure of the subgroup gen-

erated by all pth powers in G,
‚ and if for every n ě 1 the map

grnpGq
x ÞÑxp

ÝÑ grn`1pGq(4)
induces an isomorphism.

In this case, grnpGq – pZ{pqd for an integer d called the dimension of G. In
particular, dn “ d for every n ě 1.

Uniform groups are the primary building blocks of p-adic analytic groups.

Theorem 2.6. A finitely generated pro-p group G is p-adic analytic if and
only if it contains a uniform group H as an open subgroup.

Proof. See [4, Interlude A and §4, Corollary 4.1]. □

Example 2.7. For k ě 1, set SLkmpZpq :“ ker
`

SLmpZpq Ñ SLmpZ{pkq
˘

.
Then G “ SL1

mpZpq is p-adic analytic and uniform of dimension m2 ´ 1.
Also, for k ě 1, one knows PkpGq “ SLkmpZpq. See [4, Chapter 5, Theorem
5.2].

When a p-adic analytic group is torsion-free, the situation is relatively
rigid.

Lemma 2.8. Let G0 be a torsion-free p-adic analytic group of dimension
d, and let φ : G0 ↠ D be a continuous surjective morphism of G0 to an
analytic group D having the same dimension. Then φ is an isomorphism.
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Proof. As φ is surjective, kerpφq is analytic [4, Theorem 9.6] of dimension
zero and consequently discrete [4, Chapter 8, Ex. 4]. As G0 is compact, the
same is true of kerpφq, so it is finite. As G0 is torsion-free, kerpφq “ 1. □

Proposition 2.9. Let D be the decomposition group at q ∤ p in a torsion-
free Galois group G. If ρq : Gq Ñ D is such that ρqpτqq ‰ 1, then ρq is an
isomorphism.

Proof. As G is torsion-free, ρqpτqq has infinite order. This forces ρqpσqq to
have infinite order as well. As the decomposition group is p-adic analytic,
the result follows from Lemma 2.8. □

Proposition 2.9 shows that if there is tame ramification in a torsion-free
pro-p group G, then G must “contain Gq”. This will be useful in Propo-
sition 3.21 when we show certain uniform groups are not quotients of Gta

K .

2.5. Stably inertially generated pro-p groups. Let G be a finitely gen-
erated pro-p group. Recall pPnpGqq denotes the p-central series of G, mean-
ing that P1pGq :“ G, and Pn`1pGq :“ PnpGqprG,PnpGqs.

2.5.1. Some Definitions.

Definition 2.10. Suppose H is a pro-p group, 1 ‰ y P H. We call y inertial
if there exists x P H such that rx, ys “ yap

k with a P Zˆ
p and k ě 1.

Remark 2.11. 1) A torsion element y ‰ 1 is inertial. Indeed, take x “ 1,
a “ 1 and pk to be the order of y.
2) For any inertial element y, we can replace x in Definition 2.10 by any
desired xp

t. This allows us to assume x P Hn`1 Ă H2 for any n. This
change shifts k to k ` t.

Definition 2.12. A pro-p group H is called inertially generated if it can be
generated by inertial elements y1, ¨ ¨ ¨ , yd. A finitely generated pro-p group
G is called stably inertially generated, if the PnpGq are inertially generated
for all n.

Stably inertially generated pro-p groups G are FAb. Indeed, for every n,
the abelianization P abn pGq of PnpGq is generated by (the classes of) inertial
elements, which are torsion in P abn pGq. It is easy to see that the finiteness
of the P abn pGq implies the finiteness of Uab for every open subgroup U of G.

Remark 2.13. By (4) it is immediate that an inertially generated uniform
group is stably inertially generated.

Remark 2.14. We have xτqy “ Iq Ă Gq Ă Gta
K . If the class number of

K is prime to p, then the Iq generate Gta
K and rσq, τqs “ τ

Npqq´1
q so Gta

K is
inertially generated. We expect it is not stably inertially generated. Inertially
generated pro-p groups that are not stably inertially generated exist.
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Example 2.15. Let G0 :“ xty˙Zp´1
p be the semi-direct product of xa1, ¨ ¨ ¨ , ap´1y –

Zp´1
p by xty of order p with the action:

ta1t
´1 “ a2; ta2t

´1 “ a3; ¨ ¨ ¨ ; tap´2t
´1 “ ap´1; tap´1t

´1 “ a´1
p´1a

´1
p´2 ¨ ¨ ¨ a´1

1 .

This is well-defined. Note G0{rG0, G0s “ xt, a1y – Z{p ˆ Z{p, hence G0 is
generated by t and a1t. A simple computation shows that pa1tq

p “ 1, so we
have the relations tp “ pa1tq

p “ 1 and G0 is inertially generated, but not FAb
(the subgroup Zp´1

p is open) and therefore not stably inertially generated.

