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Abstract. — In this work, we show that given a finite p-group G, a number field K having
a trivial p-class group ClK , and a finite set of primes S of K, there exists a finite extension
F/K such that the S-split p-Hilbert class field tower LS

p (F ) of F has G as its Galois group.
This extends results by Ozaki and Hajir-Maire-Ramakrishna.

Introduction

Let p be a prime number and K be a number field. Denote by Lp(K) the top of the
p-Hilbert class field tower of K, which is the maximal unramified p-extension of K. The
extension Lp(K)/K can also be constructed by iteratively stacking the p-Hilbert class
fields K(i): here, K(0) = K, and K(i+1) is the p-Hilbert class field of K(i), i.e., the
maximal unramified abelian p-extension of K(i). Recall that the Artin map provides
an isomorphism between the p-Sylow subgroup ClK(i) of the class group of K(i) and
Gal(K(i+1)/K(i)). Let GK := Gal(Lp(K)/K).
Observe that Lp(K) = K if and only if the p-part ClK of the class group of K is trivial
(which is the case, for example, when K = Q). On the other hand, the Golod–Shafarevich
criterion shows that the p-extension Lp(K)/K can be infinite (see [1], [4, §7.7] or [10]).
To the best of our knowledge, using this criterion is the only method available to identify
infinite p-towers. This naturally leads to the following question:
Does every finite p-group G arise as the Galois group of the p-Hilbert class field tower of
some number field K?
This question can be viewed as an inverse Galois problem for the p-Hilbert tower.
Ozaki answered this question affirmatively in [9]. This result was revisited and further
extended in [3]. It is this version that forms the basis of our approach.

Here, we focus on the inverse Galois problem for the p-Hilbert class field towers with
decomposition. Let us clarify the context.
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Let S be a set of primes of K. Denote by LSp (K) the p-extension of K that is unramified
everywhere, totally decomposed at the places in S, and maximal with these properties.
Let GS

K := Gal(LSp (K)/K). The extension LSp (K)/K is also the largest normal subex-
tension of Lp(K)/K fixed by the decomposition groups of the primes above S, and GS

K

is a quotient of GK .
The groups GS

K have been the subject of extensive study; see, for example, [4, Chapter
11], [2, Chapter III], [8, Chapter X], [7], etc.

Before stating the main result of this note, let us introduce some notations.
For a finite p-group G, let hiG = dimH i(G,Z/p), and let peG denote the exponent of G.
For a number field K, denote its signature by (rK,1, rK,2).

Theorem A. — Let K be a number field with a finite p-Hilbert tower Lp(K)/K; set
G := GK = Gal(Lp(K)/K). Assume that rK,1 + rK,2 ≥ h1G + h2G.
Let S be a finite set of primes of K.
Then there exists a tamely ramified extension F/K of degree pm such that

(i) Lp(F ) = LSp (F );
(ii) the Galois group Gal(LSp (F )/F ) is isomorphic to G;
(iii) the extension F/K is ramified at m primes;
(iv) m ≤ eG.

Here, we make a slight abuse of notation by still denoting by S the set SF of primes of F
lying above the primes in the original set S.
In Theorem A, the proof shows that #SF = #S.

Remark 1. — The choice of F depends on S. However, we can observe that the esti-
mates on the degree of F/K and on the number of primes ramified in F/K do not depend
on S.

When ζp /∈ K, the condition on the signature of K can be refined (see Theorem 2.1), as
it ensures the presence of a sufficient number of Minkowski units associated with K (see
§1.3 for the definition). This condition is satisfied in the main result of [3], allowing us
to deduce the following corollary.

Corollary B. — Let K be a number field with a trivial p-class group ClK, and let S be a
finite set of primes of K. Let G be a finite p-group. Then there exists an extension F/K,
tamely ramified and unramified at infinity, such that the Galois group Gal(LSp (F )/F ) is
isomorphic to G.

Remark 2. — The previous results establish the existence of an extension F/K with very
specific properties. This extension is constructed by successively applying Chebotarev’s
theorem, which in fact ensures the existence of infinitely many extensions satisfying the
mentioned properties.

