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Abstra
t. � In this work, we are interested in the tame version of theFontaine-Mazur 
onje
ture. By viewing the pro-p-proup GS as a quotientof a Galois extension rami�ed at p and S, we obtain a 
onne
tion betweenthe 
onje
ture studied here and a question of Galois stru
ture. Moreover,following a re
ent work of A. S
hmidt, we give some eviden
e of linksbetween this 
onje
ture, the étale 
ohomology and the 
omputation ofthe 
ohomologi
al dimension of the pro-p-groups GS that appear.
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Let K be a number �eld and let p be a prime number. Let S be a �niteset of pla
es of K. Denote by KS the maximal pro-p-extension of Kunrami�ed outside S. Put GS = Gal(KS/K).For a pla
e v of K, denote by Kv the 
ompletion of K at v. Let Gv :=
Gal(Kv/Kv) be the absolute Galois group of Kv and let Iv ⊂ Gv be theabsolute inertia group of Kv.In this work, we study the stru
ture of the group GS. This is relatedto a famous 
onje
ture due to Fontaine and Mazur [6℄. This 
onje
turepredi
ts whi
h p-adi
 extensions of number �elds 
ome from algebrai
geometry. More pre
isely. Let ρ : GK → Gln(Qp) be a 
ontinuous p-adi
representation of GK. Suppose: (i) ρ is unrami�ed outside a �nite set Sof pla
es of K; (ii) for all v|p, the representation ρv := ρ|Gv

is potentiallysemi-stable. Then ρ should 
ome from �geometry�: ρ should 
orrespondto the a
tion of GK on a subquotient of an étale 
ohomology group of analgebrai
 variety over K, twisted by Qp(j).Here, we are interested in the parti
ular 
ase where the rami�
ationis potentially tame. In this 
ase, Fontaine and Mazur 
onje
ture thefollowing as �a 
onsequen
e� of their philosophy:Conje
ture 1.1 (Fontaine and Mazur, [6℄, 
onje
ture 5a)Suppose that the 
hara
teristi
 of the residue �eld kv of ea
h pla
e v of Sis di�erent from p. Then, every p-adi
 analyti
 quotient of GS is �nite.Many authors (Boston [2℄, [3℄, Hajir [9℄, Wingberg [27℄ ...) have 
on-tributed to the study of 
onje
ture 1.1.In se
tion 2, we develop, in the 
ontext of the 
onje
ture 1.1, the p-adi
analyti
 point of view. In parti
ular, we show how the question of theknowledge of the 
ohomologi
al dimension of the groups GS is 
onne
tedto 
onje
ture 1.1. In se
tion 3, we go ba
k to the re
ent results of Labute[13℄ and S
hmidt [19℄, [20℄, [22℄, [23℄. Re
all that Labute gave for the�rst time some examples of groups GS of 
ohomologi
al dimension 2, for
S prime to p. S
hmidt extended the work of Labute by showing thatthe 
ohomology of the pro-p-groups in question 
oin
ide with some étale
ohomology. We then give some 
onne
tions linking the point of view ofS
hmidt and the 
onje
ture 1.1.In se
tion 4, we 
ompare the groups GS with the groups GS′, where S ′ =
S ∪ Sp, Sp being the set of all pla
es of K above p. More pre
isely, let2



H = Gal(KS′/KS) be the 
losed normal subgroup of GS′ generated byall inertia groups of all pla
es of S ′ \S. The quotient X := Hab = H/Habis a �nitely generated Zp[[GS ]]-module. We then prove the following:Theorem 1.2. � Assume Leopoldt's 
onje
ture for the prime p. If the
Zp[[GS]]-module X is free, then the 
ohomologi
al dimension of GS is atmost 2.The proof is inspired by some works of Brumer [4℄, Nguyen [18℄,Neukir
h-Wingberg-S
hmidt [17℄ ....Then, by using some observation about the stru
ture of analyti
 pro-p-groups of se
tion 2, we obtain a 
onne
tion between the 
onje
ture 1.1and the question of freeness of the Zp[[GS]]-module X :Corollary 1.3. � Assume S∩Sp = ∅. If the Zp[[GS ]]-module X is free,then GS is not p-adi
 analyti
.To �nish, we look at the examples of Labute in [13℄ and Vogel in [26℄. Inthese 
ases, the groups GS are of 
ohomologi
al dimension 2 and then arenot p-adi
 analyti
. We prove here that for theses examples, the module
X is Zp[[GS]]-free.Notations. If M is a module over Zp, we denote by dpM the dimensionover Fp of Fp ⊗Zp

M , and by rkZp
M the dimension over Qp of Qp ⊗Zp

M .2. GS and analyti
 stru
ture2.1. On analyti
 pro-p-groups. � The main referen
es for this partare: Lazard[14℄, Dixon, Du Sautoy, Segal, Mann [5℄, ...De�nition 2.1. � A topologi
al group G is p-adi
 analyti
 if G has astru
ture of p-adi
 analyti
 manifold for whi
h the morphism G × G →
G : (x, y) 7→ xy−1 is analyti
.Example 2.2. � A p-adi
 analyti
 group G is of dimension 0 if andonly if G is �nite.A p-adi
 analyti
 group G is of dimension 1 if and only if there exists anopen subgroup U of G isomorphi
 to Zp.Now let G be a pro-p-group of �nite type. Denote by Pi(G) the subgroupsof the p-lower 
entral series of G :

