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Abstract. — We give a streamlined and effective proof of Ozaki’s theorem that any finite
p-group Γ is the Galois group of the p-Hilbert class field tower of some number field F.
Our work is inspired by Ozaki’s and applies in broader circumstances. While his theorem
is in the totally complex setting, we obtain the result in any mixed signature setting for
which there exists a number field k0 with class number prime to p. We construct F{k0 by a
sequence of Z{p-extensions ramified only at finite tame primes and also give explicit bounds
on rF : k0s and the number of ramified primes of F{k0 in terms of #Γ.

1. Introduction

For a number field k, define Lppkq to be the compositum of all finite unramified Galois
p-extensions of k. The extension Lppkq{k is called the p-Hilbert class field tower of k, and
its Galois group GalpLppkq{kq is its p-class tower group. In [8], Ozaki proved that every
finite p-group Γ occurs as the p-class tower group of some totally complex number field
F. His strategy is as follows. As finite p-groups are solvable, it is natural to proceed by
induction. After establishing the base case (realizing Z{p as a p-class tower group), it
remains to show that given any short exact sequence of finite p-groups
(1) 1 Ñ Z{pÑ G1

Ñ G Ñ 1
where G :“ GalpLppkq{kq, one can realize G1 as GalpLppk1q{k1q for some number field k1.
Ozaki constructs such a k1{k via a sequence of carefully chosen Z{p-extensions.
In this paper, we provide a streamlined and effective proof of Ozaki’s theorem. Some
differences between our work and Ozaki’s are:

— He must start with a totally complex k0 and then construct a field F{k0 whose
p-Hilbert class field tower has the given Γ as its Galois group, while we start with
a number field k0 of arbitrary signature whose class number is prime to p.
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— Our result is effective and we are able to obtain explicit upper bounds on rF : k0s

and the number of ramified primes in F{k0, all of which are tame and finite.
— Moreover, we bypass some of the most delicate and involved arguments of [8].

We prove:

Theorem. — Let Γ be a finite p-group and k0 a number field with p#Clk0 , pq “ 1. There
exist infinitely many number fields F{k0 such that GalpLppFq{Fq » Γ and

— if µp Ć k0 then F{k0 is of degree at most p2 ¨ #Γ and is ramified at at most
2` 2 logpp#Γq finite tame primes,

— if µp Ă k0 then F{k0 is of degree at most p ¨ p#Γq2 and is ramified at at most
1` 3 logpp#Γq finite tame primes.

As any countably generated pro-p group Γ is the inverse limit of finite p-groups, Ozaki
shows any such Γ is the Galois group of the maximal unramified p-extension of some
infinite algebraic extension of Q. The corresponding corollary of our theorem is:

Corollary. — Any countably generated pro-p group Γ, including p-adic analytic Γ, can
be realized as the p-class tower group of a totally real tamely ramified infinite extension
F{Q.

We now give details about the structure of our proof and the difference between our
methods and Ozaki’s, though we were very much inspired by Ozaki’s beautiful theorem
and techniques.
We start the base case of the inductive process with any number field k0, of any signature,
whose class number is prime to p. Referring to the group extension (1) with G being
trivial, one has to find an extension k1{k0 such that k1 has p-class group tower exactly
Z{p, which is equivalent to the p-class group being Z{p. This is a standard argument and
is part of Proposition 2.8.
The base case being done, we proceed to the inductive step (with our base field relabeled
k). There are two cases, depending on whether (1) splits or not. For the sake of brevity,
we only outline the nonsplit case in this introduction; the split case is handled similarly.
For a set of places of k, we say that an extension k1{k is exactly ramified at S if it is
ramified at all the places in S and nowhere else. We need to find a suitable tame prime
v1 of k such that

— v1 splits completely in Lppkq{k,
— There is no Z{p-extension of k exactly ramified at v1,
— The maximal p-extension Lppkqtv1u{Lppkq exactly ramified at the primes of Lppkq

above v1 is of degree p and solves the embedding problem (1).
Arranging this and its split analog are the main technical difficulties. One then chooses a
second prime v2 that also solves the embedding problem as above and remains prime in
Lppkqtv1u{Lppkq. The existence of v1 and v2 will follow from Chebotarev’s Theorem. The
compositum of these two solutions, after a Z{p-base change k1{k ramified at both v1 and
v2 (which exists!), gives the unramified solution to the embedding problem (1) which we
show is Lppk1q. This is done in the proof of Theorem 2.
Our ability to choose primes vi as above depends upon the existence of Minkowski units
in the tower Lppkq{k, namely on the condition that Oˆ

LppkqbFp » FprGsλ‘N where N is
an FprGs-torsion module and λ is a large enough integer. In some situations, Minkowski
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units are rare - see §5.3 of [4]. By contrast, both for Ozaki’s proof (implicitly) and ours
(explicitly), much of the work involves seeking fields for which they exist in abundance.
If µp Ă k, we may not be able to make our choices of vi as above to both split completely
in Lppkq{k and solve the nonsplit embedding problem (1). In this case we need to perform
an extra base change k̃{k to shift the obstruction to the embedding problem so that we can
proceed as above. The base change k̃{k must preserve the tower, that is Lppk̃q “ Lppkqk̃.
Theorem 1 provides such a k̃.
Finally we check that the condition ‘λ is large enough’ persists, that is there are enough
Minkowski units to keep the induction going. Proposition 2.8 guarantees this. To sum
up, the key ingredients of the proof of the above Theorem and Corollary are Theorems 1
and 2 and Proposition 2.8.
We now explain in some detail Ozaki’s approach and our simplifications.

