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Abstrat. � In this work, we are interested in the tame version of theFontaine-Mazur onjeture. By viewing the pro-p-proup GS as a quotientof a Galois extension rami�ed at p and S, we obtain a onnetion betweenthe onjeture studied here and a question of Galois struture. Moreover,following a reent work of A. Shmidt, we give some evidene of linksbetween this onjeture, the étale ohomology and the omputation ofthe ohomologial dimension of the pro-p-groups GS that appear.
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Let K be a number �eld and let p be a prime number. Let S be a �niteset of plaes of K. Denote by KS the maximal pro-p-extension of Kunrami�ed outside S. Put GS = Gal(KS/K).For a plae v of K, denote by Kv the ompletion of K at v. Let Gv :=
Gal(Kv/Kv) be the absolute Galois group of Kv and let Iv ⊂ Gv be theabsolute inertia group of Kv.In this work, we study the struture of the group GS. This is relatedto a famous onjeture due to Fontaine and Mazur [6℄. This onjeturepredits whih p-adi extensions of number �elds ome from algebraigeometry. More preisely. Let ρ : GK → Gln(Qp) be a ontinuous p-adirepresentation of GK. Suppose: (i) ρ is unrami�ed outside a �nite set Sof plaes of K; (ii) for all v|p, the representation ρv := ρ|Gv

is potentiallysemi-stable. Then ρ should ome from �geometry�: ρ should orrespondto the ation of GK on a subquotient of an étale ohomology group of analgebrai variety over K, twisted by Qp(j).Here, we are interested in the partiular ase where the rami�ationis potentially tame. In this ase, Fontaine and Mazur onjeture thefollowing as �a onsequene� of their philosophy:Conjeture 1.1 (Fontaine and Mazur, [6℄, onjeture 5a)Suppose that the harateristi of the residue �eld kv of eah plae v of Sis di�erent from p. Then, every p-adi analyti quotient of GS is �nite.Many authors (Boston [2℄, [3℄, Hajir [9℄, Wingberg [27℄ ...) have on-tributed to the study of onjeture 1.1.In setion 2, we develop, in the ontext of the onjeture 1.1, the p-adianalyti point of view. In partiular, we show how the question of theknowledge of the ohomologial dimension of the groups GS is onnetedto onjeture 1.1. In setion 3, we go bak to the reent results of Labute[13℄ and Shmidt [19℄, [20℄, [22℄, [23℄. Reall that Labute gave for the�rst time some examples of groups GS of ohomologial dimension 2, for
S prime to p. Shmidt extended the work of Labute by showing thatthe ohomology of the pro-p-groups in question oinide with some étaleohomology. We then give some onnetions linking the point of view ofShmidt and the onjeture 1.1.In setion 4, we ompare the groups GS with the groups GS′, where S ′ =
S ∪ Sp, Sp being the set of all plaes of K above p. More preisely, let2



H = Gal(KS′/KS) be the losed normal subgroup of GS′ generated byall inertia groups of all plaes of S ′ \S. The quotient X := Hab = H/Habis a �nitely generated Zp[[GS ]]-module. We then prove the following:Theorem 1.2. � Assume Leopoldt's onjeture for the prime p. If the
Zp[[GS]]-module X is free, then the ohomologial dimension of GS is atmost 2.The proof is inspired by some works of Brumer [4℄, Nguyen [18℄,Neukirh-Wingberg-Shmidt [17℄ ....Then, by using some observation about the struture of analyti pro-p-groups of setion 2, we obtain a onnetion between the onjeture 1.1and the question of freeness of the Zp[[GS]]-module X :Corollary 1.3. � Assume S∩Sp = ∅. If the Zp[[GS ]]-module X is free,then GS is not p-adi analyti.To �nish, we look at the examples of Labute in [13℄ and Vogel in [26℄. Inthese ases, the groups GS are of ohomologial dimension 2 and then arenot p-adi analyti. We prove here that for theses examples, the module
X is Zp[[GS]]-free.Notations. If M is a module over Zp, we denote by dpM the dimensionover Fp of Fp ⊗Zp

M , and by rkZp
M the dimension over Qp of Qp ⊗Zp

M .2. GS and analyti struture2.1. On analyti pro-p-groups. � The main referenes for this partare: Lazard[14℄, Dixon, Du Sautoy, Segal, Mann [5℄, ...De�nition 2.1. � A topologial group G is p-adi analyti if G has astruture of p-adi analyti manifold for whih the morphism G × G →
G : (x, y) 7→ xy−1 is analyti.Example 2.2. � A p-adi analyti group G is of dimension 0 if andonly if G is �nite.A p-adi analyti group G is of dimension 1 if and only if there exists anopen subgroup U of G isomorphi to Zp.Now let G be a pro-p-group of �nite type. Denote by Pi(G) the subgroupsof the p-lower entral series of G :