P1(G) = G, Pi+1(G) = Pi(G)p[G, Pi(G)],3



whi
h is a sequen
e of 
losed subgroups of G. Denote by G1 the quotient
G/Gp[G,G] = G/P2(G).De�nition 1. � The pro-p-group G is uniformly powerful if:(i) G/Gp (for p = 2, G/G4) is abelian.(ii) for all i, #Pi(G)/Pi+1(G) = #G/P2(G)An uniformly powerful pro-p-group G is p-adi
 analyti
 and the study of
p-adi
 analyti
 group 
an be done via this family of pro-p-groups:Theorem 2.3 ([5℄). � Let G be a p-adi
 analyti
 group. Then G hasan open uniformly powerful subgroup.If G is uniformly powerful, the 
ohomologi
al dimension of G is equalto its analyti
 manifold dimension. Moreover, the 
ohomology groups
H i(G,Fp) are isomorphi
 to the exterior produ
t ∧iH1(G,Fp). Hen
e,for a uniformly powerful pro-p-group G, the p-rank is equal to the 
o-homologi
al dimension cd(G) of G and the Euler-Poin
aré 
hara
teristi

χ(G) =

∑

i

(−1)idpH
i(G,Fp) of G is equal to zero.Proposition 2.4. � Let G be a uniformly powerful group of dimension

2. Then, there exists a surje
tive morphism: Gab ։ Zp.Proof. � Indeed, in this 
ase, one has: dpH
1(G,Fp) = 2dpH

2(G,Fp) = 2.The short exa
t sequen
e
1 −→ Fp −→ Qp/Zp

p−→ Qp/Zp −→ 1,gives
1 = dpH

1(G, Fp) − dpH
2(G, Fp) ≤ rkZp

Gab.

♦Corollary 2.5. � Let G be a p-adi
 analyti
 group of dimension 2.There exists an open subgroup U of G, for whi
h the Zp-rank of Uab is nottrivial.2.2. A reformulation of the 
onje
ture 1.1. � We 
an give a refor-mulation of Conje
ture 1.1 in terms of dimension of the analyti
 manifold.Conje
ture 2.6 (Cr). � Let K be a number �eld and S be a �nite setof pla
es of K. Let KS be the maximal pro-p-extension of K unrami�edoutside S. Put GS = Gal(KS/K). Assume that for all pla
es v in S, kv4



is of 
hara
teristi
 di�erent from p. Let r > 0 be an integer. Then thereis no p-adi
 analyti
 quotient of GS of dimension r.2.3. Conje
ture C1. � The abelian version of the 
onje
ture 1.1 is
ontrolled by Class �eld theory. More pre
isely, some 
lassi
al 
al
ula-tions allow to show the following:Proposition 2.7. � (i) The prop-p-group GS is �nitely generated.(ii) If S ∩ Sp = ∅, then Gab
S := GS/[GS,GS] is �nite.(iii) If S 
ontains all pla
es of K above p, then the Zp-rank of Gab

S is atleast r2 + 1, where (r1, r2) is the signature of K. Leopoldt's 
onje
tureasserts the equality.We immediately obtain:Proposition 2.8. � Conje
ture C1 is true.Proof. � A p-adi
 analyti
 group G of dimension 1 has an open subgroup
U with U ≃ Zp. Suppose that G is the Galois group of an extension L/K,unrami�ed outside S, with S ∩ Sp = ∅. Put F = L

U. Then FS = KS,where KS is the maximal pro-p-extension of F unrami�ed oustide SF,and where SF is the set of pla
es of K above S. Then Gal(FS/F)ab ։ Zpwhi
h 
ontredi
ts (ii) of Proposition 2.7. ♦2.4. The importan
e of C1. � In the 
ontext of 
onje
ture 1.1,proposition 2.8 is important for an another reason. It allows one toprove the following fundamental example issuing from geometry:Let X/K be a smooth proje
tive variety over K. Let
H i

et(X, Qp) := Qp ⊗Zp
lim

n
←

H i
et(X, Z/pnZ),be the ith etale 
ohomology group of X := X/K with 
oe�
ients in Qp.Put:

hi,j(X) := H i
et(X, Qp)(j),the twist of H i

et(X, Qp) by Qp(j).This group hi,j(X) is a �nite-dimensional Qp-ve
tor spa
e on whi
h a
tsthe absolute Galois group GK of K. This a
tion gives a Galois represen-tation of GK:
ρi,j : GK → Glm(Qp) = Aut(hi,j(X)).De�nition 2.9. � A Galois represention ρ of GK is potentially unram-i�ed at p, if for all v|p, ρ(Iv) is �nite.5



