SOME NEW EVIDENCE FOR THE FONTAINE-MAZUR CONJECTURE

CHRISTIAN MAIRE

ABSTRACT. In this paper, thanks to the work of M. Lazard, we obtain some new evidence for the conjecture of Fontaine-Mazur in the spirit of Boston's results.

Let **K** be a number field, p a prime number and S a finite set of places of **K**. Assume that S is prime to p: for every finite place $v \in S$, the absolute norm of v is prime to p. Denote by \mathbf{K}_S the maximal pro-p-extension of **K** unramified outside S and put $\mathcal{G}_S = \operatorname{Gal}(\mathbf{K}_S/\mathbf{K})$.

A consequence of a conjecture of Fontaine and Mazur [5] asserts that there is no infinite analytic quotient of \mathcal{G}_S . The philosophy of this conjecture is that every analytic quotient of \mathcal{G}_S should come from geometry, and then, thanks to the above conditions on S, this quotient should be finite.

The study of analytic pro-*p*-groups was initiated by Michel Lazard in a famous paper [9]. In particular, in this paper, he describes relationships between various important invariants of these groups such as: the dimension of the group \mathcal{G} as \mathbb{Q}_p -manifold, the structure of the Lie algebra of \mathcal{G} , and the virtual cohomological dimension of \mathcal{G} .

Using some of these tools, Boston in [1] and in [2] gives for the first time arithmetical criteria for verifying special cases of Fontaine-Mazur conjecture. In [12], in the same spirit, Wingberg considers the CM-case. Here, one obtains:

Theorem 1. Let \mathbf{K}/\mathbf{F} be an extension of number fields with finite group Δ of order prime to p. Let \mathbf{L}/\mathbf{K} be a Galois pro-p-extension with group \mathcal{G} such that: (i) $\mathbf{L} \subset \mathbf{K}_S$; (ii) \mathbf{L}/\mathbf{F} is Galois. Put $\mathcal{G}_1 = \mathcal{G}/\mathcal{G}^p[\mathcal{G},\mathcal{G}]$. If the Δ -representation of $\bigwedge^2(\mathcal{G}_1)$ does not contain the Δ -representation of \mathcal{G}_1 ,

If the Δ -representation of $\bigwedge^2 (\mathcal{G}_1)$ does not contain the Δ -representation of \mathcal{G}_1 , then \mathcal{G} is not uniformly powerful.

From this result, we deduce some new evidence for the Fontaine-Mazur conjecture in the non-abelian case and in the cyclic case.

For the CM-case, by using a result of Gras [6], one obtains a new proof of a result of Wingberg [12]:

Received by the editors July 31, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11R37; Secondary 12G10.

Key words and phrases. pro-p-extensions, analytic pro-p-groups, conjecture of Fontaine-Mazur.

Corollary 2. Assume p > 2. Let **K** be a CM-field with maximal totally real subfield **F**, and let $d(\mathcal{G}_{\emptyset}) = d^+ + d^-$ be the decomposition of the generator rank of \mathcal{G}_{\emptyset} under the action of $\operatorname{Gal}(\mathbf{K}/\mathbf{F})$. Put $\delta_p = 1$ if **K** contains the pth roots of unity, 0 otherwise. If $d^+d^- > d^- + \delta_p$, then \mathcal{G}_{\emptyset} is not uniformly powerful.

1. Uniformly powerful pro-*p*-groups

Definition 3. A pro-*p*-group \mathcal{G} is called powerful if the quotient $\mathcal{G}/\overline{\mathcal{G}^p}$ (for p = 2, $\mathcal{G}/\overline{\mathcal{G}^4}$) is abelian.

Before defining the notion of uniformly powerful pro-*p*-group, let us give some more notation. For a pro-*p*-group \mathcal{G} , define $P_i(\mathcal{G})$ to be its central descending series:

$$P_1(\mathcal{G}) = \mathcal{G}, \quad P_{i+1}(\mathcal{G}) = P_i(\mathcal{G})^p[\mathcal{G}, P_i(\mathcal{G})].$$

In what follows, we will denote by \mathcal{G}_1 the quotient $\mathcal{G}/\mathcal{G}^p[\mathcal{G},\mathcal{G}] = \mathcal{G}/P_2(\mathcal{G})$ and by $d(\mathcal{G})$ the *p*-rank of \mathcal{G} , that is the dimension of \mathcal{G}_1 over \mathbb{F}_p .