P1(G) = G, Pi+1(G) = Pi(G)p[G, Pi(G)],3



whih is a sequene of losed subgroups of G. Denote by G1 the quotient
G/Gp[G,G] = G/P2(G).De�nition 1. � The pro-p-group G is uniformly powerful if:(i) G/Gp (for p = 2, G/G4) is abelian.(ii) for all i, #Pi(G)/Pi+1(G) = #G/P2(G)An uniformly powerful pro-p-group G is p-adi analyti and the study of
p-adi analyti group an be done via this family of pro-p-groups:Theorem 2.3 ([5℄). � Let G be a p-adi analyti group. Then G hasan open uniformly powerful subgroup.If G is uniformly powerful, the ohomologial dimension of G is equalto its analyti manifold dimension. Moreover, the ohomology groups
H i(G,Fp) are isomorphi to the exterior produt ∧iH1(G,Fp). Hene,for a uniformly powerful pro-p-group G, the p-rank is equal to the o-homologial dimension cd(G) of G and the Euler-Poinaré harateristi
χ(G) =

∑

i

(−1)idpH
i(G,Fp) of G is equal to zero.Proposition 2.4. � Let G be a uniformly powerful group of dimension

2. Then, there exists a surjetive morphism: Gab ։ Zp.Proof. � Indeed, in this ase, one has: dpH
1(G,Fp) = 2dpH

2(G,Fp) = 2.The short exat sequene
1 −→ Fp −→ Qp/Zp

p−→ Qp/Zp −→ 1,gives
1 = dpH

1(G, Fp) − dpH
2(G, Fp) ≤ rkZp

Gab.

♦Corollary 2.5. � Let G be a p-adi analyti group of dimension 2.There exists an open subgroup U of G, for whih the Zp-rank of Uab is nottrivial.2.2. A reformulation of the onjeture 1.1. � We an give a refor-mulation of Conjeture 1.1 in terms of dimension of the analyti manifold.Conjeture 2.6 (Cr). � Let K be a number �eld and S be a �nite setof plaes of K. Let KS be the maximal pro-p-extension of K unrami�edoutside S. Put GS = Gal(KS/K). Assume that for all plaes v in S, kv4



is of harateristi di�erent from p. Let r > 0 be an integer. Then thereis no p-adi analyti quotient of GS of dimension r.2.3. Conjeture C1. � The abelian version of the onjeture 1.1 isontrolled by Class �eld theory. More preisely, some lassial alula-tions allow to show the following:Proposition 2.7. � (i) The prop-p-group GS is �nitely generated.(ii) If S ∩ Sp = ∅, then Gab
S := GS/[GS,GS] is �nite.(iii) If S ontains all plaes of K above p, then the Zp-rank of Gab

S is atleast r2 + 1, where (r1, r2) is the signature of K. Leopoldt's onjetureasserts the equality.We immediately obtain:Proposition 2.8. � Conjeture C1 is true.Proof. � A p-adi analyti group G of dimension 1 has an open subgroup
U with U ≃ Zp. Suppose that G is the Galois group of an extension L/K,unrami�ed outside S, with S ∩ Sp = ∅. Put F = L

U. Then FS = KS,where KS is the maximal pro-p-extension of F unrami�ed oustide SF,and where SF is the set of plaes of K above S. Then Gal(FS/F)ab ։ Zpwhih ontredits (ii) of Proposition 2.7. ♦2.4. The importane of C1. � In the ontext of onjeture 1.1,proposition 2.8 is important for an another reason. It allows one toprove the following fundamental example issuing from geometry:Let X/K be a smooth projetive variety over K. Let
H i

et(X, Qp) := Qp ⊗Zp
lim

n
←

H i
et(X, Z/pnZ),be the ith etale ohomology group of X := X/K with oe�ients in Qp.Put:

hi,j(X) := H i
et(X, Qp)(j),the twist of H i

et(X, Qp) by Qp(j).This group hi,j(X) is a �nite-dimensional Qp-vetor spae on whih atsthe absolute Galois group GK of K. This ation gives a Galois represen-tation of GK:
ρi,j : GK → Glm(Qp) = Aut(hi,j(X)).De�nition 2.9. � A Galois represention ρ of GK is potentially unram-i�ed at p, if for all v|p, ρ(Iv) is �nite.5



