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Abstract. Let p be a prime number and K an algebraic number field. What is the arithmetic structure of infinite
Galois extensions L/K having p-adic analytic Galois group � = Gal(L/K)? The celebrated Tame Fontaine-Mazur
conjecture predicts that such extensions are either deeply ramified (at some prime dividing p) or ramified at an
infinite number of primes. In this work, we take up a study (initiated by Boston) of this type of question under the
assumption that L is Galois over some subfield k of K such that [K : k] is a prime � �= p. Letting σ be a generator
of Gal(K/k), we study the constraints posed on the arithmetic of L/K by the cyclic action of σ on �, focusing on
the critical role played by the fixed points of this action, and their relation to the ramification in L/K. The method
of Boston works only when there are no non-trivial fixed points for this action. We show that even in the presence
of arbitrarily many fixed points, the action of σ places severe arithmetic conditions on the existence of finitely and
tamely ramified uniform p-adic analytic extensions over K, which in some instances leads us to be able to deduce the
non-existence of such extensions over K from their non-existence over k.

2000 Mathematics Subject Classification: 11R37, 22E20, 11R44.

1. Introduction

1.1 Background

Fix a prime p. The theory of pro-p groups has seen major advances in the last few decades. In particular, the
monumental work [17] of Lazard on p-adic analytic groups (that is to say Lie groups over the field Qp of
p-adic numbers) has been simplified and reinterpreted beginning in the work of Lubotzky and Mann in the 1980s.
An excellent treatment of this new viewpoint is given in the book [7] by Dixon, du Sautoy, Mann, and Segal and
has made the subject more readily applied in many situations and much more accessible to a variety of non-experts.
At the same time, the theory of Galois representations encodes vast amounts of arithmetic information via action of
Galois groups on finite-dimensional p-adic vector spaces, giving rise to continuous homomorphisms from Galois
groups to the p-adic Lie groups Gln(Qp). In this paper, we are interested in using group-theoretical information to
derive consequences for finitely and tamely ramified Galois representations.

In [8], Fontaine and Mazur propose a characterization of all Galois representations which arise from the action
of the absolute Galois group of K on Tate twists of étale cohomology groups of algebraic varieties defined over
K: namely they predict that these are precisely the representations which are ramified at a finite number of primes
of K and are potentially semistable at the primes dividing p. This is in essence, a vast “modularity” conjecture.
If we restrict our attention to p-adic representations which are finitely and tamely ramified, we obtain the following
consequence (Conjecture 5a of [8]) of this characterization (see Kisin-Wortmann [16] for the details).

Conjecture. (Tame Fontaine-MazurConjecture). For a finite set S of primes of K of residue characteristic not
equal to p, and n ≥ 1, any continuous Galois representation ρ : Gal(K/K) → Gln(Qp) which is unramified outside
S has finite image.
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The philosophy of this conjecture rests on the idea that the eigenvalues of Frobenius (under a finitely and tamely
ramified p-adic representation ρ) ought to be roots of unity. Consequently, the image of such a representation is
solvable, and hence finite by class field theory (because its open subgroups have finite abelianization). We refer the
reader to [16] for further details.

One immediately checks the Conjecture for n = 1 by Class Field Theory. For n > 1, on the other hand, the Tame
Fontaine-Mazur Conjecture in general appears to be completely out of reach, and the evidence for it for n > 2 is
rather preliminary. However, for K = Q, and n = 2, the pioneering methods of Wiles and Taylor-Wiles can be used
to show that many types of 2-dimensional representations do come from algebraic geometry (in fact from weight one
modular forms) and hence have finite image. As a partial list of such results, we refer the reader to Buzzard-Taylor
[5], Buzzard [4], Kessaei [14], Kisin [15], Pilloni [21], Pilloni-Stroh [22].

We recall that a pro-p group � is called uniform if it is torsion-free and if moreover � pε = 〈x pε , x ∈ �〉 contains
the commutators [�,�] of � where ε = 1 for p > 2 and ε = 2 for p = 2 . By Lazard [17] (see also [7]), every
finite-dimensional p-adic analytic group (closed subgroup of Gln(Qp) for some n ≥ 1) has a finite-index (open)
uniform subgroup. Moreover, a uniform group of dimension 1 or 2 has a quotient isomorphic to Zp. Thus, the Tame
Fontaine-Mazur conjecture can be rephrased as follows.

Conjecture. (Tame Fontaine-Mazur Conjecture – Uniform Version). Suppose K is a number field, and � is a
uniform pro-p group of dimension d > 2, hence infinite. Then there does not exist a finitely and tamely ramified
Galois extension L/K with Galois group � = Gal(L/K).

Our aim in this paper is to provide some evidence for the above conjecture. The first such evidence, in the case
of unramified extensions, was provided by Boston (see [2] and [3]). In this paper, we extend Boston’s ideas to the
tamely ramified case.

1.2 Boston’s Theorem

In [2] and [3], Boston initiated the study of the following situation (see also Wingberg [24] and Maire [19]). We fix a
uniform pro-p group � and assume that � is realized as the Galois group of a finitely and tamely ramified extension
L/K, i.e. � = Gal(L/K), and we assume, moreover, that � is equipped with a semi-simple Galois action. To be more
explicit, from now on we assume that:

– K is a finite Galois extension of a number field k with Galois group � = Gal(K/k)
– � is a cyclic group of prime order � dividing p − 1, and we fix a generator σ of �
– L/K is a finitely and tamely ramified Galois extension which is Galois over k
– � = Gal(L/K) is a uniform pro-p group of finite dimension d (as p-adic manifold).

Theorem. (Boston). Under the above assumptions, if in addition

– p does not divide the order of the class group of k, and
– L/K is everywhere unramified,

then � is trivial.
Boston’s theorem gave the first substantive corroboration of the conjecture of Fontaine and Mazur in that it

precludes the existence of certain (non-abelian) uniform unramified Galois extensions. Here’s the strategy of Boston’s
proof of the above result. The assumptions made in the theorem imply that σ acts without non-trivial fixed points on
�ab (to simplify the terminology, we say by way of shorthand that the action of σ is “FPF (fixed-point-free)”). By the
uniformity of � the action of σ is fixed-point-free also on �. The existence of this fixed-point-free cyclic action on �
implies that � is nilpotent (see Proposition 3.4). We recall that a group is called FAb if for all open subgroups U , the
abelianization U ab is finite. Since L/K is tamely ramified, � is FAb. Since � is both nilpotent and FAb, it is finite;
but as a uniform group, it is torsion-free, hence must be trivial.

In this work, we attempt to extend Boston’s strategy from the unramified case to the case of (tamely) ramified
L/K. The key challenge is to handle the fixed points introduced by ramification because Boston’s proof relies heavily
on the fact the σ -action in the unramified case is fixed-point-free. We refer to [11] for a different application of this
phenomenon in the context of Iwasawa theory where one allows wild ramification in L/K.
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In order to state our results, we need to introduce some more notation and hypotheses. Let S be a finite set of places
of K all of which are prime to p (we say that the set S is tame and indicate this by writing (S, p) = 1). Since we
will be working with p-extensions in which the primes in S are allowed to ramify, we further assume that for finite
places p ∈ S, we have #OK/p ≡ 1(mod p). We let KS be the maximal pro-p extension of K unramified outside S
and we put GS = GS(K) = Gal(KS/K).

Let us also take an auxiliary finite set T of places of K, disjoint from S, and define KT
S to be the maximal

pro-p extension of K unramified outside S and in which the places in T split completely. We put GT
S = GT

S (K) =
Gal(KT

S /K). We note then that KT
S ⊂ KS , that GS � GT

S and that K∅
S = KS.

Recall that K is a number field admitting a non-trivial automorphism σ of prime order � dividing p − 1, and
k = Kσ is the fixed field of � = 〈σ 〉. We will assume that the sets S and T described above are stable under the
action of σ . Thus, the extension KT

S /k is Galois and σ acts on GT
S = Gal(KT

S /K).

Definition 1.1. Consider a continuous Galois representation ρ : GT
S (K) → Gln(Qp), and let L be the subfield of

KT
S fixed by ker(ρ) so that the image � of ρ is naturally identified with Gal(L/K). We say that ρ (or �) is σ -uniform

if we have (i) � = Gal(L/K) is uniform; and (ii) L/k is Galois, i.e. the action of σ on GT
S (K) induces an action on �.

For a finitely generated pro-p group G, recall that a closed subgroup generated by pth powers and commutators,
�(G) = G p[G,G], is the Frattini subgroup of G; it is a characteristic subgroup of finite index. The Frattini quotient
G p,el := G/�(G) is the maximal abelian exponent p quotient of G. The method of Boston described in §1.1 in the
unramified case carries over to GT

S without any trouble only if the action of σ on � is FPF. More precisely, if the action
of σ on GT

S /�(G
T
S ) is fixed-point-free, then any σ -uniform representation of GT

S has trivial image. As indicated
above, we try to extend the method by introducing fixed points that result from allowing tame ramification. We show
that even in the presence of non-trivial fixed points, all σ -uniform quotients of GT

S are trivial as long as the “new”
ramification is restricted to the subgroup generated by the fixed points. In §2, we will present our results in greater
generality, but we first illustrate them by presenting a special case for the well-known uniform and FAb pro-p group
Sl12(Zp) := ker

(
Sl2(Zp) → Sl2(Z/pZ)

)
of dimension 3 (p odd).