Definition 4. A finitely generated pro-p-group \mathcal{G} is called uniformly powerful if

(1) \mathcal{G} is powerful (2) for all i, $\#P_i(\mathcal{G})/P_{i+1}(\mathcal{G}) = \#\mathcal{G}/P_2(\mathcal{G}).$

Note that, as shown in [3], a finitely generated powerful pro-*p*-group \mathcal{G} is uniformly powerful if and only if \mathcal{G} is torsion free.

Definition 5. A topological group \mathcal{G} is p-adic analytic if \mathcal{G} has a structure of a p-adic manifold such that the map $\mathcal{G} \times \mathcal{G} \to \mathcal{G} : (x, y) \mapsto xy^{-1}$ is analytic.

As explained in [3], Chapter 8, a uniformly powerful pro-*p*-group \mathcal{G} is analytic. But in fact:

Theorem 6 ([3], Theorem 8.32). Let \mathcal{G} be an analytic pro-*p*-group. Then \mathcal{G} admits an open uniformly powerful sub-group \mathfrak{U} .

As noted by the authors of [3], the class of uniformly powerful pro-p-groups is in the class of "groupes p-saturables", following Lazard's terminology. The great interest of the groups of the last class is that their cohomology is the same as the cohomology of their Lie algebra (see [9], chapter V).

675

Theorem 7 (Lazard [9]). Let \mathcal{G} be a uniformy powerful pro-p-group. Then, for $i \geq 1$ $H^{i}(\mathcal{G}, \mathbb{F}_{p}) \simeq \bigwedge^{i} (\mathcal{G}_{1}^{*}),$

where $\bigwedge^{i}(\mathcal{G}_{1}^{*})$ denotes the *i*-th exterior power of the dual \mathcal{G}_{1}^{*} of \mathcal{G}_{1} .

One can find a proof of this in [11]. Note that if \mathcal{G} is uniformly powerful, its cohomological dimension is exactly its *p*-rank.

Now one can follow the strategy of Boston. Suppose that we have the following exact sequence of Galois groups:

$$1 \longrightarrow \mathcal{G} \longrightarrow \Gamma \longrightarrow \Delta \longrightarrow 1,$$

where Δ is a finite group of order prime to p and \mathcal{G} is uniformly powerful. The group Δ acts on the groups $H^i(\mathcal{G}, \mathbb{F}_p)$. Hence thanks to Theorem 7, one can compute exactly the characters of the Δ -module $H^2(\mathcal{G}, \mathbb{F}_p)$. Comparing this with the arithmetic of \mathcal{G} , one obtains in some cases a contradiction.

2. Theorem 1 and its consequences

2.1. Basic properties on representations. First recall some well-know properties about representations in the semi-simple case (see [10], chapters 14, 15 and 16).

Let Δ be a finite group of order prime to p. In this situtation, every finitely generated $\mathbb{F}_p[\Delta]$ -module M is projective. Then, to each such M, one can associate a unique (up to isomorphism) $\mathbb{Z}_p[\Delta]$ -projective module N such that N/pN is isomorphic to M. Now one has to note that two $\mathbb{Z}_p[\Delta]$ -projective modules N and N' are isomorphic if and only if $\mathbb{Q}_p \otimes N$ and $\mathbb{Q}_p \otimes N'$ are Δ -isomorphic. Hence, taking an $\mathbb{F}_p[\Delta]$ -module M, to study the action of Δ on it is equivalent to look at the action of Δ on $\mathbb{Q}_p \otimes N$ and then finally to find the decomposition of the character of $\mathbb{Q}_p \otimes N$ in terms of absolutely irreducible characters φ . In other words, the irreducible representations of Δ over \mathbb{F}_p are in bijection with the irreducible representations of Δ over \mathbb{Q}_p .

Next, if M is an $\mathbb{F}_p[\Delta]$ -module, we will identify M with its associated $\mathbb{Q}_p[\Delta]$ -module N. In particular, if M is an $\mathbb{F}_p[\Delta]$ -module, we will denote by

$$\chi(M) := \chi(N) = \sum_{\varphi} a_{\varphi} \varphi$$

the decomposition of the character $\chi(N)$ in terms of absolutely irreducible characters φ , where N is the associated $\mathbb{Q}_p[\Delta]$ -module of M.

