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In memory of Nigel Boston

Abstract. Let n ě 3 and p be an odd prime. We show that for every number field K
with ζp R K, the absolute and tame Galois groups ΓK and Γta

K of K satisfy the strong n-fold
Massey vanishing property relative to p. Our work is based on an adaptation of the proof
of the Scholz-Reichardt theorem.

Fix K a number field and an algebraic closure K. We set Kta Ă K to be the maximal tamely
ramified Galois extension of K, that is Kta is the composite of all number fields L Ă K such
that the ramification index eQ at all primes Q of L is prime to the residue characteristic of
Q. Set ΓK :“ GalpK{Kq, and Γta

K “ GalpKta{Kq.
Let p be an odd prime number such that ζp, a primitive pth root of unity, is not in K. In [8]
the authors use embedding techniques to characterize finitely generated pro-p groups that
can be realized as quotients of Γta

K . They introduced the notion of locally inertially generated
pro-p groups for which congruence subgroups of SLmpZpq are archetypes. This key notion
provides compatibility with local tame liftings as used in the Scholz-Reichardt theorem (see
[20, Chapter 2, §2.1]). This strategy has implications for Massey products as well.

Let n ě 3 and Un`1 be the group of all upper-triangular unipotent pn` 1q ˆ pn` 1q-matrices
with entries in Fp. Let Zn`1 be the subgroup of all such matrices with all off-diagonal entries
0 except at position p1, n ` 1q; it is the center of Un`1. Set Un`1 :“ Un`1{Zn`1. Let Wn`1
be the subgroup of Un`1 that is zero on the near diagonal, that is all pi, i ` 1q entries are
0. Let φ and φ̄ be the natural projections to Un`1{Wn`1 and Un`1{pWn`1{Zn`1q, both of
which are isomorphic to pZ{pqn. We have the diagram of groups below:
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?ρ1

��

?ρ
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θ

��

1 // Zn`1 // Un`1 // //

φ
## ##

Un`1

φ
����

pZ{pqn

In the diagram above, Γ is a profinite group that we usually take to be Γta
K or ΓK . Let

χ1, ¨ ¨ ¨ , χn P H1pΓ,Z{pq, and set
θ :“ pχ1, ¨ ¨ ¨ , χnq : Γ Ñ pZ{pq

n.

The existence of a homomorphic lift of θ to Un`1 is related to the existence of a subset
of H2pΓ,Z{pq, denoted xχ1, ¨ ¨ ¨ , χny and called the Massey product. We will bypass the
precise definition of the Massey product and instead use a consequence which characterizes
the ‘defined’ and ‘vanishing’ conditions via group representations. For more details see [3]
and also [10], [14] and [16]. Note that the definitions of Massey products in [3] and [16] differ
from those in [10] and [14] by a sign.

Definition 1. Let χ1, ¨ ¨ ¨ , χn P H1pΓ,Z{pq. The Massey product xχ1, ¨ ¨ ¨ , χny

´ is defined if θ lifts to Un`1, i.e. θ “ φ ˝ ρ1 for some homomorphism ρ1 : Γ Ñ Un`1;
´ vanishes if θ lifts to Un`1, i.e. θ “ φ ˝ ρ for some homomorphism ρ : Γ Ñ Un`1.

(Actually, for any lift ρ1 : Γ Ñ Un`1 of θ, one can define an element r∆pρ1qs in H2pΓ,Z{pq,
and the Massey product xχ1, ¨ ¨ ¨ , χny itself is the subset of H2pΓ,Z{pq consisting of all
such elements r∆pρ1qs, see for example, [Definition 1.1][15].) Thus it is possible that some
ρ1 : Γ Ñ Un`1 may lift to a ρ : Γ Ñ Un`1, while others may not have lifts. These definitions
depend crucially on the ordering of the characters.

Definition 2. The profinite group Γ satisfies the n-fold Massey vanishing property (relative
to p) if the Massey product being defined implies it vanishes.

Definition 3. The profinite group Γ satisfies the strong n-fold Massey vanishing property
(relative to p) if for all χ1, ¨ ¨ ¨ , χn P H1pΓ,Z{pq such that

χ1 Y χ2 “ χ2 Y χ3 “ ¨ ¨ ¨ “ χn´1 Y χn “ 0,
the Massey product xχ1, ¨ ¨ ¨ , χny vanishes.

Set
An “ tpχ1, . . . , χnq | xχ1, ¨ ¨ ¨ , χny vanishesu, Bn “ tpχ1, . . . , χnq | xχ1, ¨ ¨ ¨ , χny is definedu,

Cn “ tpχ1, . . . , χnq | χ1 Y χ2 “ χ2 Y χ3 “ ¨ ¨ ¨ “ χn´1 Y χn “ 0 P H2
pΓ,Z{pqu¨

One has An Ă Bn Ă Cn. That An Ă Bn follows from Definition 1. That Bn Ă Cn follows
from a simple argument - see [14, Remark 2.2]. For n “ 3, B3 “ C3. Other inclusions may
be strict in general.
For p “ 2 and ΓK the absolute Galois group of a number field K, Hopkins and Wickelgren
[11] have shown the remarkable result that the triple Massey product vanishes whenever it
is defined. In [16] this is established for ΓF the absolute Galois group of any field F . Harpaz
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and Wittenberg [10] have recently proved the Mináč-Tân Conjecture for number fields K:
ΓK satisfies the n-fold Massey vanishing property for p, that is An “ Bn. See [15] for a
survey of highlights in current work on the Mináč-Tân Conjecture, including the most recent
progress of Merkurjev and Scavia.
If a primitive pth-root of unity is in a number field K, there are counterexamples to the
strong n-fold Massey vanishing property for ΓK , that is there are examples where Bn Ĺ Cn

so we do not have An “ Bn “ Cn. In Wittenberg’s appendix to [5] there is an inter-
esting example discovered by Harpaz and Wittenberg. For K “ Q and p “ 2 the 4-
fold Massey product x34, 2, 17, 34y is not defined despite the fact that the Hilbert symbols
p34, 2q, p2, 17q, p17, 34q vanish (by Kummer theory we have replaced elements of H1pΓQ,Z{2q

by elements of Qˆ{pQˆq2 and the Hilbert symbols correspond to cup products). This however
cannot happen in the nondegenerate case, that is when the span of the χi is 4-dimensional.
See Theorem 6.2 and Remark 6.3 of [5]. This example was generalized by Merkurjev-Scavia
[14, §5] in the context of 4-fold Massey products xbc, b, c, bcy for p “ 2. Thus for K “ Q
and p “ 2 the Massey product x13 ¨ 17, 13, 17, 13 ¨ 17y is not defined: Γta