Remark 2.16. Set grn :“ grnpGq :“ PnpGq{Pn`1pGq and dn :“ dim grnpGq.
As G is finitely generated, we have dn ă 8. Recall that the map x ÞÑ xp

sends grnpGq to grn`1pGq. By Nakayama’s Lemma, it is easy to see that if
grn is generated by the images of inertial elements yi, then PnpGq is iner-
tially generated (the conjuguate of an inertial element is still inertial). In
particular if PnpGq is inertially generated, the map x ÞÑ xp produces inertial
elements in Pn`1pGq. The power of uniform groups is that this map induces
an isomorphism between grn and grn`1 for every n ě 1; so a uniform group
G is stably inertially generated if and only if G is inertially generated.

Example 2.17. The pro-p group SL1
2pZpq is stably inertially generated.

Let G “ SL1
2pZpq “ ker pSL2pZpq Ñ SL2pZ{pqq. Set

x “

ˆ

1 p
0 1

˙

, y “

ˆ

1 0
p 1

˙

, z “

ˆ

1 ` p p
´p 1 ´ p

˙

P G.

The group G is topologically generated by the elements x, y, z.
Given a prime q with p | Npqq ´ 1, let α P Zp be the square root of Npqq

that is 1 mod p. Set

s “

ˆ

α 0
0 α´1

˙

, t “

˜

α`α´1

2
´α`α´1

2
´α`α´1

2
α`α´1

2

¸

P G.

It is a routine computation to check the relations

rs, xs “ xNpqq´1, rs´1, ys “ yNpqq´1, and rt, zs “ zNpqq´1.

These are identical to the relation of a tame local group Gq, namely rσq, τqs “

τ
Npqq´1
q , where σq is a lift of the Frobenius and τq a generator of the ram-

ification. Thus we will be able to create local plans for G “ SL1
2pZpq. One

also observes that for every n, the subgroups PnpGq are topologically gener-
ated by the elements xpn

, yp
n
, zp

n, which also are compatible with tame local
relations.

If G is stably inertially generated then there exists a sequence of sub-
groups Hn as in the beginning of Section 2.

Lemma 2.18. If G is stably inertially generated then there exists a sequence
of normal open subgroups pHnqně2 of G such that:

piq H1 “ G, H2 “ rG,GsGp, and
Ş

nHn “ 1;
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piiq the quotient H1{H2 – pZ{pqd can be generated by the image of in-
ertial elements y1, ¨ ¨ ¨ , yd of G for which there exists some xi P H2

with rxi, yis “ yaip
ki

i where ai P Zˆ
p and ki ě 1;

piiiq for every n ě 2, the quotient Hn{Hn`1 is isomorphic to Z{p, and
is generated by the image of inertial element y P Hn for which there
exists some x P Hn`1 with rx, ys “ yap

k where a P Zˆ
p and k ě 1.

Proof. piq follows as G is a finitely generated pro-p group and piiq and piiiq
follow from the definition of stably inertially generated and Remark 2.11. □

2.5.2. The local plan. Let y P HnzHn`1 be an inertial element. By Re-
mark 2.11 we can take x in Hn`1 such that rx, ys “ yap

k for some a P Zˆ
p ,

and k ě 1. Take a prime q such that Npqq “ 1 ` bpk with b P Zp (we are
again specifying a lower bound for vppNpqq ´ 1q in advance), and consider
the reduction map ρq,n : Gq Ñ Dq,n Ă G{Hn, where Dq,n is a decomposition
group at q in G{Hn, that sends σq to 1 and τq to y.

Set α “
logpp1 ` bpkq

logpp1 ` apkq
P Zp. The homomorphism ρq : Gq Ñ G, sending

σq ÞÑ xα and τq ÞÑ y is easily seen to be a local plan for Gq into G. In
particular, ρq lifts ρq,n. Thus there is no obstruction to lift ρq,n from Dq,n

to G{Hn`1.

2.6. The result. Let G be a stably inertially generated pro-p group. Recall
the various primes we have used:

‚ Z0 is the first set primes chosen via Lemma 1.1 pivq. This set guar-
antees that for all Sn Ą Z0, the X2

Sn
groups we consider are trivial.

The local plan for any prime in Z0 is unramified.
‚ The set tq1, . . . , qdu of Proposition 2.2 is chosen to give a map GS2 ↠
G{H2 – pZ{pqd where each Iqi “ Dqi Ă G{H2 is Z{p where Iqi is the
inertia group. From §2.5.2, there is a local plan Gqi Ñ G for each i.

‚ The prime q̃ of Proposition 1.4 is used once we have solved (En) to
provide a global cohomology class that solves all the local plans at
primes in Sn. We will choose q̃ so that it has a local plan and we
can continue the inductive lifting process.

In this section we prove:

Theorem 2.19 (Theorem A). Let G be a finitely and stably inertially gen-
erated pro-p group. Then there exists a Galois extension L{K in Kta{K
such that GalpL{Kq – G. Moreover the extension L{K can be taken such
that the set of primes splitting completely is infinite.