Theorem A. Suppose K/k is a quadratic extension with Galois group � = 〈σ 〉 such that the odd prime p does
not divide the class number of k. Then there exist infinitely many disjoint finite sets S and T of primes of K, with
(S, p) = 1 and |S| arbitrarily large, such that

(i) GT
S (K) is infinite,

(ii) under the action of σ , there are |S| independent fixed points in GT
S (K)

p,el
,

(iii) all continuous σ -uniform representations ρ : GT
S � Sl12(Zp) come from k by compositum from K.

As corollary of Theorem A, one has:

Corollary B. Under the conditions of Theorem A, if the Tame Fontaine-Mazur conjecture holds for k then there is
no continuous σ -uniform representation ρ : GT

S (K) � Sl12(Zp).

In the simplest open case of the above conjecture, one can take K = Q and � = Sl12(Zp). We must then show that
Sl12(Zp) cannot be realized as the Galois group of a finitely and tamely ramified Galois extension over Q. Given the
recent spectacular breakthroughs coming from the Taylor-Wiles method, perhaps the current methods will one day
prove sufficient to establish this special case of the Tame Fontaine-Mazur conjecture, but at the moment the theory of
even Galois representations is still under-developed by comparison with odd ones. We should emphasize that in this
work, we rely exclusively on group-theoretical methods. However, as automorphic methods approach a full proof of
the tame Fontaine-Mazur conjecture (for 2-dimensional representations at least) over Q, one would be apply to use
the group-theoretical techniques discussed here to deduce some cases of the Tame Fontaine-Mazur conjecture over
quadratic fields from known cases over Q.
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2. Presentation of results

2.1 A key definition

Recall that � is a uniform pro-p group equipped with the action of an automorphism σ of prime order � | p − 1.
We denote by

�◦
σ = 〈γ ∈ �, σ(γ ) = γ 〉,

the closed subgroup of � generated by the fixed points of � under the action of σ , and let �σ be its normal closure
in �. Let G := �/�σ .

Definition 2.1. With the above assumptions, the action of σ on � is said to be fixed-point-mixing modulo Frattini
(FPMF) if G = �/�σ acts non-trivially on �σ /�(�σ ).

This notion will be essential for our work; its relevance is explained at the end of §2.3. Let us give two examples
that we will study in section 3.4 and will be important to illustrate our results.

Example 2.2 (See §3.4.1). If a FAb and uniform pro-p group of dimension 3 admits non-trivial action by an
automorphism σ of order 2, then this action is fixed-point-mixing modulo Frattini. Thus, any involution which acts
non-trivially on the linear group Sl12(Zp) := ker

(
Sl2(Zp) → Sl2(Z/pZ)

)
is fixed-point-mixing modulo Frattini.

Example 2.3 (See §3.4.2). More generally, for the FAb pro-p group

Sl1n(Zp) := ker
(
Sln(Zp) → Sln(Z/pZ)

)
n ≥ 2,

and the automorphism σA coming from conjugation by a matrix A ∈ Gln(Zp) of order 2, the action of σA is
fixed-point-mixing modulo Frattini.

2.2 When σ is of order 2

The case where the automorphism σ is an involution, i.e. � = 2, is particularly interesting. Let us begin with a
definition.

Definition 2.4. Let � be a uniform group of dimension d, which also then equals the p-rank of �, i.e. �/�(�) is a
d-dimensional vector space over Fp. Suppose σ ∈ Aut(�) has order 2. If the multiplicity of the trivial character in
the action of σ on �/�(�) is r , we say that the action of σ on � is of type (r, d − r) and write tσ (�) = (r, d − r).

Under our blanket assumption that σ is non-trivial, it is easy to see that tσ (�) �= (d, 0). In [2] and [3], the
assumption is always that tσ (�) = (0, d). In this work, we consider the more general intermediate types tσ (�) =
(r, d − r) with 0 < r < d , by allowing tame ramification.

The result we want to present will involve the Hilbert p-class field KH of K so we recall this concept. Recalling that
the prime p has been throughout fixed, we let Cl(K) be the p-Sylow subgroup of the ideal class group of K and KH the
maximal abelian unramified p-extension of K. The Artin map gives a canonical isomorphism Cl(K) → Gal(KH/K).
More generally, if S is a finite tame set of places of K and T is another finite set of places disjoint from S, ClT

S will be
the p-Sylow subgroup of the T -ray class group of K mod S, which corresponds via the Artin map to Gal(KT

S /K)
ab.

As before, put GT
S = GT

S (K) = Gal(KT
S /K).

Theorem C. Let p > 2 and let s ∈ N. Let K/k be a quadratic extension with Galois group � = 〈σ 〉 such that p
does not divide |Cl(k)|. Let T be a finite set of places of k that totally splits in KH/K of large enough cardinality
(see Theorem 4.1 for a more exact statement), and such that ClT∅ (KH ) is trivial. Then there exist s pairwise disjoint
positive-density sets Si , i = 1, . . . , s of prime ideals p ⊂ Ok of k such that for finite sets S = {p1, . . . , ps}, with
pi ∈ Si , we have
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(i) under the action of σ , there are s independent fixed points in GT
S /�(G

T
S );

(ii) there is no continuous representation ρ : GT
S → Glm(Qp) with σ -uniform image � which is fixed-point-mixing

modulo Frattini.

We can apply Theorem C to the groups Sl1n(Zp) = ker
(
Sln(Zp) → Sln(Z/pZ)

)
, n ≥ 2. For all n ≥ 2, Sl1n(Zp) is

a uniform FAb group of dimension n2 − 1. We consider automorphisms σA of order 2 obtained via conjugation by a
diagonalizable matrix A ∈ Gln(Zp).

Corollary D. Under the conditions of Theorem C, there exist s positive-density sets Si , i = 1, . . . , s of prime
ideals p ⊂ Ok of k, such that for all finite sets S = {p1, . . . , ps}, with pi ∈ Si , and all n ≥ 2, there does not exist
a continuous representation ρ : GT

S → Glm(Qp) with σ -uniform image Sl1n(Zp) where the involution σ = σA is
conjugation by a diagonalizable matrix A ∈ Gln(Zp).

2.3 Strategy of the proofs and outline of the rest of the paper

Our main results combine a number of ingredients: the effect of a semisimple cyclic action with fixed points on
group structure, the rigid structure of uniform groups, arithmetic properties of the arithmetic fundamental groups GT

S ,
existence of Minkowski units, etc. In this subsection, we will give an outline of how these ingredients are combined
together.

• Criteria for infinitude of GT
S . Let us consider the context of Theorem C. In the statement of that theorem, we refer

to the need for T to be “large enough” and here we wish to explain this a bit more. In order to arrange to have
enough fixed points, we want to take

|T | ≥ αs + β, (1)

with α and β depending on K. On the other hand, by the theorem of Golod-Shafarevich, the group GT
S is infinite

when the p-rank of GT
S is sufficiently large. To be more exact, if

dpGT
S ≥ 2 + 2

√|T | + r1 + r2 + 1, (2)

where (r1, r2) is the signature of K, the pro-p group GT
S is infinite (see for example [18]). Moreover, the p-rank of

GT
S is at least s (because of the choice of S and T ). Hence, by (1) and (2), one can guarantee the infiniteness of GT

S
by taking s sufficiently large, i.e. by introducing sufficiently many fixed points.

• Uniform groups (Section 3). Next we turn to the situation where a cyclic group 〈σ 〉 of order �, with � | p − 1,
acts on a uniform group �. In particular we focus on the subgroup �◦

σ generated by the fixed points and its normal
closure in �, denoted �σ . Here, the key result is Proposition 3.7: it specifies generators for �σ and is crucial for
the rest of our work. When � is FAb, the quotient group G := �/�σ , is a finite p-group. Moreover, when σ is of
order 2, G is abelian.

• The choice of the prime ideals (§4). We fix K and consider varying sets S, T where L ⊆ KT
S has Galois group

� = Gal(L/K). We now assume σ has order 2. Since G is abelian, the field F fixed by �σ is abelian over K.
Moreover we will see that F is contained in the p-Hilbert class field KH . To simplify further, let us assume F = KH .
The choice of prime ideals p of S is based on the following desired outcomes: (i) to create enough fixed points for
the action of σ ; (ii) to control the generators of GS(F) via their inertia groups. Typically, the group G, acts trivially
on the new ramification in (GS(F))p,el .
To show the existence of such prime ideals, one uses Kummer theory and the Chebotarev density Theorem. In order
to do this, we require information about the units of the number field F, namely we need F to contain “Minkowski
units”. To be more precise, let G = Gal(F/k); we say that F has a Minkowski unit if the quotient O×

F /(O×
F )

p

contains a non-trivial Fp[G]-free module. Note that we are not in the semisimple case as p | |G|. This delicate
and interesting question has been studied in recent work of Ozaki [20]: to estimate the rank of the maximal free
Fp[G]-module of O×

F /(O×
F )

p. Our idea here is to introduce a set T and control the Fp[G]-structure of T -units of F.
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• The strategy (§5). There exists a morphism of Fp[G]-modules

ψ : GS(F)/�(GS(F)) � �σ /�(�σ ).

The map ψ dictates the compatibility of two Fp[G]-modules, one of which comes from arithmetic considerations,
and the other from group-theoretical ones. We suspect that the exploitation of this kind of compatibility can be
useful in many other contexts.
We now give some examples for which the structures of GS(F)/�(GS(F)) and of �σ /�(�σ ) as Fp[G]-modules
are not compatible. Typically, the given situations are those for which the morphism ψ is deduced from a
Fp[G]-module M on which G acts trivially, namely we have a diagram as follows:

M = (Z/pZ)⊕s

��

���������������

�� ��
GS(F)/�(GS(F))

ψ �� �� �σ /�(�σ )

From the above diagram, one obtains a contradiction since G = �/�σ does not act trivially on �σ /�(�σ ).
This explains the relevance of the notion of the action of σ being “fixed-point-mixing modulo Frattini” that was
introduced in Definition 2.1.