K does not verify the
strong 4-fold Massey vanishing property, i.e. B4 Ĺ C4.
The main point of this paper is that when ζp R K, the situation is much nicer:
Theorem 1. Take n ě 3, and suppose that ζp R K. The profinite groups ΓK and Γta

K satisfy
the strong n-fold Massey vanishing property relative to p, that is An “ Bn “ Cn.
Remark 1. In the tame situation, all additional ramified primes in our lift of θ to ρ can be
chosen to have norm 1 modulo a suitably large power of p, usually taken to be the exponent of
Un`1. We use Chebotarev’s theorem to choose these primes, usually applied simultaneously
to a governing field, the part of the tower already constructed, and a cyclotomic extension of
K. This hypothesis ζp R K is crucial as it implies linear disjointness of these fields over K.
See Proposition 1.5.
We obtain this theorem by giving a global lifting result (Theorem 2.2) in the spirit of the
inverse Galois problem over number fields for p-groups U with local conditions, as developed
in [19, IX, §5, Theorem 9.5.5] or [18, Main Theorem]. When compared to the main theorem
of Neukirch in [18], our proof is more explicit, constructive and streamlined to our specific
Galois representations. The notion of local plans as used in [8] is central.
We can strengthen the theorem above by showing that θ lifts, for any r ě 1, to a subgroup
of GLn`1pZ{prq.
Theorem 2. Take Γ “ Γta

K or ΓK, and suppose ζp R K. For n ě 3, let θ : Γ Ñ pZ{pqn satisfy
Cn. Let ρ be given by Theorem 1, where we choose all tame primes q1 to have norm 1 modulo
pmprq, where pmprq is the exponent of Un`1pZ{prq. Let πr : GLn`1pZ{prq Ñ GLn`1pFpq and
and i : Un`1 Ñ GLn`1pFpq be the natural projection and inclusion maps.
(i) Then for every r ě 1, there exists a homomorphism ρr : Γ Ñ GLn`1pZ{prq such that
πr ˝ ρr “ i ˝ ρ. As the image of πr ˝ ρr lies in Un`1, we may apply i´1 to it and we also have
and θ “ φ ˝ i´1 ˝ πr ˝ ρr.
(ii) If moreover ζpr P Kq for every ramified prime q in θ then ρr can be taken such that
ρrpΓq Ă Un`1pZ{prq.

We highlight two important points:
- This result is more involved than the proof of the Scholz-Reichardt theorem realizing every
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p-group as a Galois group over K. We proceed inductively as they do, but must start with
a given θ rather than the trivial representation. This adds many complications.
- For some tamely ramified θ, a priori our theorems could have been false for Γta

K but true
for ΓK . In fact all new primes of ramification in our theorems are tame. See § 2.
Given a prime number p, set K 1 “ Kpζpq. Since ´1 “ ζ2 P K, we assume that p is odd. In
particular, archimedean places play no role in our work. All cohomology groups in this paper
have Z{pZ-coefficients with trivial action so we simply write H ipΓq rather than H ipΓ,Z{pZq.

1. Tools for the Embedding problem

1.1. Realizing cyclic extensions with given ramification and splitting. The problem
of realizing the group G :“ pZ{pqd as a quotient of ΓK which satisfies certain ramification
conditions can be solved by induction as in [20, Chapter 2, §2.1] or [8, §2.1]. This involves
a governing field GovK,T which controls the obstructions of our embedding problem (see
Proposition 1.5).
Given a finite set T of finite primes of K, set

V T
“ tx P Kˆ; q R T ùñ vqpxq ” 0 mod pu.

Denote by GovK,T the governing field GovK,T :“ K 1p
p
?
V T q.

GovK,T :“ K 1p
p
?
V T q

K 1 :“ Kpζpq

K

We see GovK,T {K 1 is an elementary abelian p-extension. Moreover GovK,T {K is a Galois
extension with Galois group isomorphic to the semi-direct product GalpK 1p

p
?
V T q{K 1q ¸

GalpK 1{Kq, where the action on GalpK 1{Kq is given by Kummer duality: since GalpK 1{Kq

acts trivially on V T , it acts via the cyclotomic character (which is nontrivial as ζp R K) on
the Galois group over K 1 of each cyclic degree p extension M{K 1 in K 1p

p
?
V T q{K 1. See [6,

Chapter I, Theorem 6.2].

For a tame prime q R T and q ∤ ppq, it is easy to see q is unramified in GovK,T {K. We write
σq for the Frobenius in GalpGovK,T {K 1q for a fixed prime Q above q.

Remark 2. The Frobenius is actually associated to a prime Q of GovK,T above q, but
changing Q changes the Frobenius by a nonzero scalar multiple. This follows from our
description of GalpK 1p

p
?
V T q{Kq above and does not affect the condition of Theorem 1.1

below. Hence we abuse notation and write σq.

One has (see [6, Chapter V, Corollary 2.4.2]):

Theorem 1.1 (Gras). Let S “ tq1, ¨ ¨ ¨ , qsu be a set of primes of K having absolute norm
1 mod p and coprime to T and p. There exists a Z{p-extension L{K exactly ramified at S
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and splitting completely at T if and only if there exist ai P Fˆ
p , i “ 1, ¨ ¨ ¨ , s, such that

s
ÿ

i“1
aiσqi

“ 0 P GalpGovK,T {K 1
q.

Hence, if a tame q splits completely in GovK,T {K 1, there exists an Z{p-extension L{K exactly
ramified at q and splitting completely at T .

1.2. Cohomology and embedding problems. Let G be a p-group and let dpGq :“
dimH1pGq be its p-rank. Suppose H » Z{p a normal subgroup of G is given such that
dpG{Hq “ dpGq. Let Γ be a pro-p group, and let ρ : Γ ↠ G{H be a surjective morphism.
We consider the embedding problem pE q:

Γ
?ρ

}}

ρ
����

1 // H // G π
// // G{H

where π is the natural projection.
Let ε be the element in H2pG{Hq corresponding to the group extension:

1 ÝÑ H ÝÑ G ÝÑ G{H ÝÑ 1.(1)

As dpGq “ dpG{Hq, we have ε ‰ 0. Consider the inflation map Inf : H2pG{Hq Ñ H2pΓq.
The action of Γ on H “ Z{p is induced by ρ and is thus trivial.