— Using a result of Horie, [5], Ozaki starts with a quadratic imaginary field with
class number prime to p in which p is inert. He then chooses a suitable layer k
in the cyclotomic Zp-extension as the starting point of his induction. Assuming
the problem solved for G in (1) and relabelling k as his base field, he proceeds
inductively with the goal to find a k1 Ą k whose p-Hilbert class field tower has
Galois group G1. For the induction to go forward, Ozaki needs r2pkq ě Bppkq
(implicit in this inequality is the existence of enough Minkowski units) where
Bppkq is a certain explicit quantity depending on k, G and the p-part of the class
group of K :“ Lppkqpµpq. This involves delicate estimates in §4 of [8]. We replace
r2pkq ě Bppkq with fpkq ě 2h1pGq ` 3 where hipGq :“ dimH ipG,Z{pq and fpkq,
which is a lower bound for the number of Minkowski units in Lppkq{k, depends
only on h1pGq, h2pGq and the signature of k. We neither consider K nor invoke
the estimates of §4 of [8].

— In §5 of [8], Ozaki proves his base change Proposition 1, namely he shows there
exists a ramified Z{p-extension k̃{k such that GalpLppk̃q{k̃q » GalpLppkq{kq. He
uses this repeatedly when solving each embedding problem (1). Several tame
primes are ramified in k̃{k and he also needs that K and Kk̃ have the same p-class
group. This makes the proof significantly more involved. Theorem 1 of this paper,
our version of his Proposition 1, has only one tame prime of ramification and K
plays no role. We only invoke Theorem 1 when µp Ă k. In particular, for p odd,
our Corollary above makes no use of Theorem 1.

— To solve the embedding problem (1), Ozaki base changes several times (to a field
relabeled k) and then uses a wildly ramified Z{p-extension L{Lppkq to solve (1).
After more base changes this is switched to a solution ramified at one tame prime.
He then proceeds as in the description of this work using two such solutions and
a base change that absorbs the ramification at both tame primes to find a k1 such
that GalpLppk1q{k1q “ G1. We go directly to this last step and require at most
two Z{p-base changes to solve the embedding problem. This allows us to quantify
explicitly both the degree and number of ramified primes of F{k.

Notations
Let p be a prime number.
‚ L is a number field, OL its ring of integers, Oˆ

L its units and ClL is the p-Sylow of the
class group of L.
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‚ For a finite set S of primes of L, set
VL,S “ tx P Lˆ, pxq “ I p, x P pLˆv qp @v P Su.

In particular, one has the exact sequence:
1 ÝÑ Oˆ

L b Fp ÝÑ VL,H{pLˆqp ÝÑ ClLrps ÝÑ 1.
‚ The superscript ^ indicates the Kummer dual of an object Z defined over a number
field L, though we never work with the GalpLpµpq{Lq action on Z^.
‚ LS is the maximal pro-p-extension of L unramified outside S, GS :“ GalpLS{Lq and
LppLq :“ LH, the maximal unramified pro-p-extension of L, as it will ease notation at
various points.
‚ hipHq :“ dimH ipH,Z{pq.
‚ GovpLq :“ Lpµpqp p

a

VL,Hq: the governing field of L. The span of tFrvuvPS in MpLq :“
GalpGovpLq{Lpµpqq controls dimH1pGSq.
The following may be helpful in orienting the reader:

— We frequently use finite tame primes with desired splitting properties in number
field extensions. We always use Chebotarev’s theorem for the existence of such
primes.

— Our Z{p-extensions L1{L of number fields are only ramified at (one or two) finite
tame primes so ripL1q “ p ¨ ripLq and µp Ă L1 ðñ µp Ă L.

— Note that k0 is our given base field, whereas k is a field used in the inductive
process with p-class tower group G from (1). Our task is to construct k1 with
p-class tower group G1. Finally, k̃{k is an extension having p-class tower group G,
the same as for k.

2. Tools for the proof

2.1. FprGs-modules and Minkowski Units. — Let G be a finite group, a p-group
in our situation. We record a few basic facts about finitely generated FprGs-modules M .
See [1], §62.

Fact 1. — Any finitely generated FprGs-module M is isomorphic to FprGsλ ‘ N where
N is a torsion FprGs-module (every n P N is a torsion element) and where λ depends
only on M .

Set TG :“
ř

gPG g. Denote by IG the augmentation ideal of FprGs. For x P M set
AnnGpxq :“ tα P FprGs | α ¨ x “ 0u. Let ts1, ¨ ¨ ¨ , sh1pGqu be a system of minimal
generators of G. By Nakayama’s lemma and the fact that IG{I

2
G » G{GprG,Gs, IG can

be generated, as G-(right or left)-module, by the elements xi :“ si ´ 1.

Proposition 2.1. — With the xi as above, letM “ FprGsh
1pGq and x “ px1, x2, ¨ ¨ ¨ , xh1pGqq P

M . Then AnnGpxq “ FpTG.