3. Uniform groups and Fixed Points

Let p be a prime number and let � be a finitely generated pro-p group.

– For two elements x, y of�, denote by x y := y−1xy the conjugate of x by y, and by [x, y] = x−1x y the commutator
of x and y. Put [�,�] = 〈[x, y], x, y ∈ �〉 and �(�) = [�,�]� p;

– Let �ab := �/[�,�] be the maximal abelian quotient of �;
– The Frattini quotient � p,el := �/�(�) is the maximal abelian p-elementary quotient of �;
– Denote by dp(�) = dimFp H1(�,Z/pZ) = dimFp �

p,el the p-rank of �: by the Burnside Basis Theorem, it is the
minimal number of generators of �.

3.1 Schur-Zassenhaus

For this paragraph our reference is the book of Ribes and Zalesskii [23, Chapter 4].
If � is a finitely generated pro-p group of p-rank d , denote by Aut(�) the group of automorphisms (always

continous) of �. Recall that the kernel of the morphism ker
(
Aut(�) → Aut(� p,el)

)
is a pro-p group and that

Aut(� p,el) � Gld(Fp). Let us start with the following well-known result which is crucial in our context:

Theorem 3.1 (Schur-Zassenhaus). Let 1 −→ � −→ G −→ G/� −→ 1 be an exact sequence of profinite
groups, where � is a finitely generated pro-p group and where G/� is finite of order coprime to p. Then the group
G has a subgroup �0 isomorphic to the quotient � = G/� and �0 is unique up to conjugation in G. In particular:
G = � ��0 � � ��. In other words, the pointed set H1(�, �) is reduced to {[0]}.
Proof. See for example Theorem 2.3.15, [23]. �

Let us now consider a finitely generated pro-p group � equipped with an automorphism σ ∈ Aut(�) of order a
prime number � different from p.

Definition 3.2. Denote by �◦
σ := 〈γ ∈ �, σ(γ ) = γ 〉 the closed subgroup generated by the fixed point of � and by

�σ := �◦
σ

Norm,

the normal closure of �◦
σ in �.
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Of course, σ acts trivially on �◦
σ and σ ∈ Aut(�σ ).

Definition 3.3. We say that the action of σ on � is Fixed-Point-Free (FPF) if �◦
σ = {e}.

Recall first a well-known result that shows the rigidity of the FPF-notion.

Proposition 3.4. Let � be a pro-p group and let σ ∈ Aut(�) of order coprime to p. If the action of σ on � is FPF,
then � is nilpotent. Moreover if σ is of order � = 2, then � is abelian.

Proof. See Corollary 4.6.10, [23]. �

Now we may present the first step of our work.

Proposition 3.5. Let � be a finitely generated pro-p group and σ ∈ Aut(�) of order � coprime to p. Put G :=
�/�σ . Then the action of σ on G is FPF, so G is nilpotent. If moreover � is FAb then G is a finite group.

Proof. Consider the non-abelian Galois 〈σ 〉-cohomology of the sequence:

1 −→ �σ −→ � −→ G −→ 1,

to obtain the sequence of pointed sets:

0 −→ H0(〈σ 〉, �σ ) −→ H0(〈σ 〉, �) −→ H0(〈σ 〉,G) −→ H1(〈σ 〉, �σ ) −→ · · ·
By the Schur-Zassenhaus Theorem 3.1, H1(〈σ 〉, �σ ) = {[0]} and then as �◦

σ = H0(〈σ 〉, �) = H0(〈σ 〉, �σ ), one
obtains H0(〈σ 〉,G) = {[0]}: in other words, the action of σ on G is FPF. Then by Proposition 3.4 the pro-p group
G is nilpotent. Moreover if � is FAb, the pro-p group G is also FAb, one concludes that G is finite. �

3.2 Uniform pro-p groups

We first recall some basic facts about p-adic analytic groups (Lie groups over Qp). The main references for this
section are [7] and [17].

For i ≥ 1, denote by �i+1 = �
p
i [�,�i ] where �1 = �: it is the p-central descending series of the finitely

generated pro-p group �. The pro-p group � is said uniform if and only if for i ≥ 1, the map x �→ x pi−1
induces an

isomorphism between �i/�i+1 and �/�2 and [G,G] ⊂ �2p.
Let � be a uniform pro-p group, and let {x1, . . . , xd} be a minimal system of (topological) generators of �. The

group � being uniform, the map x �→ x pn
induces a homeomorphism ψn between � and �n+1. By taking the limit

on the pn th roots, the group � can be equipped with an additive law (and we denote by �+ this “new” group). More
precisely, put x +n y = ψ−1

n (x pn
y pn
) and

x + y := lim
n→∞(x +n y).

Then �+ := Zpx1 ⊕ · · · ⊕ Zpxd is a group isomorphic to Zd
p.

In fact � = 〈x1〉 · · · 〈xd〉: for every x ∈ �, there exists a unique d-tuple (a1, . . . , ad) ∈ Zd
p such that

x = xa1
1 · · · xan

n . Moreover the map

ϕ : � −→ �+
x = xa1

1 · · · xad
d �→ a1x1 ⊕ · · · ⊕ anxn

is a homeomorphism (see [7], Theorem 4.9).
Let us fix σ ∈ Aut(�). It is not difficult to see that σ(x) +n σ(y) = σ(x +n y). Hence, by passing to the limit,

the action of σ becomes a linear action on �+, i.e. σ ∈ Gld(Zp) (see §4.3 of [7]). One needs more to determine the
Galois structure.

Theorem 3.6. The map ϕ induces an isomorphism of Fp[〈σ 〉]-modules between � p,el and �+/p.

Proof. It suffices to note that ϕ induces an isomorphism of groups between � p,el and �+/p: it is exactly
Corollary 4.15 of [7]. �
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3.2.1 Semisimple action and fixed points

Recall the assumption that σ ∈ Aut(�) is of finite order �, a prime number different from p.
The action σ on �+ is semisimple, and the Zp[〈σ 〉]-module �+ is projective. Hence the action of σ on �+/p lifts

uniquely (up to isomorphism) to �+ and then, one can find a family of generators of � respecting this action, or that
respects the decomposition of �+ as projective modules.

Set r = dimFp(�
p,el)σ . The integer r corresponds to the dimension of the Fp-vector subspace of � p,el consisting

of fixed points of � p,el.
Now let us fix a basis {x1, . . . , xd} of � respecting the decomposition into irreducible characters following the

action of σ such that {x1, . . . , xr } corresponds to a basis of (� p,el)σ i.e. σ(xi ) = xi for i = 1, . . . , r . Clearly
〈x1〉 · · · 〈xr 〉 ⊆ �◦

σ .
In the rest of this section, we will rely heavily on the following result.

Proposition 3.7. Let � be a uniform pro-p group and let σ ∈ Aut(�) be of order �. Suppose that � | (p − 1). Then,
with the notation introduced above, we have

�◦
σ = 〈x1〉 · · · 〈xr 〉 = 〈x1, . . . , xr 〉·

Proof. As � divides p − 1, the Qp-irreducible characters of 〈σ 〉 are all of degree 1. In particular, by the choice of the

xi , we get that for i > r , σ(xi ) = xλi
i , where λi ∈ Zp\{1}.

Take x ∈ �◦
σ and let us write x = xa1

1 · · · xad
d . Then x = σ(x), if and only if,

d∏

i=1

xai
i =

d∏

i=1

σ(xi )
ai ·

Thanks to the uniqueness of the product, one deduces that for i > r , λi ai = ai , i.e., ai = 0 because λi �= 1. One
has proven that �◦

σ = 〈x1〉 · · · 〈xr 〉. On the other hand, trivially 〈x1, . . . , xr 〉 ⊂ �◦
σ and 〈x1〉 · · · 〈xr 〉 ⊂ 〈x1, . . . , xr 〉,

which prove the desired equalities. �

We recover here, with a weaker hypothesis, i.e. � | (p − 1), the following corollary used in [11]:

Corollary 3.8. Let � be a uniform pro-p group. Under previous conditions, �◦
σ = {e} if and only if (� p,el)σ = {e}.

Corollary 3.9. Suppose that σ is of order 2, then dp(�/�σ ) = d − r where d = dp� and r = dimFp(�
p,el)σ .

Proof. Put G = �/�σ . Consider the minimal system of generators (xi )i=1,...,d of � introduced above, satisfying
in particular that σ(xi ) = xi for i = 1, . . . , r . The group �σ contains the elements x1, . . . , xr . The quotient G is
topologically generated by the classes xi�σ , i > r , so dpG ≤ d − r . In fact, the classes (xi�σ )i>r form a minimal
system of generators of G: indeed, if not it would show that (possibly after renumbering) the class xr+1�σ can be
expressed in terms of the classes xi�σ , i ≥ r + 2, which would imply that the class xr+1[�,�] could be written in
terms of the classes

(
x j [�,�]) j �=r+1 since �/�σ is abelian, which contradicts the minimality of {x1, . . . , xd}. Hence

dpG = d − r . �

3.2.2 On the group �σ

Let us conserve the notations and assumptions of the preceding subsection; in particular � is uniform, σ ∈ Aut(�)
is of prime order � and � | (p − 1). Recall that �◦

σ = 〈x1 · · · xr 〉 and put G = �/�σ .
By Proposition 3.5, if � is FAb, the group �σ is open in �, the quotient G = �/�σ is finite and Zp[[G]] � Zp[G].
Recall now as G is a pro-p group, the ring Zp[[G]] (resp. Fp[[G]]) is a local ring, with maximal ideal the

augmentation ideal ker(Zp[[G]] → Fp) (resp. ker(Fp[[G]] → Fp)). The ring Zp[[G]] (resp. Fp[[G]]) acts by

conjugation on �σ /[�σ , �σ ] (resp. � p,el
σ ). The following proposition gives a system of minimal generators of this

action.
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Proposition 3.10.