Theorem 1.2. With hypotheses as above, the embedding problem pE q has a solution if and
only if Infpεq “ 0. Moreover, any solution is always proper, that is ρ is surjective. If a
solution exists, the set of solutions (modulo equivalence) of pE q is a principal homogeneous
space under H1pΓq.

Proof. See Propositions 3.5.9 and 3.5.11 of [19]. □

Remark 3. For a prime q of K, denote by Γq the the maximal pro-p quotient of the absolute
Galois group of Kq. We need to study the local embedding problems attached to local maps
ιq : Γq Ñ Γ. Let Dq Ă G{H be the image of ρq :“ ρ ˝ ιq, and Mq Ă G be the inverse image
π´1pDqq. We have the local embedding problem pEqq:

Γq

?ρq

~~

ρq
����

1 // Hq
// Mq πq

// // Dq

If a solution exists, the set of solutions (modulo equivalence) of pEqq is a principal homoge-
neous space under H1pΓqq.

5



1.3. Trivializing the Shafarevich group. Let X be a finite set of places of K. Let KX

the maximal pro-p extension of K unramified outside X and set ΓX :“ GalpKX{Kq.
Let X2

X be the kernel of the localization map

H2
pΓXq ÝÑ

ź

qPX

H2
pΓqq.

Set VX :“ tx P Kˆ; vqpxq ” 0 mod p @q, and q P X ùñ x P pKˆ
q qpu. Note the difference

from V T defined earlier. By the work of Koch and Shafarevich (see [12, Chapter 11, Theorem
11.3]), we have that

X2
X ãÑ BX :“ pVX{pKˆ

q
p
q

_,

where the superscript _ indicates the Pontryagin dual.

Lemma 1.3. One can choose a set N of primes of K whose norms are 1 mod p such that
BN (and therefore X2

N) is trivial.

Proof. From the definition of VX we have that K 1p p
?
VXq{K 1 is unramified outside tpu and

completely split at X. Since the maximal elementary p-extension of K 1 unramified outside
tp|pu is finitely generated (see §11.3 of [12]), we see for a finite set N whose Frobenius
elements span GalpK 1p p

a

VHq{K 1q (which exists by Chebotarev’s theorem) that K 1p p
?
VN q “

K 1. Thus @x P VN we have x P pK 1ˆqp. By taking the norm of x in K 1{K and using the
fact that prK 1 : Ks, pq “ 1, we conclude that x P pKˆqp. Thus VN {pKˆqp “ 1 which implies
X2

N “ 0. The primes of N necessarily split completely in K 1 :“ Kpζpq and thus have norm
1 mod p. □

It is an easy exercise to see that for any sets Y, Z that VY YZ Ă VY so BY ↠ BY YZ . Thus
VNYY {pKˆqp and X2

NYY are trivial for any set Y .
Henceforth we assume that X2

N “ 0 and ρ : ΓN Ñ G{H is given. Thus if at every q P N
there is no local obstruction to lift ρq to ρq : Γq Ñ G, then the embedding problem pE q

with Γ “ ΓN has a solution in KN {K. We have reduced solving the obstruction problem
to purely local problems. It is interesting to note that when we work with local plans at
q P N (see §1.5) we can choose them to be unramified at these q. Thus the primes of N
force the obstruction problem to be local, but they need not be ramified in our resolution of
the Massey problem!
The question is: How do we create a situation for which there are no local obstructions for
every quotient of G? We address this in the two next subsections.

1.4. The local-global principle. Let X be a finite set of primes of K. Given another
finite set R of primes of K, denote by ψR the localization map:

ψR : H1
pΓXYRq ÝÑ

ź

qPX

H1
pΓqq.

We will control the image of ψR in the case where R “ tq̃u, q̃ being a tame prime. Set Npq̃q

to be the absolute norm of q̃.
The condition ζp R K is needed at this point, in particular the following lemma is crucial for
Proposition 1.5.
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Lemma 1.4. Let F {K be Galois with GalpF {Kq a p-group. If ζp R K, then F pζpq X

K 1p
p
?
V Xq “ K 1.

Proof. The intersection clearly containsK 1. If it was larger, there would exist a Z{p-extension
M{K 1, Galois over K with M Ă F pζpq. Then GalpK 1{Kq would act on GalpM{K 1q in two
different ways: trivially by viewing M in F pζpq{K 1, and via the cyclotomic character by
viewing M in K 1p

p
?
V Xq{K 1. These actions are incompatible when ζp R K. □

Recall Proposition 1.4 of [8].

Proposition 1.5. Let X be a finite set of primes, and let pfqqqPX P
ź

qPX

H1
pΓqq. There exist

infinitely many finite primes q̃ such that pfqqqPX P Impψtq̃uq. Moreover, when ζp R K, the
primes q̃ can be chosen such that:

piq q̃ splits completely in F {K, where F {K is a given finite p-extension,
piiq For a given m P N, one can choose q̃ such that vppNpq̃q ´ 1q ě m.

Remark 4. Take m ě 1. In the proof of Proposition 1.5 given in [8], the tame prime q̃ is
characterized by its Frobenius in Kpζpm ,

p
?
V Xq{K 1 ; in this case we can choose vppNpq̃q´1q ě

m. Using effective versions of Chebotarev’s theorem, one can give an upper bound for the
absolute norm of the smallest such q̃.
Let dX,m be the absolute value of the absolute discriminant of the number field Kpζpm ,

?
V Xq.

Then, assuming the GRH, Npq̃q ! plogpdX,mqq2. See [13]. One can give unconditional
estimates, but they are much weaker and more complicated to write down.