The proof of the main result relies critically on the presence of Minkowski units along
the p-Hilbert tower Lp(K)/K. We then need to eliminate the residue degree at S within
a given p-tower. This is achieved by forming the compositum with extensions F̃ /K̃ that
are inert at S, while maintaining the stability of the p-tower, a point where we use a
result found in [3]. The existence of the extensions F̃ /K̃ is ensured by carefully selecting
Frobenius elements in appropriate governing fields.
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Our work is organized into three parts. In §1, we recall the necessary tools. In §2,
we prove Theorem A. Finally, in §3, we conclude with three remarks: one concerns a
certain condition CS, another concerns the degrees of the fields encountered, and the third
addresses the same problem in the context of p-Hilbert towers with tame ramification and
decomposition.

Preliminaries
We fix an algebraic closure Q of Q. Let p be a prime number. The element ζp ∈ Q
denotes a primitive pth root of unity.

• Let K be a number field.
− A prime q of the ring of integers OK of K is called tame if #OK/q ≡ 1 (mod p).
− A Z/p-extension F/K refers to a cyclic extension of degree p.
− The field K(ζp) is denoted by K ′.

• Let S = {l1, ..., ls} be a finite set of primes of K.
− OS

K = {α ∈ K | vp(α) ≥ 0, ∀p ̸∈ S} is the ring of S-integers of K, where vp is the
p-valuation (normalized) associated to the prime p of K.

− The group ES := ES
K of S-units of K is the group of invertible elements of OS

K .
− We recall that ES is isomorphic to WK × Zr, where WK is the cyclic group of the

roots of unity in K, and r = rK,1 + rK,2 − 1 + s.

• The p-Sylow subgroup of the S-class group of K denoted by ClSK is defined by

ClSK := Zp ⊗ (IK/PK⟨S⟩) ,

where IK is the group of fractional ideals of K×, PK is the subgroup of principal fractional
ideals, and ⟨S⟩ is the subgroup of IK constructed from the primes in S. Set ClSK [p] :=
{h ∈ ClSK , h

p = 1}. Recall that, by class field theory, the group ClSK is isomorphic to the
Galois group of the abelian p-extension KS,(1)/K, which is unramified everywhere, totally
decomposed at all the primes of S, and maximal for these properties (“real archimedean
places stay real”).

• For a prime p of K, let Kp be the completion of K at p, and Up be the subgroup of
units of K×

p . Let J := JK be the group of the idèles of K; set U∞ =
∏

v|∞K×
v , where

the products is taken over archimedean places v of K; set U := UK = U∞
∏

p Up.
Observe that ClK ≃ Zp ⊗ (J /K×U), and ClSK ≃ Zp ⊗

(
J /K×U

∏
l∈SK

×
l

)
.

• More generally, let S and T be two finite and disjoint sets of primes of K. We assume
that the primes in T are tame. Let LSp,T be the pro-p extension ofK, unramified outside T ,
totally splitting at S, and maximal for these properties. Observe that LSp,∅ = LSp and
L∅
p,∅ = Lp(K). Set GS

K,T := Gal(LSp,T/K).

• If G is a p-group, we denote by Φ(G) := Gp[G,G] its Frattini subgroup. All cohomology
groups have coefficients Z/p (with trivial action) so we write H i(G) for H i(G,Z/p). We
denote by hiG the dimension over Fp of H i(G). Recall that h1G is the minimal number of
generators of G, and h2G is the minimal number of relations.

• For p = 2, the set of extensions considered in this paper are unramified at infinity.
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1. Tools for the proof

1.1. Governing field. —

1.1.1. Definition. — Given a finite set S of primes of K, we define the multiplicative
subgroup V S

K of K× as
V S
K = {x ∈ K×, (x) ∈ (IK)

p⟨S⟩}.
When S = ∅, we denote VK := V ∅

K .

Lemma 1.1. — The following exact sequence holds:

1 −→ ES
K/(E

S
K)

p −→ V S
K/(K

×)p −→ ClSK [p] −→ 1

Proof. — The map f : V S
K/(K

×)p → ClSK [p] is defined as follows. Take x ∈ V S
K : there

exists a ∈ IK and b ∈ ⟨S⟩ such that (x) = apb. Then, f(x) is the class of a in ClSK . The
map f is surjective, and the kernel is exactly ES

K/(E
S
K)

p.

Definition 1.2. — The governing field relatively to K and S is the number field
GovSK := K ′( p

√
V S
K ). When S = ∅, we denote GovK := Gov∅K.

The extension GovSK/K is Galois. Set MS
K = Gal(GovSK/K

′): it is an elementary abelian
p-group of p-rank which can be deduced from Lemma 1.1. Again, when S = ∅, we denote
MK :=M∅

K .
For the groups MS

K , we will use additive notation.