One has the following result from a paper of Kisin-Wortmann [11℄:Theorem 2.10. � Suppose that the Galois representation
ρ : GK → Aut(H i

et(X, Qp)(j))is potentially unrami�ed at p. Then, the image ρ(GK) is �nite.Let us to show why C1 (in fa
t Proposition 2.7) appears in the proof.The 
ru
ial fa
t in the proof of Theorem 2.10 is a variation of pla
es v with
ℓ-adi
 
ohomology, p-adi
 
ohomology and isomorphisms of 
omparisonof the di�erent types of 
ohomology. Denote by S the set of pla
es of Kat whi
h: ρ is rami�ed; or X has bad redu
tion. We add to S the pla
esabove p and in�nite pla
es. This �nal set S is �nite. Let v /∈ S anddenote by σv the geometri
 Frobenius at v . Let us 
onsider the a
tion of
σv on hi,j(X) and let λk,v be the eigenvalues of σv. Thanks to the fa
tsthat the Hodge-Tate weights of hi,j(X) are zero, the λk,v are integerssu
h for all isomorphisms ι : Q →֒ C, we get that |ι(λk,v)| = 1. Hen
e,the λk,v are some roots of the unity and then by a s
alar extension L/K,the image of ρ|L is unrami�ed at p and unipotent. To 
on
lude, an easylemma issues from Proposition 2.7:Lemma 2.11. � Suppose S �nite and su
h S ∩ Sp = ∅. Let H be aquotient of GS with H ⊂ Glm(Qp) and su
h that H is unipotent. Then
H is �nite.Proof. � The group H is solvable. Moreover, the 
ommutator series is asequen
e of 
losed subgroups of H . The su

essive quotients are abelianand then �nite by Proposition 2.7. One dedu
es that H is �nite. ♦For more details, we refer to the papers of Kisin-Wortmann [11℄ andKisin-Lehrer [10℄.2.5. Conje
ture C2. � As for C1, the 
onje
ture C2 is dedu
ed from
lass �eld theory.Proposition 2.12. � Conje
ture C2 is true.Proof. � Let L/K be a Galois extension in KS/K, where S is su
h that
S ∩ Sp = ∅. Suppose that the group G := Gal(L/K) is p-adi
 analyti
 ofdimension 2. By 
orollary 2.5, there exists an open subgroup U of G su
hthat Uab has a non trivial Zp-rank whi
h is impossible by Proposition 2.7.
♦ 6



2.6. Conje
ture C3 and just in�nite pro-p-groups.�De�nition 2.13. � A pro-p-group G is just in�nite if it is in�nite butevery proper quotient of G is �nite.By Zorn's lemma, every in�nite �nitely generated pro-p-group has a justin�nite quotient.Proposition 2.14. � Suppose that all pla
es in S are prime to p. Let Gbe a quotient of GS. Suppose that G is in�nite of 
ohomologi
al dimensionat most 3. If G is not just in�nite, then G is not p-adi
 analyti
.Proof. � Suppose that G is p-adi
 analyti
. The 
onje
tures (C1) and
(C2) being true, one 
an assume that cd(G) = 3. The pro-p-group Gbeing not just in�nite, there exists a proper, 
losed and distinguishedsubgroup N su
h that G/N is in�nite. As G is torsion-free, the analyti
subgroup N is of 
ohomologi
al dimension k ∈ {1, 2, 3}. The analyti
quotient G/N has dimension 3 − k ≤ 2, i.e. 1 or 2 (be
ause G/N isin�nite), whi
h 
ontradi
ts (C1) and (C2). ♦Corollary 2.15. � Let T ( S be two �nite sets of pla
es of K, with
(S, p) = 1. Suppose: (i) #Gab

T < #Gab
S ; (ii) GT is in�nite; (iii) the 
oho-mologi
al dimension of GS is at most 3. Then GS is not p-adi
 analyti
.Proof. � The inequality #Gab

T < #Gab
S shows that at least one pla
e of

S\T is rami�ed in KS/K. So KS 6= KT and 
onsequently GT is a properquotient of GS. In parti
ular, GS is not just in�nite. By Proposition 2.14,
GS is not p-adi
 analyti
. ♦3. GS and étale 
ohomologyLet S be a �nite set of pla
es of K. Re
all that KS is the maximalpro-p-extension of K unrami�ed outside S; put GS = Gal(KS/K).Re
all that analyti
 pro-p-group are virtually of �nite 
ohomologi
al di-mension. Then, in the 
ontext of the 
onje
ture 1.1, it seems natural toask the following question:Question 3.1. � Suppose S ∩ Sp = ∅. Is the pro-p-group GS virtuallyof �nite 
ohomologi
al dimension ?When Sp ⊂ S, the following is well-known (see for example [8℄, [17℄ ...) :7