1.5. Local plans. Previously, we had considered the problem pE q where H » Z{p. To prove
our main theorem we need to lift

Γ
?ρ

}}

ρ
����

1 // V // U π
// // U{V

where V is some normal subgroup of the p-group U . Of course we will do this one step at
a time where each kernel is isomorphic to Z{p, but at each step we will need more ramified
primes. As we introduce a new ramified prime, we need a local plan for it, that is a local
solution to the overall lifting problem above.
As before, N is taken so that X2

N “ 0. We suppose given a sub-extension F {K of KN {K
with Galois group isomorphic to U{V , that is we have a homomorphism ρ : ΓN ↠ U{V .
Given q P N , let ρq : Γq ÝÑ Dq Ă U{V be the restriction of ρ, where Dq is the decomposition
group of q in U{V “ GalpF {Kq (after fixing a prime Q|q).
We seek a lift ρq of ρq in U , in the setting where ρq is ramified:

Γq

?ρq

}}

ρq

��

U // // U{V
7



If ρq does not exist, our problem has no local solution and thus no global solution.
If ρq exists, we call it a local plan for Γq into U .
Recall that the pro-p group Γq is

´ free when ζp R Kq,
´ Demushkin when ζp P Kq,

Let us be more precise.
Consider q ∤ p. We suppose that ζp P Kq (if not, Γq » Zp). Recall that in this case
Γq » Zp ¸ Zp is Demushkin. Indeed, let τq P Γq be a generator of inertia and σq a lift of the
Frobenius. One has the unique relation: σqτqσ´1

q “ τ
Npqq
q . See [12, Chapter 10, §10.2 and

§10.3].
We now consider p|p and set np “ rKp : Qps. If ζp R Kp, then Γp is free pro-p on np ` 1
generators. If ζp P Kp, then Γp is a Demushkin on np ` 2 generators x1, ¨ ¨ ¨ , xnp`2; in this
case the unique relation is xps

1 rx1, x2s ¨ ¨ ¨ rxnp`1, xnp`2s, where ps is the largest power of p
such that Kp contains the ps-root of the unity.
We give examples of local plans.
Example 1.6. [S-R plan] Recall the principle of the proof of the Scholz-Reichardt theorem.
Suppose that U contains an element y of order pm. Take a prime q such that vppNpqq´1q ě m
- just choose q to split completely in Kpζpmq{K. Suppose we are given a homomorphism
ρq : Γq ÝÑ U{V defined by ρqpσqq “ 1 and ρqpτqq “ ȳ. Since yNpqq´1 “ 1, the map
ρq : Γq Ñ U given by ρqpσqq “ 1 and ρqpτqq “ y is a homomorphic lift of ρq from U{V to U .
This local plan is used for the primes q1

i in the proof of Theorem 2.2.
Example 1.7. [Trivial plan] There are two trivial plans.
1) Suppose F {K unramified at q, i.e. let ρq : Γq ÝÑ U{V be a homomorphism defined
by ρqpσqq “ x for some x P U{V and ρqpτqq “ 1. Let x P U be any lift of x. The map
ρq : Γq Ñ U given by ρqpσqq “ x and ρqpτqq “ 1 is a homomorphic lift of ρq from U{V to U .
This local plan is used for the primes of N2zS2 in the proof of Theorem 2.2.
2) The previous unramified setting is a special case of the situation where Γq is pro-p free,
e.g. if q | p and ζp R Kq. Any lift gives a local plan in this case as well.
Example 1.8. [Abelian plan] Suppose that U contains two elements x and y satisfying
xy “ yx. Let pℓ be the order of y. Take a prime q such that vppNpqq ´ 1q “ k ě ℓ. The
pro-p part of the abelianization of Γq is Zp ˆ Z{pk. Suppose given ρq : Γq ÝÑ U{V defined
by ρqpσqq “ x and ρqpτqq “ ȳ. The map ρq : Γq Ñ U given by ρqpσqq “ x and ρqpτqq “ y is
a homomorphic lift of ρq from U{V to U . We use this local plan in our alternative proof of
the main theorem of this paper in the case p ą n. See Corollary 3.3 and § 3.2.
There is another important local plan in the context of Massey products coming from results
of Mináč-Tân ([17, Proposition 4.1] and [16, Theorem 4.3]). We call these Massey local plans
and use them in the proof of Theorem 3.1. We also use local plans from the work of Böckle
[1], Emerton-Gee [4] and Conti-Demarche-Florence [2] in the proof of Theorem 3.4 .

2. A global lifting result

The main result of this section is Theorem 2.2, a variant of the Scholz-Reichardt theorem.
We start with a proposition useful in proving the theorem when dpUq ą dpU{V q, that is when
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U has more generators than U{V . In the context of the strong Massey vanishing property,
it is useful for the degenerate case, e.g. if

U{V » θpΓq Ĺ pZ{pq
n ↞ Un`1 “ U.

Proposition 2.1. Suppose that ζp R K. Let F {K be a finite p-extension and let S be a finite
set of primes of K. Let k,m ě 1 and for q P S and i “ 1, ¨ ¨ ¨ , k, let χq,i P H1pΓqq. Then for
i “ 1, ¨ ¨ ¨ , k

piq there exist a χi P H1pΓKq such that for every q P S, χi|Γq
“ χq,i. Let Mi{K be the

Z{p-extension fixed by Kerpχiq;
piiq the extension Mi{K is unramified outside S Y tq1

iu, where q1
i is a new tame prime

such that vppNpq1
iq ´ 1q ě m;

piiiq the extension Mi{K is totally ramified at q1
i,

pivq for every i, q1
i splits completely in F {K.

pvq for every j ‰ i, q1
j splits completely in Mi{K.

Proof. Establishing pvq requires Gras’ Theorem 1.1. It is the crucial ingrediant that allows
us to define local plans used in Theorem 2.2 for the primes q1

i.
‚ By Proposition 1.5, there exists a tame prime q1 and χ1 P H1pΓSYtq1uq such that χ1 |Γq“ χq,1
for each q P S. This is piq. Moreover, since ζp R K, using that GovK,S{K 1 and F pζpmq{K 1

are linearly disjoint, we can choose q1 such that vppNpq1q ´ 1q ě m and q1 splits completely
in F {K. Let M be the Z{p-extension of K fixed by χ1.
- If χ1 is ramified at q1, then we set M1 :“ M and q1

1 :“ q1 and piq-pivq hold and pvq does
not yet apply.
- If χ1 is unramified at q1, then we do not have piiiq. We remedy this as follows: choose a
tame prime q1

1 that splits completely in GovK,SF pζpmq{K. By Theorem 1.1 there exists a
Z{p-extension M 1

1{K exactly ramified at q1
1 in which the places of S split completely. Then

GalpM 1
1M{Kq » Z{pˆZ{p, we choose M1 to be any intermediate extension other than than

M and M 1
1. We have piq as the primes of S have the same splitting behavior in M and M1,

piiq by construction, piiiq automatically and pivq by the choice of q1
1.