Proof. The proof is by induction. Consider a sequence of normal open sub-
groups Hn of G as in Lemma 2.18. We first assume µp Ć K. We will explain
the complete splitting after realizing G as a quotient of Gta

K when µp Ć K.
At the end we establish the result for µp Ă K.

Recall d is the generator rank of G.
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‚ Since G is stably inertially generated, we see G “ xy1, ¨ ¨ ¨ , ydy where
the yi are inertial and xi P P2pGq satisfy the relation rxi, yis “ yaip

ni

i .
Proposition 2.2 gives the first step. Namely we obtainK2{K with GalpK2{Kq –

pZ{pqd, K2{K is ramified at tq1, . . . , qdu and Z{p – Dqi Ă GalpK2{Kq. Set
S2 “ tq1, ¨ ¨ ¨ , qdu Y Z0 so X2

S2 “ 0 by Lemma 1.1 pivq.
Let ρ2 : GS2 Ñ G{H2 be the homomorphism sending τqi to yi and σqi to

1 and recall we have a local plan for each Gqi , i “ 1, ¨ ¨ ¨ , d.
By Theorem 2.3 there exists a Z{p-extension of K 1

3{K2 in KS2{K, Galois
overK, solving the lifting problem (E2), that is, we have a mapGS2 ↠ G{H3.

‚ The problem now is that the decomposition group Dq at q P S2 in
GalpK 1

3{Kq may not be liftable to G{H4, that is we may be off the local
plan. However, the local plan to G{H3 does exist and by Theorem 2.3
differs from our local solution to (E2) by an element of fq P H1pGqq. By
Lemma 2.18, the quotient H2{H3 is generated by the image of an inertial
element y P G for which there exists some x P H3 such that rx, ys “ yap

k .
We use Proposition 1.4 with N “ S2 and R “ tq̃u with q̃ splitting

completely in K2{K, pfqq P ImpψRq and vppNpq̃q ´ 1q “ k.
Hence there exists g P H1pGS2YRq with g|Gq “ fq @ q P S2. We may

act on our solution to (E2) by g to produce another solution for which all
local obstructions at q P S2 to lifting to G{H4 vanish; it is on all local plans
at S2. We denote by K3 the fixed field of the resulting homomorphism
GS2YR Ñ G{H3.

As we allowed ramification at q̃, we need to form a local plan at q̃ com-
patible with our solution to (E2). We have Dq̃,3 “ Iq̃,3 “ xyy – H2{H3 – Z{p
where Dq̃,3 Ă G{H3 is the image of Gq̃. Our local plan is Gq̃ Ñ G where
σq̃ ÞÑ xα for suitable α as in § 2.5.2 and τq̃ ÞÑ y. Thus we have local plans
for all q P S3 :“ S2 Y tq̃u and we are on all of them with our new solution
to (E2).

We then continue the process by induction. Set L “
Ť

nKn Ă Kta. Then
GalpL{Kq – G.

‚ If we want the set of primes splitting completely in L{K to be infinite,
we proceed as follows. Let us choose a prime r2 that splits completely in
K2{K. Set T2 “ tr2u. The local plan for r2 is the trivial homomorphism
Gr2 Ñ G. As previously there exists a Z{p-extension of K 1

3{K2 in KS2{K,
Galois over K, solving the lifting problem (E2). Recall that the problem is
that the decomposition group Dq at q P S2 in K 1

3{K may be not be lifted
in G{H4, and that r2 may not split completely in K 1

3{K (we can assume
that r2 is unramified in K 1

3{K). Choose fr2 P H1pGr2q such that acting on
our solution to (E2) gives trivial decomposition group at r2 P T2. We again
use Proposition 1.4 with N “ S2 Y T2 to find a global g P H1pGNYtq̃uq with
g|Gq “ fq for all q P N . Acting by this class on our first solution to (E2)
gives a solution on the local plan at all q P N and split completely at r2 P T2.

Now take a prime r3 R T2 that splits completely in K3{K. Put T3 “

T2 Y tr3u and continue the process. For all n ě 2 we have
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piq T2 Ă T3 Ă ¨ ¨ ¨ Ă Tn Ă ¨ ¨ ¨ ,
piiq #Tn “ n´ 1,

piiiq and for every n, k, the primes of Tn`k split in Kn{K.
Set T “

Ť

n Tn. Then T is infinite, and each prime of T splits completely
in L{K.

