COHOMOLOGY OF NUMBER FIELDS AND
ANALYTIC PRO-p-GROUPS

by
Christian Maire

Abstract. — In this work, we are interested in the tame version of the
Fontaine-Mazur conjecture. By viewing the pro-p-proup Gg as a quotient
of a Galois extension ramified at p and .S, we obtain a connection between
the conjecture studied here and a question of Galois structure. Moreover,
following a recent work of A. Schmidt, we give some evidence of links
between this conjecture, the étale cohomology and the computation of
the cohomological dimension of the pro-p-groups Gg that appear.
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1. Introduction

Let us fix an algebraic closure Q of Q.
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Let K be a number field and let p be a prime number. Let S be a finite
set of places of K. Denote by Kg the maximal pro-p-extension of K
unramified outside S. Put Gg = Gal(Kg/K).

For a place v of K, denote by K, the completion of K at v. Let G, :=
Gal(K,/K,) be the absolute Galois group of K, and let I, C G, be the
absolute inertia group of K,.

In this work, we study the structure of the group Gg. This is related
to a famous conjecture due to Fontaine and Mazur |6]. This conjecture
predicts which p-adic extensions of number fields come from algebraic
geometry. More precisely. Let p : Gk — Gl1,(Q,,) be a continuous p-adic
representation of Gk. Suppose: (i) p is unramified outside a finite set S
of places of K (ii) for all v|p, the representation p, := p|g, is potentially
semi-stable. Then p should come from “geometry”: p should correspond
to the action of Gk on a subquotient of an étale cohomology group of an
algebraic variety over K, twisted by Q,(j).

Here, we are interested in the particular case where the ramification
is potentially tame. In this case, Fontaine and Mazur conjecture the
following as “a consequence” of their philosophy:

Conjecture 1.1 (Fontaine and Mazur, [6|, conjecture 5a)
Suppose that the characteristic of the residue field k, of each place v of S
is different from p. Then, every p-adic analytic quotient of Gg is finite.

Many authors (Boston [2], [3], Hajir [9], Wingberg [27] ...) have con-
tributed to the study of conjecture 1.1.

In section 2, we develop, in the context of the conjecture 1.1, the p-adic
analytic point of view. In particular, we show how the question of the
knowledge of the cohomological dimension of the groups Gg is connected
to conjecture 1.1. In section 3, we go back to the recent results of Labute
[13] and Schmidt [19], [20], [22], [23]. Recall that Labute gave for the
first time some examples of groups Gg of cohomological dimension 2, for
S prime to p. Schmidt extended the work of Labute by showing that
the cohomology of the pro-p-groups in question coincide with some étale
cohomology. We then give some connections linking the point of view of
Schmidt and the conjecture 1.1.

In section 4, we compare the groups Gg with the groups G/, where S’ =
S U S, S, being the set of all places of K above p. More precisely, let



H = Gal(Kg /Kg) be the closed normal subgroup of Gs generated by
all inertia groups of all places of S\ S. The quotient X := H® = H /H®

is a finitely generated Z,[[Gs|]-module. We then prove the following:

Theorem 1.2. — Assume Leopoldt’s conjecture for the prime p. If the
Zy|[Gs]]-module X is free, then the cohomological dimension of Gg is at
most 2.

The proof is inspired by some works of Brumer [4]|, Nguyen [18],
Neukirch-Wingberg-Schmidt [17] ....

Then, by using some observation about the structure of analytic pro-p-
groups of section 2, we obtain a connection between the conjecture 1.1
and the question of freeness of the Z,[[Gs|]-module X"

Corollary 1.3. — Assume SNS, = 0. If the Z,[[Gs]]-module X is free,
then Gs s not p-adic analytic.

To finish, we look at the examples of Labute in [13] and Vogel in [26]. In
these cases, the groups Gg are of cohomological dimension 2 and then are

not p-adic analytic. We prove here that for theses examples, the module
X is Z,[[Gs]]-free.

Notations. If M is a module over Z,, we denote by d,M the dimension
over [, of F, ®z, M, and by rkz, M the dimension over Q, of Q, ®z, M.

2. Gs and analytic structure

2.1. On analytic pro-p-groups. — The main references for this part
are: Lazard|14|, Dixon, Du Sautoy, Segal, Mann [5], ...

Definition 2.1. — A topological group G is p-adic analytic if G has a
structure of p-adic analytic manifold for which the morphism G x G —
G : (x,y) — zy~ ! is analytic.