1.1.2. Governing field and idèles. — Let S = {l1, · · · , ls} and T = {q1, · · · , qt} be two
finite and disjoint sets of primes of K. We assume that the primes qi in T are tame.
Set

− US
T := U∞

∏
l∈SK

×
l

∏
p/∈S∪T Up, US := US

∅ , UT := U∅
T ,

− V S
T := V S

K,T = {x ∈ K× | x ∈ Up, ∀p /∈ S ∪ T ;x ∈ (K×
q )

p, ∀q ∈ T}.
One can express the sets V S

T in terms of idèles:

V S
T = K× ∩ J pUS

T ·
In particular, V S = K× ∩ J pUS and VT = K× ∩ J pUT .

1.1.3. Governing field anf Frobenius. — Let us choose a tame prime q of K, not in S.
Since #OK/q ≡ 1 modulo p, the prime q splits completely in K ′/K. Let Q be a prime
ideal of K ′ above q. Denot by σQ the Frobenius of Q in Gal(GovSK/K ′). For convenience,
we will write σq := σQ for some specific Q|q. Note that if Q′ is another prime of K ′

above q, then σQ = aσQ′ for some a ∈ F×
p . It follows that any property involving σq will

not depend on the choice of Q|q.

Let S and T be as before. Set GovSK,T := K ′( p

√
V S
K,T ), and MS

K,T = Gal(GovSK,T/K
′).

Lemma 1.3. — The Galois group Gal(GovSK/GovSK,T ) is generated by the Frobenius el-
ements σq at q ∈ T .

Proof. — First observe that primes q ∈ T are unramified in GovSK/K ′.
Take x ∈ V S

K,T , and q ∈ T . Then x ∈ (K×
q )

p, (GovSK,T )q = Kq, and consequently GovSK,T
is fixed by σq ∈MS

K .
Reciprocally. Take x ∈ V S

K such that for all q ∈ T , σq ∈ Gal(GovSK/K
′( p
√
x)). Then

x ∈ (K×
q )

p (recall that ζp ∈ Kq). Hence, x ∈ V S
K,T .
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Remark 1.4. — Observe that if a prime p of K, coprime to p and S, has a non-trivial
Frobenius in MS

K then p is tame.

1.1.4. Governing field and Z/p-extensions with prescribed ramification. — Let us state
the following theorem due to Gras (see [2, Chapter V, Corollary 2.4.2]), which is not a
priori useful in the proof of our result but which we will use in a remark in §3.1.
Let S and T be as before.

Theorem 1.5 (Gras). — There exists a Z/p-extension F/K that is exactly ramified
at T = {q1, · · · , qt} and totally decomposed at S if and only if, for i = 1, ..., t, there exists
ai ∈ F×

p such that:
t∑
i=1

aiσqi = 0 ∈MS
K .

Here “exactly ramified” at T means that F/K is unramified outside T and every prime
in T is ramified in F/K.
We will use the following corollary.

Corollary 1.6. — Assume S = {l} and let q be a tame prime of K, q ̸= l, such that
σq ̸= 0 in MS

K. If there exists a Z/p-extension F/K that is exactly ramified at q, then l
is inert in F/K.

1.2. Governing fields in the p-Hilbert tower. — Our main result relies on the
choice of Frobenius elements in MLp(K) while considering the action of GK . To do this,
we will need the following properties of linear disjunction.

Lemma 1.7. — Let L/K ′ be an unramified extension. Then

L ∩K ′( p

√
V S
K ) = L ∩K ′( p

√
VK)

and

L( p
√
VL) ∩ L( p

√
V S
K ) = L( p

√
VK).

Proof. — For the first point, obviously L ∩K ′( p
√
VK) ⊂ L ∩K ′( p

√
V S
K ). Now, let x ∈ V S

K

such that K ′( p
√
x)/K ′ is unramified. This implies that xOK′ ∈ IpK′ , and we will see

that x ∈ VK . Indeed, it is sufficient to take the norm in K ′/K and then observe that
([K ′ : K], p) = 1. Hence, the first point is proved.
Now let x ∈ V S

K such that L( p
√
x) ⊂ L( p

√
VL). By Kummer theory, there exists z ∈ VL

such that zx−1 ∈ (L×)p. Therefore, xOL ∈ IpL. On the other hand, in K, we have
(x) = apb, with b ∈ ⟨S⟩. Since the extension L/K ′ is unramified at S (and [K ′ : K] is
prime to p), we deduce that b ∈ IpK , which implies x ∈ VK . Thus, we have

L( p
√
VL) ∩ L( p

√
V S
K ) = L( p

√
VL) ∩ L( p

√
VK) = L( p

√
VK),

since VK ⊂ VL.