Finally, assume µp Ă K for p odd. Let DK be the absolute discriminant
of K. Since µp Ć Q, we may use the method above to obtain G as a
quotient of Gta

Q with corresponding extension L{Q, but at each stage of the
induction when allowing ramification at primes that are 1 mod p, we avoid
those dividing DK . This is possible as we use Chebotarev’s theorem at
each stage and have a positive density of primes from which to choose. A
simple discriminant argument shows L and K are linearly disjoint over Q,
so GalpLK{Kq » GalpL{Qq “ G. Let T be the infinite set of primes of Q
splitting completely in L. Then the primes of K above T split completely
from K to LK. □

Remark 2.20. For the proof with µp Ć K, we use at most logp |G{Hn| tame
primes of K to realize G{Hn as Galois quotient of Gta

K . As these primes are
degree 1, our realization of G as a quotient of Gta

K does not occur as a base
change from a subfield of K.
When µp Ă K, we use at most logp |G{Hn| tame primes of Q to realize
G{Hn as Galois quotient of Gta

Q . This involves at most rK : Qs logp |G{Hn|

tame primes of K.

Corollary B follows immediately from Theorem A and Remark 2.11. It
remains to prove Corollaries C and D and Theorems E and F. See, respec-
tively, Theorems 3.24 and 3.18, Corollary 3.22 and Theorem 3.23.

3. Linear groups and Lie algebras

3.1. A dictionary: Lie algebras and p-adic analytic groups. Recall
p ‰ 2. We will consider both finitely generated Zp-Lie algebras, i.e. L – Zdp,
and Lie algebras over p-adic fields.

Definition 3.1. The Zp-Lie algebra L is called powerful if rLLs Ă pL.

The Baker-Campbell-Hausdorff formula defines a group structure on any
powerful Zp-Lie algebra; we denote by exppxq the group element correspond-
ing to x P L. The group texppxq | x P Lu turns out always to be uniform
pro-p. In fact, one has [4, Theorem 9.10]:

Theorem 3.2. There is an equivalence of categories between powerful Zp-
Lie algebras L and uniform groups G.

If G is a uniform group, we denote by LpGq the corresponding powerful
Lie algebra and set LG :“ LpGq bZp Qp.
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Given a uniform group G with x, y P LpGq, set α “ exppxq and β “

exppyq. One can check that Lie bracket rx ys is given by the following for-
mula:

rx ys :“ log
´

lim
n

rαp
n
, βp

n
sp

´2n
¯

where for g P Pm`1pGq, we set gp´m to be the unique g0 P G such that
gp

m

0 “ g.
When G is only p-adic analytic as opposed to uniform, one chooses a

uniform open subgroup G0 of G, and sets LG :“ LG0 . Of course, LG does
not depend on the choice of G0.

A Lie algebra over a field is called perfect if rLLs “ L. We recall a well-
known result useful in our arithmetic context, e.g. for FAb pro-p groups.

Proposition 3.3. Let G be a p-adic analytic group G with Lie algebra LG.
The following assertions are equivalent:

piq the pro-p group G is FAb;
piiq the Lie algebra LG over Qp is perfect;

piiiq the abelianization Gab of G is finite.

Proof. This is classical. See for example [9, Proposition 3.18]. □

Example 3.4. Semisimple Lie algebras are perfect. In particular, for k ě 1
and m ě 2, the groups SLkmpZpq :“ ker

`

SLmpZpq Ñ SLmpZ{pkq
˘

are FAb.

3.2. Toral and Pluperfect Lie algebras. Throughout this section, we
will always assume that Lie algebras are finite-dimensional over a field F .

Definition 3.5. A Lie algebra L is called toral if for every x P L, the adjoint
endomorphism adx : y ÞÑ rx ys is semisimple.

Abelian Lie algebras are toral as the adjoint adx is the zero map for every
x P L.

Proposition 3.6. Let L be a toral Lie algebra. There is no element x P L
such that adx has a nonzero eigenvalue λ P F . In particular, if for every
x P L, the characteristic polynomial of adx splits over F , then L is abelian.

Proof. If adx has a non-zero eigenvalue λ with eigenvector y, then
ad2

ypxq “ ´adypadxpyqq “ ´adypλyq “ 0.
By the toral hypothesis ady is semisimple, so 0 “ adypxq “ ´adxpyq “ ´λy,
contrary to the assumption that λ ‰ 0.

Suppose now that L is not abelian and choose x not in the center of L.
As adx is semisimple it implies that adx has non-trivial eigenvalues λ P F
(by hypothesis), which is impossible by the previous observation. □

In particular, if F is algebraically closed, toral is equivalent to abelian.

Lemma 3.7. Every non-trivial toral Lie algebra L has a non-trivial toral
quotient M which is either simple or abelian.
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Proof. If V is a finite dimensional vector space, W is a subspace of V ,
and T : V Ñ V is semisimple and satisfies T pW q Ă W , then T induces a
semisimple linear transformation on V {W . Applying this to adx for x P L,
it follows that every quotient of a toral Lie algebra L is again toral. Every
non-trivial Lie algebra has a non-trivial quotient which is either simple or
abelian. □

Definition 3.8. A Lie algebra L is called pluperfect if every toral quotient
L{I, is trivial.

A pluperfect Lie algebra is perfect: If L is not perfect, then L{rLLs is a
non-trivial abelian Lie algebra, and therefore a toral quotient of L, so L is
not pluperfect.