Example 2.2. — A p-adic analytic group G is of dimension 0 if and
only if G is finite.

A p-adic analytic group G is of dimension 1 if and only if there exists an
open subgroup il of G isomorphic to Z,.

Now let G be a pro-p-group of finite type. Denote by P;(G) the subgroups
of the p-lower central series of G :

P(G) =G, Fial(9) = F(G)’19, P(G)],



which is a sequence of closed subgroups of G. Denote by G; the quotient

G/G%1G,G] = G/ P(G).

Definition 1. — The pro-p-group G is uniformly powerful if:
(i) G/Gr (for p=2, G/G*) is abelian.
(i) for alli, #P;(G)/Piy1(G) = #G/P2(9)

An uniformly powerful pro-p-group G is p-adic analytic and the study of
p-adic analytic group can be done via this family of pro-p-groups:

Theorem 2.3 ([5]). — Let G be a p-adic analytic group. Then G has
an open uniformly powerful subgroup.

If G is uniformly powerful, the cohomological dimension of G is equal
to its analytic manifold dimension. Moreover, the cohomology groups
H'(G,F,) are isomorphic to the exterior product A'H(G,F,). Hence,
for a uniformly powerful pro-p-group G, the p-rank is equal to the co-
homological dimension ¢d(G) of G and the Euler-Poincaré characteristic

x(G) = Z(—l)idei(g, F,) of G is equal to zero.

Proposition 2.4. — Let G be a uniformly powerful group of dimension
2. Then, there exists a surjective morphism: G — 7Z,.

Proof. — Indeed, in this case, one has: d,H'(G,F,) = 2d,H*(G,F,) = 2.
The short exact sequence
1—F, —Q/Z, L)QP/ZP — 1
gives
1=d,H"(G,F,) — d,H*(G,F,) < ks G*.
%

Corollary 2.5. — Let G be a p-adic analytic group of dimension 2.
There exists an open subgroup 3k of G, for which the Z,-rank of U is not
trivial.

2.2. A reformulation of the conjecture 1.1. — We can give a refor-
mulation of Conjecture 1.1 in terms of dimension of the analytic manifold.

Congecture 2.6 (C,). — Let K be a number field and S be a finite set
of places of K. Let Kg be the maximal pro-p-extension of K unramified
outside S. Put Gg = Gal(Kg/K). Assume that for all places v in S, k,



is of characteristic different from p. Let r > 0 be an integer. Then there
s no p-adic analytic quotient of Gs of dimension r.

2.3. Conjecture C;. — The abelian version of the conjecture 1.1 is
controlled by Class field theory. More precisely, some classical calcula-
tions allow to show the following:

Proposition 2.7. — (i) The prop-p-group Gg is finitely generated.

(i) If SN S, =0, then G := Gs/[Gs, Gs| is finite.

(iii) If S contains all places of K above p, then the Z,-rank of G¥ is at
least o + 1, where (r1,79) is the signature of K. Leopoldt’s conjecture
asserts the equality.

We immediately obtain:
Proposition 2.8. — Conjecture C is true.

Proof. — A p-adic analytic group G of dimension 1 has an open subgroup
U with 4 ~ Z,,. Suppose that G is the Galois group of an extension L/K,
unramified outside S, with SN S, = 0. Put F = LY. Then Fg = Kg,
where Kg is the maximal pro-p-extension of F unramified oustide S,
and where Sg is the set of places of K above S. Then Gal(Fg/F)" — Z,
which contredicts (ii) of Proposition 2.7. ¢

2.4. The importance of (). — In the context of conjecture 1.1,
proposition 2.8 is important for an another reason. It allows one to
prove the following fundamental example issuing from geometry:

Let X/K be a smooth projective variety over K. Let

H, (X, Q) = Q, ®z, lim H,,(X,Z/p"Z),

be the ith etale cohomology group of X := X/K with coefficients in Qp.
Put:
hij(X) = He (X, Q) (5),

the twist of H,(X,Q,) by Q,().
This group h; ;j(X) is a finite-dimensional Q,-vector space on which acts
the absolute Galois group Gk of K. This action gives a Galois represen-
tation of Gk:

P Gx — Gln(Qp) = Aut(h;(X)).
Definition 2.9. — A Galois represention p of Gk is potentially unram-
ified at p, if for all v|p, p(I,) is finite.