Theorem 3.2. � Let > 2 and suppose that S 
ontains all the pla
esabove p. Then the 
ohomologi
al dimension of GS is 1 or 2.For p = 2, see a work of S
hmidt [21℄.When S 
ontains no pla
es above p, Labute, in [13℄, has re
ently givensome examples for whi
h the 
ohomologi
al dimension of GS is 2. Forthe mixed 
ase (i.e S ∩Sp 6= ∅) and a di�erent approa
h, see for example[16℄ ...Remark 3.3. �(i) Suppose S prime to p. Then GS 
an not be free and if cd(GS) = 2,then the Prin
ipal Ideal Theorem shows that the stri
t 
ohomolog-i
al dimension of GS is 3.(ii) If Sp ⊂ S, under the Leopoldt's 
onje
ture along KS/K, the stri
t
ohomologi
al dimension of GS is 2 (see for example [17℄, 
hapterIII).(iii) Re
ently, in the dire
tion of question 3.1, S
hmidt shows the follow-ing [22℄: given a �nite set S, there exists a �nite set T of pla
es of
K, T ∩ Sp = ∅, su
h that cd(GS∪T ) = 2.3.1. The results of S
hmidt. � In [19℄, S
hmidt expands on thework of Labute [13℄. He proves that the examples of the groups GS givenby Labute have a 
ohomology related to the étale 
ohomology of 
ertains
hemes.Let U be an open subgroup of GS. Denote by K

U

S the maximal sub�eldof KS �xed by U. Put Spec OU \ S := Spec(OKU
) \ S

K
U

S
, where S

K
U

S
isthe set of pla
es of K

U

S above the pla
es of S.Let M be a torsion GS-module. We 
onsider M as the 
onstant sheaf over
Spec OU \ S. Denote by H i

et(Spec OU \ S, M) the ith étale 
ohomologygroup of the sheaf M and put
H i

et(X(KS), M) := lim
U
→

H i
et(Spec OU \ S, M),the indu
tive limit being on open subgroups U of GS with ⋂

U

U = {1}.The spe
tral sequen
e H i(GS, (Hj
et(X(KS), M)) =⇒ H i+j

et (Spec OK \
S, M), shows the existen
e of a morphism

φi(M) : H i(GS, M) → H i
et(Spec OK \ S, M).8



As shown in [19℄, the study of this morphism is related to the 
ase where
M = Fp. Hen
e we de�ne:De�nition 3.4. � The pro-p-group GS is 
ohomologi
ally étale if forall i ≥ 0, the morphism φi := φi(Fp) is an isomorphism.Remark 3.5. � When φi is an isomorphism for all i, following S
hmidtin [20℄, the s
heme Spec OK \ S is 
alled K(π, 1).Question 3.6. � Suppose the pro-p-group GS in�nite. In whi
h 
ases,
GS is 
ohomologi
ally étale?Questions 3.1 and 3.6 are related by the following Theorem:Theorem 3.7 ([1℄ or [20℄). � Suppose GS 
ohomologi
ally étale. For
p = 2, suppose moreover that K is totally imaginary. Then the 
ohomo-logi
al dimension of GS is at most 3. Moreover, GS is of 
ohomologi
aldimension at most 2 when S is not empty or when KS/K does not 
on-tain the pth roots of unity.Proof. � The �rst part of this Theorem 
an be found in SGA [1℄ (Propo-sition 6.1). The se
ond part is a 
al
ulation of S
hmidt in [20℄. ♦From now on, we assume p > 2 or K totally imaginary.3.2. Some 
onsequen
es of a spe
tral sequen
e. � First re
alltwo lemmas:Lemma 3.8. � One has:

H1
et(X(KS), Fp) = 1 .Proof. � The group H1

et(X(KS), Fp) 
lassi�es the Galois étale 
overs ofdegree p of X(KS). By maximality of X(KS), this group is trivial. ♦Hen
e, the morphism φ1 is an isomorphism. When GS is in�nite, one hasmore:Lemma 3.9 (S
hmidt, [20℄). � If GS is in�nite, then
H3

et(X(KS), Fp) = 1.These lemmas applied to the spe
tral sequen
e
Ei,j

2 = H i(GS, (Hj
et(X(KS), Fp)) =⇒ Ei+j = H i+j

et (Spec OK \ S, Fp)allow us to show: 9



Proposition 3.10. � Assume GS in�nite. Then, the following long ex-a
t sequen
e holds:
H2(GS, Fp)

�

�

// H2
et(SpecOK \ S, Fp) // H2

et(X(KS), Fp)
GS

��

H1(GS, H2
et(X(KS), Fp))

��
��

H3
et(SpecOK \ S, Fp)oo H3(GS, Fp)oo

H4(GS, Fp)Proof. � For the surje
tive map H1(GS, H2
et(X(KS), Fp)) ։ H4(GS, Fp),thanks to Lemma 3.9, it su�
es to note that