Observe that a simple Lie algebra is either toral or pluperfect but not
both. Over an algebraically closed field, it cannot be toral, so it must be
pluperfect.
Proposition 3.9. A non-trivial Lie algebra L is pluperfect if and only if L
is perfect and L{RadpLq is a direct sum of pluperfect simple Lie algebras.
Proof. Let L be pluperfect. If rLLs is a proper ideal of L, then L{rLLs is a
non-trivial abelian and hence toral quotient of L, so L is perfect. Moreover,
L{RadpLq is semisimple quotient of L, so it can be written as a (possibly
empty) direct sum L1 ‘¨ ¨ ¨‘Lm of simple Lie algebras. Each Li is therefore
a simple quotient of L, so Li is not toral and must therefore be pluperfect.

Conversely, suppose L has a non-trivial toral quotient L{I. By Lemma 3.7,
we may assume that L{I is either abelian or that it is simple. In the first
case, L cannot be perfect. So we assume that L{I is simple. The image of
RadpLq in L{I is a solvable ideal, so it must be p0q, so I Ą RadpLq, and we
may think of L{I as a quotient of L{RadpLq “ L1 ‘ ¨ ¨ ¨ ‘Lm where each Li
is simple. However, all maximal proper ideals of a semisimple Lie algebra
are kernels of projection maps L Ñ Li, so L{I must be isomorphic to one of
the Li, which means that at least one of the summands of L{RadpLq is not
pluperfect. □

Over an algebraically closed field, therefore, a Lie algebra is pluperfect if
and only if it is perfect.

3.3. Inertially generated Lie algebras. Throughout this section, we will
always assume that Lie algebras L are finite-dimensional over a field F of
characteristic 0. We introduce the notion of inertially generated Lie algebras
as an analog of inertially generated pro-p groups.
Definition 3.10. A nonzero element y of a Lie algebra L is called inertial
if it is an eigenvector with nonzero eigenvalue of the adjoint adx for some x.
A Lie algebra L over a field F is called inertially generated if there exists
an F -basis ty1, ¨ ¨ ¨ , ydu with each yi inertial.

An inertial element is strongly ad-nilpotent (see [11, §16.1]) and therefore
ad-nilpotent (see [11, §15.1]).
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Proposition 3.11. Any inertially generated Lie algebra L is pluperfect.
Proof. Any quotient of an inertially generated Lie algebra L is again in-
ertially generated. If I is an ideal of L such that L{I is toral, then by
Proposition 3.6, L{I has no inertial elements, so L{I is trivial. Thus, L is
pluperfect. □

The converse is true in characteristic 0. To prove this, we begin with a
lemma.
Lemma 3.12. Let L be a Lie algebra spanned by ad-nilpotent elements.
Then the span I of the set of inertial elements in L is an ideal.
Proof. If z is any ad-nilpotent element of L, then addimL

z “ 0 and the
function

y ÞÑ expp adzqpyq “

dimL´1
ÿ

i“0

adizpyq

i!
is a Lie algebra automorphism of L (see [11, §2.3]). As being inertial is a
characteristic property of a Lie algebra, we see that y inertial implies

exppm adzqpyq “

dimL´1
ÿ

i“0

miadizpyq

i!

is inertial. By the linear independence of the sequences 1,m,m2, . . . ,mdimL´1

as m ranges from 1 to dimL, it follows that each adizpyq

i! lies in I. Taking
i “ 1 we see adz preserves I. Since the ad-nilpotent elements span L, I is
preserved by adz for all z P L, so it is an ideal. □

Theorem 3.13. A pluperfect Lie algebra L is inertially generated.
Proof. We consider first the case that L is a simple Lie algebra. Since it
is pluperfect, it is not toral, so there exists an x P L such that adx is not
semisimple. As L is simple and F is of characteristic 0, x admits a Jordan-
Chevalley decomposition x “ xs ` xn, with adxn non-zero and nilpotent.

By the Jacobson-Morozov theorem, there exists an injective homomor-

phism i : sl2 Ñ L sending e :“
ˆ

0 1
0 0

˙

to xn. As e is inertial in sl2, it

follows that xn “ ipeq is inertial in L.
Let G denote the algebraic subgroup of GLpLq which stabilizes the Lie

bracket. The Lie algebra of G consists of derivations of L, and as L is
semisimple, it coincides with L. Let G˝ denote its identity component,
which is a simple algebraic group with Lie algebra L. As F is perfect and
infinite, G˝pF q is Zariski-dense in G˝ [21], so L, which is irreducible as
a G˝-representation, is likewise irreducible over G˝pF q. Since it contains
at least one inertial element and inertial elements map to inertial elements
under conjugation by elements of G˝pF q, L is inertially generated. It follows
immediately that for any semisimple Lie algebra, pluperfect implies inertially
generated.
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Now let L be an arbitrary pluperfect Lie algebra, and let M :“ L{RadpLq.
As M is a quotient of L, it is likewise pluperfect and therefore inertially
generated. By the Lie-Malcev theorem, there exists an embedding of Lie
algebras j : M Ñ L whose composition with the quotient morphism L Ñ M
gives the identity. By the comment after Definition 3.10, jpMq is spanned
by strongly ad-nilpotent elements. On the other hand, L is perfect, so by
[3, §5, Théorème 1], RadpLq is nilpotent, so L is spanned by ad-nilpotent
elements. By Lemma 3.12, the span I of inertial elements is an ideal of L.