One has the following result from a paper of Kisin-Wortmann [11]:

Theorem 2.10. — Suppose that the Galois representation
p:Ox — Aut(Hét(X, Q) (7))
is potentially unramified at p. Then, the image p(Gx) is finite.

Let us to show why C; (in fact Proposition 2.7) appears in the proof.
The crucial fact in the proof of Theorem 2.10 is a variation of places v with
(-adic cohomology, p-adic cohomology and isomorphisms of comparison
of the different types of cohomology. Denote by S the set of places of K
at which: p is ramified; or X has bad reduction. We add to S the places
above p and infinite places. This final set S is finite. Let v ¢ S and
denote by o, the geometric Frobenius at v. Let us consider the action of
o, on h; j(X) and let Ay, be the eigenvalues of o,. Thanks to the facts
that the Hodge-Tate weights of h; ;(X) are zero, the \;, are integers
such for all isomorphisms ¢ : Q — C, we get that |¢(\,)| = 1. Hence,
the \j, are some roots of the unity and then by a scalar extension L /K,
the image of pjr, is unramified at p and unipotent. To conclude, an easy
lemma issues from Proposition 2.7:

Lemma 2.11. — Suppose S finite and such SN S, = 0. Let H be a
quotient of Gg with H C Gl,(Q,,) and such that H is unipotent. Then
H is finite.

Proof. — The group H is solvable. Moreover, the commutator series is a
sequence of closed subgroups of H. The successive quotients are abelian
and then finite by Proposition 2.7. One deduces that H is finite. ¢

For more details, we refer to the papers of Kisin-Wortmann [11] and
Kisin-Lehrer [10].

2.5. Conjecture Cy. — As for (1, the conjecture C5 is deduced from
class field theory.

Proposition 2.12. — Conjecture Cs is true.

Proof. — Let L/K be a Galois extension in Kg/K, where S is such that
SN S, =10. Suppose that the group G := Gal(L/K) is p-adic analytic of
dimension 2. By corollary 2.5, there exists an open subgroup 4 of G such
that % has a non trivial Z,-rank which is impossible by Proposition 2.7.

O



2.6. Conjecture ('3 and just infinite pro-p-groups.—

Definition 2.13. — A pro-p-group G is just infinite if it is infinite but
every proper quotient of G is finite.

By Zorn’s lemma, every infinite finitely generated pro-p-group has a just
infinite quotient.

Proposition 2.14. — Suppose that all places in S are prime to p. Let G
be a quotient of Gs. Suppose that G is infinite of cohomological dimension
at most 3. If G is not just infinite, then G is not p-adic analytic.

Proof. — Suppose that G is p-adic analytic. The conjectures (C) and
(C3) being true, one can assume that cd(G) = 3. The pro-p-group G
being not just infinite, there exists a proper, closed and distinguished
subgroup N such that G/N is infinite. As G is torsion-free, the analytic
subgroup N is of cohomological dimension k& € {1,2,3}. The analytic
quotient G/N has dimension 3 — k < 2, i.e. 1 or 2 (because G/N is
infinite), which contradicts (C}) and (Cy). ¢

Corollary 2.15. — Let T C S be two finite sets of places of K, with
(S,p) = 1. Suppose: (i) #G¥ < #G¥; (ii) Gr is infinite; (iii) the coho-
mological dimension of Gs is at most 3. Then Gg 1s not p-adic analytic.

Proof. — The inequality #G% < #G2 shows that at least one place of
S\T is ramified in Kg/K. So K¢ # K and consequently Gr is a proper
quotient of Gg. In particular, Gg is not just infinite. By Proposition 2.14,
Gs is not p-adic analytic. ¢

3. Gs and étale cohomology

Let S be a finite set of places of K. Recall that Kg is the maximal
pro-p-extension of K unramified outside S; put Gg = Gal(Kg/K).
Recall that analytic pro-p-group are virtually of finite cohomological di-
mension. Then, in the context of the conjecture 1.1, it seems natural to
ask the following question:

Question 3.1. — Suppose SN S, = 0. Is the pro-p-group Gs virtually
of finite cohomological dimension ?

When S, C 5, the following is well-known (see for example [8], [17] ...) :



Theorem 3.2. — Let > 2 and suppose that S contains all the places
above p. Then the cohomological dimension of Gg is 1 or 2.