E4,0
4 = E5,0

5

= E4,0
∞

= E4
4

⊂ E4 = 1 (Theorem 3.7).
♦One 
ould introdu
e the notion of pro-p-group virtually 
ohomologi
allyétale. But in fa
t, it is not ne
essary:Corollary 3.11. � (i) Suppose that the pro-p-group GS is virtually 
o-homologi
ally étale. Then GS is 
ohomologi
ally étale.(ii) If GS is 
ohomologi
ally étale, then for all open subgroup U of GS, Uis 
ohomologi
ally étale.Proof. � (i) The pro-p-group GS being virtually 
ohomologi
ally étale,it means that there exists an open subgroup U of GS su
h that for all i,the morphisms φi,U are isomorphisms, where

φi,U : H i(U, Fp) → H i
et(Spec O

K
U

S
\ S, Fp).Then, by using the long exa
t sequen
e of Proposition 3.10, one dedu
esthe triviality of H2

et(X(KS), Fp)
U, i.e. H2

et(X(KS), Fp) = 1 (remark that
U is not trivial !). It su�
es to take the same exa
t sequen
e with GSinstead of U. Remark that the 
ohomologi
al dimension of GS is then atmost 3.(ii) - 
lear. ♦ 10



3.3. The Euler-Poin
aré 
hara
teristi
. � Let U be an open sub-group of GS. Denote by χn(U) the Euler-Poin
aré 
hara
teristi
 trun
atedat the order n, asso
iated to the Galois 
ohomology groups H i(U, Fp) of
U and denote by χet(U) the Euler-Poin
aré 
hara
teristi
 asso
iated tothe étale 
ohomology groups H i

et(Spec OU \ S, Fp):
χn(U) =

n∑

i=0

(−1)idpH
i(U, Fp),

χet(U) =
∑

i≥0

(−1)idpH
i
et(Spec O

K
U

S
\ S, Fp).By Class Field Theory, one knows an upper bound for the p-rank of

H2(GS,Fp). When S 
ontains no pla
es above p, an exa
t 
al
ulationof this rank is at the heart of the 
onstru
tion of asymptoti
ally exa
textensions. In all 
ases, one has:
χ2(GS) ≤ −δS + r1 + r2 + δp,S,where δS =

∑
v∈S∩Sp

[Kv : Qp], and δp,S is equals to 1 when K 
ontainsthe p-roots of the unity and S is empty, 0 otherwise (see for example [7℄,Appendix).Re
all a result that appears in [20℄:Proposition 3.12 (S
hmidt). � Suppose p > 2 or K be a totallyimaginary �eld . One has:
χet(GS) = −δS + r1 + r2.In parti
ular, for U ⊂O GS, the following holds:
χet(U) = (GS : U)χet(GS).By 
omparing the Euler-Poin
aré 
hara
teristi
s, one obtains a 
riteriafor GS to be 
ohomologi
ally étale:Proposition 3.13. � One has (for GS 6= 1):

χ3(GS) ≤ χet(GS).When cd(GS) ≤ 2 and δp,S = 0, the equality holds if and only if GS is
ohomologi
ally étale. 11



Proof. � One knows:
χ3(GS) = χ2(GS) − dpH

3(GS,Fp)
≤ (−δS + r1 + r2) + δp,S − dpH

3(GS, Fp)
= χet(GS) + δp,S − dpH

3(GS, Fp)Then χ3(GS) ≤ χet(GS) + 1 and χ3(GS) ≤ χet(GS) with the eventual ex-
eption: H3(GS, Fp) = 1 and δp,S = 1. In this last 
ase, the 
ohomologi
aldimension of GS is at most 2 and this one of Spec OK \ S is at most 3.Suppose: χ2(GS) = χet(GS)+ 1. Then for all open subgroup U of GS, onehas:
χ3(U) = χ2(U)

= [GS : U] χ2(GS)
= [GS : U] (χet(GS) + 1)
= χet(U) + [GS : U]whi
h 
ontradi
ts the inequality χ3(U) ≤ χet(U) + 1.If δp,S = 0, then H3

et(Spec OU\S, Fp) = 0. Hen
e, when the 
ohomologi
aldimension of GS is at most 2, by 
omparing the dimensions, the morphism
φ2 is an isomorphism. ♦The next proposition shows that, ex
ept in one situation, GS 
an not be
ohomologi
ally étale and p-adi
 analyti
:Proposition 3.14. � When δS 6= r1 + r2, a 
ohomologi
ally étale pro-
p-group GS is never p-adi
 analyti
. In parti
ular, when S ∩ Sp = ∅.Proof. � Suppose that GS is 
ohomologi
ally étale. Then the 
ohomo-logi
al dimension of GS is at most 3 and, by proposition 3.12, χet(GS) =
δS − (r1 + r2). But, if GS is p-adi
 analyti
, then for any open uniformlypowerful subgroup U of GS , χ(GS) = [GS : U]χ(U) = 0. ♦3.4. The mixed 
ase. � To �nish this se
tion, we want to �nd someexamples that illustrate proposition 3.13.Let S ⊂ Sp be a non-empty subset of Sp. Denote by ϕS the morphism:

ϕS : Zp ⊗ EK →
∏

v∈S

U1
v ,

U1
v being the prin
ipal lo
al units at v. When S = Sp, Leopoldt's 
on-je
ture predi
ts the inje
tivity of the map ϕS.Suppose now that S is su�
ently �large� i.e. su
h that KS/K 
ontainsa Zp-extension K∞/K. Put HS := Gal(KS/K∞) and YS := Hab