To finish this part, we recall a classical convention. Let N and N' be two $\mathbb{Q}_p[\Delta]$ modules and let $\chi(N) = \sum_{\varphi} a_{\varphi} \varphi$ and $\chi(N') = \sum_{\varphi} a'_{\varphi} \varphi$ be the decomposition of the
characters of these modules into absolutely irreducible characters φ . Then $\chi(N) \leq \chi(N')$ means that for every absolutely irreducible character φ , $a_{\varphi} \leq a'_{\varphi}$, and $\chi(N) < \chi(N')$ means that $\chi(N) \leq \chi(N')$ and there exists φ such that $a_{\varphi} < a'_{\varphi}$.

2.2. The proof of Theorem 1. The exact sequence of \mathcal{G} -modules

$$1 \longrightarrow \mathbb{F}_p \longrightarrow \mathbb{Q}_p / \mathbb{Z}_p \longrightarrow \mathbb{Q}_p / \mathbb{Q}_p$$

gives

$$\cdots \to H^1(\mathcal{G}, \mathbb{Q}_p/\mathbb{Z}_p) \xrightarrow{p} H^1(\mathcal{G}, \mathbb{Q}_p/\mathbb{Z}_p) \longrightarrow H^2(\mathcal{G}, \mathbb{F}_p) \longrightarrow \cdots$$

By passing to the dual, one obtains:

. .

$$H^2(\mathcal{G}, \mathbb{F}_p)^* \twoheadrightarrow \mathcal{G}^{ab}[p].$$

Now if the group \mathcal{G} is uniformly powerful, the Δ -module $H^2(\mathcal{G}, \mathbb{F}_p)$ is exactly $\bigwedge^2(\mathcal{G}_1^*)$. Hence, as Δ -module:

$$H^2(\mathcal{G}, \mathbb{F}_p)^* \simeq \bigwedge^2 (\mathcal{G}_1^*)^* \simeq \bigwedge^2 (\mathcal{G}_1).$$

Moreover, by class field theory, the finiteness of ray class groups and the fact that S is prime to p imply that the pro-p-group \mathcal{G}^{ab} is finite. The Theorem will be established once we take note of the following well-known lemma:

Lemma 8. Let M be a finite Δ -module of order a power of p, where Δ is a finite group of order prime to p. Then:

$$M[p] \simeq_{\mathbb{F}_p[\Delta]} M/M^p.$$

 \diamond

2.3. First applications. When Δ is abelian, the character of $\bigwedge^2(\mathcal{G}_1)$ is easy to estimate (thanks to section 2.1):

Corollary 9. Let \mathbf{K}/\mathbf{F} be a finite abelian extension of number fields of degree prime to p and with group Δ . Let \mathbf{L}/\mathbf{K} be a Galois pro-p-extension with group \mathcal{G} such that: (i) $\mathbf{L} \subset \mathbf{K}_S$; (ii) \mathbf{L}/\mathbf{F} is Galois.

Let $\chi(\mathcal{G}_1) = \sum_{\varphi} \alpha_{\varphi} \varphi$ be the decomposition of \mathcal{G}_1 as Δ -module. If

$$\sum_{\varphi} \alpha_{\varphi} (\alpha_{\varphi} - 1) / 2 \cdot \varphi^2 + 1 / 2 \sum_{\varphi \neq \varphi'} \alpha_{\varphi} \alpha_{\varphi'} \varphi \varphi' < \sum_{\varphi} \alpha_{\varphi} \varphi,$$

then \mathcal{G} is not uniformly powerful.

Example 10. Suppose that p > 2 and that Δ is the Klein 4-group. Let φ_i , i = 1, 2, 3 be its three non-trivial irreducible characters of order 2. If $\chi(\mathcal{G}_1) = \alpha \varphi_1 + \beta \varphi_2$, then \mathcal{G} is not uniformly powerful.

More generally, the computation of the character of $\bigwedge^2(\mathcal{G}_1)$ can be done thanks to the following formula: Let N be a $\mathbb{Q}_p[\Delta]$ -module. Fix a \mathbb{Q}_p -basis of N and let ρ be the representation of Δ associated to N. Then, for all $g \in \Delta$,

$$\chi(\bigwedge^2(N))(g) = \frac{1}{2} \left(\operatorname{Tr}(\rho^2(g)) - (\operatorname{Tr}(\rho(g)))^2 \right).$$

In fact, thanks to the isomorphism $\bigwedge^2 (N \oplus N') \simeq \bigwedge^2 N \oplus N \otimes N' \oplus \bigwedge^2 N'$, one needs to know only the computation of $\bigwedge^2 N$ for an absolutely irreducible Δ -module N.