Proof. — AnnGpxq “
č

i

AnnGpxiq “ AnnGpxxiy
h1pGq
i“1 q “ AnnGpIGq “ FpTG.

Proposition 2.2. — Let M “ FprGsλ ‘ N be a finitely generated FprGs-module where
N is torsion. Then TGpMq » Fλp .
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Proof. — It is clear that TGpFprGsλq » Fλp . We now show TGpNq “ 0.
Let n P N so AnnGpnq ‰ 0. Note that AnnGpnq Ă FprGs is a p-group stable under the
action of the p-group G and thus has a fixed point. But it is easy to see the only fixed
points of FprGs are multiples of TG so TG P AnnGpnq as desired.

Definition 1. — We say the tower Lppkq{k with Galois group G has λ Minkowski units
if, as FprGs-modules, VLppkq,H{Lppkqˆp “ Oˆ

LppkqbFp » FprGsλ‘N where N is an FprGs-
torsion module.

2.2. Extensions ramified at a tame set of primes. — We recall a standard formula
on the number of Z{p-extensions of a number field with given tame ramification. See §11.3

of [6] for a proof. Recall that for a field L, δpLq “
"

0 µp Ć L
1 µp Ă L .

Proposition 2.3. — Let L be a number field, p a prime number and S a set of tame
primes of L prime to p. Then

h1
pGL,Sq :“ dimH1

pGL,S,Z{pq “ dimpVL,S{Lˆpq ´ r1pLq ´ r2pLq ´ δpLq ` 1`
ÿ

vPS

δpLvq.

Our v P S are always finite and have norm congruent to 1 mod p so δpLvq “ 1. Fact 2 be-
low follows immediately from Proposition 2.3 and the fact that GovpLq :“ Lpµpqp p

a

VL,Hq

is obtained by adjoining pth roots of elements of L to Lpµpq.

Fact 2. — Let S be a set of tame primes of L as above. For each v P S let Frv PMpLq :“
GalpGovpLq{Lpµpqq. If the set tFrv, v P Su spans an p#S ´ dq-dimensional subspace of
MpLq, then

dimH1
pGL,S,Z{pq “ d` dimH1

pGL,H,Z{pq.
When µp Ć k, Frv is only well-defined up to nonzero scalar multiplication.

Fact 3. — Let L be a number field such that p#ClL, pq “ 1. Let L1{L be a Z{p-extension
exactly ramified at S “ tv1, ¨ ¨ ¨ , vru where the vi are finite and tame. Then p#ClL1 , pq “ 1
if and only if L1{L is the unique Z{p-extension of L unramified outside S. In particular,
that is the case when |S| “ 1.

Proof. — Indeed, p#ClL1 , pq ‰ 1 if and only if there exists an unramified Z{p-extension
H{L1 such that H{L is Galois (use the fact the the action of a p-group on a p-group
always has fixed points). Observe that H{L cannot be cyclic of degree p2 as all inertial
elements of GalpH{Lq have order p and they would thus fix an unramified extension of L,
a contradiction. So GalpH{Lq » Z{pˆZ{p, and L has at least two disjoints Z{p-extension
unramified outside S, also a contradiction.

Set BL,S “ pVL,S{Lˆpq^. Recall X2
L,S :“ Ker pH2pGS,Z{pq Ñ ‘vPSH

2pGv,Z{pqq. Fact 4
below is well-known. See Theorem 11.3 of [6].

Fact 4. — X2
L,S ãÑ BL,S.

Let λL be the number of Minkowski units in LppLq{L.

Fact 5. — If µp Ć L then λL “ r1pLq ` r2pLq ´ 1` h1pGq ´ h2pGq.
If µp Ă L then λL ě r1pLq ` r2pLq ´ h2pGq.
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This result is Theorem 2.9 of [4], but we sketch the proof for the sake of keeping this
paper self-contained.
Proof. — Set G “ GalpLppLq{Lq. We consider two “norm maps” induced by the norm
map on units: Oˆ

LppLq Ñ Oˆ
L .

´ NG sending Oˆ
LppLq b Fp to

Oˆ
L

Oˆ
L X pO

ˆ
LppLqq

p
Ă Oˆ

LppLq b Fp;

´ N 1
G : Oˆ

LppLq b Fp Ñ Oˆ
L b Fp.

One easily sees N 1
GpO

ˆ
LppLqb Fpq� NGpO

ˆ
LppLqb Fpq and this is an isomorphism provided

Oˆ
L X pO

ˆ
LppLqq

p “ pOˆ
L q

p: in particular this is the case when µp Ć L, see Proposition 2.8
of [4].
Write Oˆ

LppLqbFp » FprGsλL‘N , where N is an FprGs-torsion module. By Proposition 2.2
one has NGpO

ˆ
LppLq b Fpq » FλL

p . Hence, when µp Ć L

dim
˜

Oˆ
L b Fp

N 1
GpO

ˆ
LppLq b Fpq

¸

“ dimpOˆ
L b Fpq ´ λL.

When µp Ă L, note that the ‘difference’ between the images of NG and N 1
G has p-rank at

most dim
ˆ

OˆL XOˆp
LppLq

pOˆL q
p

˙

ď h1pGq, so

dim
˜

Oˆ
L b Fp

N 1
GpO

ˆ
LppLqq

¸

ě dimpOˆ
L b Fpq ´ λL ´ h

1
pGq.