(i) The automorphism σ acts trivially on
(
�ab
σ

)
G.

(ii) The cosets x1�(�σ ), . . . , xr�(�σ ) form a minimal system of generators of the quotient � p,el
σ of �σ seen as

Fp[[G]]-module. In particular dp�σ ≥ r .

Proof.

(i) As � p,el
σ is generated by the G-conjuguates of the classes of the xi , i = 1, . . . , r , one gets that σ acts trivially

on
(
�

p,el
σ

)
G , and then on

(
�ab
σ

)
G .

(ii) Consider now the exact sequence

· · · H2(�,Z/pZ) −→ H2(G,Z/pZ) −→ (
� p,el
σ

)
G −→ � p,el � G p,el,

coming from the short exact sequence 1 −→ �σ −→ � −→ G −→ 1. The automorphism σ acts ont these
exact sequences. As the group �σ contains the elements x1, . . . , xr , the action of σ on G p,el has no non-trivial
fixed points. By comparing the character of the action of σ on the initial exact sequence, one obtains that
dp

(
�

p,el
σ

)
G = r . Thus by Nakayama’s lemma, the classes x1�(�σ ), . . . , xr�(�σ ) form a minimal system of

generators of the Fp[[G]]-module � p,el
σ . In conclusion we get dp�σ ≥ r .

�

We now recall a notion introduced in Definition 2.1: the action of σ on the group � is called fixed-point-mixing
modulo Frattini (FPMF) if G = �/�σ does not act trivially on �σ /�(�σ ) = �

p,el
σ .

Proposition 3.11. If the action of σ on � is not fixed-point-mixing modulo Frattini (i.e. G acts trivially on
�σ /�(�σ )), then �σ = �◦

σ and dp�σ = r .

Proof. It is a consequence of Proposition 3.10. �

Proposition 3.12. Let � be a FAb uniform group of dimension d > 1. Suppose σ ∈ Aut(�) of order � = 2.
If tσ (�) = (1, d − 1), then the action of σ on � is fixed-point-mixing modulo Frattini.

Proof. If dp�σ = 1, the group �σ is generated by only one element and then is procyclic. Since � is FAb, the group
�σ is open by Proposition 3.5, the quotient �/�σ is finite and then the p-adic analytic group � is of dimension 1
which is a contradiction. Thus, dp�σ > 1 and the action of σ on � is fixed-point-mixing modulo Frattini thanks to
Proposition 3.11. �

Remark 3.13. We will see in Proposition 3.23 that when � is FAb and uniform of dimension d , tσ (�) �= (d −1, 1).

3.3 Uniform groups and Lie algebras

3.3.1 The correspondence

Consider a uniform group � of dimension d . We have seen how to associate to � a uniform abelian group �+ � Zd
p.

In fact, this group is naturally equipped with more algebraic structure, as we now explain.
For x, y ∈ �, put (x, y)n := ψ−1

2n ([x
pn
, y pn

]) and define

(x, y) = lim
n→∞(x, y)n·

The Zp-module �+ equipped with the bracket (·, ·) is a Zp-Lie algebra of dimension d ([7],Theorem 4.30). Denote by
L� this new Lie algebra. Recall that each σ ∈ Aut(�) induces an automorphism of �+. By noting that σ((x, y)n) =
(σ (x), σ (y))n, we see that σ(x, y) = (σ (x), σ (y)), so σ becomes an automorphism of the Zp-Lie algebra L� .

We remark that as � is uniform, thus [�,�] ⊂ �2p and (x, y)n ∈ �2p; by passing to the limit, one obtains:
(L�,L�) ⊂ 2p L�.
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Definition 3.14. A Zp-Lie algebra L is called powerful if (L,L) ⊂ 2pL.

Recall now the correspondence.

Theorem 3.15 ([7], Theorem 9.10). There exists a bijective correspondence between the category of uniform
groups of dimension d and the category of powerful Zp-Lie algebras of dimension d.

Given a uniform group of dimension d , we have already seen how to associate to it a Zp-Lie algebra of dimension
d . The inverse map is obtained by using the development of Campbell-Hausdorff � (see section 9.4 of [7]).

Theorem 3.16 ([7], Theorem 9.8 and Theorem 9.10). Let L be a powerful Zp-Lie algebra of dimension d. Let
{x1, . . . , xd} be a Zp-basis of L. The law x ∗ y = �(x, y) makes L into a uniform group �L of dimension d,
topologically generated by {x1, . . . , xd}. Moreover L�L � L and �L� � �.

Remark 3.17. Let us examine carefully the case where L is a powerful sub-Lie-algebra of the Lie algebra Mn(Qp)

of p-adic n × n matrices equipped with the bracket (A, B) = AB − B A. Consider the map “exponential” exp

and “logarithm” log of matrices well-defined in our context (see §6.3 of [7]): L
exp

��
exp(L)

log

�� . Thus for

A, B ∈ L, we get exp(A) exp(B) = exp(�(A, B)), where� is the Campbell-Hausdorff series (see Proposition 6.27
of [7]) and then exp(L) is isomorphic to the uniform group �L (see Corollary 6.25 of [7]).

Since we are especially interested in uniform groups which are FAb, we give a characterization of such groups,
which is probably well-known to specialists.

Proposition 3.18. A uniform group � is FAb if and only if

L�(Qp) = (L�(Qp),L�(Qp)),

where L(Qp) is the Qp-Lie algebra obtained from L by extending the scalars to Qp.

Proof. For every open subgroup H of the uniform group �, LH (Qp) = L�(Qp). Hence, one has to prove that
�ab is finite if and only if, L�(Qp) = (L�(Qp),L�(Qp)). Suppose �ab infinite. There exists a closed and normal
subgroup H of � such that �/H � Zp. By Proposition 4.31 of [7], the subgroup H is uniform, the Zp-Lie algebra
LH is an ideal of L�, and L�/H � L�/LH . As �/H is abelian, the Lie algebra L�/H is commtutative (corollary
7.16 of [7]). In fact, L�/H = Zp. Then LH contains [L�,L�]; thus L�/(L�,L�) � L�/LH � Zp and therefore
(L�(Qp),L�(Qp)) � L�(Qp).

In the other direction, suppose that (L�(Qp),L�(Qp)) � L�(Qp), or equivalently that the Zp-rank of
L�/(L�,L�) is not trivial. Put L1 = L�/(L�,L�). As Zp-modules, let us write L1 = L0 ⊕Tor(L1). It is then easy
to see that Tor(L1) is an ideal of the Lie algebra L1. Thus consider the quotient L0 := L1/Tor(L1): it is a non trivial,
commutative and torsion-free Zp-Lie algebra. By the correspondence of Theorem 3.15, the algebra L0 corresponds
to a uniform abelian group �0 (by Corollary 7.16 of [7]). In fact, as L0 � Zt

p, with t > 0, on has �0 � Zt
p. The

algebra L0 is also the quotient of L� by the ideal L2 generated by (L�,L�) and the lifts of Tor(L1). By Proposition
7.15 of [7], under the correspondence of Theorem 3.15, the algebra L2 corresponds to a uniform closed subgroup H
of �; moreover �/H is uniform. Therefore as for the previous implication, we get L�/H � L�/L2 � L0 � Zt

p and
then �/H � �0 � Zt

p. �

The proof has shown the following result:

Corollary 3.19. A uniform group � is FAb if and only if �ab is finite.

In this subsection, we have seen the relevance of powerful Zp-Lie algebras and their automorphisms in our study.
If moreover we restrict attention to FAb and uniform groups, one sees the importance of simple algebras. Indeed, it
follows from definitions that every Zp-Lie algebra L which is simple or even semisimple (after extending scalars)
produces a uniform FAb group by Proposition 3.18.
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3.3.2 Lie algebras and fixed points

We now further explore the Lie algebra L over Qp. Denote by (·, ·) the Lie bracket of L.

Definition 3.20. Let L be a Lie algebra and let σ ∈ Aut(L). Put Lσ = {x ∈ L, σ (x) = x}.
Let us introduce the notion of FAb algebra.

Definition 3.21. A Lie algebra L over Qp is called FAb if (L,L) = L. In particular a semisimple Lie algebra is
FAb.

As for pro-p groups having a FPF automorphism σ of order � �= p, the same phenomenon occurs for Lie algebras.
Indeed as a consequence of a result of Borel and Serre [1] (cf the remark of Jacobson [13], page 281), we have the
following Proposition.

Proposition 3.22. Let L be a FAb Lie algebra and let σ ∈ Aut(L) of order �. Then Lσ �= {0}.
Proof. Indeed, by Proposition 4 of [1], if Lσ = {0} then L is nilpotent and the conclusion is obvious. �

An automorphism of order � of a FAb Qp-Lie algebra must have a non-trivial fixed point. One finds again
Proposition 3.4 in the context of uniform groups. If σ ∈ Aut(L) is of order 2, as for pro-p groups, one define the
σ -type of L as tσ (L) = (a, b), where a = dim ker(σ − ι) and b = dim ker(σ + ι), ι being the trivial automorphism.
We have a = dimLσ and b = d − a where d = dimL.

Proposition 3.23. Let L be a FAb Qp-Lie algebra of dimension d and let σ ∈ Aut(L) be of order 2. Let tσ (L) =
(a, b) be the σ -type of L. Then a �= 0 and b > 1.