Now, jpMq Ă I, so RadpLq maps onto L{I, which implies that L{I is
nilpotent. If L{I ‰ 0, it has a non-trivial abelian quotient, contrary to the
fact that L is perfect. Therefore, I “ L, and L is inertially generated. □

Corollary 3.14. Let L Ă slnpF q be simple over F . Suppose that there exists
x P L such that adx has a nonzero eigenvalue in F . Then L is inertially
generated.

Proof. By Proposition 3.6, L is pluperfect and Theorem 3.13 shows it is
inertially generated. □

Proposition 3.15. Let L be a simple Lie algebra and G˝ the identity com-
ponent of the algebraic group of automorphisms of L. Then L is pluperfect
if and only G˝ is isotropic, i.e., of positive rank over F .

Proof. By [2, Corollaire 8.5], G˝ is isotropic if and only if it has a non-trivial
unipotent subgroup defined over F . Any non-zero tangent vector of such a
subgroup is ad-nilpotent in L.

Conversely, if G˝ is pluperfect, it is inertially generated, so L contains
a non-zero ad-nilpotent element x, which determines a homomorphism of
algebraic groups t ÞÑ exppadpt xqq from the additive group to G˝. Thus, G˝

contains a unipotent subgroup, so it must be isotropic. □

3.4. Examples over local fields. Let F be R or a p-adic field. A simple
group G{F is anisotropic if and only if its group of F -points is compact [1,
§6.4]. In the real case, this amounts to L being a compact Lie algebra. In
the p-adic case, the only anisotropic, simply connected, absolutely simple
algebraic groups are inner forms of An [24, §3.3.3]. At the Lie algebra level,
L consists of the elements of reduced trace zero in a division algebra D
whose center is a finite extension of Qp. We can see this explicitly.

Proposition 3.16. Let D be a division algebra over Qp so D is a Lie algebra
with the bracket rx ys “ xy ´ yx. Let D0 be the Lie subalgebra of elements
of trace zero. The Lie algebra D0 is simple and perfect, but not pluperfect.

Proof. As D0 b Qp – sln which is simple, D0 is simple. One then has to
verify that for every x P D0, the adjoint adx is semisimple. But, since D0 is
simple, if we write adx “ adxs `adxn , with semisimple and nilpotent parts xs
and xn, then xs and xn are in D0. Since elements of D0 have multiplicative
inverses, xn “ 0, and then x “ xs implying that adx “ adxs . □
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Recall that division algebras over Qp are classified by the Brauer group
of Qp, which is isomorphic to Q{Z. For p ą 2, let D “ pa, pq be the (unique
up to isomorphism) nonsplit quaternion algebra over Qp, where a is not a
square mod p. Let D0 be the pure quaternions corresponding to quaternion
elements of zero trace, that is a simple Lie algebra L of dimension 3 which
is not pluperfect. Hence the explicitly described Lie algebra is perfect but
not pluperfect:

xx, y, z | rx ys “ pz, rx zs “ pay, ry zs “ p2xy.

The uniform group is described in the following example.

Example 3.17. Recall p is odd. Let a P Z such that a is not a square mod

p. Set U “

ˆ

0 p
1 0

˙

, and consider the two following matrices of M4pZpq:

A “

ˆ

U 0
0 ´U

˙

and B “

ˆ

0 aI2
I2 0

˙

.

Then A2 “ pI4, B2 “ aI4 and AB “ ´BA “

ˆ

0 aU
´U 0

˙

. Hence, the

Qp-algebra generated by I4, A,B,AB is isomorphic to the quaternion algebra
pa, pq.

Set A0 “ pA, B0 “ pB, C0 “ pAB, and put x “ exppA0q, y “ exppB0q, z “

exppC0q P SL4pZpq. Then the subgroup G of SL4pZpq generated by x, y and
z is uniform of dimension 3 and its Lie algebra is toral and simple. By
Proposition 3.3, G is FAb.

3.5. Applications.

3.5.1. Uniform groups with pluperfect Lie algebras. We prove our second
main result.

Theorem 3.18 (Corollary D). Every p-adic analytic group G with pluperfect
Lie algebra LG has a uniform open subgroup G0 which is quotient of Gta

K .