Consider now the following extensions.
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F2 F5

Lp(K) Lp(K)(ζp)

MLp(K)

F1 F4

F0 F3

K

GK

K(ζp) MS
K

MK

GK

where F0 := K ′( p
√
VK) = GovK , F1 := Lp(K)F0, F2 := Lp(K)

(
ζp, p

√
ELp(K)

)
= GovLp(K),

F3 := K ′
(

p
√
V S
K

)
= GovSK , F4 = F3F1 = Lp(K)F3, and F5 = F3F2.

Observe that VL = ELp(K).
Since Lp(K)(ζp)/K

′ is unramified, by Lemma 1.7, we have F1∩F3 = F0 and F2∩F4 = F1.
Therefore, F2 ∩ F3 = F2 ∩ F4 ∩ F3 = F1 ∩ F3 = F0.
In conclusion, the extensions F2/F0 and F3/F0 are linearly disjoint over F0, and we thus
have

Gal(F5/F0) = Gal(F5/F2)×Gal(F5/F3) ≃ Gal(F3/F0)×Gal(F2/F0).(1)

1.3. Minkowski units. —

1.3.1. Structure. — First, let us recall a well-known result.

Proposition 1.8. — Let G be a p-group, and let M be a finitely generated Fp[G]-module.
Then every free submodule of M is a direct summand of M . In particular, there exists a
well-defined integer λ ≥ 0 such that M ≃ Fp[G]λ⊕N , where N is a torsion Fp[G]-module.

Proof. — This result follows from the fact that Fp[G] is a Frobenius algebra (see [5, §1,
(3.15.E)], and from the Krull-Schmidt theorem). See also [9, §4].

We apply this result to the following context: GK = Gal(Lp(K)/K) is finite, and M =
ELp(K)/(ELp(K))

p. We then denote λK := λ.

Definition 1.9. — When λK > 0, we say that the p-tower Lp(K)/K contains λK
Minkowski units.

Remark 1.10. — We actually use the Kummer dual of VLp(K)/(K
×)p, which is itself

equal to the Kummer dual of ELp(K)/(ELp(K))
p, as p does not divide the order of the class

group of Lp(K). Minkowski units of Lp(K)/K provide a free part of the same rank for
this dual, i.e., for the group MLp(K) viewed as an Fp[GK ]-module.

Remark 1.11. — Supppose that ζp ∈ K. Let q be a tame prime of K that splits com-
pletely in Lp(K)/K. There are exactly #GK primes Qi of Lp(K) above q, on which the
group GK acts transitively. Consider such a prime Q, and let σQ be its Frobenius element
in the Galois group MLp(K) of the governing field GovLp(K). By the property of the Artin
symbol, GK acts transitively on the σQ. When ζp /∈ K, GK acts transitively on the lines
spanned by the Frobenius elements σQ ∈MLp(L) (see also the observation made in §1.1.3).
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1.3.2. Growth of the number of Minkowski units. — We fix a number field K such that
GK is finite. Let us begin with a definition:

Definition 1.12. — Set

AK =

{
rK,1 + rK,2 − h2GK

+ h1GK
− 1 if ζp /∈ K

rK,1 + rK,2 − h2GK
if ζp ∈ K.

The presence of Minkowski units is central to our study, and the phenomenon of growth
due to a base change becomes highly significant. This was observed by Ozaki in [9] and
quantified in [3] through the following two propositions:

Proposition 1.13. — Let F/K be a Z/p-extension unramified at infinity and such that
Lp(F ) = FLp(K). Then, AF = AK + (p− 1) (rK,1 + rK,2).

Proof. — See [3, Proposition 2.6].

Proposition 1.14. — Let K be a number field. Then, λK ≥ AK.

Proof. — See [3, §2, Fact 5].

1.4. Stability of the p-Hilbert class field tower. — We begin with a number fieldK
such that GK is finite.
Let {g1, ..., gd} be a minimal system of generators of GK = Gal(Lp(K)/K), where d =
h1GK

. The augmentation ideal IGK
of Fp[G] is generated as a G-module by the elements

xi := gi − 1, for i = 1, ..., d.
Suppose λK ≥ d, and write MLp(K) := Gal(GovLp(K)/Lp(K)(ζp)) ≃ Fp[GK ]

d ⊕M0.
In this notation, set

z = ((x1, ..., xd), 0) ∈MLp(K).