Proof. Observe that since L is FAb then d ≥ 3. By Proposition 3.22, the type (0, d) is excluded. Suppose L of type
(d−1, 1). Take a Qp-basis {e1, e2, . . . , ed−1, ε} of L respecting the action σ , i.e. for i = 1, . . . , d−1, σ(ei ) = ei and
σ(ε) = −ε. One then remarks that σ acts by +1 on (ei , e j ) and by −1 on (ei , ε): therefore (ei , e j ) ∈ 〈e1, . . . , ed−1〉
and (ei , ε) ∈ 〈ε〉. Hence, for i �= j , (ei , e j ) = ∑d−1

k=1 ak(i, j)ek , with ak ∈ Qp, and also for i = 1, . . . , d − 1,
(ei , ε) = λiε. As the Lie algebra is FAb, the matrix (ak(i, j))((i, j),k) of size (d−1)(d−2)

2 × (d − 1)must be of maximal
rank, i.e. d − 1. Also the vector (λ1, . . . , λd−1) is non zero.

Now the elements (ei )i and ε must verify the Jacobi identity; in particular one should have for i �= j :

(ei , (e j , ε))+ (e j , (ε, ei))+ (ε, (ei , e j )) = 0·
Thus one gets

(ei , (e j , ε))+ (e j , (ε, ei))+ (ε, (ei , e j )) = λ j (ei , ε)− λi (e j , ε)+
d−1∑

k=1

ak(i, j)(ε, ek)

= λ jλiε − λiλ jε −
d−1∑

k=1

ak(i, j)λkε

and then

d−1∑

k=1

ak(i, j)λk = 0·

If the matrix (ak(i, j))((i, j),k) is of maximal rank, then λk = 0 for all k and L is not FAb. �

Applying the correspondence of uniform groups/Lie algebras, this proposition allows us to obtain the following
corollary:



74 Farshid Hajir and Christian Maire

Corollary 3.24. Let � be a FAb uniform group of dimension d and let σ ∈ Aut(�) be of order 2. Then tσ (�) =
(d − k, k) with k ≥ 2. Therefore for a FAb uniform group of dimension 3 the type of every automorphism σ of order
2 satisfies tσ (�) = (1, 2).

On other hand, look at Lie algebras L having few fixed points. Consider, say, a Lie algebra L of dimension 4 such
that Lσ is of dimension 1. Let {e1, e2, e3, ε} be a Qp-basis of L respecting the action if σ , i.e. here σ(ei ) = −ei and
σ(ε) = ε. Then (ei , e j ) ∈ 〈ε〉 and (ei , ε) ∈ 〈e1, . . . , e3〉. A linear algebra computation similar to those of Proposition
3.23 shows that L can not be FAb: necessarily, L/(L,L) � Qp. The same holds for the dimension 5. In fact, it
is a general and well-known phenomenon for semisimple Lie algebras L. Indeed dimension of Lσ grows with the
dimension of L (see Theorem 10 and Theorem 8 of [13]).

3.4 Examples

3.4.1 The group Sl12(Zp)

We assume that p > 2. Let us start with the Zp-Lie algebra sl2 of dimension 3 generated by the matrices

x =
(

0 p
0 0

)
, y =

(
0 0
p 0

)
, z =

(
p 0
0 −p

)
·

The algebra sl2 is the subalgebra of the trace zero matrices for which the reduction modulo p is trivial. One has the
relations [x, y] = pz, [x, z] = −2px and [y, z] = 2py. As [sl2, sl2] ⊂ p · sl2, the algebra sl2 is FAb and powerful.
Put

X = exp(x) =
(

1 p
0 1

)
, Y = exp(y) =

(
1 0
p 1

)
, Z = exp(z) =

(
e p 0
0 e−p

)
·

Let Sl12(Zp) be the subgroup of Sl2(Zp) generated by the X, Y, Z ; it is the kernel of the reduction morphism
Sl2(Zp) → Sl2(Z/pZ). The group Sl12(Zp) is FAb, uniform and of dimension 3.

Proposition 3.25. For every involution σ of the uniform pro-p group Sl12(Zp), the action of σ is fixed-point-mixing
modulo Frattini.

Proof. The uniform pro-p group Sl12(Zp) is FAb and of dimension 3: by Corollary 3.24, every automorphism σ of
order 2 is of type (1, 2). One concludes with Proposition 3.12. �

3.4.2 The group Sl1n(Zp)

Let sln(Qp) be the Qp-Lie algebra constituted by the square matrices n ×n with coefficients in Qp and of zero trace.
It is a simple algebra of dimension n2 − 1. Recall a natural basis of it:

(a) for i �= j , Ei, j = (ek,l)k,l for which all the coefficient are zero excepted ei, j that takes value p;
(b) for i > 1, Di = (dk,l)k,l which is the diagonal matrix Di = (p, 0, . . . , 0,−p, 0, . . . , 0), where di,i = −p.

Let sln be the Zp-Lie algebra generated by the Ei, j and the Di . The algebra sln is FAb and powerful.
Put Xi, j = exp Ei, j and Yi = exp Di . Denote by Sl1n(Zp) the subgroup of Sln(Zp) generated by the matrices Xi, j

and Yi . The group Sl1n(Zp) is FAb, uniform and of dimension n2 − 1. It is also the kernel of the reduction map of
Sln(Zp) modulo p. Put � = Sl1n(Zp).

We now examine the inner automorphisms σA. More precisely let us assume that A is of order 2. Denote by
k = dim ker(A− I ), i.e. the number of +1s on the diagonal. We can simplify to the case where A = (ai, j ) is diagonal
with ai,i = 1 for i ≤ k, and ai,i = −1 for i > k.

Lemma 3.26. With the above assumptions, the vector subspace
(
sln

)
σA

of the fixed points of the algebra sln under
conjugation by A is generated by the diagonal matrices and by the matrices Ei, j for {i, j} ⊂ {1, . . . , k} or for
{i, j} ⊂ {k + 1, . . . , n}. The matrices Ei, j and E j,i , with i ≤ k and j > k, form a basis of the subspace of the
eigenvalue −1.
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Proof. It is a simple computation. �

Denote by H the subgroup of � generated by the matrices Xi, j for {i, j} ⊂ {1, . . . , k} and for {i, j} ⊂
{k + 1, . . . , n}.
Lemma 3.27. Under the above conditions, one has

(i) �◦
σ = 〈Xi, j , {i, j} ⊂ {1, . . . , k}, {i, j} ⊂ {k + 1, . . . , n}, Yl, i �= j, l > 1〉·

(ii) H � �◦
σ ;

(iii) H ⊂
(

Ak,k 0
0 Bn−k,n−k

)

Proof.

(i) is a consequence of Proposition 3.7.
(ii) is an easy computation, and (i i i) is obvious.

�

We finally obtain:

Proposition 3.28. Let n ≥ 2 and let σ = σA with A ∈ Gln(Zp) of order 2. Then

(i) The action of σ on Sl1n(Zp) is fixed-point-mixing modulo Frattini;
(ii) Sl1n(Zp)/Sl1n(Zp)σ � (Z/pZ)2k(n−k).

Proof. We can simplify to the case where A = (ai, j ) is diagonal with ai,i = 1 for i ≤ 1, and ai,i = −1 for i > k.

(i) By Lemma 3.27, the subgroup H is of dimension (as variety over Qp) at most k2 + (n − k)2 which is strictly
smaller than n2 − 1. On the other hand, the quotient �◦

σ /H is generated by the diagonal matrices, and is hence
abelian; it will be finite if the subgroup �◦

σ is open in �, because � is FAb. Therefore �, which is of dimension
n2 − 1, is of the same dimension as �σ , which can not be of the same dimension as H . Then �◦

σ � �σ , which
proves that the action of σ on � is fixed-point-mixing modulo Frattini by Proposition 3.11.

(ii) For i �= j , set Yi, j = Y −1
i Y j = exp(Di − D j ). Here Di − D j = (dk,l) is the diagonal matrix with di,i = −p,

d j, j = +p, and 0 otherwise. Observe now

Yi, j Xi, j Y
−1
i, j X−1

i, j = X exp(2p)−1
i, j ,

which shows that G := �/�σ is of exponent p. Then thanks to Lemma 3.9, one has G � (Z/pZ)2k(n−k); here
r = n2 − 1 − 2k(n − k).

�

4. Ramification with prescribed Galois action

First, let us recall some notations.

– p is a prime number.
– If K is a fixed number field, and if S and T are two finite and disjoints sets of primes ideals of OK , denote by KT

S
the maximal pro-p extension of K unramified outside S and totally split at T ; GT

S = Gal(KT
S /K).

– We assume throughout that S contains no primes above p and that for finite places p ∈ S, we have #OK/p ≡
1(mod p). Hence, by class field theory, the pro-p group GT

S is FAb.
– Put ClTS (K) := (GT

S )
ab. It is the p-Sylow of the S-ray T -class class group of K. In particular, Cl(K) := Cl∅∅(K) is

the p-Sylow of the class group of K.
– Let OT

K be the group of T -units of K.
– If L/K is an extension of K, we still denote by abuse, S = S(L) be the set of primes of OL above the primes p ∈ S.
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4.1 Preparation

Let us set the context.

– Let us start with a number field k with two finite and disjoints sets S and T of primes of k.
– Let L/k be a finite Galois extension with Galois group G. We assume that G has only one p-Sylow subgroup G;

put � := G/G. Hence � is a finite group of prime order � �= p. Put K = LG .
– Let T be a finite set of primes of Ok all of which split completely in L, and consider

VT = {α ∈ L×, vP(α) ≡ 0 (mod p), ∀OL-primes P|p /∈ T }·
– Consider now the governing field FT := L′( p√

VT ), where L′ = L(ζp). The Kummer extension FT /L′ is unramified
outside T ∪ Sp(L′).