Corollary 11. Let \mathbf{K}/\mathbf{F} be a finite extension of number fields of degree prime to p and with group Δ . Let \mathbf{L}/\mathbf{K} be a Galois pro-p-extension with group \mathcal{G} such that: (i) $\mathbf{L} \subset \mathbf{K}_S$; (ii) \mathbf{L}/\mathbf{F} is Galois. Suppose that $\Delta = \operatorname{Sym}_d$ is the symmetric group on d letters (d > 3, (d!, p) = 1). Suppose moreover that \mathcal{G}_1 is of p-rank d and the action of Δ on \mathcal{G}_1 is the permutation action on a set of d letters. In others words, $\chi(\mathcal{G}_1) = \mathbf{1} + \varphi$, where φ is the character of the standard representation of Sym_d and where $\mathbf{1}$ is the trivial character. Then the pro-p-group \mathcal{G} is not uniformly powerful.

Proof. The representation φ is absolutely irreducible, and moreover $\bigwedge^2(\varphi)$ is still irreducible (see for example [4], §3). Then $\bigwedge^2(\mathcal{G}_1) = \varphi + \bigwedge^2(\varphi)$ does not contain 1, and so, by Theorem 1, \mathcal{G} is not uniformly powerful. \diamond

2.4. The cyclic case.

One has to compare all of our results with the following result due to Boston:

Theorem 12 (Boston). Let \mathbf{K}/\mathbf{F} be a cyclic extension of prime order $l \neq p$. Let \mathbf{L}/\mathbf{F} be an unramified pro-p-extension such that \mathbf{L}/\mathbf{F} is Galois. If the p-class group of \mathbf{F} is trivial then \mathcal{G} is not uniformly powerful.

In other words, when Δ is cyclic of prime order $\neq p$, Boston has proved that the representation of \mathcal{G}_1 necessarily contains the trivial representation.

Suppose that Δ is generated by σ of order n prime to p. The absolutely irreducible characters φ_i of $\mathbb{Q}_p[\Delta]$ are of degree 1 defined by: $\sigma \cdot \zeta_n = \zeta_n^{\varphi_i(\sigma)}$, where ζ_n is a primitive nth root of unity and where $\varphi_i(\sigma) \in \mathbb{Z}/n\mathbb{Z}$.

Let M be an $\mathbb{F}_p[\Delta]$ -module, and let

$$A(M) = \{ \langle \varphi_i, \chi(M) \rangle \ \varphi_i(\sigma), \ i = 0, \cdots, n-1 \}$$

be the multiset of elements of $\mathbb{Z}/n\mathbb{Z}$ corresponding to the decompositon of the Δ -module M (see §2.1).

Definition 13. If $A = \{a_0, \dots, a_s\}$ is a multiset of elements of $\mathbb{Z}/n\mathbb{Z}$, we denote the multiset $\{a_i + a_j, i < j\}$ of $\mathbb{Z}/n\mathbb{Z}$ by $\bigwedge^2 A$.

With the properties developed in section §2.1, one deduces easily the following proposition:

Proposition 14. Suppose M is an $\mathbb{F}_p[\Delta]$ -module and let A(M) be the multiset associated to the Δ -action on M. Then $\bigwedge^2 A(M)$ is the multiset associated to the Δ -module $\bigwedge^2 (M)$.

Hence, as corollary of Theorem 1, one obtains:

Corollary 15. Let $A(\mathcal{G}_1)$ be the multiset of $\mathbb{Z}/n\mathbb{Z}$ associated to the Δ -decomposition of \mathcal{G}_1 . If the multiset $A(\mathcal{G}_1)$ is not contained in $\bigwedge^2 A(\mathcal{G}_1)$, then \mathcal{G} is not uniformly powerful.

When n is a prime number l, the condition of this corollary does not necessarily imply that 0 is in $A(\mathcal{G}_1)$. (I thank Y. Bilu for this remark). In other words, it does not imply Boston's theorem 12.

Corollary 16. Suppose that Δ is of prime order $l \neq p$. Let $A(\mathcal{G}_1) = \{a_0, \dots, a_s\}$ be the multiset associated to \mathcal{G}_1 coming from the action of Δ . Suppose that: $\forall i \neq j$, $a_i + a_j \neq 0$. Then, \mathcal{G} is not uniformly powerful.

Proof. With these conditions, 0 is not in $\bigwedge^2 A(\mathcal{G}_1)$ and so Boston's theorem gives the result. \diamond

Remark 17. The conditions of this corollary should be compared to the conditions of [8].