For p = 2, see a work of Schmidt [21].

When S contains no places above p, Labute, in [13], has recently given
some examples for which the cohomological dimension of Gg is 2. For
the mixed case (i.e SN S, # 0) and a different approach, see for example
[16] ...

Remark 3.3. —
(i) Suppose S prime to p. Then Gg can not be free and if cd(Gg) = 2,
then the Principal Ideal Theorem shows that the strict cohomolog-
ical dimension of Gg is 3.
(ii) If S, C S, under the Leopoldt’s conjecture along Kg/K, the strict
cohomological dimension of Gg is 2 (see for example [17], chapter
I1).
(iii) Recently, in the direction of question 3.1, Schmidt shows the follow-
ing [22]: given a finite set .S, there exists a finite set 7" of places of
K, T NS, =0, such that cd(Gsur) = 2.

3.1. The results of Schmidt. — In [19], Schmidt expands on the
work of Labute [13]. He proves that the examples of the groups Gg given
by Labute have a cohomology related to the étale cohomology of certain
schemes.

Let 4 be an open subgroup of Gg. Denote by K& the maximal subfield
of Ky fixed by 4. Put Spec Oy \ S := Spec(Ok,) \ Sky, where Sky is
the set of places of K& above the places of S.

Let M be a torsion Gg-module. We consider M as the constant sheaf over
Spec Oy \ S. Denote by H!,(Spec Oy \ S, M) the ith étale cohomology
group of the sheaf M and put

Hét(X(KS),M) = lim H;t(Spec Oy \ S, M),
i

the inductive limit being on open subgroups i of Gg with ﬂil = {1}.
4

The spectral sequence H*(Gs, (H., (X (Kg), M)) = H’7(Spec Ok \
S, M), shows the existence of a morphism

¢2(M> : Hl(gs,M) — H;t(Spec OK\S, M)



As shown in [19], the study of this morphism is related to the case where
M =TF,. Hence we define:

Definition 3.4. — The pro-p-group Gg is cohomologically étale if for
all ¢ > 0, the morphism ¢; := ¢;(F,) is an isomorphism.

Remark 3.5. — When ¢; is an isomorphism for all 7, following Schmidt
in [20], the scheme Spec Ok \ S is called K (7, 1).

Question 3.6. — Suppose the pro-p-group Gs infinite. In which cases,
Gs s cohomologically étale?

Questions 3.1 and 3.6 are related by the following Theorem:

Theorem 3.7 ([1] or [20]). — Suppose Gs cohomologically étale. For
p = 2, suppose moreover that K s totally imaginary. Then the cohomo-
logical dimension of Gg is at most 3. Moreover, Gg is of cohomological
dimension at most 2 when S is not empty or when Kg/K does not con-
tain the pth roots of unity.

Proof. — The first part of this Theorem can be found in SGA [1] (Propo-
sition 6.1). The second part is a calculation of Schmidt in [20]. ¢

From now on, we assume p > 2 or K totally imaginary.

3.2. Some consequences of a spectral sequence. — First recall
two lemmas:

Lemma 3.8. — One has:
Helt(X(KS)7Fp) =1.

Proof. — The group H:(X (Ks),F,) classifies the Galois étale covers of
degree p of X (Kg). By maximality of X (Kg), this group is trivial. ¢

Hence, the morphism ¢ is an isomorphism. When Gg is infinite, one has
more:

Lemma 8.9 (Schmidt, [20]). — If Gs is infinite, then
H3(X(Ks),F,) = 1.
These lemmas applied to the spectral sequence
Ey = H'(Gs, (H}(X(Ks). F,)) = E™ = Hy7(Spec Ok \ S, F,)

allow us to show:



Proposition 3.10. — Assume Gg infinite. Then, the following long ex-
act sequence holds:

HQ(gSa Fp)<—> HeZt(SpeCOK \ S, Fp) - Hth(X(KS)7 Fp)gs

|

H3(g57 Fp)

Hl(g& Hth(X(KS)7 Fp)) ~ Hgt(SpeCOK \ S, Fp)

|

H4(g57 Fp)

Proof. — For the surjective map H'(Gs, H3(X (Ks),F,)) - H*(Gs,F,),
thanks to Lemma 3.9, it suffices to note that

B~ o
= R0
= B}
C E*'*=1 (Theorem 3.7).