To conclude, we use the well-known equality (see [9, Lemma 9]):

h2
pGq ´ h1

pGq “ dim
˜

Oˆ
L b Fp

N 1
GpO

ˆ
LppLq b Fpq

¸

.

2.3. Solving the ramified embedding problem with one tame prime. — We
start with our nonsplit exact sequence:

1 ÝÑ Z{p ÝÑ G1
ÝÑ G ÝÑ 1.(2)

given by the element 0 ‰ ε P H2pG,Z{pq.
We assume that G “ GalpLppkq{kq.
Set S “ tvu where v is a finite tame prime of k. We first show the existence of a lift of
G to G1 in some kS{k for certain v of k. We call this solving the embedding problem (2)
in kS.
Recall that X2

k,S ãÑ Bk,S by Fact 4. Here X2
k,H » H2pGk,H,Z{pq » H2pG,Z{pq. Let

InfS : H2pGk,H,Z{pq Ñ H2pGk,S,Z{pq be the inflation map. We have the commutative
diagram:

X2
k,H

InfS
//

� _

h

��

X2
k,S� _
g

��
`

kˆv b Fp
˘^

// Bk,H
fS
// // Bk,S
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By Hoeschmann’s criteria (see [7, Chapter 3, §5]), the embedding problem has a solution
in kS if and only if InfSpεq “ 0. As Lppkq{k is unramified, InfSpεq P X2

k,S and as
gpInfSpεqq “ fSphpεqq P Bk,S, the embedding problem has a solution if and only if
hpεq P KerpfSq.
Set GovSpkq :“ kpµpqp p

a

Vk,Sq. In the governing extensions kpµpq Ă GovSpkq Ă Govpkq,
one sees that the kernel of the map fS : Bk,H � Bk,S is exactly the (unramified) decom-
position group Dv of the prime v. As noted in Fact 2, if w1, w2|v are two primes of kpµpq,
their Frobenii in GalpGovpkq{kpµpqq differ by a nonzero scalar multiple.
We have proved

Lemma 2.4. — The embedding problem (2) has a solution in kS{k if and only if hpεq P
Dv. Thus it has a solution in kS{k if we choose the prime v such that xFrvy “ xhpεqy
in Mpkq, that is the lines spanned by these elements in Mpkq are equal. This is always
possible by Chebotarev’s Theorem.

2.4. Cohomological facts implying the persistence of Minkowski units. — Our
main aim in this paper is to show that given a short exact sequence

1 Ñ Z{pÑ G1
Ñ G Ñ 1

of finite p-groups where G “ GalpLppkq{kq, there exists a finite tamely ramified extension
k1{k with G1 “ GalpLppk1q{k1q. To solve this embedding problem using Theorem 2, the
tower Lppkq{k must have 2h1pGq Minkowski units. Proposition 2.7 below shows that if
we start with enough Minkowski units, after a base change that realizes G1, we will be
able to continue the induction. Proposition 2.6, which is only needed in the case when
µp Ă k, shows that given at least h1pGq Minkowski units, we can perform a base change
that preserves the tower and the number of Minkowski units increases. Proposition 2.5
is a basic group theory result bounding h1pG1q and h2pG1q in terms of h1pGq and h2pGq.
Furata proves a similar result in Lemma 2 of [3].
Set H2pG1,Z{pq1 :“ Ker

´

H2pG1,Z{pq ResÑ H2pZ{p,Z{pq
¯

. Note h2pZ{pq “ 1 so h2pG1q1

is either h2pG1q or h2pG1q ´ 1 and in either case h2pG1q1 ě h2pG1q ´ 1.

Proposition 2.5. — Let
1 Ñ Z{pÑ G1

Ñ G Ñ 1
be a short exact sequence of finite p-groups. Then h1pG1q ď h1pGq ` 1 and h2pG1q ď

h1pGq ` h2pGq ` 1.

Proof. — The h1 result is clear. For the h2 statement we have the long exact sequence
(see for instance [2])

0 Ñ H1
pG,Z{pq Ñ H1

pG1,Z{pq Ñ H1
pZ{p,Z{pqG

Ñ H2
pG,Z{pq Ñ H2

pG1,Z{pq1 Ñ H1
pG, H1

pZ{p,Z{pqq.
If G1 Ñ G splits, we have

0 Ñ H2
pG,Z{pq Ñ H2

pG1,Z{pq1 Ñ H1
pG, H1

pZ{p,Z{pqq
so h2pG1q1 ď h2pGq ` h1pGq and since h2pG1q1 ě h2pG1q ´ 1 the result follows.
In the nonsplit case we have

0 Ñ H1
pZ{p,Z{pqG Ñ H2

pG,Z{pq Ñ H2
pG1,Z{pq1 Ñ H1

pG, H1
pZ{p,Z{pqq

so h2pG1q1 ď h2pGq ´ 1` h1pGq so h2pG1q ď h1pGq ` h2pGq.
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Definition 2. — For a number field L set G “ GalpLppLq{Lq. Define f as follows:

fpLq “
"

r1pLq ` r2pLq ´ h2pGq ` h1pGq ´ 1 µp Ć L
r1pLq ` r2pLq ´ h2pGq µp Ă L .