One has the following result from a paper of Kisin-Wortmann [11℄:Theorem 2.10. � Suppose that the Galois representation
ρ : GK → Aut(H i

et(X, Qp)(j))is potentially unrami�ed at p. Then, the image ρ(GK) is �nite.Let us to show why C1 (in fat Proposition 2.7) appears in the proof.The ruial fat in the proof of Theorem 2.10 is a variation of plaes v with
ℓ-adi ohomology, p-adi ohomology and isomorphisms of omparisonof the di�erent types of ohomology. Denote by S the set of plaes of Kat whih: ρ is rami�ed; or X has bad redution. We add to S the plaesabove p and in�nite plaes. This �nal set S is �nite. Let v /∈ S anddenote by σv the geometri Frobenius at v . Let us onsider the ation of
σv on hi,j(X) and let λk,v be the eigenvalues of σv. Thanks to the fatsthat the Hodge-Tate weights of hi,j(X) are zero, the λk,v are integerssuh for all isomorphisms ι : Q →֒ C, we get that |ι(λk,v)| = 1. Hene,the λk,v are some roots of the unity and then by a salar extension L/K,the image of ρ|L is unrami�ed at p and unipotent. To onlude, an easylemma issues from Proposition 2.7:Lemma 2.11. � Suppose S �nite and suh S ∩ Sp = ∅. Let H be aquotient of GS with H ⊂ Glm(Qp) and suh that H is unipotent. Then
H is �nite.Proof. � The group H is solvable. Moreover, the ommutator series is asequene of losed subgroups of H . The suessive quotients are abelianand then �nite by Proposition 2.7. One dedues that H is �nite. ♦For more details, we refer to the papers of Kisin-Wortmann [11℄ andKisin-Lehrer [10℄.2.5. Conjeture C2. � As for C1, the onjeture C2 is dedued fromlass �eld theory.Proposition 2.12. � Conjeture C2 is true.Proof. � Let L/K be a Galois extension in KS/K, where S is suh that
S ∩ Sp = ∅. Suppose that the group G := Gal(L/K) is p-adi analyti ofdimension 2. By orollary 2.5, there exists an open subgroup U of G suhthat Uab has a non trivial Zp-rank whih is impossible by Proposition 2.7.
♦ 6



2.6. Conjeture C3 and just in�nite pro-p-groups.�De�nition 2.13. � A pro-p-group G is just in�nite if it is in�nite butevery proper quotient of G is �nite.By Zorn's lemma, every in�nite �nitely generated pro-p-group has a justin�nite quotient.Proposition 2.14. � Suppose that all plaes in S are prime to p. Let Gbe a quotient of GS. Suppose that G is in�nite of ohomologial dimensionat most 3. If G is not just in�nite, then G is not p-adi analyti.Proof. � Suppose that G is p-adi analyti. The onjetures (C1) and
(C2) being true, one an assume that cd(G) = 3. The pro-p-group Gbeing not just in�nite, there exists a proper, losed and distinguishedsubgroup N suh that G/N is in�nite. As G is torsion-free, the analytisubgroup N is of ohomologial dimension k ∈ {1, 2, 3}. The analytiquotient G/N has dimension 3 − k ≤ 2, i.e. 1 or 2 (beause G/N isin�nite), whih ontradits (C1) and (C2). ♦Corollary 2.15. � Let T ( S be two �nite sets of plaes of K, with
(S, p) = 1. Suppose: (i) #Gab

T < #Gab
S ; (ii) GT is in�nite; (iii) the oho-mologial dimension of GS is at most 3. Then GS is not p-adi analyti.Proof. � The inequality #Gab

T < #Gab
S shows that at least one plae of

S\T is rami�ed in KS/K. So KS 6= KT and onsequently GT is a properquotient of GS. In partiular, GS is not just in�nite. By Proposition 2.14,
GS is not p-adi analyti. ♦3. GS and étale ohomologyLet S be a �nite set of plaes of K. Reall that KS is the maximalpro-p-extension of K unrami�ed outside S; put GS = Gal(KS/K).Reall that analyti pro-p-group are virtually of �nite ohomologial di-mension. Then, in the ontext of the onjeture 1.1, it seems natural toask the following question:Question 3.1. � Suppose S ∩ Sp = ∅. Is the pro-p-group GS virtuallyof �nite ohomologial dimension ?When Sp ⊂ S, the following is well-known (see for example [8℄, [17℄ ...) :7



Theorem 3.2. � Let > 2 and suppose that S ontains all the plaesabove p. Then the ohomologial dimension of GS is 1 or 2.For p = 2, see a work of Shmidt [21℄.When S ontains no plaes above p, Labute, in [13℄, has reently givensome examples for whih the ohomologial dimension of GS is 2. Forthe mixed ase (i.e S ∩Sp 6= ∅) and a di�erent approah, see for example[16℄ ...Remark 3.3. �(i) Suppose S prime to p. Then GS an not be free and if cd(GS) = 2,then the Prinipal Ideal Theorem shows that the strit ohomolog-ial dimension of GS is 3.(ii) If Sp ⊂ S, under the Leopoldt's onjeture along KS/K, the stritohomologial dimension of GS is 2 (see for example [17℄, hapterIII).(iii) Reently, in the diretion of question 3.1, Shmidt shows the follow-ing [22℄: given a �nite set S, there exists a �nite set T of plaes of
K, T ∩ Sp = ∅, suh that cd(GS∪T ) = 2.3.1. The results of Shmidt. � In [19℄, Shmidt expands on thework of Labute [13℄. He proves that the examples of the groups GS givenby Labute have a ohomology related to the étale ohomology of ertainshemes.Let U be an open subgroup of GS. Denote by K