Observe that z ∈ IGK

(
MLp(K)

)
. In particular, z ∈ Gal

(
GovLp(K)/Lp(K)GovK

)
. Indeed,

MLp(K)/IGK

(
MLp(K)

)
is the maximal extension of Lp(K) on which GK acts trivially, and

GK obviously acts trivially on Gal(Lp(K)GovK/Lp(K)).
The result concerning the stability of the p-tower is as follows.

Theorem 1.15. — Suppose that λK ≥ d. Let q be a tame prime of K such that σq =
z ∈ MLp(K) ⊂ Gal(Gov(Lp(K))/K). Then, there exists a Z/p-extension F/K exactly
ramified at q and such that Lp(F ) = FLp(K). Moreover AF > AK.

Proof. — See [3, Theorem 1].

2. Main result

Let us recall the main result of our work (Theorem A).

Theorem 2.1. — Let K be a number field with a finite p-Hilbert tower Lp(K)/K; set
G := GK = Gal(Lp(K)/K). Assume that AK ≥ h1G.
Let S be a finite set of primes of K.
Then there exists a tamely ramified extension F/K of degree pm such that

(i) Lp(F ) = LSp (F );
(ii) the Galois group Gal(LSp (F )/F ) is isomorphic to G;
(iii) the extension F/K is ramified at m primes;
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(iv) m ≤ eG.

Observe that when G = {e}, the result is immediate. Suppose now G to be nontrivial.
In this case, the condition rK,1+ r2,K ≥ h1G+h2G from Theorem A implies that AK ≥ h1G.

2.1. Proof of Theorem 2.1. — Let Σ = {l1, · · · } and T = {q1, · · · } be two finite and
disjoint sets of primes of K. We assume that the primes qi ∈ T are tame. We use the
notation from §1.1.2.

Lemma 2.2. — We have the exact sequence:

VT/(K
×)p ↪→ V Σ

T /(K
×)p −→

∏
l∈Σ

K×
l /(K

×
l )

pUl −→ J /J pK×UT ↠ J /J pK×UΣ
T ·

Proof. — Let us first describe α : V Σ
T /(K

×)p →
∏

l∈ΣK
×
l /(K

×
l )

pUl. Take x ∈ V Σ
T . Then

x ∈ J pUΣ
T , and α(x) is simply the projection to the Σ-coordinates. Thus, ker(α) = J pUT

modulo (K×)p that is VT/(K×)p.
The map β :

∏
l∈ΣK

×
l /(K

×
l )

p → J /J pK×UT is the inclusion followed by the restriction
modulo J pK×UT . Obviously, β ◦ α = 0, then Im(α) ⊂ ker(β). Let us study the
reverse inclusion. Let z := (zl) ∈

∏
l∈ΣK

×
l be such that z ∈ J pK×UT (in other words,

z ∈ ker(β)). Then there exists x ∈ K× such that z = jp · x · u, where j ∈ J and u ∈ UT .
Then x ∈ K× ∩ J pUΣ

T = V Σ
T , and α(x) = z.

The other maps are obvious.

Given a prime p of K, let Kur
p be the maximal unramified extension of Kp; set Gur

p :=
Gal(Kur

p /Kp).
The exact sequence of Lemma 2.2 allows us to obtain the following proposition:

Proposition 2.3. — One has the exact sequence

H1(GΣ
T ) ↪→ H1(GT ) −→

⊕
l∈Σ

H1(Gur
l ) −→MΣ

K,T ↠MK,T ,

where the map H1(Gur
l ) −→MΣ

K,T relies on the Artin map and Kummer duality.

Proof. — By the Artin maps, J /J pK×UΣ
T ≃ GΣ

T/Φ(G
Σ
T ), and K×

l /(K
×
l )

pUl ≃
Gur

l /(G
ur
l )p. Then the exact sequence of Lemma 2.2 becomes

VT/(K
×)p ↪→ V Σ

T /(K
×)p −→

∏
l∈Σ

Gur
l /(G

ur
l )p −→ GT/Φ(GT ) ↠ GΣ/Φ(G

Σ
T ).