Fact 5 implies fpLq is a lower bound on the number of Minkowski units of LppLq{L.

Proposition 2.6. — Let k̃{k be a Z{p-extension ramified at finite tame primes such
that G “ GalpLppkq{kq “ GalpLppk̃q{k̃q. Then fpk̃q “ fpkq ` pp´ 1qpr1pkq ` r2pkqq.

Proof. — This follows immediately as we have the same group G for k and k̃, µp Ă k̃ ðñ

µp Ă k and ripk̃q “ p ¨ ripkq.

Proposition 2.7. — Let k1{k be a tamely ramified Z{p-extension such that G “

GalpLppkq{kq and G1 “ GalpLppk1q{k1q where
1 Ñ Z{pÑ G1

Ñ G Ñ 1.
Let fpkq be as in Definition 2. Then

fpkq ě 2h1
pGq ` 3 ùñ fpk1q ě 2h1

pG1
q ` 3.

Proof. — We do the case µp Ć k first. We need to prove
r1pkq ` r2pkq ´ h2

pGq ` h1
pGq ´ 1 ě 2h1

pGq ` 3
ùñ r1pk1q ` r2pk1q ´ h2

pG1
q ` h1

pG1
q ´ 1 ě 2h1

pG1
q ` 3,

that is
r1pk1q ` r2pk1q

?
ě h1

pG1
q ` h2

pG1
q ` 4.

Clearly
r1pk1q ` r2pk1q “ ppr1pkq ` r2pkqq ě pph1

pGq ` h2
pGq ` 4q

and by Proposition 2.5 we have
h2
pG1
q ` h1

pG1
q ` 4 ď ph1

pGq ` h2
pGq ` 1q ` ph1

pGq ` 1q ` 4 “ 2h1
pGq ` h2

pGq ` 6
so it suffices to show

pp´ 1qh2
pGq ` pp´ 2qh1

pGq ` 4p
X
ě 6.

This holds for all p.

When µp Ă k. We need to prove
r1pkq ` r2pkq ´ h2

pGq ě 2h1
pGq ` 3 ùñ r1pk1q ` r2pk1q ´ h2

pG1
q ě 2h1

pG1
q ` 3,

that is
r1pk1q ` r2pk1q

?
ě 2h1

pG1
q ` h2

pG1
q ` 3.

Again using Proposition 2.5 and that ripk1q “ p ¨ ripkq it suffices to show

pp´ 1qh2
pGq ` p2p´ 3qh1

pGq ` 3p
X
ě 6

which holds for all p.
Proposition 2.8 below provides the base case of the induction.

Proposition 2.8. — Recall p#Clk0 , pq “ 1. There exists a tamely ramified extension
k1{k0 such that

— the p-part of the class group of k1 is Z{p,
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— rk1 : k0s “ p3,
— and fpk1q ą 2h1pZ{pq ` 3 “ 5.

Proof. — Since Lppk0q “ k0, we see G “ teu. Choose a tame prime v of k whose Frobenius
is trivial in the governing Galois group Mpkq. By Fact 2 there is a unique Z{p-extension
k1{k0. That p#Clk1 , pq “ 1 follows from Fact 3. Repeat this process with k1 to get a field
k2 with p#Clk2 , pq “ 1.
We do one more base change to find a field k1 with class group Z{p. This is proved more
generally as part of Theorem 2, but we include a short proof here.
Choose v1 a finite tame prime of k2 with trivial Frobenius in Govpk2q so that by Fact 2
there exists a unique D1{k2 ramified at v1. As D1 X Govpk2q “ k2, we may choose v2 a
finite tame prime of k2 with trivial Frobenius in Govpk2q such that v2 remains prime in
D1{k2. Again by Fact 2 there exists a unique D2{k2 ramified at v2.
Let D{k2 be any of the p ´ 1 ‘diagonal’ Z{p-extensions of k2 between D1 and D2 so
D1D2{D is everywhere unramified. We claim D1D2 “ LppDq. Indeed, by Fact 3 applied
to D1{k2 we see p#ClD1 , pq “ 1. As v2 is inert in D1{k2, the extension D2D1{D1 is
ramified only at v2 and Fact 3 applied to D2D1{D1 implies p#ClD1D2 , pq “ 1. Whether
or not µp Ă k, we have k1 :“ D, Clk1 “ Z{p and

fpk1q ě r1pk1q ` r2pk1q ´ h2
pZ{pq “ p3r1pkq ` p3r2pkq ´ 1 ą 5 “ 2h1

pZ{pq ` 3.

Depending on p and the signature of k0 one can decrease the number of base changes,
but this analysis complicates the statement of the main theorem without significant gain.

3. Solving the embedding problem

Having established the base case of our induction, we now prove Theorem 2, the main

Inductive Step. — Let
1 Ñ Z{pÑ G1

Ñ G Ñ 1
be exact and let k be a number field with GalpLppkq{kq “ G and fpkq ě 2h1pGq`3. Then
there exists a number field k1{k with GalpLppk1q{k1q “ G1 and fpk1q ě 2h1pG1q ` 3.