U

S the maximal sub�eldof KS �xed by U. Put Spec OU \ S := Spec(OKU
) \ S

K
U

S
, where S

K
U

S
isthe set of plaes of K

U

S above the plaes of S.Let M be a torsion GS-module. We onsider M as the onstant sheaf over
Spec OU \ S. Denote by H i

et(Spec OU \ S, M) the ith étale ohomologygroup of the sheaf M and put
H i

et(X(KS), M) := lim
U
→

H i
et(Spec OU \ S, M),the indutive limit being on open subgroups U of GS with ⋂

U

U = {1}.The spetral sequene H i(GS, (Hj
et(X(KS), M)) =⇒ H i+j

et (Spec OK \
S, M), shows the existene of a morphism

φi(M) : H i(GS, M) → H i
et(Spec OK \ S, M).8



As shown in [19℄, the study of this morphism is related to the ase where
M = Fp. Hene we de�ne:De�nition 3.4. � The pro-p-group GS is ohomologially étale if forall i ≥ 0, the morphism φi := φi(Fp) is an isomorphism.Remark 3.5. � When φi is an isomorphism for all i, following Shmidtin [20℄, the sheme Spec OK \ S is alled K(π, 1).Question 3.6. � Suppose the pro-p-group GS in�nite. In whih ases,
GS is ohomologially étale?Questions 3.1 and 3.6 are related by the following Theorem:Theorem 3.7 ([1℄ or [20℄). � Suppose GS ohomologially étale. For
p = 2, suppose moreover that K is totally imaginary. Then the ohomo-logial dimension of GS is at most 3. Moreover, GS is of ohomologialdimension at most 2 when S is not empty or when KS/K does not on-tain the pth roots of unity.Proof. � The �rst part of this Theorem an be found in SGA [1℄ (Propo-sition 6.1). The seond part is a alulation of Shmidt in [20℄. ♦From now on, we assume p > 2 or K totally imaginary.3.2. Some onsequenes of a spetral sequene. � First realltwo lemmas:Lemma 3.8. � One has:

H1
et(X(KS), Fp) = 1 .Proof. � The group H1

et(X(KS), Fp) lassi�es the Galois étale overs ofdegree p of X(KS). By maximality of X(KS), this group is trivial. ♦Hene, the morphism φ1 is an isomorphism. When GS is in�nite, one hasmore:Lemma 3.9 (Shmidt, [20℄). � If GS is in�nite, then
H3

et(X(KS), Fp) = 1.These lemmas applied to the spetral sequene
Ei,j

2 = H i(GS, (Hj
et(X(KS), Fp)) =⇒ Ei+j = H i+j

et (Spec OK \ S, Fp)allow us to show: 9



Proposition 3.10. � Assume GS in�nite. Then, the following long ex-at sequene holds:
H2(GS, Fp)

�

�

// H2
et(SpecOK \ S, Fp) // H2

et(X(KS), Fp)
GS

��

H1(GS, H2
et(X(KS), Fp))

��
��

H3
et(SpecOK \ S, Fp)oo H3(GS, Fp)oo

H4(GS, Fp)Proof. � For the surjetive map H1(GS, H2
et(X(KS), Fp)) ։ H4(GS, Fp),thanks to Lemma 3.9, it su�es to note that

E4,0
4 = E5,0

5

= E4,0
∞

= E4
4

⊂ E4 = 1 (Theorem 3.7).
♦One ould introdue the notion of pro-p-group virtually ohomologiallyétale. But in fat, it is not neessary:Corollary 3.11. � (i) Suppose that the pro-p-group GS is virtually o-homologially étale. Then GS is ohomologially étale.(ii) If GS is ohomologially étale, then for all open subgroup U of GS, Uis ohomologially étale.Proof. � (i) The pro-p-group GS being virtually ohomologially étale,it means that there exists an open subgroup U of GS suh that for all i,the morphisms φi,U are isomorphisms, where

φi,U : H i(U, Fp) → H i
et(Spec O

K
U

S
\ S, Fp).Then, by using the long exat sequene of Proposition 3.10, one deduesthe triviality of H2

et(X(KS), Fp)
U, i.e. H2

et(X(KS), Fp) = 1 (remark that
U is not trivial !). It su�es to take the same exat sequene with GSinstead of U. Remark that the ohomologial dimension of GS is then atmost 3.(ii) - lear. ♦ 10