Proof. Let G be a p-adic analytic group of Lie algebra LG. Theorem 3.13
implies that L “

řd
i“1 Qpsi for some inertial elements si. Take a powerful

Zp-Lie subalgebra of L as follows: multiply the elements si by pk for large
k so that L1 :“

řd
i“1 Zpsi is powerful. Set G0 “ exppL1q. The group

G0 is uniform and generated by the exponentials of the inertial elements
xi :“ pksi. In the proof of Theorem 3.13 we saw that each xi is in a sl2-
triple so there exist yi, zi P L1, after multiplying by pk for large k, such
that

rzi xis “ 2pmxi; rzi yis “ ´2pmyi; rxi yis “ pmzi

for some m ě 1. These relations are the same as those satisfied by the
matrices

A “

ˆ

0 pm

0 0

˙

, B “

ˆ

0 0
pm 0

˙

, and C “

ˆ

pm 0
0 ´pm

˙
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in SL2. Exponentiating the various sl2-triples in L, we see G contains a
uniform open subgroup G0 that is inertially generated. By Remark 2.13, G0
is stably inertially generated. Theorem 2.19 gives the result. □

Sometimes the lattice to take in LG is natural, as is the case for the linear
groups SL1

mpZpq.

Example 3.19. Let glm :“ glmpZpq the Zp-Lie algebra of matrices with
coefficients in Zp. Denote by Ei,j the elementary matrices of glm, where 1
has been replaced by p, and for i “ 1, ¨ ¨ ¨ ,m´ 1, set Ei “ Ei,i ´ Ei`1,i`1 `

Ei,i`1 ´ Ei`1,i.
Let slm Ă glm be the sub-Lie-algebra of glm generated by the Ei,j and

Ei (all have trace zero). The Zp-Lie algebra slm is powerful. Set yi,j “

exppEi,jq, i ‰ j, and yi “ exppEiq. The yi,j and yi generate SL1
mpZpq.

It is easy to see that the yi,j and yi are inertial so SL1
mpZpq is inertially

generated, and then stably inertially generated by Remark 2.13.

One then obtains part of Corollary C. The full result is given in § 3.6.

Theorem 3.20. For k ě 1 and m ě 2 the pro-p groups SLkmpZpq are
quotients of Gta

K .

Proof. The SLkmpZpq are uniform, and stably inertially generated by Exam-
ple 3.19. Apply Theorem 2.19. □

3.5.2. Toral uniform extensions. As Zp-extensions of number fields are only
wildly ramified, there is no tame ramification in an abelian uniform extension
of a number field K. This is also a consequence of the following Proposition.

Proposition 3.21. In a toral uniform extension of a number field K, there
is no tame ramification.

Proof. Suppose that there is tame ramification at q in a non-trivial toral
uniform extension. By Proposition 2.9 this would imply a relation of the
form rα, βs “ βNpqq´1 in the uniform group which produces the relation
rx ys “ logppNpqqqy in LpGq where x “ logpαq and y “ logpβq. Indeed,
some elementary p-adic analysis yields

rx ys “ logp
´

lim
n

rαp
n
, βp

n
sp

´2n
¯

“ logp
´

lim
n

`

βp
npNpqqq

˘p´2n
¯

“ logppNpqqqy,

where logp is the usual p-adic logarithm. Since logppNpqqq ‰ 0, this contra-
dicts Proposition 3.6. □

Corollary 3.22 (Theorem E). If the Hilbert p-class field tower of K is
finite, then there is no non-trivial toral uniform quotient of Gta

K .

Proof. Let G be a non-trivial toral uniform pro-p group. If G is quotient of
Gta
K , then since the p-class field tower of K is finite, there is tame ramification

in the corresponding extension contradicting Proposition 3.21. □
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Note that the Lie algebra of the group of Example 3.17 is perfect, and
so by Proposition 3.3 the group is FAb. In particular so we have exhibited
a FAb pro-p group that is not quotient of Gta

K .
Recall the Fontaine-Mazur conjecture for tame extensions predicts this

result holds without the class field tower hypothesis.

To conclude this section, we finish with an extension of the previous
result. Recall αT :“

ř

qPT
logNpqq

Npqq´1 .

Theorem 3.23 (Theorem F). Let dK be the absolute discriminant of K.
(1) Take T such that αT `

ř

v|8 αq ą log
a

|dK |. Then Gta,T
K has no non-

trivial uniform toral quotient.
(2) Assume the GRH and T such that αGRH

T `
ř

v|8 αGRH
q ą log

a

|dK |.
Then Gta,T

K has no non-trivial uniform toral quotient.

Proof. We proceed by contradiction. Suppose Gta,T
K has a non-trivial uni-

form toral quotient G “ GalpL{Kq with L Ă Kta,T . Then by Proposition
3.21, L{K is unramified. We use Theorem 1 and Proposition 1 of [12]: in an
infinite unramified extension L{K one unconditionally has αT `

ř

v|8 αq ď

log
a

|dK |, and assuming the GRH one has αGRH
T `

ř

v|8 αGRH
q ď log

a

|dK |,
contradicting our assumption. □

3.6. Lifting to the special linear group over complete local Noe-
therian rings. The result below follows immediately from Theorem 2.19.
The prime p is odd.