By taking the dual ∧ we get

0 −→ H1(GΣ
T ) −→ H1(GT ) −→

⊕
l∈Σ

H1(Gur
l ) −→

(
V Σ
K,T/(K

×)p
)∧ −→

(
VK,T/(K

×)p
)∧ −→ 0·

To conclude, observe that by Kummer duality(
V Σ
K,T/(K

×)p
)∧ ≃MΣ

K,T and,
(
VK,T/(K

×)p
)∧ ≃MK,T .
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Let q be a tame prime of K. By applying Proposition 2.3 successively with T = ∅ and
T = {q}, we get the following commutative diagram:

H1(GK)

����

ψ //
⊕
l∈Σ

H1(Gur
l )

φ // MΣ
K

ϕq

����

// // MK

����
H1(GK,T ) //ψ′

//
⊕
l∈Σ

H1(Gur
l )

φ′
// MΣ

K,T
// // MK,T

Recall that ker(ϕ′′) is generated by the Frobenius element σq ∈MΣ
K (see Lemma 1.3).

Let us start with some local conditions a := (al)l∈S ∈
⊕
l∈Σ

H1(Gur
l ). Then

a ∈ Im(ψ′) ⇐⇒ a ∈ ker(φ′) ⇐⇒ φ(a) ∈ ker(ϕq) ⇐⇒ ⟨σq⟩ = ⟨φ(a)⟩·

Lemma 2.4. — Suppose a /∈ Im(ψ). Let q be a tame prime of K, not in Σ, such that
in MΣ

K, ⟨σq⟩ = ⟨φ(a)⟩. Then there exists a Z/p-extension N/K exactly ramified at q that
respects the al’s, l ∈ Σ. Moreover, the tame prime q is such that σq ∈ MΣ

K restricts to
MK is trivial.

Proof. — Let us choose a tame prime q /∈ S such that in MΣ
K , ⟨σq⟩ = ⟨φ(a)⟩. Then

there exists a Z/p-extension N/K unramified outside q that respects the al, l ∈ Σ. Since
a /∈ Im(ψ), the extension N/K is not unramified, and then N/K is exactly ramified at q.
Moreover, the existence of such an extension implies that q splits totally in MK (see, for
example, Theorem 1.5, or observe that σq ∈ Im(φ)).

Remark 2.5. — Observe now that a non-trivial al ∈ H1(Gur
l ) indicates that l is inert in

N/K.

We can prove the key proposition of our work.

Proposition 2.6. — Suppose λK ≥ h1GK
. Let S = {l1, · · · } be a finite set of primes

of K. Then there exists a Z/p-extension N/K ramified at only one tame prime q such
that:

(i) the extension N/K is inert at all places of S;
(ii) there is stability of the p-tower, i.e., Lp(N) = NLp(N).

Proof. — • For each l ∈ S, take the non-trivial element al := 1 ∈ H1(Gur
l ).

Set a′ = (al)l∈S) ∈
⊕

l∈S H
1(Gur

p ).
− If a′ /∈ Im(ψ), set a = a′ and Σ = S.
− If a′ ∈ Im(ψ), let us choose a prime l0 that splits totally in the elementary abelian
extension (LSp )

p,el/K of LSp /K. Set Σ = S∪{l0}, and consider a = (1)l∈Σ ∈
⊕

l∈ΣH
1(Gur

p ).
By the choice of l0, a /∈ Im(ψ).

• Let us consider the extensions of §1.2 by replacing S by Σ.
Recall the isomorphism (1):

Gal(F5/F0) = Gal(F5/F2)×Gal(F5/F3),

with Gal(F5/F2) ≃ Gal(F3/F0).
Let z0 ∈ Gal(F5/F2) such that its projection onto Gal(F3/F0) coincides with a.

9



Let d = h1GK
, and let z = ((x1, ..., xd), 0) ∈ MLp(K) as in Theorem 1.15. In fact, z ∈

IGK
(MLp(K)), which indicates that z ∈ Gal(F2/F1) (see §1.4). We then choose z1 ∈

Gal(F5/F4) such that its projection onto Gal(F2/F1) coincides with z.

By the Chebotarev density theorem, we now choose a tame prime q of K not belonging
in Σ, such that

σq = (z0, z1) ∈ Gal(F5/F2)×Gal(F5/F4) ⊂ Gal(F5/K)·

• Let’s look at the implications of this choice.
First, by restriction to F3, σq = a ∈ Gal(F3/F0) ⊂MΣ

K = Gal(F3/K
′), which, by Lemma

2.4 indicates the existence of a Z/p-extension N/K ramified only at q, such that every
prime l of Σ is inert.
Then, σq restricted to F2 coincides with z, which, by Theorem 1.15, implies the stability
of the p-tower, i.e., Lp(N) = NLp(N). Hence, the result.