‚ Set S1 “ S Y tq1
1u. Set χq1

1,2 P H1pΓq1
1
q to be trivial. By Proposition 1.5, there is a

tame prime q1 and χ2 P H1pΓS1q with χ2|Γq “ χq,2 for every q P S1. This is piq. Moreover,
since ζp R K, the prime q1 can be chosen such that vppNpq1q ´ 1q ě m, and such that q1

splits completely in FM1{K (indeed GovK,S{K 1 and FM1pζpmq{K 1 are linearly disjoint). As
before, set M to be the Z{p-extension of K corresponding to χ2. By the choice of χq1

1,2, we
see that q1

1 splits completely in M{K.
- If χ2 is ramified at q1, set M2 “ M and q1

2 :“ q1.
- If χ2 is unramified we proceed as did above to get q1

2 and M2.
Then, in all cases, one has piq ´ pivq.
Note that the splitting choices for q1

1 and q1
2 give pvq as well.

Repeat this process with S2 “ S1 Y tq1
2u to find q1

3 and M3 etc. to finish the proof. □

Theorem 2.2 is the key result we need to establish the strong n-fold Massey vanishing prop-
erty for ΓK and Γta

K . The proof of Theorem 2.2 is more involved than the corresponding
argument of [8] or the proof of Scholz-Reichardt for Un`1. This is because in those situations
one starts with a trivial homomorphism and inductively builds the entire group. The local
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plans are much easier to introduce and maintain. In §3.1 we start with a homomorphism
θ : Γ Ñ pZ{pqn and must lift that to Un`1 and Un`1, rather than build θ at our convenience.

Theorem 2.2. Suppose that ζp R K. Let U be a p-group, and V � U be a normal subgroup
of U . Let F {K satisfy

‚ F {K is unramified outside a set of primes S “ tq1, ¨ ¨ ¨ , qtu;
‚ for each q P S the decomposition group Dq in F {K respects a local plan ρq : Γq Ñ U .

In other words, Dq ” ρqpΓqq modulo V .
‚ GalpF {Kq » U{V .

Then there exists a Galois extension L{K in K{K such that:
piq L{K contains F {K;

piiq GalpL{Kq » U ;
piiiq ρqpΓqq » Dq :“ GalpLq{Kqq, for every q P S.

Moreover, if F Ă Kta then L can be chosen in Kta.

Proof. Let pm be the exponent of U . Since ζp R K, Lemma 1.4 implies F pζpq X GovK,S “ K 1.
This will allow us to use Chebotarev’s theorem to choose primes that split as we need in
Kpζpmq, F and GovK,S.
For a p-group H set FrQpHq :“ H{rH,HsHp, the Frattini quotient of H. This is an Fp-
vector space. From the group extension 1 Ñ V

i
Ñ U

π
Ñ U{VÑ1 we see i and π induce

maps ĩ : FrQpV q Ñ FrQpUq and π̃ : FrQpUq Ñ FrQpU{V q with the latter map being
surjective. The former map need not be injective - the Heisenberg group of order p3 provides
an example. Set dpUq :“ dimFrQpUq and dpU{V q :“ dimFrQpU{V q.
‚ We first consider the case dpU{V q ă dpUq. Let ỹ1, ¨ ¨ ¨ , ỹdpU{V q be lifts to FrQpUq of a
basis of FrQpU{V q. They form an independent set in FrQpUq. The sum of their span
with ĩpFrQpV qq is FrQpUq. Let x̃1, ¨ ¨ ¨ , x̃k be elements of ĩpFrQpV qq that together with
ỹ1, ¨ ¨ ¨ , ỹdpU{V q form a basis of FrQpUq. Let yi and xj be lifts to U and V of ỹi and x̃j. Set
A :“ prU,U sUpq ¨ xy1, ¨ ¨ ¨ , ydpU{V qy Ă U . Then U{A is a quotient of FrQpUq of dimension k
and

U

V X A
ãÑ

U

V
ˆ
U

A
and 1 Ñ

V

V X A
Ñ

U

V X A
Ñ

U

V
Ñ 1,

so
# U

V X A
“ #U

V
¨ # V

V X A
“ #U

V
¨ #V A

A
“ #U

V
¨ #U

A
“ #U

V
¨ pk.

We see
U

V X A
»

ãÑ
U

V
ˆ pZ{pq

k.

For i “ 1, ¨ ¨ ¨ , k, let ηi P H1pU{V X Aq be defined by ηipxjq “ δi,j, and ηi is trivial on U{V .
We have a local plan for each q P S, so ρqpΓqq Ă U ↠ U{V X A and the restriction ηi|ρqpΓqq

can be viewed as an element of H1pΓqq and thus an input of Proposition 2.1 for each q P S.
By Proposition 2.1, there exist χi P H1pΓKq for i “ 1, ¨ ¨ ¨ , k such that

piq for every q P S, χi|Γq
“ ηi|ρqpΓqq;

piiq for each i let Mi the Z{p-extension fixed by Kerpχiq. The extension Mi{K is unram-
ified outside S Y tq1

iu where q1
i is a new tame prime satisfying vppNpq1

iq ´ 1q ě m.
piiiq the extension Mi{K is totally ramified at q1

i,
pivq for every i, q1

i splits completely in F {K.
10



pvq for every j ‰ i, q1
j splits completely in Mi{K.

Put K2 :“ FM1 ¨ ¨ ¨Mk. Then

h : GalpK2{Kq
»

ÝÑ GalpF {Kq ˆ pZ{pq
k »

ÝÑ
U

V
ˆ pZ{pq

k »
ÝÑ

U

V X A
.

Condition piq above implies the isomorphism h respects the initial local plans ρq for every q P

S: the image of ρqpΓqq Ă U projects to toDqpK2{Kq in U{V XA » GalpK2{Kq. Moreover, for
the other ramified primes q1

i, one has vppNpq1
iq´1q ě m, and Dq1

i
pK2{Kq “ Iq1

i
pK2{Kq » Z{p,

i “ 1, ¨ ¨ ¨ , k. The extension K2{K is unramified outside S2 :“ S Y tq1
1, ¨ ¨ ¨ , q1

ku. We have a
local plan for each of these primes: the one given by the hypothesis for those in S, and the
S-R local plan of Example 1.6 for the q1

i.

We have realized U{V X A as GalpK2{Kq respecting all local plans. As dpU{V X Aq “

k ` dpU{V q “ dpUq, we can proceed to the next case.
‚ Now suppose dpU{V q “ dpUq. Set Γ “ ΓK or Γta

K .

Γ
?ρ

}}

ρ̄
����

1 // V // U π
// // U{V

The map π̃ : FrQpUq Ñ FrQpU{V q is an isomorphism so if ρ exists it is surjective. As U
is a p-group, we can filter V by normal subgroups of U whose successive quotients are Z{p
(intersect a filtration of normal subgroups of U with the normal subgroup V ).
Thus it suffices to solve the embedding problem above for V “ Z{p and induct.
Let N2 be a finite set of primes containing those ramified in K2{K (i.e. S2 Ă N2) and such
that X2

N2 “ 0.