Theorem 1 below is only necessary for the key inductive step, Theorem 2, when µp Ă k.
Set K :“ Lppkqpµpq. We only consider finite tame primes v of k that split completely in
K{k. When µp Ć k, our Frobenii in governing fields (or their subfields) are only defined
up to scalar multiples. We write xFrvyGovpkq{kpµpq for the well-defined line spanned by
Frobenius at v in GalpGovpkq{kpµpqq. When the Frobenius is trivial there is no ambiguity
so we write xFrvyGovpkq{kpµpq “ 0.
We need primes v of k that let us control h1pGalpktvu{kqq and h1pGalpLppkqtvu{Lppkqqq
simultaneously via Fact 2. RecallMpLppkqq :“ GalpGovpLppkqq{Lppkqpµpqq » FprGsλk‘N
where N is a torsion module over FprGs. We have no knowledge of N and must work
with the free part to control things over Lppkq. We then use Proposition 3.1 to control
things over k.
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3.1. The Stability Theorem. —

Proposition 3.1. — Let F Ă GovpLppkqq be the field fixed by IG ¨ MpLppkqq. For v
of k splitting completely in K and w|v in K, the lines xFrwyF {K do not dependent on
w so we may write xFrvyF {K. Then xFrv1yF {K “ xFrv2yF {K implies xFrv1yGovpkq{kpµpq “

xFrv2yGovpkq{kpµpq. If xFrv1yF {K “ 0 then xFrv1yGovpkq{kpµpq “ 0.

Proof. — This diagram is useful in Theorems 1 and 2 as well.

GovpLppkqq

F IG¨MpLppkqq

GovpkqK

K

MpLppkqq

Govpkq

Lppkq

∆

kpµpq

G

k
G

∆

.

Let ∆ “ Galpkpµpq{kq “ GalpK{Lppkqq. As GalpF {Kq :“ MpLppkqq{IG ¨MpLppkqq is the
maximal quotient of MpLppkqq on which G acts trivially, and ∆ acts on GalpF {Kq by
scalars, the line xFrwyF {K is invariant under the action of GalpK{kq “ G ˆ∆. Since the
w|v form an orbit under this action of GalpK{kq, this line is independent of the choice of
w|v as desired.
As GovpkqK{K ascends from Govpkq{kpµpq, we see G acts trivially on GalpGovpkqK{Kq
so GovpkqK Ă F . Below, we implicitly use that our primes of k split completely in
K. If xFrv1yF {K “ xFrv2yF {K, these lines are equal when projected to GalpGovpkqK{Kq Ă
GalpGovpkqK{kpµpqq and they are again equal in GalpGovpkq{kpµpqq so xFrv1yGovpkq{kpµpq “

xFrv2yGovpkq{kpµpq. The last statement is clear.

Theorem 1. — Recall txiuh
1pGq
i“1 is a minimal set of generators of IG. Assume that

fpkq ě h1pGq. Let w be a degree one prime of K such that
Frw “ ppx1, x2, ¨ ¨ ¨ , xh1pGq, 0, ¨ ¨ ¨ , 0q, 0q PMpLppkqq » FprGsλk ‘N.

Then for v of k below w, xFrvyGovpkq{kpµpq “ 0 so there exists a Z{p-extension k̃{k ramified
at v. Furthermore, Lppk̃q “ Lppkqk̃ and fpk̃q ą fpkq.

Proof. — As Frw projects to 0 in the Fp-vector space GalpF {Kq, Proposition 3.1 implies
xFrvyGovpkq{kpµpq “ 0 so k̃ exists by Fact 2. We show the FprGs-span of px1, ¨ ¨ ¨ , xh1pGqq P

FprGsh
1pGq has dimension #G ´ 1 by computing the dimension of Xh

1pGq
i“1 Annpxiq. This

intersection is the annihilator of IG which by Proposition 2.1 is just FpTG, establishing
our dimension result. By Fact 2 there is one extension over Lppkq ramified at v and
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thus it must be Lppkqk̃. Fact 3 applied to Lppkqk̃{Lppkq implies p#ClLppkqk̃, pq “ 1 so
Lppk̃q “ Lppkqk̃. Proposition 2.6 gives fpk̃q ą fpkq.

3.2. The inductive step. —

Theorem 2. — Assume that Lppkq{k has λk ě 2h1pGq ` 3 Minkowski units. Let
1 Ñ Z{p Ñ G1 Ñ G Ñ 1. If µp Ć k (resp. µp Ă k) there exists a field k1{k that
is a Z{p-extension (resp. a compositum of two successive Z{p-extensions) such that
GalpLppk1q{k1q » G1 and Lppk1q{k1 has at least 2h1pG1q ` 3 Minkowski units.

Proof. — Recall that our finite tame primes split completely in K{k.
We first treat the split case. This is independent of whether or not µp Ă k.
Split case. Choose tame degree one primes w1 and w2 of GovpkqK such that

— Frw1 “ ppx1, x2, ¨ ¨ ¨ , xh1pGq, 0, ¨ ¨ ¨ , 0q, 0q P GalpGovpLppkqq{GovpkqKq Ă MpLppkqq.
This is possible as the tuple lies in IG ¨ MpLppkqq and GovpkqK Ă F . As Frw1

projects to 0 in GalpF {Kq, we see for v1 of k below w1 that xFrv1yF {K “ 0 so by
Proposition 3.1 xFrv1yGovpkq{kpµpq “ 0. By Fact 2 applied to k there is one Z{p-
extension D1{k ramified at v1. Fact 2 also gives (see the proof of Theorem 1 as
well) a unique Z{p-extension of Lppkq ramified at v1, namely D1Lppkq{Lppkq.