3.3. The Euler-Poinaré harateristi. � Let U be an open sub-group of GS. Denote by χn(U) the Euler-Poinaré harateristi trunatedat the order n, assoiated to the Galois ohomology groups H i(U, Fp) of
U and denote by χet(U) the Euler-Poinaré harateristi assoiated tothe étale ohomology groups H i

et(Spec OU \ S, Fp):
χn(U) =

n∑

i=0

(−1)idpH
i(U, Fp),

χet(U) =
∑

i≥0

(−1)idpH
i
et(Spec O

K
U

S
\ S, Fp).By Class Field Theory, one knows an upper bound for the p-rank of

H2(GS,Fp). When S ontains no plaes above p, an exat alulationof this rank is at the heart of the onstrution of asymptotially exatextensions. In all ases, one has:
χ2(GS) ≤ −δS + r1 + r2 + δp,S,where δS =

∑
v∈S∩Sp

[Kv : Qp], and δp,S is equals to 1 when K ontainsthe p-roots of the unity and S is empty, 0 otherwise (see for example [7℄,Appendix).Reall a result that appears in [20℄:Proposition 3.12 (Shmidt). � Suppose p > 2 or K be a totallyimaginary �eld . One has:
χet(GS) = −δS + r1 + r2.In partiular, for U ⊂O GS, the following holds:
χet(U) = (GS : U)χet(GS).By omparing the Euler-Poinaré harateristis, one obtains a riteriafor GS to be ohomologially étale:Proposition 3.13. � One has (for GS 6= 1):

χ3(GS) ≤ χet(GS).When cd(GS) ≤ 2 and δp,S = 0, the equality holds if and only if GS isohomologially étale. 11



Proof. � One knows:
χ3(GS) = χ2(GS) − dpH

3(GS,Fp)
≤ (−δS + r1 + r2) + δp,S − dpH

3(GS, Fp)
= χet(GS) + δp,S − dpH

3(GS, Fp)Then χ3(GS) ≤ χet(GS) + 1 and χ3(GS) ≤ χet(GS) with the eventual ex-eption: H3(GS, Fp) = 1 and δp,S = 1. In this last ase, the ohomologialdimension of GS is at most 2 and this one of Spec OK \ S is at most 3.Suppose: χ2(GS) = χet(GS)+ 1. Then for all open subgroup U of GS, onehas:
χ3(U) = χ2(U)

= [GS : U] χ2(GS)
= [GS : U] (χet(GS) + 1)
= χet(U) + [GS : U]whih ontradits the inequality χ3(U) ≤ χet(U) + 1.If δp,S = 0, then H3

et(Spec OU\S, Fp) = 0. Hene, when the ohomologialdimension of GS is at most 2, by omparing the dimensions, the morphism
φ2 is an isomorphism. ♦The next proposition shows that, exept in one situation, GS an not beohomologially étale and p-adi analyti:Proposition 3.14. � When δS 6= r1 + r2, a ohomologially étale pro-
p-group GS is never p-adi analyti. In partiular, when S ∩ Sp = ∅.Proof. � Suppose that GS is ohomologially étale. Then the ohomo-logial dimension of GS is at most 3 and, by proposition 3.12, χet(GS) =
δS − (r1 + r2). But, if GS is p-adi analyti, then for any open uniformlypowerful subgroup U of GS , χ(GS) = [GS : U]χ(U) = 0. ♦3.4. The mixed ase. � To �nish this setion, we want to �nd someexamples that illustrate proposition 3.13.Let S ⊂ Sp be a non-empty subset of Sp. Denote by ϕS the morphism:

ϕS : Zp ⊗ EK →
∏

v∈S

U1
v ,

U1
v being the prinipal loal units at v. When S = Sp, Leopoldt's on-jeture predits the injetivity of the map ϕS.Suppose now that S is su�ently �large� i.e. suh that KS/K ontainsa Zp-extension K∞/K. Put HS := Gal(KS/K∞) and YS := Hab

S . The12



pro-p-group YS is a Zp[[T ]]-module. Let (ρS, µS, λS) be the Iwasawainvariants of YS.Then, let us give some expliit onditions whih imply that the ohomo-logial dimension of GS is at most 2 (see for example, [17℄, [16℄...):Proposition 3.15. � If ϕS is injetive and if µS = 0, then the oho-mologial dimension of GS is at most 2.Now, when ϕS is injetive, the value of χ2(GS) is known (see for example[16℄, setion 3):Proposition 3.16. � If ϕS is injetive, then χ2(GS) = δS − (r1 + r2).Let us give some examples.Corollary 3.17. � (i) Let K = Q(
√
−d) be an imaginary quadrati�eld, where d is square free. Let p be a splitting prime in K/Q and put