¢

One could introduce the notion of pro-p-group virtually cohomologically
étale. But in fact, it is not necessary:

Corollary 3.11. — (i) Suppose that the pro-p-group Gs is virtually co-
homologically étale. Then Gg is cohomologically étale.

(11) If Gg is cohomologically étale, then for all open subgroup i of Gg, 4
15 cohomologically étale.

Proof. — (i) The pro-p-group Gs being virtually cohomologically étale,
it means that there exists an open subgroup i of Gs such that for all i,
the morphisms ¢; ¢ are isomorphisms, where

¢ig: H' (U, F,) — H',(Spec Ok \ S, Fp).

Then, by using the long exact sequence of Proposition 3.10, one deduces
the triviality of HZ(X (Kgs),F,)*, i.e. H3(X(Ks),F,) =1 (remark that
31 is not trivial !). It suffices to take the same exact sequence with Gg
instead of 4. Remark that the cohomological dimension of Gy is then at
most 3.

(ii) - clear. ¢

10



3.3. The Euler-Poincaré characteristic. — Let i be an open sub-
group of Gs. Denote by y,, () the Euler-Poincaré characteristic truncated
at the order n, associated to the Galois cohomology groups H' (4, F,) of
i and denote by x.:(4) the Euler-Poincaré characteristic associated to
the étale cohomology groups HY,(Spec Oy \ S,F,):

n

Xn () = Z(_l)idei(ﬂv Fp),

i=0
Xer(1) = Y _(=1)'dyH,(Spec Oy \ S, ).
i>0
By Class Field Theory, one knows an upper bound for the p-rank of
H?*(Gs,F,). When S contains no places above p, an exact calculation

of this rank is at the heart of the construction of asymptotically exact
extensions. In all cases, one has:

x2(Gs) < =6s+r1 + 12+ 9,5,

where 65 = >, g [Ko 0 @], and &5 is equals to 1 when K contains

the p-roots of the unity and S is empty, 0 otherwise (see for example |7],
Appendix).
Recall a result that appears in [20]:

Proposition 3.12 (Schmidt). — Suppose p > 2 or K be a totally
imaginary field . One has:

Xet(Gs) = =05 + 11 + 72
In particular, for 4 Co Gg, the following holds:
Xet(u) = (gS :u)Xet(gS>'

By comparing the Euler-Poincaré characteristics, one obtains a criteria
for Gs to be cohomologically étale:

Proposition 3.13. — One has (for Gs # 1):

x3(Gs) < Xet(Gs).

When cd(Gs) < 2 and 6,5 = 0, the equality holds if and only if Gg is
cohomologically étale.

11



Proof. — One knows:

XB(gS) XQ(gS) - de3(gSa Fp)
(=05 +7r1+72) +0ps — de3(QS> Fp)

Xet(gS) + 6p,5 - deg(gSa Fp)

Then x3(Gs) < xet(Gs) + 1 and x3(Gs) < Xet(Gs) with the eventual ex-
ception: H*(Gs,F,) =1 and d, s = 1. In this last case, the cohomological
dimension of Gg is at most 2 and this one of Spec Ok \ S is at most 3.

Suppose: X2(Gs) = Xet(Gs) + 1. Then for all open subgroup 4 of Gg, one

has:
xs(t) = xa(U)

= [Gs : Y] x2(Fs)

= [Gs : U] (xet(Gs) + 1)

= Xet(Hh) + [Gs : 4]
which contradicts the inequality y3(8) < et (H) + 1.
If 6, 5 = 0, then H2,(Spec Oy\S,F,) = 0. Hence, when the cohomological
dimension of Gg is at most 2, by comparing the dimensions, the morphism
¢ is an isomorphism. ¢

I I

The next proposition shows that, except in one situation, Gg can not be
cohomologically étale and p-adic analytic:

Proposition 3.14. — When és # 11 + r2, a cohomologically étale pro-
p-group Gs is never p-adic analytic. In particular, when SN S, = 0.

Proof. — Suppose that Gg is cohomologically étale. Then the cohomo-
logical dimension of Gg is at most 3 and, by proposition 3.12, x.(Gs) =
ds — (r1 + r2). But, if Gg is p-adic analytic, then for any open uniformly
powerful subgroup i of Gg, x(Gs) = [Gs : Y]x (L) = 0. O

3.4. The mixed case. — To finish this section, we want to find some
examples that illustrate proposition 3.13.
Let S C S, be a non-empty subset of S,. Denote by ¢g the morphism:

@SZZP(XJEK—)HU;,
veS

U! being the principal local units at v. When S = S, Leopoldt’s con-
jecture predicts the injectivity of the map pg.