— Frw2 “ pp0, 0, ¨ ¨ ¨ , 0h1pGq, x1, x2, ¨ ¨ ¨ , xh1pGq, 0, 0, 0, ¨ ¨ ¨ 0q, 0q so for v2 of k below w2,
xFrv2yF {K “ 0. We also insist that v2 remains prime in D1{k. This last condition is
linearly disjoint from the rest of the defining splitting conditions on v2 and imposes
no contradiction. Again, there is one Z{p-extension of both k and Lppkq ramified at
v2, namely D2{k. Let D{k be a ‘diagonal’ extension between D1 and D2 ramified
at both v1 and v2. There are p´ 1 of these.

Fact 2 and our choices of the Frobenii of v1 and v2 imply h1`GalpLppkqtv1,v2u{Lppkq
˘

“

2. (With only h1pGq Minkowski units, we would have had h1`GalpLppkqtv1u{Lppkq
˘

“

h1`GalpLppkqtv2u{Lppkq
˘

“ 1, but h1`GalpLppkqtv1,v2u{Lppkq
˘

ą 2.)

Jp,elv2

“?

ΠL :“ D1D2Lppkq H

?

E0
?

D2Lppkq DLppkq J :“ D1Lppkq

D2 D D1 Lppkq

Ω“Z{p

Govpkq

k

Set L :“ D1D2Lppkq, J :“ D1Lppkq and note L{D is unramified as D{k has absorbed all
ramification at tv1, v2u. We will solve the problem by showing p#ClD1D2Lppkq, pq “ 1.
Since p#ClLppkq, pq “ 1 and our choice of v1 is such that h1pGalpLppkqtv1u{Lppkqq “ 1,
Fact 3 applied to J{Lppkq implies p#ClJ, pq “ 1.
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We now prove that there exists a unique Z{p-extension over J unramified outside v2,
namely L. Set Ω “ GalpJ{Lppkqq, Jp,el

tv2u
to be the maximal elementary p-abelian extension

of J inside Jtv2u, and Π “ GalpJp,el
tv2u
{Jq. Then Ω acts on Π and trivially on GalpL{Jq.

We claim this is the only Z{p-extension of J in Jp,el
tv2u
{J on which Ω acts trivially: If

not, there exists another Z{p-extension H{J unramified outside v2 and Galois over Lppkq.
Hence GalpH{Lppkqq has order p2 and is abelian. The extension H{Lppkq cannot be cyclic
because all inertia elements have order p and would then fix an everywhere unramified
extension of Lppkq, a contradiction. Suppose now that GalpH{Lppkqq » Z{p ˆ Z{p, with
H ‰ JD2 “ L. Then GalpHD2{Lppkqq » pZ{pq3: this contradicts the already established
fact that h1pGalpLppkqtv1,v2u{Lppkqq “ 2.
The final possibility is that there exists a Z{p-extension E0{J unramified outside v2,
different from L{J and not fixed by Ω; let S0 be the set of ramification of E0{J. As
primes above v2 in Lppkq are inert in J{Lppkq, ΩpS0q “ S0: then Ω takes E0 to another
Z{p-extension E1{J exactly ramified at S0 and such that E1 ‰ E0. The compositum
E1E0{J contains a Z{p-extension E 10{J exactly ramified at a set S 10 Ĺ S0. Observe that
E 10 ‰ L since L{J is totally ramified at every prime above v2. Continuing the process, we
obtain an unramified Z{p-extension H{J, which is impossible since p#ClJ, pq “ 1. Thus
L{J is the unique Z{p-extension unramified outside v2. Fact 3 applied to L{J implies
p#ClL, pq “ 1.
We have solved the split embedding problem with k1 “ D and GalpLppk1q{k1q “ GˆZ{p.
It required one base change ramified at two tame finite primes. Proposition 2.7 implies
fpk1q ě 2h1pG1q ` 3 so the induction can proceed.

For the nonsplit case we treat µp Ć k and µp Ă k separately. Theorem 1 is only used in
the nonsplit case when µp Ă k.

The nonsplit case, µp Ć k. By Lemma 2.4 we may use one tame prime v of k to find
a ramified solution to the embedding problem. As µp Ć k implies Govpkq X Lppkq “
k, we can assume v splits completely in K{k. Choosing any w|v of K we set Frw “
ppz1, z2, ¨ ¨ ¨ , zλkq, n0q P MpLppkqq where we claim n0 R IG ¨ N and zi P IG Ă FprGs.
Indeed, if any zi R IG, its FprGs-span is all of FprGs and by Fact 2 there is no Z{p-
extension of Lppkq ramified at the w|v, contradicting that we are solving an embedding
problem with v. If n0 P IG ¨ N , then the projection of Frw to GalpF {Kq is trivial so
Proposition 3.1 implies xFrvyGovpkq{kpµpq “ 0 and the embedding problem we are solving is
split, also a contradiction.
Choose a degree one w1 of K with Frw1 “ ppx1, x2, ¨ ¨ ¨ , xh1pGq, 0, 0, 0, ¨ ¨ ¨ 0q, n0q PMpLppkqq
where n0 is as in the previous paragraph. Let v1 be the prime of k below w1. By Fact 2
(also see the proof of Theorem 1) there is one Z{p-extension D1{Lppkq ramified at v1.
Choose a degree one w2 of K with Frw2 “ pp0, 0, ¨ ¨ ¨ , 0, x1, x2, ¨ ¨ ¨ , xh1pGq, 0, 0, 0, ¨ ¨ ¨ 0q, n0q P