S . The12



pro-p-group YS is a Zp[[T ]]-module. Let (ρS, µS, λS) be the Iwasawainvariants of YS.Then, let us give some expli
it 
onditions whi
h imply that the 
ohomo-logi
al dimension of GS is at most 2 (see for example, [17℄, [16℄...):Proposition 3.15. � If ϕS is inje
tive and if µS = 0, then the 
oho-mologi
al dimension of GS is at most 2.Now, when ϕS is inje
tive, the value of χ2(GS) is known (see for example[16℄, se
tion 3):Proposition 3.16. � If ϕS is inje
tive, then χ2(GS) = δS − (r1 + r2).Let us give some examples.Corollary 3.17. � (i) Let K = Q(
√
−d) be an imaginary quadrati
�eld, where d is square free. Let p be a splitting prime in K/Q and put

S = {p}, where p is a pla
e of K above p. Then GS is 
ohomologi
allyétale.(ii) The examples of [16℄. Let K = Q(θ), where θ is a root of x4 + x3 +
8x2 − 4x + 2 = 0. The signature of this �eld is (0, 2). Put p = 2 and
S = {(θ)}. Here (θ) is a prime ideal above 2 with index of rami�
ationover 1

2
Q equals to 3. Note that K has two primes above 2. Then the 
oho-mologi
al dimension of GS is 2, χ2(GS) = −1, and GS is 
ohomologi
allyétale.Proof. � In these two 
ases, µS = 0 and ϕS is inje
tive. Hen
e χ2(GS) =

r1 + r2 − δS = χet(GS). The groups GS being of 
ohomologi
al dimensionat most 2, one 
on
ludes with Proposition 3.13. ♦4. GS and wild rami�
ationFor all this se
tion, we assume that GS is not trivial.4.1. The setup. � Let Sp be the set of all pla
es of K above p. Put
S ′ = S ∪ Sp. (A priori, S 
an 
ontain some pla
es above p.) Let KS′be the maximal pro-p-extension of K unrami�ed outside S ′. Put GS′ =
Gal(KS′/K). For the next, we will 
onsider only the situation where
p > 2 or where K is totally imaginary. In this 
ase, the 
ohomologi
aldimension of GS′ is 1 or 2.The group GS is a quotient of GS′ . Let H be the 
losed and normalsubgroup of GS′ generated by the inertia groups of all pla
es v ∈ S ′\S in13



KS′/K. Then, GS′/H ≃ G. Put X = Hab. Then, it is well-known that
X is a 
ompa
t Zp[[GS]]-module, where Zp[[GS]] := lim

U
←

Zp[GS/U].The ring Zp[[GS]] is lo
al (hen
e if M is a Zp[[GS]]-module of �nite typewhi
h is proje
tive then M is Zp[[GS]]-free), and its proje
tive dimensionis 1 + cd(GS).As an appli
ation of Nakayama's lemma, one obtains:Proposition 4.1. � The Zp[[GS]-module X is �nitely generated.Proof. � The Ho
hs
hild-Serre spe
trale sequen
e applied to the shortexa
t sequen
e
1 −→ H −→ GS′ −→ GS −→ 1,shows

· · · −→ H1(GS′, Fp) −→ H1(H, Fp)
GS −→ H2(GS, Fp) −→ ...As H1(GS′ , Fp) and H2(GS, Fp) are �nite, one dedu
es that XGS

/p =
(H1(H, Fp)

GS)∗ is �nite. Then by Nakayama's lemma, one has the result.
♦For the same reason, one also hasProposition 4.2. � Let 1 −→ R −→ F −→ GS −→ 1, be a presen-tation of GS by a �nitely generated free pro-p-group F . Then Rab :=
R/[R, R] is a �nitely generated Zp[[GS]]-module.Next re
all the following:Proposition 4.3. � Leopoldt's 
onje
ture is equivalent to the trivialityof H2(GS′ , Qp/Zp).Proof. � See for example [18℄. ♦Hen
e, one has a weak form of Leopoldt's 
onje
ture:Proposition 4.4. � If one assumes Leopoldt's 
onje
ture for all num-ber �elds and the prime number p,

H2(H, Qp/Zp) = 0.Proof. � Let F/K be a �nite sub-extension of KS/K. The extension
KS′/F is also the maximal pro-p-extension of F unrami�ed outside S ′. As14



one assumes Leopoldt's 
onje
ture, the group H2(Gal(KS′/F) is trivial.Then, thanks to [24℄, 
hapter 1,
H2(Gal(KS′/KS), Qp/Zp) = lim

→

K⊂F⊂KS

H2(Gal(KS′/F, Qp/Zp)) = 0.