– We also define analogous objects over k, namely:

VT
k = {α ∈ k×, vp(α) ≡ 0 (mod p), ∀p /∈ T },

and the governing field FT
k := k(ζp,

p
√

VT
k ).

– Henceforth, we assume that the extension L/K is unramified everywhere, in particular the archimedean places of
K split completely in L.

4.1.1 On free sub-G-modules of VT /(L×)p

We will be interested in finding some free sub-Fp[G]-modules of VT /(L×)p: they will appear thanks to control over
the group of T -units, indeed one easily sees that Fp ⊗ OT

L ↪→ VT /(L×)p.
The following result, crucial for us, is a consequence of an adapted version of Lemma 2 of [20].

Theorem 4.1. We assume that the archimedean places of K split completely in L. There exists a constant
A = A(L/K) ∈ Z such that if m is any given positive integer, there exists a choice of a set T of size |T | ≤ m + A
consisting of finite places of k that split completely in L/k, such that the Fp[G]-module Fp ⊗ OT

L contains a
submodule isomorphic to Fp[G]m.

We now give an explicit formula for A(L/K) where the proof can be found in [12, §6.1].
Let us introduce a bit more notation. Let us write d∞ for the number of archimedean places of k that split

completely in K/k and r∞ the number of ramified archimedean places (i.e. those that are real in k and not real in K).

– When μp is not contained in OT
L , take

A = −
[

d∞ + 1

2
r∞ − (|G| − 1)

(
r1 + r2 − d∞ − 1

2
r∞ + dpCl(K)

)
− 1

]
.

– When μp ⊂ OT
L , take

A = −
[

d∞ + 1

2
r∞ − (|G| − 1)

(
r1 + r2 + 1 − d∞ − 1

2
r∞ + dpCl(K)+ dp H2(G,Z/pZ)

)]
.

4.1.2 Kummer Theory and applications

Denote by χp = Fp(1) the cyclotomic character resulting from the action on the pth roots of unity. For a
Fp[G]-module M , put M(1) = M ⊗Fp Fp(1), and M∗ the Pontryagin dual of M .

Put H = Gal(FT /L′); the group G acts on VT /(L×)p and then on H. After noting that (L ′)p ∩ L = L p, recall
that the bilinear form

b : VT /(L×)p × H −→ μp

(x, h) �→ p
√

xh−1
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is non-degenerate and functorial with respect to the action of G :

b(g(x), h) = b(x, g−1(h)χp(g)), g ∈ G, x ∈ VT , h ∈ H.
This bilinear form induces an isomorphism of G-modules :

� :
(
VT /(L×)p)∗

(1)
�−→ H · (3)

Proposition 4.2. If the Fp[G]-module VT /(L×)p contains a free submodule 〈ε〉G generated by some element ε,
then H = Gal(FT /L′) contains, as a direct factor, a free sub-Fp[G]-module Hε of rank 1, i.e.

(〈ε〉G
)∗
(1), the latter

being isomorphic to Gal(L′( p
√〈ε〉G)/L′).

Proof. As Fp[G] is a Frobenius ring, the free submodule 〈ε〉G is a direct factor in VT /(L×)p. By passing to the dual,

the module
(〈ε〉G

)∗
(1) is free and is in direct factor in

(
VT /(L×)p

)∗
(1)

�→∼ H = Gal(FT /L′). Finally by Kummer

theory,
(〈ε〉G

)∗
(1) � Gal(L′( p

√〈ε〉G)/L′). �

Definition 4.3. Under the hypothesis of Proposition 4.2, denote by xε a generator of the free Fp[G]-module Hε.

4.1.3 The Theorem of Gras-Munnier

Definition 4.4. Let K be a number field and S a finite set of prime ideals of OK. We say the extension F/K is
S-ramified if it is unramified outside S and S-totally ramified if it is S-ramified and moreover all primes in S are
totally ramified in F/K.

Let us conserve the notation introduced in the beginning of this section 4.1: L′ = L(ζp) and FT = L′( p
√

VT ).
Let us recall the Theorem of Gras-Munnier (see [10], [9]) that will be extremely useful to us.

Theorem 4.5 (Gras-Munnier [10]). Let S = {p1, . . . , pm} and T be two finite sets of prime ideals of OL, such that
S ∩ T = ∅, and such that for all pi ∈ S, Npi ≡ 1(mod p). For each i = 1, . . . ,m, let Pi be a prime of OL′ above
pi . Then, there exists a T -split, S-totally ramified cyclic extension F/L of degree p if and only if, for i = 1, . . . ,m,
there exists ai ∈ F×

p , such that

m∏

i=1

(
FT /L′

Pi

)ai

= 1 ∈ Gal(FT /L′),

where

(
FT /L′

•
)

is the Artin symbol in the extension FT /L′.

Note that the condition does not depend on the choice of the primes Pi above pi (which merely causes a shift in
the exponents ai ).

4.1.4 Chebotarev density Theorem and applications

The Chebotarev density Theorem allows us to give a relationship between the Theorem of Gras-Munnier and the
section about Kummer Theory. We continue to conserve the notations and the context of section 4.1.

Definition 4.6. Let U, S and T be three pairwise finite disjoint sets of prime ideals of OL. Put � = S ∪ U and
assume that � is tame, i.e. (�, p) = 1. Denote by IT

S (U,L) the subgroup of GT
�(L)/�(G

T
�(L)) generated by the

inertia groups of the prime ideals of U .

Lemma 4.7. With notation as above, the following conditions are equivalent.

– IT
S (U,L) = {1}

– Every T -split �-ramified cyclic degree p extension of L is S-ramified
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– For every non-empty subset U ′ of U, there does not exist a cyclic degree p T -split U ′ ∪ S-ramified extension of
L where all primes of U ′ are totally ramified.

Proof. Obvious. �

Denote by F(S) the subgroup of Gal(FT /L′) generated by the Frobenius of the ideals of S (with an abuse of
notation); here the primes in S are unramified in FT /L′.

Corollary 4.8. Suppose that the Fp[G]-module Gal(FT /L′) contains a free submodule Hε = 〈xε〉G of rank 1 such
that

Hε

⋂
F(S) = {0}·

By Chebotarev density Theorem, choose a prime ideal p of OL such that

〈(
FT /L′

P

)〉
= 〈xε〉, for any P|p. Put

U = {g(P) = Pg, g ∈ G}. Then IT
S (U,L) = {1}.

Proof. Let L0/L be a T -split, S ∪ U -ramified, degree p cyclic extension of L. As the free Fp[G]-module〈(
FT /L′

P

)〉

G
intersects trivially F(S), one has thanks to Theorem 4.5 that the extension L0/L is unramified at U (by

hypothesis there does not exist a non-trivial relation between the elements of U ). By Lemma 4.7, one concludes that
IT
S (U,L) = {1}. �

4.2 The set S

We are now going to give a non free situation that will be used in the proof of Theorem 5.4. It is essential for the
definition of the sets S .

4.2.1 On some special sub-modules

Let us start from the existence of a free submodule Fp[G]|G| of VT /(L×)p, of rank |G|.
Let (εg)g be a basis of Fp[G]|G| indexed by the elements of G. As Fp[G] is a Frobenius ring, the free module⊕
g∈G Fp[G]εg is a direct factor in VT

L/(L
×)p; put then

VT
L/(L

×)p =
⊕

g∈G
Fp[G]εg ⊕ M,

as the sum of G-modules.
Let N = ∑

h∈G h be the algebraic norm. Let us mention an easy lemma:

Lemma 4.9. The module Fp N is a sub-Fp[G]-module of Fp[G] generated by N. In other words, 〈N〉G = 〈N〉. It is
also the only sub-G-module of Fp[G] on which G acts trivially.

Proof. Put
∑

g∈G agg ∈ Fp[G], ag ∈ Fp. Then

∑

g∈G
agg

⎛

⎝
∑

h∈G
h

⎞

⎠ =
∑

g∈G
ag

∑

h∈G
gh =

∑

g∈G
ag N ∈ Fp N,

which proves the first part. Now clearly G acts trivially on N and moreover if we start with an element
∑

g∈G agg on
which G acts trivially, then obviously, ag is constant. �
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Take z0 ∈ VT
k (L

×)p/(L×)p and write z0 = (∑
g∈G yg

) + z, with yg ∈ Fp[G]εg and z ∈ M . As G acts trivially
on z0, then G acts trivially on the elements yg and Lemma 4.9 shows that yg ∈ Fp N · εg. Denote by abuse,
〈N〉 := Fp N · εg.

The morphism of Fp[G]-modules

VT
L/(L

×)p �
⊕

g∈G

(
Fp[G]εg/〈N〉)

factors through VT
k (L

×)p/(L×)p. Passing to the dual, on obtains:
⎛

⎝
⊕

g∈G
Fp[G]εg/〈N〉

⎞

⎠

∗
(1) ↪→ (

VT
L/(L

×)pVT
k

)∗
(1)

where
(
VT

L/(L
×)pVT

k

)∗
(1) = ker

[(
VT

L/(L
×)p)∗

(1) �
(
VT

k (L
×)p/(L×)p)∗

(1)
]·

By passing to Kummer theory and by using the isomorphism � of (3), we get:

0 ��
(
VT

L/(L
×)pVT

k

)∗
(1)

�

��

��
(
VT

L/(L
×)p

)∗
(1)

��

��

��
(
VT

k (L
×)p/(L×)p

)∗
(1)

�

��

�� 0

0 �� Gal(FT /FT
k L′) �� Gal(FT /L′) �� Gal(FT

k L′/L′) �� 0

Put

H′ := �

⎛

⎝

⎛

⎝
⊕

g∈G
Fp[G]εg/〈N〉

⎞

⎠

∗
(1)

⎞

⎠; (4)

then H′ ⊂ Gal(FT /FT
k L′).