Suppose now that S is sufficently “large” i.e. such that Kg/K contains
a Zy-extension K /K. Put Hg := Gal(Ks/K) and Vs := HZ. The

12



pro-p-group Vs is a Z,[[T]]-module. Let (pg, s, As) be the Iwasawa
invariants of ).

Then, let us give some explicit conditions which imply that the cohomo-
logical dimension of Gg is at most 2 (see for example, [17], [16]...):

Proposition 3.15. — If g is injective and if us = 0, then the coho-
mological dimension of Gs is at most 2.

Now, when g is injective, the value of x5(Gs) is known (see for example
[16], section 3):

Proposition 3.16. — If pgs is injective, then x2(Gs) = dg — (11 + 7r2).
Let us give some examples.

Corollary 3.17. — (i) Let K = Q(v/—d) be an imaginary quadratic
field, where d is square free. Let p be a splitting prime in K/Q and put
S = {p}, where p is a place of K above p. Then Gg is cohomologically
étale.

(ii) The examples of |16]. Let K = Q(6), where 0 is a root of x* + a3 +
812 —4x + 2 = 0. The signature of this field is (0,2). Put p = 2 and
S ={(0)}. Here (0) is a prime ideal above 2 with index of ramification
over %Q equals to 3. Note that K has two primes above 2. Then the coho-
mological dimension of Gg is 2, x2(Gs) = —1, and Gg is cohomologically
étale.

Proof. — In these two cases, ug = 0 and g is injective. Hence x2(Gg) =
11+ 719 — 05 = Xet(Gs). The groups Gg being of cohomological dimension
at most 2, one concludes with Proposition 3.13. ¢

4. Gg and wild ramification

For all this section, we assume that Gg is not trivial.

4.1. The setup. — Let S, be the set of all places of K above p. Put
S" = SUS,. (A priori, S can contain some places above p.) Let Ko
be the maximal pro-p-extension of K unramified outside S’'. Put Gg =
Gal(Kg /K). For the next, we will consider only the situation where
p > 2 or where K is totally imaginary. In this case, the cohomological
dimension of Gg is 1 or 2.

The group Gg is a quotient of Gg.. Let H be the closed and normal
subgroup of G generated by the inertia groups of all places v € S’\ S in

13



Kg /K. Then, Go/H ~ G. Put X = H%. Then, it is well-known that
X is a compact Z,[[Gs]]-module, where Z,[[Gs]] := lim Z,[Gs/4].
p1¢

The ring Z,[[Gs]] is local (hence if M is a Z,[[Gs]]-module of finite type
which is projective then M is Z,[[Gs]]-free), and its projective dimension
is 1+ cd(Gs).

As an application of Nakayama’s lemma, one obtains:

Proposition 4.1. — The Z,[[Gs]-module X is finitely generated.

Proof. — The Hochschild-Serre spectrale sequence applied to the short
exact sequence

1—)H%gs/%gsﬁlj

shows
T Hl(gS”Fp) - Hl(H>Fp)gs - HZ(QS’FP) 7 e

As HY(Gs,F,) and H*(Gs,F,) are finite, one deduces that Xg,/p =
(H'(H,F,)9%)* is finite. Then by Nakayama’s lemma, one has the result.
O

For the same reason, one also has

Proposition 4.2. — Let 1 — R — F — Gg — 1, be a presen-
tation of Gs by a finitely generated free pro-p-group F. Then R™ :=
R/[R, R] is a finitely generated Z,[[Gs]]-module.

Next recall the following:

Proposition 4.3. — Leopoldt’s conjecture is equivalent to the triviality

of H*(Gsr, Qp/Zy).
Proof. — See for example [18]. ¢

Hence, one has a weak form of Leopoldt’s conjecture:

Proposition 4.4. — If one assumes Leopoldt’s conjecture for all num-
ber fields and the prime number p,

H*(H,Q,/Z,) = 0.
Proof. — Let F/K be a finite sub-extension of Kg/K. The extension

K /F is also the maximal pro-p-extension of F unramified outside S’. As

14



one assumes Leopoldt’s conjecture, the group H*(Gal(Kg /F) is trivial.
Then, thanks to [24], chapter 1,

HQ(Gal(KS//KS),Qp/Zp) = 11111 HQ(Gal(KS//F,Qp/Zp)) =0.