Theorem 3.24 (Corollary C). For any complete Noetherian local ring A
with residue field Fq, we have for k ě 1 and m ě 2 that SLkmpAq is a
quotient of Gta

K and can correspond to a Galois extension L{K in which
infinitely many primes split completely.

Proof. We first prove the result with Fq “ Fp and for the ringA “ ZpvT1, ¨ ¨ ¨ , Tnw.
The proof is an extension of Example 2.17, with the technical difficulty

that we cannot use the exponential map.
First by Proposition 13.29 of [4], the sequence

`

SL1
mpZpvT1, ¨ ¨ ¨ , Tnwq

˘

k

corresponds to the p-central series of SL1
mpZpvT1, ¨ ¨ ¨ , Tnwq.

Set m “ pp, T1, ¨ ¨ ¨ , Tnq the maximal ideal of ZpvT1, ¨ ¨ ¨ , Tnw. Hence, it
suffices to prove that for each k ě 1,

SLkmpZpvT1, ¨ ¨ ¨ , Tnwq{SLk`1
m pZpvT1, ¨ ¨ ¨ , Tnwq – mk{mk`1 bZ M

0
mpZq

is spanned by the images of inertial elements of SLkmpZpvT1, ¨ ¨ ¨ , Tnwq.
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We consider first the case m “ 2. If a0 ` ¨ ¨ ¨ ` an “ k, the following
relations hold in SLk2pZpvT1, ¨ ¨ ¨ , Tnwq:
ˆ

1 ´ pk 0
0 p1 ´ pkq´1

˙ ˆ

1 pa0T a1
1 ¨ ¨ ¨T an

n

0 1

˙ ˆ

p1 ´ pkq´1 0
0 p1 ´ pkq

˙

“

ˆ

1 pa0T a1
1 ¨ ¨ ¨T an

n

0 1

˙ppk´1q2

,

ˆ

p1 ´ pkq´1 0
0 1 ´ pk

˙ ˆ

1 0
pa0T a1

1 ¨ ¨ ¨T an
n 1

˙ ˆ

1 ´ pk 0
0 p1 ´ pkq´1

˙

“

ˆ

1 0
pa0T a1

1 ¨ ¨ ¨T an
n 1

˙ppk´1q2

.

Also, if

N :“
ˆ

1 1
´1 ´1

˙

, D :“
˜

p1´pkq`p1´pkq´1

2
p1´pkq´p1´pkq´1

2
p1´pkq´p1´pkq´1

2
p1´pkq`p1´pkq´1

2

¸

,

then N is nilpotent and DND´1 “ ppk ´ 1q2N , so

DpI ` pa0T a1
1 ¨ ¨ ¨T an

n NqD´1 “ pI ` pa0T a1
1 ¨ ¨ ¨T an

n Nqppk´1q2
,

and mk{mk`1 bZ M
0
2 pZq is spanned by inertial elements.

For generalm, consider all embeddings of SLk2pZpvT1, ¨ ¨ ¨ , Tnwq in SLkmpZpvT1, ¨ ¨ ¨ , Tnwq

which come from choosing an ordered pair of standard basis vectors. To-
gether the images of all the inertial elements in SLk2pZpvT1, ¨ ¨ ¨ , Tnwq which
we just constructed will span mk{mk`1 bZ M

0
mpZq because the span of all

images of M0
2 pZq in M0

mpZq obtained by choosing pairs of basis elements of
Zm generates M0

mpZq. This completes the proof for A “ ZpvT1, ¨ ¨ ¨ , Tnw.
We next consider its quotients.

Observe first that A is isomorphic to ZpvT1, ¨ ¨ ¨ , Tnw{I for some ideal I.
It is then sufficient to prove that the reduction map SLkmpZpvT1, ¨ ¨ ¨ , Tnwq Ñ

SLkmpAq is surjective. Then take x P SLkmpAq and lift it to an mˆm matrix
c with entries in ZpvT1, ¨ ¨ ¨ , Tnw which is congruent to 1 mod mk. Say the
determinant is d. Then d is 1 mod mk X I and is a unit of ZpvT1, ¨ ¨ ¨ , Tnw;
in particular d´1 is 1 mod mk X I. Multiply the first row of c by d´1 to get
c1. Then c1 P SLkmpZpvT1, ¨ ¨ ¨ , Tnwq and c1 mod I is exactly x.

It remains to consider local rings A with residue field Fq. These are quo-
tients ofW pFqqvT1, ¨ ¨ ¨ , Tnw. Achieving the result for SLkmpW pFqqvT1, ¨ ¨ ¨ , Tnwq

is the same as for SLkmpZpvT1, ¨ ¨ ¨ , Tnwq as now mk{mk`1bZM
0
mpZq is spanned

by rFq : Fps times as many inertial elements as before. The arguments for
quotients is the same as well. □
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