♦4.2. The 
ohomologi
al dimension of GS and the stru
ture of
X . � From now on, one assumes Leopoldt's 
onje
ture for all number�elds and the prime number p.We 
an prove Theorem 1.2:Proposition 4.5. � 1) If X is Zp[[GS ]]-free, then cd(GS) ≤ 2.2) If cd(GS) ≤ 2, then the proje
tive dimension of the Zp[[GS ]]-module Xis at most 1.Proof. � Let

1 // W // F // GS′
//

��
��

1

1 // R // F // GS
// 1be two presentations of the groups GS′ and GS where F is the free pro-

p-groups on dp(GS′) generators. This diagram indu
es an inje
tive map
W →֒ R, and by the snake lemma, one gets the exa
t sequen
e:

1 −→ W −→ R −→ H −→ 1.From the homology version of the Ho
hs
hild-Serre spe
tral sequen
e,one gets:
0 = H2(H, Qp/Zp)

∗ −→ (W ab)H −→ Rab −→ X −→ 0,thanks to proposition 4.4. Now re
all a result of Brumer:Proposition 4.6 (Brumer,[4℄, 
orollary 5.3). � Let G be a �nitelygenerated pro-p-group (with H2(G, Fp) �nite). Let
1 −→ R −→ F −→ G −→ 1,be a presentation of G, where F is a free pro-p-group on d generators.Then, the group G is of 
ohomologi
al dimension at most 2 if and only if

Rab is a free Zp[[G]]-module of �nite type.15



As the 
ohomologi
al dimension of GS′ is at most 2, the module W abis free over Zp[[GS′]] and so (W ab)H is free as Zp[[GS ]]-module: one has
W ab ≃ Zp[[GS′ ]]s and (W ab)H ≃ Zp[[GS]]s.One �nally obtains the exa
t sequen
e (Nguyen, [18℄, theorem 1.4):

0 −→ Zp[[GS ]]s −→ Rab −→ X −→ 0.Suppose �rst that X ≃ Zp[[GS ]]r. It 
omes:
1 −→ Zp[[GS]]t −→ R −→ Zp[[GS ]]r −→ 1and then the module Rab is Zp[[GS]]-free. By proposition 4.6, 1) holds.Now suppose that cd(GS) ≤ 2. Then by proposition 4.6, 2) holds. ♦Thanks to C2 (see se
tion 2.5), one obtains immediately 
orollary 1.3.Now, we give a 
riterion for X to be free. First, we have:Lemma 4.7. � If the pro-p-group GS is of 
ohomologi
al dimension atmost 2, then H1(GS,X ∗) = 1.Proof. � Let F/K be a �nite sub-extension of KS/K. The 
ohomolog-i
al dimension of the group Gal(KS′/F) is at most 2.For i ≥ 3, H i(Gal(KS′/F, Qp/Zp) = 0 and then

H i(H, Qp/Zp) = lim
→

K⊂F⊂KS

H i(Gal(KS′/F, Qp/Zp) = 0.As one assumes Leopoldt's 
onje
ture, thanks to Proposition 4.4, we�nally get H i(H, Qp/Zp) = 0, for i > 1. Then the Ho
hs
hild-Serre spe
-trale sequen
e H i(GS′/H, Hj(H, Qp/Zp)) =⇒ H i+j(GS′ , Qp/Zp) allow usto obtain the following long exa
t sequen
e
H1(GS, Qp/Zp)

�

�

// H1(GS′, Qp/Zp) // H1(H, Qp/Zp)
GS

��

H1(GS, H1(H, Qp/Zp))

��
��

H2(GS′, Qp/Zp)oo H2(GS, Qp/Zp)oo

H3(GS, Qp/Zp) 1and the result follows. ♦One obtains the main result of this se
tion (that 
ontains Theorem 1.2).16



Proposition 4.8. � Assume cd(GS) ≤ 2. Suppose that the naturalmorphism Tor(GS′

ab) → GS
ab, where Tor(GS′

ab) is the torsion part of
GS′

ab, is inje
tive. Then the Zp[[GS]]-module X is free.Moreover, when X ≃ Zp[[GS]]r, then r = r2 + χ2(GS).Proof. � Sin
e X is �nitely generated as Zp[[GS ]]-module, let
1 −→ N −→ F −→ X −→ 1,(1)be a minimal presentation of X , where F = Zp[[GS]]r. Hen
e, X is free ifand only if, N = 0, i.e. if and only if NGS

= 0 (by Nakayama's lemma).The homology version of the spe
tral sequen
e H i(GS′/H, Hj(H, Qp/Zp)) =⇒
H i+j(GS′, Qp/Zp) gives

H2(GS, Zp)
�

�

// XGS
// Gab

S′

// // Gab
S .(2)Suppose that cd(GS) ≤ 2. As H3(GS, Zp) = 0, one has

H2(GS, Zp)
p→֒ H2(GS, Zp) −→ H2(GS, Fp) −→ · · · .Hen
e, H2(GS, Zp) is Zp-free.If moreover the natural morphism GS′

ab → GS
ab restri
ted to the torsionpart is inje
tive, then, thanks to (2), XGS

is Zp-free.Now passing to the GS-homology of the sequen
e (1), one obtains:
1 // H1(GS,X ) // NGS