MpLppkqq and the primes of Lppkq above v2 remain prime in D1{Lppkq. This last condition
is linearly disjoint from the splitting conditions defining v2 and imposes no contradiction.
Again by Fact 2 there is one Z{p-extension D2{Lppkq ramified at v2.
As the free components of of Frw, Frw1 and Frw2 are all in Iλk

G , their projections
to GalpF {Kq depend only on n0 and Proposition 3.1 implies 0 ‰ xFrvyGovpkq{k “

xFrv1yGovpkq{k “ xFrv2yGovpkq{k. Thus there is no extension of k ramified at either v1 or
v2, but, by Fact 2, there is a Z{p-extension of k ramified at tv1, v2u. Call it D. Note
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G1 » GalpD1{kq » GalpD2{kq » GalpD1D2{Dq.

D1D2 “ DD1 “ DD2

D1 D2 DLppkq

Govpkq Lppkq D

G

k
G

That D1D2 has trivial p-class group follows exactly as it did in the split case and we may
set k1 “ D so Lppk1q “ D1D2 and GalpLppk1q{k1q » G1.
We have solved the embedding problem in the nonsplit case when µp Ć k. We performed
one base change ramified at two tame finite primes and Proposition 2.7 implies fpk1q ě
2h1pG1q ` 3 so the induction can proceed.

The nonsplit case, µp Ă k. We can no longer assume Lppkq XGovpkq “ k.
Let 0 ‰ ε P X2

k,H be the obstruction to our embedding problem G1 � G. Using
Lemma 2.4, let v of k be a tame prime annihilating ε. The difficulty is that in the
diagram below we may have Lppkq X Govpkq Ľ k and that Frv, which is necessarily
nonzero inMpkq, may also be nonzero in GalppLppkqXGovpkqq{kq. This prevents us from
also choosing v to split completely in Lppkq{k and as we need in GovpLppkqq{Lppkq to
ensure there is only one extension of Lppkq ramified at the primes of Lppkq above v. If
we could choose v to annihilate ε such that Frv “ 0 P GalpLppkq{kq, we would be able to
proceed as in the µp Ć k case. We get around this by a base change.
By Kummer theory and the definition of governing fields, GalpGovpLq{Lpµpqq is an ele-
mentary p-abelian group. Let k̃{k be a tamely ramified Z{p-extension as given by Theo-
rem 1 so GalpLppk̃q{k̃q “ G. By Proposition 2.6 we have λk̃ ě 2h1pGq ` 3.

Lppk̃q Govpk̃q

Lppkq Lppk̃q XGovpk̃q

Lppkq XGovpkq k̃

k Z{p

pZ{pqr

As GovpkqX k̃ “ k, we may choose a prime v to solve the embedding problem for k whose
Frobenius is nontrivial in Galpk̃{kq, that is v remains prime in k̃{k. As observed above,
Lppk̃qXGovpk̃q{k̃ is a pZ{pqr-extension for some r and, as GalpLppkq{kq “ GalpLppk̃q{k̃q “
G, it is the base change of such a subextension of Lppkq{k from k so Lppk̃q X Govpk̃q{k
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is a pZ{pqr`1-extension. Since v remains prime in k̃{k and residue field extensions are
cyclic, it splits completely in Lppk̃q X Govpk̃q{k̃. As the embedding problem is solvable
over k by allowing ramification at v, it is also solvable over k̃ by allowing ramification
at the unique prime of k̃ above v. Thus ε P X2

k̃,H ãÑ Bk̃,H “ Mpk̃q actually lies in
Gal

`

Govpk̃q{
`

Lppk̃q XGovpk̃q
˘˘

. The base change shifted the obstruction to outside of
our p-Hilbert class field tower! The rest of the proof is identical to the µp Ć k case.
We now prove the Main Theorem of the Introduction:
Proof. — We have verified the base case of the induction in Proposition 2.8 and the
inductive step with Theorem 2. It remains to count degrees and ramified primes. Propo-
sition 2.8 involved three Z{p-base changes, the first two ramified at one tame prime and
the last at two tame primes. The inductive steps breaks into cases as follows

— µp Ć k0: At each of the logpp#Γq ´ 1 inductive stages we need one base change
ramified at two primes for a total of 3 `

`

logpp#Γq ´ 1
˘

base changes ramified at
4` 2plogpp#Γq ´ 1q primes.

— µp Ă k0: At each of the logpp#Γq ´ 1 inductive stages we need two base changes,
the first ramified at one prime and the second at two primes. There are 3 `
2
`

logpp#Γq ´ 1
˘

base changes ramified at 4` 3plogpp#Γq ´ 1q primes.
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