KCFCKg

O

4.2. The cohomological dimension of Gg and the structure of
X. — From now on, one assumes Leopoldt’s conjecture for all number
fields and the prime number p.

We can prove Theorem 1.2:

Proposition 4.5. — 1) If X is Z,[[Gs]]-free, then cd(Gs) < 2.
2) If cd(Gs) < 2, then the projective dimension of the Z,|[Gs|]-module X
15 at most 1.

Proof. — Let
1 w F Gs 1
1 R F Gs 1

be two presentations of the groups Gg» and Gg where F' is the free pro-
p-groups on d,(Gg) generators. This diagram induces an injective map
W — R, and by the snake lemma, one gets the exact sequence:

1 —-W —R—H — 1.

From the homology version of the Hochschild-Serre spectral sequence,
one gets:

0=H*H,Q,/Z,)" — (W) — R — X — 0,
thanks to proposition 4.4. Now recall a result of Brumer:

Proposition 4.6 (Brumer,|4|, corollary 5.3). — Let G be a finitely
generated pro-p-group (with H*(G,F,) finite). Let

1—R—F —G—1,

be a presentation of G, where F' is a free pro-p-group on d generators.
Then, the group G is of cohomological dimension at most 2 if and only if
R® is a free Z,[[G]]-module of finite type.
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As the cohomological dimension of G is at most 2, the module W
is free over Z,[[Gs]] and so (W®)y is free as Z,[[Gs]]-module: one has
Wb = 7, [[Gol]” and (W) = Z,[Gs]]"

One finally obtains the exact sequence (Nguyen, [18], theorem 1.4):

0 — Z,[[Gs])" — R® — X — 0.

Suppose first that X ~ Z,[[Gs]]". It comes:
1 — Z,[[gs]]' — R — Z,[[Gs]]" — 1

and then the module R is Z,[|Gs]]-free. By proposition 4.6, 1) holds.
Now suppose that cd(Gg) < 2. Then by proposition 4.6, 2) holds. ¢

Thanks to Cy (see section 2.5), one obtains immediately corollary 1.3.

Now, we give a criterion for X’ to be free. First, we have:

Lemma 4.7 — If the pro-p-group Gg is of cohomological dimension at
most 2, then H'(Gg, X*) = 1.

Proof. — Let F/K be a finite sub-extension of Kg/K. The cohomolog-
ical dimension of the group Gal(Kg//F) is at most 2.
For i > 3, H'(Gal(Ks /F,Q,/Z,) = 0 and then
H'(H,Qy/Zy) = lim H'(Gal(Kg /F,Q,/Z,) =0.
KCFCKg

As one assumes Leopoldt’s conjecture, thanks to Proposition 4.4, we
finally get H(H,Q,/Z,) = 0, for i > 1. Then the Hochschild-Serre spec-
trale sequence H (Gs//H, H (H,Q,/Z,)) = H"(Gs,Q,/Z,) allow us
to obtain the following long exact sequence

q' (gS, @p/Zp);> q' (gSU @p/Zp) - HI(H> Qp/Zp)gS

|

HI(QS>H1(H’QP/ZP)) D HQ(QS/>QP/ZP) =~ H2(QS>QP/ZP)

i \

H3(QS>QP/ZP) 1
and the result follows. ¢

One obtains the main result of this section (that contains Theorem 1.2).
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Proposition 4.8. — Assume cd(Gs) < 2. Suppose that the natural
morphism Tor(Ge™) — Gs®, where Tor(Gs™) is the torsion part of
Gs:™, is injective. Then the Z,[[Gs]]-module X is free.
Moreover, when X ~ Z,[[Gs]]", then r = ry + x2(Gs).

Proof. — Since X is finitely generated as Z,[[Gs]]-module, let
(1) l—N-—F —&X —1,

be a minimal presentation of X', where F = Z,[[Gs]]". Hence, X’ is free if
and only if, N =0, i.e. if and only if Ng, = 0 (by Nakayama’s lemma).
The homology version of the spectral sequence H(Gs//H, H (H,Q,/Z,)) =
H™(Gsr,Q,/7Z,) gives

(2) Hy(Gs, Zy)— Xg gab Gab.
Suppose that cd(Gs) < 2. As H3(Gs,Z,) = 0, one has

Hy(Gs, Zy) &> Ho(Gs, Zy) — Ho(Gs, Fp) — - .