2.5. The CM-case. In this section we assume p > 2. Before giving the result that we need, let us fix some notation. For a finite extension L/K of number fields, put

$$\mathcal{E}(S, \mathbf{L}/\mathbf{K}) = \mathcal{E}_{\mathbf{K},S} / (\mathcal{E}_{\mathbf{K},S} \cap N_{\mathbf{L}/\mathbf{K}}(\mathcal{L}_S) \cdot \mathcal{N}(\mathbf{L}/\mathbf{K})^p)$$

where

- $\mathcal{E}_{\mathbf{K},S} = \{x \in \mathbb{Z}_p \otimes E_{\mathbf{K}}, x \equiv 1 \mod v, \forall v \in S\}, E_{\mathbf{K}} \text{ being the group of units of } \mathbf{K};$
- $\mathcal{L}_S = \{x \in \mathbb{Z}_p \otimes \mathbf{L}^{\times}, x \equiv 1 \mod v, \forall v \in S\}$
- $\mathcal{N}(\mathbf{L}/\mathbf{K}) = \{x \in \mathbb{Z}_p \otimes \mathbf{K}^{\times}, x \equiv 1 \mod v, \forall v \in S\} \cap \mathcal{N}_{loc}$, where \mathcal{N}_{loc} is the group of elements of \mathbf{K}^{\times} that are local norms at every place of \mathbf{K}
- Tor $(\mathcal{E}_{\mathbf{K},S})$ the group of the *p*th roots of unity in $\mathcal{E}_{\mathbf{K},S}$. In particular, if S is not empty, Tor $(\mathcal{E}_{\mathbf{K},S}) = \{1\}$.

In the appendix of his book [6], Gras computes the relations of the group \mathcal{G}_S . His strategy is to study the inflation map Inf:

$$H^2(\mathcal{G}_S/H, \mathbb{F}_p) \xrightarrow{\operatorname{Inf}} H^2(\mathcal{G}_S, \mathbb{F}_p),$$

where H is a small open subgroup of \mathcal{G}_S . He obtains:

Proposition 18 (Gras, [6], Appendix, theorem 3.7). For a sufficiently large finite extension L/K inside K_S/K , the following sequence is exact:

$$1 \longrightarrow \mathcal{E}(S, \mathbf{L}/\mathbf{K}) \longrightarrow H_2(\mathcal{G}_S, \mathbb{F}_p) \longrightarrow \mathcal{G}_S^{ab}[p] \longrightarrow 1$$

Now let \mathbf{K}/\mathbf{F} be a finite Galois extension of degree prime to p and with Galois group Δ . Let S be a finite set of places of \mathbf{K} prime to p. Assume moreover that S is Δ -stable. Then \mathbf{K}_S/\mathbf{F} is a Galois extension. Hence in the above proposition, we can assume that \mathbf{L}/\mathbf{F} is a Galois extension. In this case, the short sequence of Proposition 18 is a sequence of Δ -modules.

Lemma 19. The character of the Δ -module $\mathcal{E}(S, \mathbf{L}/\mathbf{K})$ is less than

$$-\mathbf{1} + \chi(\operatorname{Tor}(\mathcal{E}_{\mathbf{K},S})) + \sum_{v \in Pl_{\infty}} \operatorname{Ind}_{D_{v}}^{G} \mathbf{1},$$

where Pl_{∞} is the set of archimedean places of **F**, D_v is the decomposition group of v in **K**/**F** and **1** is the trivial character.

Proof. First note that $\mathcal{E}(\mathbf{K}, S) \subset \mathcal{N}_{loc}$ (for the archimedean places, recall that we have assumed that p > 2). Then the group $\mathcal{E}(S, \mathbf{L}/\mathbf{K})$ is a quotient of $\mathcal{E}_{\mathbf{K},S}/\mathcal{E}_{\mathbf{K},S}^p$. Now, the group $\mathcal{E}_{\mathbf{K},S}$ is of finite index in $\mathbb{Z}_p \otimes E_{\mathbf{K}}$. Hence, in the semi-simple case, the character of $\mathcal{E}_{\mathbf{K},S}/\mathcal{E}_{\mathbf{K},S}^p$ can be computed by the Dirichlet map, and, up to *p*th roots of unity, it is the same as the group of units $E_{\mathbf{K}}$ of \mathbf{K} (see [7] §6). \diamond

Now we specialize to the situation where Δ is of order 2.