We now have all the elements to prove the main result of our work.
First, by assumption λK ≥ h1G: this is a consequence of Proposition 1.14.
By Proposition 2.6, there exists a Z/p-extension N/K ramified at some prime q, inert at
each prime p ∈ S, and such that Lp(N) = NLp(N).
Let l ∈ S such that l is not totally splitting in Lp(K)/K. Recall that l is inert in
N/K. Noting that the decomposition group of l in Gal(Lp(N)/N) is cyclic (defined
up to conjugacy), it is then a small exercise to observe that the residual degree of l in
Lp(N)/N strictly decreases: it is divisible by p. This is therefore true for any such prime
l ∈ S.
If l ∈ S splits totally in Lp(K)/K, then it also splits totally in Lp(N)/N .
By iterating this process m times, we obtain a p-extension F/K such that every prime
l ∈ S splits totally in Lp(F )/F . Thus, we have LSp (F ) = Lp(F ).
To conclude, we need to estimate pm. A coarse upper bound is #GK . We can go a bit
further by bounding pm by the exponent of GK .

Remark 2.7. — Observe also that each place l ∈ S is “inert” in the successive steps. In
particular, in Theorem A, #SF = #S.

2.2. Proof of Corollary B. — Let us conclude with a word on the proof of Corol-
lary B. Let G be a p-group and let K be a number field such that ClK = 1. By the main
theorem of [3], there exists an extension K̃/K such that Gal(Lp(K̃)/K̃) ≃ G. Further-
more, the proof of this result shows that for the field K̃ in question, we have AK̃ ≥ h1G,
which implies λK̃ ≥ h1G. We can then apply Theorem A.

3. Remarks

3.1. The condition CS. — Let S = {l1, l2, ..., ls} be a set of primes of K. We denote
by CS the following condition.

(CS): Every prime l ∈ S splits totally in the elementary abelian extension (Lp)
p,el/K of

Lp(K)/K.

The condition CS is therefore equivalent to the isomorphism between ClK/(ClK)
p and

ClSK/(Cl
S
K)

p.
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Observe that the condition CS is satisfied after a first application of Proposition 2.6. The
goal here is to revisit the element a and the choice of q in §2.1.

Lemma 3.1. — The condition CS is equivalent to #ClSK [p] = #ClK [p].

Proof. — This simply follows from the fact that for a finite abelian group A we have
#A[p] = #A/Ap, an equality derived from the exact sequence:

1 −→ A[p] −→ A
a7→ap−→ A −→ A/Ap −→ 1.

Lemma 3.1 allows us to prove the following lemma.

Lemma 3.2. — Suppose CS. Then for every subset X ⊂ S, we have the exact sequence:

1 −→ VK/(K
×)p −→ V X

K /(K
×)p −→ (Z/p)#X −→ 1.

Proof. — Let’s start with the following commutative diagram:

(2) 1 // EK/E
p
K� _

α
��

// VK/K
×p //
� _

β
��

ClK [p] //

γ

��

1

1 // EX
K/(E

X
K )

p // V X
K /K

×p // ClXK [p]
// 1

Under the condition CS, by Lemma 3.1, we known that ker(γ) and coker(γ) have the
same order. This implies that coker(α) and coker(β) also have the same order by the
Snake Lemma. Now, since coker(α) ≃ (Z/p)#X by Dirichlet’s theorem, we obtain the
result.

Lemma 3.3. — Suppose CS. Let X = {li1 , · · · , lix} ⊂ S be a subset of x primes of S.
Then

K ′( p

√
V X
K ) = K ′

(
p

√
V

{li1}
K ,

p

√
V

{li2}
K , · · · , p

√
V

{lix}
K

)
,

and the Galois group of K ′( p
√
V X
K )/K ′( p

√
VK) is isomorphic to (Z/p)x.

Proof. — For #X = 1, this is the Lemma 3.2.

Suppose X = {l1, l2} ⊂ S. Obviously V {l1}
K V

{l2}
K ⊂ V X

K , and V {l1}
K ∩V {l2}

K (K ′×)p = VK . By

Lemma 3.2, Gal(K ′(
p

√
V

{li}
K )/K ′( p

√
VK)) ≃ Z/p, and Gal(K ′( p

√
V X
K /K

′( p
√
VK) ≃ (Z/p)2,

which proves the result.
Continue the process.