At each stage of the induction we will:
piq solve the nonsplit embedding problem above;

piiq adjust the solution by an element of H1 (adding ramification at a new prime if
needed) such that the new solution is on all local plans, including at the new prime
of ramification. There is then no local obstruction for the next step of the induction.

´ There is no obstruction to lift the decomposition group Dq of q in U{V to U : for each q,
one has a local plan. (If q P N2zS2 take the trivial plan (1) of Example 1.7.) As XN2 “ 0
there is no global obstruction. There exists a Z{p-extension of K3{K2, unramified outside
N2, Galois over K, solving the lifting problem to U . That is piq of the strategy.
´ If we are on all local plans in N2, we proceed with the induction. The problem now is
that the decomposition group Dq at some q P N2 in K3{K may be off the local plan and
therefore it may not be liftable for the next stage of the induction.
Assume now that we are not on all local plans. As H1pΓqq acts as a principal homogeneous
spaces on the solutions to our local embedding problem, the existence of a local plan implies
the existence of fq P H1pΓqq by which we can adjust our solution to be on the local plan.
We now use Proposition 1.5 to find a tame prime r such that for R2 “ tru

pfqqqPN2 P ImpψR2q, vppNprq ´ 1q ě m,
11



and r splits completely in K2{K. Hence there exists an element of H1pΓN2YR2q that puts us
on the local plan for all q P N2. As r splits completely in K2{K, we can use an S-R local
plan for r. Set S3 “ S2 Y tru. We are on the local plan at all q P S3 and can proceed by
induction.
As in the split case, all new primes of ramification are tame, so if F Ă Kta, then our final
field L Ă Kta. □

3. Applications

3.1. The main result. In this section we prove:
Theorem 3.1. Let p be an odd prime, n ě 3 and K be a number field such that ζp R K.
Then the profinite groups Γta

K and ΓK satisfy the strong n-fold Massey vanishing property
(relative to p).

Our proof does not explicitly use the cup product condition Cn. This property is invoked
implicitly when we use that the local Galois groups Γq satisfy the strong n-fold Massey
vanishing property for n ě 3. In § 3.2 we present a proof when p ą n that explicitly uses
the local triviality of χi Y χi`1 and that X2

N “ 0.
Proof. We have θ :“ pχ1, ¨ ¨ ¨ , χnq : Γ Ñ pZ{pqn. For every q P S, denote by θq : Γq Ñ pZ{pqn

the restriction of θ to Γq. For q ramified in θ, recall that Γq is either a Demushkin group
or free pro-p. By [17, Proposition 4.1] and [16, Theorem 4.3] Demushkin groups satisfy the
strong n-fold Massey vanishing property for n ě 3. Recall Un`1 is the unipotent subgroup of
GLnpFpq and φ : Un`1 ↠ pZ{pqn is a natural quotient map. The lifts of θq to homomorphisms
ρq : Γq Ñ Un`1 whose existence is guaranteed by [17] and [16] necessarily have image in
φ´1pθpΓqq Ă Un`1. These are the Massey local plans referred to at the end of §1.5.

φ´1pθpΓqq //� � //

��

φ
����

Un`1

��

φ
����

Γq

θq

66

ρq

44

// Γ
?ρ

77

//

θ
// // θpΓq //� � // pZ{pqn

We simply apply Theorem 2.2 with U “ φ´1pθpΓqq and U{V “ θpΓq to get the existence
of ρ which we then compose with the injection φ´1pθpΓqq ãÑ Un`1 to establish the result.
As Theorem 2.2 only introduces tame ramification, if θ is tamely ramified, then ρ is tamely
ramified. □

Remark 5. The method shows that each embedding problem can be solved by a tame prime q
that is given via the Chebotarev density theorem. One needs at most npn´ 1q{2 such primes.
Using GRH effective versions of Chebotarev’s theorem, one can bound the absolute norms.
See Remark 4.

3.2. Abelian plans. Let θ “ pχ1, ¨ ¨ ¨ , χnq : Γta
K Ñ pZ{pqn be a homomorphism in Cn:

χ1 Y χ2 “ χ2 Y χ3 “ ¨ ¨ ¨ “ χn´1 Y χn “ 0.
The proof of Theorem 3.1 above is not explicit for the ramified primes of θ. The condition
in Cn is used only in the local results we cite from [17, Proposition 4.1] and [16, Theorem
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4.3]. In this section we give another proof that is explicit for these primes when p ą n and
highlights condition Cn.
Let S be the set of ramification of θ, which is by the choice of Γta

K tame. Then for q P S we
have ζp P Kq. For ψ P H1pΓta

Kq, set ψq :“ ψ|Γq .

Lemma 3.2. Let p be odd and q have norm 1 mod p. Set χi,q :“ χi|Γq and suppose χi,q ‰ 0.
Then there exists λq,i P Z{p such that χi`1,q “ λq,iχi,q.

Proof. The arguments below are standard in local Galois cohomology. Using the local Euler-
Poincaré characterstic and that ζp P Kq one has

dimH i
pΓq,Z{pq “ dimH i

pΓq, µpq “

$

&

%

1 i “ 0
2 i “ 1
1 i “ 2

.

As µp » Z{p (non-canonically) in Kq, the perfect local pairing becomes H1pΓq,Z{pq ˆ

H1pΓq,Z{pq Ñ H2pΓq,Z{pq. By the alternating property of cup products, each χi,q an-
nihilates itself. The annihilator of χi,q is codimension one in H1pΓqq so the fact that
dimH1pΓqq “ 2 implies that the space spanned by χi,q is its own exact annihilator under the
local pairing. The result follows from localizing χi Y χi`1 “ 0 at q. □

We need to lift θ : Γta
K Ñ pZ{pqn ↞ Un`1 to a homomorphism Γta

K Ñ Un`1. We will do this
in separate blocks of (local) nonzero characters. Each trivial χj,q marks the end of a block
at row j.
For a block with nonzero local characters, χj,q, χj`1,q, ¨ ¨ ¨ , χj`k,q, we have by Lemma 3.2

χj`1,q “ λj,qχj,q,

χj`2,q “ λj`1,qχj`1,q,

¨ ¨ ¨

χj`k,q “ λj`k´1,qχj`k´1,q.