Let us study more carefully H′. We will continue to denote by (εg)g the dual basis of εg.
Let us fix an element εg. Then

(
Fp[G]/〈N〉)∗ � { f ∈ Hom(Fp[G],Fp), f (N) = 0}, see for example [6], §60,

chapter IX. Let

I = ker
(
Fp[G] → Fp

)

be the augmentation ideal of the algebra Fp[G]. Obviously, via the isomorphism between Fp[G]∗ and Fp[G], one
has I ⊂ { f ∈ Hom(Fp[G],Fp), f (N) = 0}; these two Fp-spaces vector have the same dimension, i.e. |G| − 1, and
then finally I = { f ∈ Hom(Fp[G],Fp), f (N) = 0}. The exact sequences

1 −→ 〈N〉 −→ Fp[G] −→ Fp[G]/〈N〉 −→ 1

and

1 −→ I −→ Fp[G] −→ Fp −→ 1

are dual to each other, and the same holds after tensoring by μp.
Put xg = εg ⊗ ζp: it is a generator of the free module

(
Fp[G]εg

)
(1). In the sum

⊕
g∈G I · xg ↪→ ⊕

g∈G Fp[G]xg ,
let us choose the particular element x defined by

x :=
⎛

⎝
∑

g∈G
(g − 1)xg

⎞

⎠ · (5)

Obviously the algebraic norm kills each component g − 1 of xg and then N(x) = 0. Let Ann(x) be the annihilator
of x .
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Lemma 4.10. The relation N(x) = 0 is the unique non trivial relation of x, i.e if
∑

h∈G ahh · x = 0 then ah = ae

for all h ∈ G. Equivalently, Ann(x) = Fp N.

Proof. Write λ = ∑
h∈G ahh ∈ Fp[G] such that λ · x = 0. Then

0 = λx =
∑

g∈G
λ(g − 1)xg·

As the modules 〈xg〉 are in direct sum, one has for every g ∈ G, λ(g − 1)xg = 0. The modules 〈xg〉 being moreover
free, one gets λ(g − 1) = 0. Thus λ ∈ ⋂

g∈G Ann(g − 1) ∈ Fp[G]. To conclude, it suffices to remark that the
intersection is reduced to Fp N . Indeed, when g is fixed, we get

∑
h∈G ahh(g − 1) = 0 if and only if, ahg−1 = ag for

all h. When varying g, one obtains ahg = ah for all h and g, implying ag = ae for all g ∈ G. �

4.2.2 Some consequences

Let us start now with x given by Definition (5).
Recall that x ∈ ⊕

g∈G Ixg , where I = { f ∈ Hom(Fp[G],Fp), f (N) = 0}.
Put x0 = �(x) ∈ Gal(FT /L′), where� is the isomorphism coming from Kummer theory, see (3). The element x0

is in H′ and then x0 ∈ Gal(FT /FT
k L′).

By Chebotarev density Theorem, let us choose a prime ideal P of OL which splits totally in L′/k and such that〈(
FT /L′

P

)〉
= 〈x0〉.

Let pk = NL/k(P) be the unique prime ideal of Ok under p. Put U = {pk} and still denote by abuse U = U (F) =
{P ⊂ OF, P|pk} when F/k is a finite extension.

Remark 4.11. When s = 1, in the main theorem (Theorem C) the set S considered is composed of such prime
ideals. The set S is of positive density. This density depends on the size of Gal(FT /Q); the size of Gal(FT /L′)
depends on the p-class group of K, on the signature of K and on the size of |T |.
Proposition 4.12. With the previous notations and conditions (especially the choice of P), we get the isomorphism
of G-modules: IT (U,L) � IT (U, k) � Z/pZ.

Proof. Suppose that there exists a non-trivial relation between the conjugates

(
FT /L′

P

)g

, g ∈ G, of

(
FT /L′

P

)
:

(∑
g∈G agg

) ·
(

FT /L′

P

)
= 0, with ag0 �= 0 for at least one g0 ∈ G. Then, as

〈(
FT /L′

P

)〉
= 〈x0〉, by Lemma 4.10,

one gets ag = ag0 �= 0 for all g ∈ G. Thus by Theorem 4.5, every T -split degree p cyclic extension of L which
is ramified at one prime P0|p is totally ramified at all P

g
0 , g ∈ G. That means that dpIT (U ) ≤ 1 (it is an easy

generalization of Lemma 4.7).
We now show that the number field k has a T -split, {pk}-totally ramified, degree p cyclic extension. Indeed, by

the choice of P, one knows that

(
FT /L′

P

)
∈ 〈x0〉 ⊂ H′ and consequently,

(
L′FT

k /L
′

P

)

= 1. By the properties of

the Artin symbol, one gets
(

L′FT
k /k

′

NL′/k′(P)

)

=
(

L′FT
k /L

′

P

)

= 1,

where

(
FT

k /k
′

NL′/k′(P)

)

= 1. We then remark that NL′/k′(P) is a prime ideal of Ok′ above p. By Theorem 4.5, it

proves the existence of a T -split, {pk}-totally ramified, degree p cyclic extension of k. Then, IT (U, k) � Z/pZ as
G-modules. But one still has IT (U,L) �G IT (U, k), because pk splits totally in L/k. By comparing the p-rank, one
finally obtains: IT (U,L) � IT (U, k) � Z/pZ. �

To finish this part, we present a result of avoidance.
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Proposition 4.13. Suppose that the Fp[G]-module Gal(FT /L′) contains a free sub-moduleH′ of rank |G| with basis
(xg)g∈G . Put x0 = ∑

g∈G(g − 1)xg ∈ H′. By Chebotarev density Theorem, take a prime ideal P of OL such that
〈(

FT /L′

P

)〉
= 〈x0〉. Suppose moreover that H′ ⋂ F(S) = {0}, where F(S) is the subgroup of Gal(FT /L′) generated

by the Frobenius of a G-stable set S of ideals of OL. Then, as G-modules, IT
S (U,L) � IT

S (U, k) � IT (U, k) � Z/pZ,
where U = {Pg, g ∈ G}. Moreover IT

S (U,L) ∩ IT
U (S,L) = {e}.

Proof. As x0 ∈ H′, the module 〈x0〉G intersects F(S) trivially. As for Proposition 4.12, it implies that any T -split
cyclic degree p extension of L, S-ramified and totally ramified at P0|p is totally ramified at all P

g
0 , g ∈ G. Hence,

dpIT
S (U,L) ≤ 1. But by Proposition 4.12, one knows that dpIT (U,L) ≥ 1. As IT

S (U,L) � IT (U,L) one obtains
IT
S (U,L) �G Z/pZ.

Suppose now IT
S (U,L) ∩ IT

U (S,L) �= {e}. As IT
S (U,L) is of order p, it implies that IT

S (U,L) ⊂ IT
U (S,L) and

then every T -split, U -ramified, cyclic degree p extension of L, is in fact everywhere unramified, which contradicts
IT (U,L) � Z/pZ. �

5. Proof of the main results

5.1 The strategy

5.1.1

Let L0/K/k be a σ -uniform tower; put � = Gal(L0/K), G0 = Gal(L0/k) and � = 〈σ 〉. We still assume that σ is of
order � | (p − 1).

Denote by d the p-rank of � and by r the p-rank of the fixed points of σ acting on � p,el = �/�(�). Let
x1, . . . , xn ∈ � be some lifts of some generators of � p,el respecting the action of σ (see §3.2.1). We fix x1 . . . , xr the
lifts of the fixed points. Hence, by Proposition 3.7, �◦

σ = 〈x1, . . . , xr 〉, the pro-p group �σ is topologically generated
by the conjuguates xg

i , i = 1, . . . , r , g ∈ G := �/�σ of the xi . Moreover by Proposition 3.10, � p,el
σ is minimally

generated as Fp[[G]]-module by the family {x1�(�σ ), . . . , xr�(�σ )}.

5.1.2

Now assume that � is the Galois group of a pro-p extension unramified outside S and totally split at T , i.e. a quotient
of GT

S = Gal(KT
S /K). Suppose moreover that the places in S are coprime to p, in other words, S is tame. Then GT

S

and � are FAb. Put F := L�σ0 , G := Gal(F/K) and G = Gal(F/k). The situation is summarized in the diagram below.

KT
S

GT
S (F)

L0

�������

�

�σ

G0
F

G

K

��
��

��
��

〈σ 〉k
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By Proposition 3.5: [F : K] < ∞, and by maximality of KT
S , one has KT

S = FT
S ; put GT

S (F) := Gal(KT
S /F).

Then the natural map GT
S (F) � �σ factors through ψ : GT,ab

S (F) � (�σ )
ab.

Of course, G acts on GT
S (F) and on �σ and then ψ is a G-morphism of abelian groups.

We recall that x1 . . . , xr are in �, they can be lifted to GT
S . In fact, by construction, the elements x1 . . . , xr are

in GT
S (F) and by Proposition 3.10, their classes generate � p,el

σ as a Fp[G]-module. Put M := 〈G · xi�(GT
S (F)),

i = 1, . . . , r〉 ⊂ (
GT

S (F)
)p,el.

Proposition 5.1. The morphism ψ induces a surjective G-morphism from M to � p,el
σ .