// Zr
p

// XGS
// 1Then, the map ϕ : Zr

p → XGS
is an isomorphism.But, by lemma 4.7, H1(GS,X ) = 1, and then NGS

= 1.When X ≃ Zp[[GS]]r, then H1(H, Zp)GS
≃ Zr

p. Hen
e taking the Zp-rankof the dual of the exa
t sequen
e of lemma 4.7, one obtains
rkZp

Gab
S − rkZp

Gab
S′ + r − rkZp

H2(GS, Zp) = 0As cd(GS) ≤ 2, the group H2(GS, Qp/Zp) is Zp-free and thus one has
rkZp

H2(GS, Zp) − rkZp
Gab

S = χ2(GS) − 1.Then, by assuming Leopoldt's 
onje
ture (rkZp
Gab

S′ = r2 + 1), one �nallyobtains:
r = r2 + χ2(GS).

♦ 17



4.3. Examples. � From now on, for a pla
e v of K, one identi�es k×vwith its p-part k×v ⊗ Zp, kv being the residue �eld of KvBefore giving some examples, one has to 
ompute the kernel of the map:
Tor(Gab

S′ ) → Gab
S . Here, Tor(Gab

S′ ) is the Zp-torsion part of Gab
S′ . To do this,we use a result of Gras [7℄.Proposition 4.9. � Assume S ∩ Sp = ∅. The map Tor(Gab

S′ ) → Gab
S isinje
tive if and only if

#Tor
(
⊕v|pU

1
v ⊕v∈S k×v /ϕS′(Zp ⊗ EK)

)
= #

(
⊕v∈Sk×v /ϕS(Zp ⊗ EK)

)
.Proof. � Denote by I the subgroup of Gab

S′ generated by the inertiagroups of all the pla
es in Sp. Then: 1 −→ I −→ Gab
S′ −→ Gab

S −→ 1. Toshow that the map Tor(Gab
S′ ) → Gab

S is inje
tive is equivalent to showingthat I ∩ Tor(Gab
S′ ) = 1. As S ∩ Sp = ∅, the maximal abelian p-extension

K
ab
S of K unrami�ed outside S is �nite, 
ontains the p-Hilbert Class �eld

K
H of K and moreover

K
ab
S ∩ K̃ = K

H ∩ K̃,where K̃ is the 
ompositum of all Zp-extension of K.
K̃

Tor(Gab
S′

)

K
ab
S′

I

K
H K

ab
S

KHere K
ab
S′ is the maximal abelian pro-p-extension of K, unrami�ed outside

S ′. Of 
ourse: Gab
S = Gal(Kab

S /K) and Gab
S′ = Gal(Kab

S′/K).Hen
e:
I ∩ Tor(Gab

S′ ) = Tor(I) ∩ Tor(Gab
S′ )

= [Kab
S′ : Kab

S K̃]

= [Kab
S′ : KH

K̃]/[Kab
S : K

H ]By Theorem 2.6, 
hapter III of [7℄, the �rst index [Kab
S′ : K

H
K̃] isexa
tly #Tor

(
⊕v|pU

1
v ⊕v∈S k×v /ϕS′(Zp ⊗ EK)

), and the se
ond index is18



well-konwn: it 
ompares the order of a ray p-
lass group to the order ofthe p-
lass group. Here it is: # (⊕v∈Sk×v /ϕS(Zp ⊗ EK)). ♦Corollary 4.10. � Let us 
onserve the notations of se
tion 4 (p > 2).Let S be a �nite set of pla
es of K, S ∩ Sp = ∅, and su
h that the 
oho-mologi
al dimension of GS is 2. Put X = Hab, where H = Gal(KS′/KS).Then, in the two following situations, X is Zp[[GS]]-free.(i) K = Q.(ii) K/Q is an imaginary quadrati
 �eld (If p = 3, Kv3
is di�erent from

Q3(j), for v3|3).Proof. � In these situations the group Zp⊗EK is trivial. Hen
e, thanksto Proposition 4.9 the result is 
lear if we note that for all v|p, U1
v hasno non-trivial p-torsion. ♦Example 4.11. � We re
all that we assume Lepoldt's 
onje
ture.(i) The examples of Labute (and of S
hmidt) allow us to illustrate theprevious 
orollary. For example, let's take p = 3 and S = {7, 19, 61, 163}.Then Labute proved that for this 
ase, cd(GS) = 2. Put S ′ = S ∪ {3},

H = Gal(KS′/KS) and X := Hab. Then X is a Zp[[GS]]-free module ofrank 1.(ii) Thanks to the work of Vogel [26℄, one 
an give some examples withbase �eld K an imaginary quadrati
 �eld. Let K = Q(i). Take p = 3and let S be the set of all pla
es above 229 and 241. Then Vogel provedin this 
ase that cd(GS) = 2. Put S ′ = S ∪ {3}, H = Gal(KS′/KS) and
X := Hab. Then X is a Zp[[GS ]]-free module of rank 2.Referen
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