S = {p}, where p is a plae of K above p. Then GS is ohomologiallyétale.(ii) The examples of [16℄. Let K = Q(θ), where θ is a root of x4 + x3 +
8x2 − 4x + 2 = 0. The signature of this �eld is (0, 2). Put p = 2 and
S = {(θ)}. Here (θ) is a prime ideal above 2 with index of rami�ationover 1

2
Q equals to 3. Note that K has two primes above 2. Then the oho-mologial dimension of GS is 2, χ2(GS) = −1, and GS is ohomologiallyétale.Proof. � In these two ases, µS = 0 and ϕS is injetive. Hene χ2(GS) =

r1 + r2 − δS = χet(GS). The groups GS being of ohomologial dimensionat most 2, one onludes with Proposition 3.13. ♦4. GS and wild rami�ationFor all this setion, we assume that GS is not trivial.4.1. The setup. � Let Sp be the set of all plaes of K above p. Put
S ′ = S ∪ Sp. (A priori, S an ontain some plaes above p.) Let KS′be the maximal pro-p-extension of K unrami�ed outside S ′. Put GS′ =
Gal(KS′/K). For the next, we will onsider only the situation where
p > 2 or where K is totally imaginary. In this ase, the ohomologialdimension of GS′ is 1 or 2.The group GS is a quotient of GS′ . Let H be the losed and normalsubgroup of GS′ generated by the inertia groups of all plaes v ∈ S ′\S in13



KS′/K. Then, GS′/H ≃ G. Put X = Hab. Then, it is well-known that
X is a ompat Zp[[GS]]-module, where Zp[[GS]] := lim

U
←

Zp[GS/U].The ring Zp[[GS]] is loal (hene if M is a Zp[[GS]]-module of �nite typewhih is projetive then M is Zp[[GS]]-free), and its projetive dimensionis 1 + cd(GS).As an appliation of Nakayama's lemma, one obtains:Proposition 4.1. � The Zp[[GS]-module X is �nitely generated.Proof. � The Hohshild-Serre spetrale sequene applied to the shortexat sequene
1 −→ H −→ GS′ −→ GS −→ 1,shows

· · · −→ H1(GS′, Fp) −→ H1(H, Fp)
GS −→ H2(GS, Fp) −→ ...As H1(GS′ , Fp) and H2(GS, Fp) are �nite, one dedues that XGS

/p =
(H1(H, Fp)

GS)∗ is �nite. Then by Nakayama's lemma, one has the result.
♦For the same reason, one also hasProposition 4.2. � Let 1 −→ R −→ F −→ GS −→ 1, be a presen-tation of GS by a �nitely generated free pro-p-group F . Then Rab :=
R/[R, R] is a �nitely generated Zp[[GS]]-module.Next reall the following:Proposition 4.3. � Leopoldt's onjeture is equivalent to the trivialityof H2(GS′ , Qp/Zp).Proof. � See for example [18℄. ♦Hene, one has a weak form of Leopoldt's onjeture:Proposition 4.4. � If one assumes Leopoldt's onjeture for all num-ber �elds and the prime number p,

H2(H, Qp/Zp) = 0.Proof. � Let F/K be a �nite sub-extension of KS/K. The extension
KS′/F is also the maximal pro-p-extension of F unrami�ed outside S ′. As14



one assumes Leopoldt's onjeture, the group H2(Gal(KS′/F) is trivial.Then, thanks to [24℄, hapter 1,
H2(Gal(KS′/KS), Qp/Zp) = lim

→

K⊂F⊂KS

H2(Gal(KS′/F, Qp/Zp)) = 0.

♦4.2. The ohomologial dimension of GS and the struture of
X . � From now on, one assumes Leopoldt's onjeture for all number�elds and the prime number p.We an prove Theorem 1.2:Proposition 4.5. � 1) If X is Zp[[GS ]]-free, then cd(GS) ≤ 2.2) If cd(GS) ≤ 2, then the projetive dimension of the Zp[[GS ]]-module Xis at most 1.Proof. � Let

1 // W // F // GS′
//

��
��

1

1 // R // F // GS
// 1be two presentations of the groups GS′ and GS where F is the free pro-

p-groups on dp(GS′) generators. This diagram indues an injetive map
W →֒ R, and by the snake lemma, one gets the exat sequene:

1 −→ W −→ R −→ H −→ 1.From the homology version of the Hohshild-Serre spetral sequene,one gets:
0 = H2(H, Qp/Zp)

∗ −→ (W ab)H −→ Rab −→ X −→ 0,thanks to proposition 4.4. Now reall a result of Brumer:Proposition 4.6 (Brumer,[4℄, orollary 5.3). � Let G be a �nitelygenerated pro-p-group (with H2(G, Fp) �nite). Let
1 −→ R −→ F −→ G −→ 1,be a presentation of G, where F is a free pro-p-group on d generators.Then, the group G is of ohomologial dimension at most 2 if and only if