Now, we make our key observation: the group M is a subgroup of
(
GT

S (F)
)p,el, it may be described by class field

theory, and the G-structure of � p,el
σ depends only on the pro-p group �.

As we have mentioned in the beginning of this work, the goal is to find some situations where the G-structures of
M and of �ab

σ are not compatible.

5.2 When σ is of order 2

Suppose now that K/k is a quadratic extension such that p � |Cl(k)|; put Gal(K/k) = 〈σ 〉. Let S = {p1, . . . , ps} be a
finite set of prime ideals of Ok such that

(GS(K))p,el �G (G∅(K))p,el
⊕

(Z/pZ)⊕s
.

Let I(S) be the subgroup of Gab
S (K) generated by the inertia groups of the primes in S. One then has 1 −→ I(S) −→

Gab
S (K) −→ Gab

∅ (K) −→ 1.
Take a minimal set of generators {x1, . . . , xr , y1, . . . , yr} of Gab

S = Gab
S (K) as follows: the elements x1, . . . , xs

satisfy σ(xi ) = x−1
i and the elements y1, . . . , yr satisfy σ(yi) = yi .

Let L0/K/k be a σ -uniform tower in KS/k. Put F := L�σ0 . Let us recall that Gal(F/K) is fixed point free under the
action of σ of order 2: hence F/K is an abelian subextension of Kab

S .
Recall that KH denotes the Hilbert p-class field of K.

Lemma 5.2. The extension F/K is unramified. Moreover, F = L0 ∩ KH .

Proof. First observe that σ acts trivially on I (S). As σ acts without non-trivial fixed point on G = �/�σ and that

Gab
S

f
� G, one then gets f (I(S)) = {1}, meaning exactly that F/K is unramified, i.e. F ⊂ KH . Put F1 = L0 ∩ KH .

Obviously, F ⊂ F1. As σ acts by −1 on Cl(K), σ acts by −1 on Gal(F1/F). On the other hand, as F1/K is abelian,
one still has

(
�ab
σ

)
G � Gal(F1/F). But by Proposition 3.10, the involution σ acts trivially on

(
�ab
σ

)
G , which implies

that σ acts trivially on Gal(F1/F). To conclude: σ acts at a time by −1 and by +1 on Gal(F1/F), consequently
F1 = F. �

Proposition 5.3. Let us conserve the notations and the conditions of this section. Suppose that T is a finite set of
prime ideals of Ok, disjoint from S, such that:

– each prime ideal of T totally splits in KH/k;
– ClT∅ (KH ) is trivial.

Let ρ : GT
S (K) → Glm(Qp) be a continuous representation with σ -uniform image �. Then �σ is supported at S,

meaning the inertia groups of the prime ideals of S generate the group �σ .

Proof. The σ -uniform tower L0/K/k is in KT
S /k. By Lemma 5.2 the inertia groups of p ∈ S are in �σ . Denote by L1

the subfield of L0 fixed by these inertia groups: the extension L1/F is T -split and unramified everywhere. Suppose
that L1/F is not trivial. Then one can assume that L1/F is of degree p. Then by Lemma 5.2, we get that L1KH/KH

is T -split and unramified, cyclic degree p extension. But by hypothesis ClT∅ (KH ) is trivial, and then, by class field
theory, one obtains a contradiction. �
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5.3 Proof of Theorem C

We are now able to prove Theorem C of the section 2.

Theorem 5.4 (Theorem C). Let p > 2 and let s ∈ N. Let K/k be a quadratic extension and suppose that p does
not divide |Cl(k)|. Let T be a finite set of places of k that totally splits in KH/K, such that |T | ≥ A + s|G|, where
A = A(KH/K) (see Theorem 4.1 for a more exact statement), and such that ClT∅ (KH ) is trivial. Then there exists s
sets S1, . . . ,Ss , of ideal primes of Ok, all of positive density, such that for � = S ∪ S′ with S′ = {p1, . . . , ps}, where
pi ∈ Si , i = 1, . . . , s, one has:

(i) (GT
S )

p,el �G Cl(K)/p
⊕
(Z/pZ)⊕s

;
(ii) there is no continuous representation ρ : GT

S → Glm(Qp) with σ -uniform image � which is fixed-point-mixing
modulo Frattini.

Proof. The proof is a combination of the previous results.
Let us conserve the notations of §4.1. Put L := KH .
Let us take a finite set T of tame places of k such that:

− |T | ≥ A + s|G|,
– each prime ideal of T totally splits in KH/k,
– ClT∅ (KH ) = 1.

�

Lemma 5.5. There exists s|G| elements εi
g ∈ VT

L , g ∈ G, i = 1, . . . , s, such that

(i) for every i = 1, . . . , s, the Fp[G]-module
∑

g∈G Fp[G]εi
g is free of rank |G|, with basis {εi

g, g ∈ G};
(ii) the Fp[G]-modules

∑
g∈G Fp[G]εi

g are in direct factors:

s∑

i=1

∑

g∈G
Fp[G]εi

g =
s⊕

i=1

⎛

⎝
∑

g∈G
Fp[G]εi

g

⎞

⎠.

Proof. This is a consequence of Theorem 4.1 and Proposition 4.2. �

Let us adapt the Proposition 4.13 in our context. For i = 1, . . . , s, let Hi ⊂ Gal(FT /L′) be the free Fp[G]-modules
of basis {xi

g, g ∈ G}. Recall that these modules are obtained by Kummer duality from the elements of Lemma 5.5.

Put also xi
0 := ∑

g∈G(g − 1)xi
g ∈ H′. By Chebotarev density Theorem, let Si be the set of prime ideals p of OK,

such that the (class of) Frobenius of p in FT /k corresponds to xi
0: the Si is of positive density.

Then consider S = {p1, . . . , ps} a set of prime ideals of Ok, with pi ∈ Si .
For i = 1, . . . , s, choose a prime ideal Pi |pi of OL above pi . Put Ui = {Pg

i , g ∈ G}.
Let us fix i ∈ {1, . . . , s}, and put

Si = U1 ∪ · · · ∪ Ui−1 ∪ Ui+1 ∪ · · · ∪ Ur ,

here, we drop Ui .

Lemma 5.6.

(i) Let R′/k be a Galois subextension of L/k of Galois group G ′. Then as Fp[G ′]-modules:

IT (S,R′) �
s⊕

i=1

IT
Si
(Ui ,R′) � (

Z/pZ
)⊕s

.

(ii) At the level of K, one has:
(
GT

S (K)
)p,el �G

(
GT

∅ (K)
)p,el ⊕ (

Z/pZ
)⊕s �G

(
G∅(K)

)p,el ⊕(
Z/pZ

)⊕s ·
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Proof.

(i) First, take R′ = L and fix i . By Lemma 5.5, Hi ∩ F(Si) = {0}. Proposition 4.13 applied to Ui and to Si allows
us to get: IT

Si
(Ui ,L) � IT

Si
(Ui ,K) � IT (Ui , k) � Z/pZ and IT

Si
(Ui ,L)∩ IT

Ui
(Si,L) = {e}. Hence when i varies,

the groups IT
Si
(Ui ,L) are in direct factors in

(
GT

S (L)
)p,el.

Take now R′ in L/k. As L/K is ramified, one has IT
Si
(Ui ,L) � IT

Si
(Ui ,R′) � IT

Si
(Ui , k) and one concludes

thanks to IT
Si
(Ui ,L) � IT

Si
(Ui , k).

(ii) comes from the exact sequence of Fp[〈σ 〉]-modules (which splits by semisimplicity):

1 −→
s⊕

i=1

IT
Si
(Ui ,K) −→ (

GT
S (K)

)p,el −→ (
GT

∅ (K)
)p,el −→ 1

and by the choice of T :
(
GT

∅ (K)
)p,el � (

G∅(K)
)p,el.

Let us start with a σ -uniform extension L0/K/k such that Gal(L0/K) is a uniform quotient of GT
S (K). Put

� = Gal(L0/K) and assume that d ≥ 1.
As (GT

S (K))
p,el � � p,el, the action of σ on � p,el has at most s “fixed points”. Moreover by Boston [2] and [3],

this action must have at least one non-trivial fixed point. Hence, here as � is supposed to be non trivial, we get
1 ≤ r ≤ s, where r = dimFp(�

p,el)σ . Put G := �/�σ .
If we denote by F the subfield of L0 fixed by �σ , then by Lemma 5.2 the extension F/K is unramified at S, F ⊂ KT∅

and GT∅ (K) � Gal(F/K).
By Proposition 5.3, observe now that the fixed points in (GT

S (F))
p,el come from the ramification at S.

By Lemma 5.6, the Fp-vector space IT (S, F) is of dimension s and the action of G := Gal(F/K) on it is trivial:
indeed, IT (S, F) �G (Z/pZ)⊕s

. But, by Proposition 5.1 and by the condition above the ramification at the prime
ideals pi ∈ S, IT S, F) � (�σ )

p,el and then G acts trivially on (�σ )p,el. At this point, one uses the condition
fixed-point-mixing modulo Frattini to obtain a contradiction: indeed in this case G should act non trivially on
(�σ )

p,el. �

We can now say few words about the proofs of the results of §1 and §2.

– Theorem A of the subsection 1.1 comes from the fact that every involution σ on Sl12(Zp) is of type tσ (�) = (1, b)
and then is fixed-point-mixing modulo Frattini by Proposition 3.25. (Here T sufficiently large means also that
ClT (KH )) is trivial.) Hence the action of σ on � should be trivial. Thus Im(ρ) comes from k by compositum
from K.

– Corollary D can be deduced from Theorem C and Proposition 3.28.
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