On this block we set ρqpσqq and ρqpτqq to be elements of Un`1 that are nonzero only on
the diagonal and on the ‘near-diagonal’, that is at pi, iq and pi, i ` 1q entries. For example,
with n “ 3 and θ “ pχ1, χ2, χ3q and χ2,q “ λ1,qχ1,q and χ3,q “ λ2,qχ2,q our local plan is, for
γ P tσq, τqu:

ρqpγq :“

¨

˚

˚

˝

1 χ1,qpγq 0 0
0 1 λ1,qχ1,qpγq 0
0 0 1 λ1,qλ2,qχ1,qpγq

0 0 0 1

˛

‹

‹

‚

.

From the definition of Λq below, we have Λn`1
q “ 0. We first show ρqpσqq and ρqpτqq commute.

In our example with n “ 3,

Λq “

¨

˚

˚

˝

0 1 0 0
0 0 λ1,q 0
0 0 0 λ1,qλ2,q

0 0 0 0

˛

‹

‹

‚

13



so

ρqpσqqρqpτqqρqpσqq
´1

“ pI ` χ1,qpσqqΛqq pI ` χ1,qpτqqΛqq pI ` χ1,qpσqqΛqq
´1

“ I ` χ1,qpτqqΛq

“ ρqpτqq.

We need to check that ρq respects the relation σqτqσ´1
q “ τ

Npqq
q , that is that ρqpτqq “ ρqpτqq

Npqq

or equivalently, recalling that Npqq ´ 1 “ pz for some z P N, that

ρqpτqq
pz

“ pI ` χ1,qpτqqΛqq
pz ?

“ I.

This follows as in characteristic p we have pI ` χ1,qpτqqΛqq
p “ I ` χp

1,qpτqqΛp
q “ I as p ą n

and Λn`1
q “ 0. Having local plans and invoking Theorem 2.2 we have proved:

Corollary 3.3. Let n ě 3, p ą n and ζp R K. Then the strong Massey vanishing property
holds for θ and Γta

K with ρq as above constructed in blocks. The element ρqpτqq has order p
in the lift ρ : Γta

K Ñ Un`1 of θ.

3.3. More liftings. Set r ě 1. Let GLn`1pZ{prq be the group of invertible pn`1qˆpn`1q-
matrices with entries in Z{pr and Un`1pZ{prq Ă GLn`1pZ{prq be the the subgroup of all
upper-triangular unipotent matrices. Let πr : GLn`1pZ{prq Ñ GLn`1pZ{pq be the mod p
reduction homomorphism. It is well known that Kerpπrq is a p-group. Let U Ă GLn`1pZ{prq

be a p-group. The Scholz-Reichardt Theorem gives the existence of a Galois extension K
over Q such that GalpK{Qq » U . In this case, if pm is the exponent of U , we can guarantee
every ramified prime q satisfies Npqq ” 1 modulo pm and so all ramification is tame.
On the other hand, by following the Massey product philosophy, starting with θ : Γ Ñ pZ{pqn

in Cn, one can ask if θ lifts to a ρr : Γ Ñ GLn`1pZ{prq such that the diagram below commutes:

π´1
r pUn`1pFpqq Ă GLn`1pZ{prq

πr

��

Un`1pFpq

φ

��

Γ
θ

//

ρ

55

?ρr

;;

pZ{pqn

Here ρ is a lift given by Theorem 3.1. Since Kerpπrq is a p-group, our putative ρrpΓq is also
a p-group.

Theorem 3.4. Take Γ “ Γta
K or ΓK, and suppose ζp R K. For n ě 3, let θ : Γ Ñ pZ{pqn

satisfy Cn. Let ρ be given by Theorem 3.1, where we choose all tame primes q1 from that
proof to satisfy Npq1q ” 1 modulo pmprq, where pmprq is the exponent of Un`1pZ{prq. This is
possible as ζp R K.
(i) Then for every r ě 1, there exists a homomorphism ρr : Γ Ñ GLn`1pZ{prq such that
πr ˝ ρr “ ρ and θ “ φ ˝ πr ˝ ρr.
(ii) If moreover ζpr P Kq for every ramified prime q in θ then ρr can be taken such that
ρrpΓq Ă Un`1pZ{prq.

14



Proof. (i) Let S be the set of ramified primes of θ. By [17, Proposition 4.1] and [16, Theorem
4.3], we may choose for each prime q P S a lift ρq : Γq Ñ Un`1pFpq. Using Theorem 3.1 we
realize a global lift ρ : Γ Ñ Un`1pFpq of θ whose restrictions to Γq for all q P S are ρq.
We have to add many new ramified primes q1 to obtain ρ. As ζp R K, they can be chosen
such that Npq1q ” 1 modulo pmprq, where pmprq is the exponent of Un`1pZ{prq. We give each
such prime q1 the [S-R] local plan, that is

´ ρr,q1pσq1q “ 1, and
´ ρr,q1pτq1q is any lift of ρq1pτq1q “ x P Un`1, to Un`1pZ{prq. This element is killed by
pmprq and by local class field theory the image of τ in Γab

q has order at least pmprq.

It remains to show the existence, for q P S, of local plans ρr,q : Γq Ñ GLn`1pZ{prq whose
reductions modulo p are ρq.
First, there is the trivial local plan: when q|p and ζp R Kq. As Γq is free pro-p, any lift of
ρqpΓqq in Un`1pZ{prq works.
For the other primes q P S one needs more local lifting results. One uses the local plans
given by:

´ Böckle [1, Theorem 1.3] for the tame primes (q ∤ p),
´ Emerton and Gee [4, Theorem 6.4.4] for the wild primes (q|p).

In [1] and [4], the authors prove the existence of lifts ρ8,q into GLn`1pZpq for every represen-
tation Γq Ñ GLn`1pFpq. Applying these results to ρq : Γq Ñ Un`1pFpq, q P S and reducing
modulo pr gives the desired local plans. Now (i) follows by Theorem 2.2 with U :“ π´1

r pρpΓqq

and V “ Kerpπrq X U .
For (ii), assume that ζpr P Kq and since ρqpΓqq Ă Un`1pFpq, a recent result of Conti, Demarche
and Florence [2] (the corollary of the main theorem in the introduction of that paper)
shows that there exist local lifts ρr,q of ρq in GLn`1pZ{prq, that can be taken with image
in Un`1pZ{prq. This result holds even if the residue characteristic of q is p. Set U :“
π´1

r pρpΓqq X Un`1pZ{prq and V “ Kerpπrq X U . Since ρpΓq » U{V , and ρpΓq and V are
p-groups, we see U is also a p-group. We apply Theorem 2.2 with U , U{V , and the above
local plans ρr,q. □

Our construction does not allow us to pass to the projective limit to get a lift in GLn`1pZpq.
This is because mp8q “ 8 and we would need to choose primes q1 with Npq1q ” 1 modulo
p8.