Hence, Hy(Gs, Z,) is Z,-free.

If moreover the natural morphism Gg® — G¢® restricted to the torsion
part is injective, then, thanks to (2), Ay, is Z,-free.

Now passing to the Gs-homology of the sequence (1), one obtains:

1— Hy(Gs, X) Ngg ero Ags 1

Then, the map ¢ : Z; — A is an isomorphism.
But, by lemma 4.7, H;(Gs, X) = 1, and then Ng, = 1.

When X =~ 7Z,[[Gs]]", then H\(H,Z,)g; ~ Z;,. Hence taking the Z,-rank
of the dual of the exact sequence of lemma 4.7, one obtains

rky, G% — tkz, G¥ + 1 — tky, Ho(Gs, Z,) = 0
As ¢d(Gs) < 2, the group Hs(Gs,Q,/Z,) is Z,-free and thus one has
rkz, H>(Gs, Z,) — 1kz,G% = x2(Gs) — 1.

Then, by assuming Leopoldt’s conjecture (rkz, G& = r + 1), one finally
obtains:

r=7ry+ XQ(gS)~
O
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4.3. Examples. — From now on, for a place v of K, one identifies k}
with its p-part k) ® Z,, k, being the residue field of K,

Before giving some examples, one has to compute the kernel of the map:
Tor(G%) — G2. Here, Tor(G%) is the Z,-torsion part of GZ. To do this,
we use a result of Gras [7].

Proposition 4.9. — Assume SN S, = 0. The map Tor(G¥) — G is
ingective if and only if

#Tor (DypU, Bues k' /os/(Zy @ Ex)) = # (Duesk) /ps(Zy, ® Ex)) -

Proof. — Denote by I the subgroup of GZ generated by the inertia
groups of all the places in S,. Then: 1 — [ — G& — G% — 1. To
show that the map Tor(G%) — G2 is injective is equivalent to showing
that I N Tor(G&) = 1. As SN S, = 0, the maximal abelian p-extension
K% of K unramified outside S is finite, contains the p-Hilbert Class field
K*# of K and moreover

KYNK=K"nK,

where K is the compositum of all Z,-extension of K.

Tor(g2?)

Here K% is the maximal abelian pro-p-extension of K, unramified outside
S’ Of course: G2 = Gal(K%¥/K) and G% = Gal(K%/K).

Hence:
INTor(G%) = Tor(I) N Tor(GZ)

= [K%:KYK]
K% : KPK]/[KY : K]
By Theorem 2.6, chapter III of [7], the first index [K% : KHK] is
exactly #Tor (®,,U} Dues k) /ps(Z, @ Ex)), and the second index is
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well-konwn: it compares the order of a ray p-class group to the order of
the p-class group. Here it is: # (®esk)/s(Z, ® Ex)). O

Corollary 4.10. — Let us conserve the notations of section 4 (p > 2).
Let S be a finite set of places of K, SN S, =0, and such that the coho-
mological dimension of Gg is 2. Put X = H®, where H = Gal(Kg /Ks).
Then, in the two following situations, X is Z,[[Gs]]-free.
(1) K=Q.
(1) K/Q is an imaginary quadratic field (If p = 3, K., is different from
Qs(j), for vs3).

Proof. — In these situations the group Z, ® Fx is trivial. Hence, thanks
to Proposition 4.9 the result is clear if we note that for all v|p, U} has
no non-trivial p-torsion. ¢

Ezxample 4.11. — We recall that we assume Lepoldt’s conjecture.

(i) The examples of Labute (and of Schmidt) allow us to illustrate the
previous corollary. For example, let’s take p = 3 and S = {7,19, 61, 163}.
Then Labute proved that for this case, c¢d(Gs) = 2. Put §' = S U {3},
H = Gal(Kg//Kg) and X := H®. Then X is a Z,[[Gs]]-free module of
rank 1.

(ii) Thanks to the work of Vogel [26], one can give some examples with
base field K an imaginary quadratic field. Let K = Q(z). Take p = 3
and let S be the set of all places above 229 and 241. Then Vogel proved
in this case that cd(Gs) = 2. Put S’ = SU {3}, H = Gal(Kg/Kg) and
X :=H®. Then X is a Z,[[Gs]]-free module of rank 2.
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