We then obtain the following proposition.

Proposition 3.4. — Suppose CS. Then

Gal

(
K ′( p

√
V S
K )/K

′( p
√
VK)

)
≃

s∏
i=1

Gal

(
K ′(

p

√
V

{li}
K )/K ′( p

√
VK)

)
≃ (Z/p)s·

Proof. — It is an immediate consequence of Lemma 3.3.

11



We arrive at the following remark. Recall the isomorphism (1): Gal(F5/F0) ≃
Gal(F5/F2) × Gal(F5/F3) used in the proof of our main result (see §2.1). We have
choosen a tame prime q of K and an element z0 ∈ Gal(F5/F0) such that σq = z0 in
Gal(F3/K

′).
Under CS, the element z0 can be chosen as (1, 1, ..., 1) ∈ Gal(F5/F2) according to the
isomorphism:

Gal(F5/F2) ≃ Gal(F3/F0) ≃
s∏
i=1

Gal

(
K ′(

p

√
V

{li}
K )/K ′( p

√
VK)

)
≃ (Z/p)s·

By the Chebotarev density theorem, choose a tame prime q of K not belonging in S,
such that σq = z0 ∈ Gal(F5/F2). Since σq = 0 in MK , by Theorem 1.5, there exists a
Z/p-extension N/K ramified only at q,

Let l ∈ S. The restriction of σq to Gal

(
K ′(

p

√
V

{l}
K )/K ′( p

√
VK)

)
is non-trivial by the

choice of z0, which, by Corollary1.6, implies that l is inert in N/K.

3.2. On the degree. — Let G be a pro-p group. Let d = h1G and r = h2G. Recall the
Golod-Shafarevich criterion (see [1], [4, §7.7] or [10]): If G is finite, then r > d2/4.
On the other hand, when G = Gal(LSp (K)/K), according to Shafarevich and Koch, we
know that 0 ≤ r−d ≤ rK,1+rK,2+#S (see for example [8, Chapter X, Theorem 10.7.12]).
Therefore, if LSp (K)/K is finite then rK,1 + rK,2 +#S > d2/4− d.
Thus, when #S is bounded, the degree [K : Q] grows according to the p-rank of G.

3.3. On T -ramified and S-split p-Hilbert ray class field towers. — Let p be a
prime number. Let K be a number field, and let S and T be two finite and disjoint
sets of primes of K. We assume that the primes in T are tame. Let LSp,T (K) be the
pro-p extension of K, unramified outside T , totally splitting at S, and maximal for these
properties. Set GS

K,T := Gal(KS
T /K).

Recall that if #T is large compared to the degree of K/Q and #S is fixed, then GS
T is

infinite. This can be seen, for example, through genus theory (see the main theorem of
[6]) associated with the Golod-Shafarevich theorem. See also, for example, [7].
Here, we make the following observation.

Theorem 3.5. — Let K be a number field such that ClK = 1, and let S be a finite set
of primes of K. Let G be a p-group and let n ≥ 0. Then there exists an extension F/K
and a set T of tame primes of F such that:

(i) #T = n,
(ii) GS

F,T ≃ G.

As before, we will abusively denote by S := SF the set of primes of F above those in S.

Proof. — We begin by applying Corollary B: there exists an extension F̃ /K such that
LSp (F̃ ) = Lp(F̃ ) and Gal(Lp(F̃ )/F̃ ) ≃ G. We then note that the proof guarantees enough
Minkowski units, i.e., λF̃ ≥ h1G. By Propositions 1.13 and 1.14, it is then possible to
use the stability theorem 1.15 to obtain an extension F/F̃ such that LSp (F ) = Lp(F ),
Gal(Lp(F )/F ) ≃ G, and λF ≥ n.
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Thus MLp(F ) = Fp[G]n ⊕M0. For i = 1, · · · , n, define xi = ((0, · · · , 0, 1, 0, · · · 0), 0) ∈
MLp(F ). As an Fp[G]-module, the elements xi form a basis of a free subspace of dimen-
sion n. For i = 1, · · · , n, by the Chebotarev density theorem, choose a tame prime qi
of F such that σqi = xi ∈MLp(F ).
By the theorem of Gras 1.5, there is no extension of Lp(F ) that is exactly ramified at any
non-trivial subfamily of T = {q1, · · · , qn} (see also Remark 1.11). Since p ∤ #ClLp(F ), we
conclude that Lp(F ) = LSp,T (F ). Hence, the result follows.
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