Remark 6. Observe that in the nondegenerate case (the χi are independent in H1pΓq), the
group ρrpΓq contains Un`1pZ{prq.

To conclude we show why the condition ‘ζpr P Kq’ given in [2] is necessary in many cases.

Proposition 3.5. Let q be a tame prime. Suppose given a homomorphism ρq : Γq Ñ

Un`1pFpq, and a lift ρq,r of ρq to Un`1pZ{prq:

Un`1pZ{prq

πr

��

Γq ρq

//

ρq,r
::

Un`1pFpq
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If a character θi on the near diagonal of Un`1pFpq is ramified, then ζpr P Kq. That is, if
θipτqq ‰ 0, then Npqq ” 1 modulo pr.

Proof. By hypothesis there exists θi P H1pΓq,Z{pq such that θipτqq ‰ 0. But this homomor-
phism lifts to θi,r P H1pΓq,Z{prq. The two corresponding extensions are cyclic extensions,
the first included in the second, and since θi is ramified (at q), it forces the cyclic degree
pr extension associated to θi,r to be totally ramified, which implies ζpr P Kq by class field
theory. □

3.4. Further remarks on strong Massey vanishing and Gras’ Conjecture. In this
subsection we allow p “ 2. Let S be a finite set of primes of K and set KS to be the
maximal pro-p extension of K unramified outside S. When p “ 2, we assume that the real
archimedean places remain real in every subfield of KS. Set ΓS :“ GalpKS{Kq. Shafarevich
and Koch showed the pro-p group ΓS is finitely generated.

3.4.1. Free groups. Let Sp be the set of p-adic primes of K. As first observed by Shafarevich,
ΓSp can be a free noncommutative pro-p group, for instance when K “ Qpζpq and p is regular:
in this case ΓSp is free on pp ` 1q{2 generators. When ΓSp is free, it obviously satisfies the
strong n-fold Massey vanishing property for every n ě 2. We state a Conjecture of Gras [7,
Conjecture 7.11]:

Conjecture (Gras). Fix a number field K. For p " 0 the pro-p group ΓSp is free on r2 ` 1
generators, where 2r2 is the number of complex embeddings of K.

3.4.2. Deep relations. When S X Sp “ H, the pro-p group ΓS is FAB: every open subgroup
has finite abelianization.
Observe first that ΓS can be trivial: take K “ Q, and S “ H. It can also be cyclic of
order pm: take K “ Q, p odd, and ℓ a prime such that vppℓ ´ 1q “ m. Set S “ tℓu; then
ΓS » Z{pm. In this situation, it is not difficult to see that ΓS satisfies the strong n-fold
Massey vanishing property if and only if n ` 1 ď pm. In the cyclic setting, ΓS is presented
by one generator x and one relation r :“ xpm of depth pm (using the Zassenhaus filtration).
There is the following general result of Vogel [21, Corollary 1.2.9]:

Theorem 3.6. Let G be a finitely generated pro-p group described by generators and a set
R of relations. If all elements of R are of at least depth n ` 1, then G satisfies the strong
k-fold Massey vanishing property for 2 ď k ď n.

Theorem 3.6 follows immediately from Lemma 3.7 below. In its proof, we use the language
and notation of Massey products freely.

Lemma 3.7. We use the terminology as in [22]. Let G be a pro-p group and n ě 2 an
integer. Suppose that G “ F {R where F is a free pro-p group on generators x1, . . . , xn, and
R Ď F prF, F s. The following are equivalent:

i) R Ď Fpn`1q.
ii) All k-fold Massey products are strictly and uniquely defined and equal to 0, for 2 ď

k ď n.
iii) G satisfies the strong k-fold Massey vanishing property for 2 ď k ď n.
iv) G satisfies the k-fold Massey vanishing property for 2 ď k ď n.
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Proof. The implication from iq to iiq follows from [22, Theorem A3].
The implications from iiq to iiiq and from iiiq to ivq are clear.
Now we suppose that ivq holds. Let χ1, . . . , χn P H1pF,Fpq “ H1pG,Fpq be the dual basis
to x1, . . . , xn. That G satisfies the 2-fold Massey vanishing property means that all cup
products χi1 Y χi2 are zero, for 1 ď i1, i2 ď n. By [22, Theorem A3], for every f P R and
every 1 ď i1, i2 ď n, I “ pi1, i2q, one has

ϵI,ppfq “ p´1q
2´1trf xχi1 , χi2y “ 0.

This implies that f P Fp3q by [22, Lemma 2.19], and hence R Ď Fp3q.
Now because R Ď Fp3q, we see that for all 1 ď i1, i2, i3 ď n, triple Massey products
xχi1 , χi2 , χi3y are well defined, by [22, Theorem A3]. Thus xχi1 , χi2 , χi3y “ 0 because G
satisfies the 3-fold Massey vanishing property. Also by [22, Theorem A3], for every f P R
and every 1 ď i1, i2, i3 ď n, I “ pi1, i2, i3q, one has

ϵI,ppfq “ p´1q
3´1trf xχi1 , χi2 , χi3y “ 0.

This implies that f P Rp4q by [22, Lemma 2.19]. Hence R Ď Rp4q. Continuing in this way,
we show that R Ď Fpk`1q for all 2 ď k ď n. In particular, R Ď Fpn`1q. □

To conclude, we give another situation where we can apply Theorem 3.6 . Take T a finite
set of primes of K, disjoint from S. Let KT

S be the maximal pro-p extension of K unramified
outside S, with the primes of T splitting completely in KT

S . Set ΓT
S :“ GalpKT

S {Kq.

Corollary 3.8. Take n ě 3. Let K be a number field, not totally real, satisfying Gras’s
conjecture. Then for p " 0, there exists a set T of primes of K, coprime to p, such that the
pro-p group ΓT

Sp
is infinite, has finite abelianization and satisfies the strong n-fold Massey

vanishing property.

Proof. We apply the strategy of [9]: We may take the quotient of the free pro-p group
ΓSp (Gras’ conjecture) by any Frobenius elements whose depth in the Zassenhaus filtration
is greater than n ` 1, by pn-powers of Frobenius elements that generate ΓSp , and apply
Theorem 3.6. Chebotarev’s theorem gives a positive density of such primes for our set T . □
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