Rab is a free Zp[[G]]-module of �nite type.15



As the ohomologial dimension of GS′ is at most 2, the module W abis free over Zp[[GS′]] and so (W ab)H is free as Zp[[GS ]]-module: one has
W ab ≃ Zp[[GS′ ]]s and (W ab)H ≃ Zp[[GS]]s.One �nally obtains the exat sequene (Nguyen, [18℄, theorem 1.4):

0 −→ Zp[[GS ]]s −→ Rab −→ X −→ 0.Suppose �rst that X ≃ Zp[[GS ]]r. It omes:
1 −→ Zp[[GS]]t −→ R −→ Zp[[GS ]]r −→ 1and then the module Rab is Zp[[GS]]-free. By proposition 4.6, 1) holds.Now suppose that cd(GS) ≤ 2. Then by proposition 4.6, 2) holds. ♦Thanks to C2 (see setion 2.5), one obtains immediately orollary 1.3.Now, we give a riterion for X to be free. First, we have:Lemma 4.7. � If the pro-p-group GS is of ohomologial dimension atmost 2, then H1(GS,X ∗) = 1.Proof. � Let F/K be a �nite sub-extension of KS/K. The ohomolog-ial dimension of the group Gal(KS′/F) is at most 2.For i ≥ 3, H i(Gal(KS′/F, Qp/Zp) = 0 and then

H i(H, Qp/Zp) = lim
→

K⊂F⊂KS

H i(Gal(KS′/F, Qp/Zp) = 0.As one assumes Leopoldt's onjeture, thanks to Proposition 4.4, we�nally get H i(H, Qp/Zp) = 0, for i > 1. Then the Hohshild-Serre spe-trale sequene H i(GS′/H, Hj(H, Qp/Zp)) =⇒ H i+j(GS′ , Qp/Zp) allow usto obtain the following long exat sequene
H1(GS, Qp/Zp)

�

�

// H1(GS′, Qp/Zp) // H1(H, Qp/Zp)
GS

��

H1(GS, H1(H, Qp/Zp))

��
��

H2(GS′, Qp/Zp)oo H2(GS, Qp/Zp)oo

H3(GS, Qp/Zp) 1and the result follows. ♦One obtains the main result of this setion (that ontains Theorem 1.2).16



Proposition 4.8. � Assume cd(GS) ≤ 2. Suppose that the naturalmorphism Tor(GS′

ab) → GS
ab, where Tor(GS′

ab) is the torsion part of
GS′

ab, is injetive. Then the Zp[[GS]]-module X is free.Moreover, when X ≃ Zp[[GS]]r, then r = r2 + χ2(GS).Proof. � Sine X is �nitely generated as Zp[[GS ]]-module, let
1 −→ N −→ F −→ X −→ 1,(1)be a minimal presentation of X , where F = Zp[[GS]]r. Hene, X is free ifand only if, N = 0, i.e. if and only if NGS

= 0 (by Nakayama's lemma).The homology version of the spetral sequene H i(GS′/H, Hj(H, Qp/Zp)) =⇒
H i+j(GS′, Qp/Zp) gives

H2(GS, Zp)
�

�

// XGS
// Gab

S′

// // Gab
S .(2)Suppose that cd(GS) ≤ 2. As H3(GS, Zp) = 0, one has

H2(GS, Zp)
p→֒ H2(GS, Zp) −→ H2(GS, Fp) −→ · · · .Hene, H2(GS, Zp) is Zp-free.If moreover the natural morphism GS′

ab → GS
ab restrited to the torsionpart is injetive, then, thanks to (2), XGS

is Zp-free.Now passing to the GS-homology of the sequene (1), one obtains:
1 // H1(GS,X ) // NGS

// Zr
p

// XGS
// 1Then, the map ϕ : Zr

p → XGS
is an isomorphism.But, by lemma 4.7, H1(GS,X ) = 1, and then NGS

= 1.When X ≃ Zp[[GS]]r, then H1(H, Zp)GS
≃ Zr

p. Hene taking the Zp-rankof the dual of the exat sequene of lemma 4.7, one obtains
rkZp

Gab
S − rkZp

Gab
S′ + r − rkZp

H2(GS, Zp) = 0As cd(GS) ≤ 2, the group H2(GS, Qp/Zp) is Zp-free and thus one has
rkZp

H2(GS, Zp) − rkZp
Gab

S = χ2(GS) − 1.Then, by assuming Leopoldt's onjeture (rkZp
Gab

S′ = r2 + 1), one �nallyobtains:
r = r2 + χ2(GS).