Theorem 20. Assume p > 2. Let \mathbf{K}/\mathbf{F} be a quadratic extension. Assume that S is $\operatorname{Gal}(\mathbf{K}/\mathbf{F})$ -stable. Let t be the number of archimedean places of \mathbf{F} which split completely in \mathbf{K}/\mathbf{F} . If S is empty and, \mathbf{K} contains μ_p but \mathbf{F} does not, let $\delta_p(S) = 1$, otherwise, let $\delta_p(S) = 0$. Let

$$d(\mathcal{G}_S) = d^+ + d^-$$

be the decomposition of the generator rank of \mathcal{G}_S according to the action of $\operatorname{Gal}(\mathbf{K}/\mathbf{F})$. If

$$d^+d^- > d^- + t + \delta_p(S),$$

then \mathcal{G}_S is not uniformly powerful.

Proof. By Proposition 18, the rank of the minus part of $H_2(\mathcal{G}_S, \mathbb{F}_p)$ is less than d^- plus the rank of the minus part of $\mathcal{E}(S, \mathbf{L}/\mathbf{K})$. By Lemma 19, the minus part of $\mathcal{E}(S, \mathbf{L}/\mathbf{K})$ is of *p*-rank less than $\delta_p(S) + t$. Then, the minus part of $H_2(\mathcal{G}_S, \mathbb{F}_p)$ is of *p*-rank less than $d^- + \delta_p(S) + t$.

Suppose now that \mathcal{G}_S is uniformly powerful. Then $\bigwedge^2((\mathcal{G}_S)_1)$ is isomorphic to $H_2(\mathcal{G}_S, \mathbb{F}_p)$. Moreover, the minus part of $\bigwedge^2((\mathcal{G}_S)_1)$ is exactly of rank d^+d^- and then in this case the minus part of $H_2(\mathcal{G}_S, \mathbb{F}_p)$ is of rank d^+d^- which contradicts the initial inequality. \diamond

As corollary, one find the result of Wingberg [12] given in the introduction:

Corollary 21 (The CM-case). Assume p > 2. Let **K** be a CM-field with maximal totally real subfiel **F**. Assume that S is $\operatorname{Gal}(\mathbf{K}/\mathbf{F})$ -stable. If $d^+d^- > d^- + \delta_p(S)$, then \mathcal{G}_S is not uniformly powerful.

Proof. In this case t = 0. \diamond

Acknowledgements

The ideas leading to this article were first developed during my visit to the University of Massachusetts, Amherst, in January 2005. I thank Farshid Hajir for his help and his encouragement. I also thank Thong Nguyen Quang Do and Nigel Boston for their interest in this work.

References

- [1] N. Boston, Some cases of the Fontaine-Mazur conjecture, J. Number Theory 42 (1992), 285-291.
- [2] N. Boston, Some cases of the Fontaine-Mazur conjecture II, J. Number Theory 75 (1999), 161-169.
- [3] J.D. Dixon, M.P.F. Du Sautoy, A. Mann and D. Segal, Analytic Pro-p-Groups, 2nd Edition, Cambridge studies in advanced math. 61, Cambridge Univ. Press, 1999.
- [4] W. Fulton and J. Harris, Representation Theory, GTM 129, 1991.
- [5] J.-M. Fontaine et B. Mazur, Geometric Galois representations, Elliptic curves, modular forms and Fermat's last theorem, Internat. Press, Cambridge, MA, 1995.
- [6] G. Gras, Class field Theory, from theory to practice, SMM, Springer, 2005.
- [7] G. Gras, Théorèmes de réflexion, J. Th. des Nombres de Bordeaux 10 fasc. 2 (1998), 399-499.
- [8] J. B. Holden, On the Fontaine-Mazur conjecture for number fields and an analogue for functions fields, J. Number Theory **81** (2000), 16-47.
- [9] M. Lazard, Groupes analytiques *p*-adiques, IHES publ. math. 26 (1965).
- [10] J.-P. Serre, Linear representations of finite groups, GTM 42, 1977.
- [11] P. Symonds, T. Weigel, Cohomology of p-adic analytic groups, in "New horizons in pro-pgroups", M. du Sautoy, D. Segal, A. Shalev, Progress in Math. 184, 2000.
- [12] K. Wingberg, On the Fontaine-Mazur conjecture for CM-fields, Compositio Math. 131 (2002), 341-354.

Department of Mathematics/Computer Science, University Toulouse 2, 5, Allées Antonio-Machado, 31058 Toulouse Cedex 9

E-mail address: maire@univ-tlse2.fr