♦ 17



4.3. Examples. � From now on, for a plae v of K, one identi�es k×vwith its p-part k×v ⊗ Zp, kv being the residue �eld of KvBefore giving some examples, one has to ompute the kernel of the map:
Tor(Gab

S′ ) → Gab
S . Here, Tor(Gab

S′ ) is the Zp-torsion part of Gab
S′ . To do this,we use a result of Gras [7℄.Proposition 4.9. � Assume S ∩ Sp = ∅. The map Tor(Gab

S′ ) → Gab
S isinjetive if and only if

#Tor
(
⊕v|pU

1
v ⊕v∈S k×v /ϕS′(Zp ⊗ EK)

)
= #

(
⊕v∈Sk×v /ϕS(Zp ⊗ EK)

)
.Proof. � Denote by I the subgroup of Gab

S′ generated by the inertiagroups of all the plaes in Sp. Then: 1 −→ I −→ Gab
S′ −→ Gab

S −→ 1. Toshow that the map Tor(Gab
S′ ) → Gab

S is injetive is equivalent to showingthat I ∩ Tor(Gab
S′ ) = 1. As S ∩ Sp = ∅, the maximal abelian p-extension

K
ab
S of K unrami�ed outside S is �nite, ontains the p-Hilbert Class �eld

K
H of K and moreover

K
ab
S ∩ K̃ = K

H ∩ K̃,where K̃ is the ompositum of all Zp-extension of K.
K̃

Tor(Gab
S′

)

K
ab
S′

I

K
H K

ab
S

KHere K
ab
S′ is the maximal abelian pro-p-extension of K, unrami�ed outside

S ′. Of ourse: Gab
S = Gal(Kab

S /K) and Gab
S′ = Gal(Kab

S′/K).Hene:
I ∩ Tor(Gab

S′ ) = Tor(I) ∩ Tor(Gab
S′ )

= [Kab
S′ : Kab

S K̃]

= [Kab
S′ : KH

K̃]/[Kab
S : K

H ]By Theorem 2.6, hapter III of [7℄, the �rst index [Kab
S′ : K

H
K̃] isexatly #Tor

(
⊕v|pU

1
v ⊕v∈S k×v /ϕS′(Zp ⊗ EK)

), and the seond index is18



well-konwn: it ompares the order of a ray p-lass group to the order ofthe p-lass group. Here it is: # (⊕v∈Sk×v /ϕS(Zp ⊗ EK)). ♦Corollary 4.10. � Let us onserve the notations of setion 4 (p > 2).Let S be a �nite set of plaes of K, S ∩ Sp = ∅, and suh that the oho-mologial dimension of GS is 2. Put X = Hab, where H = Gal(KS′/KS).Then, in the two following situations, X is Zp[[GS]]-free.(i) K = Q.(ii) K/Q is an imaginary quadrati �eld (If p = 3, Kv3
is di�erent from

Q3(j), for v3|3).Proof. � In these situations the group Zp⊗EK is trivial. Hene, thanksto Proposition 4.9 the result is lear if we note that for all v|p, U1
v hasno non-trivial p-torsion. ♦Example 4.11. � We reall that we assume Lepoldt's onjeture.(i) The examples of Labute (and of Shmidt) allow us to illustrate theprevious orollary. For example, let's take p = 3 and S = {7, 19, 61, 163}.Then Labute proved that for this ase, cd(GS) = 2. Put S ′ = S ∪ {3},

H = Gal(KS′/KS) and X := Hab. Then X is a Zp[[GS]]-free module ofrank 1.(ii) Thanks to the work of Vogel [26℄, one an give some examples withbase �eld K an imaginary quadrati �eld. Let K = Q(i). Take p = 3and let S be the set of all plaes above 229 and 241. Then Vogel provedin this ase that cd(GS) = 2. Put S ′ = S ∪ {3}, H = Gal(KS′/KS) and
X := Hab. Then X is a Zp[[GS ]]-free module of rank 2.Referenes[1℄ M. Artin, A. Grothendiek and J.-L. Verdier, SGA 4, Leture Notes inMath. 269, 270, 305, Springer, Heidelberg, 1972-1973.[2℄ N. Boston, Some ases of the Fontaine-Mazur onjeture, J. Number The-ory 42 (1992), 285-291.[3℄ N. Boston, Some ases of the Fontaine-Mazur onjeture II, J. NumberTheory 75 (1999), 161-169.[4℄ A. Brumer, Pseudoompat Algebras, Pro�nite Groups and Class Forma-tions, J. of Algebra 4 (1966), 442-470.[5℄ J.D. Dixon, M.P.F. Du Sautoy, A. Mann and D. Segal, Analyti Pro-p-Groups, 2nd Edition, Cambridge studies in advaned math. 61, CambridgeUniv. Press, 1999. 19
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