
ON TAME Z/pZ-EXTENSIONS WITH PRESCRIBED RAMIFICATION

FARSHID HAJIR, CHRISTIAN MAIRE, RAVI RAMAKRISHNA

Abstract. The tame Gras-Munnier Theorem gives a criterion for the existence of a Z/pZ-extension
of a number field K ramified at exactly a set S of places of K prime to p in terms of the exis-
tence of a dependence relation on the Frobenius elements of these places in a certain governing
extension. We give a short new proof which extends the theorem by showing the subset of ele-
ments of H1(GS ,Z/pZ) giving rise to such extensions of K has the same cardinality as the set of
these dependence relations. We then reprove the key Proposition 3 using the more sophisticated
Greenberg-Wiles formula based on global duality.

1. Introduction:

Let D ∈ Z be squarefree and odd and write ∞|D if D < 0. It is a standard result that there
exists a quadratic extension K/Q ramified at exactly the set of places {v : v|D} if and only if D ≡ 1
mod 4. The key is how the Frobenius elements of the v|D lie in the Galois group of the governing
extension Q(i)/Q. Let σv denote Frobenius at v in this extension with σ∞ being the nontrivial
element of Gal(Q(i)/Q). We frame this result as the following fact:

Fact There exists a quadratic extension K/Q ramified exactly at a tame (not containing 2 but

allowing ∞) set S of places if and only if
∑
v∈S

σv is the trivial element in Gal(Q(i)/Q).

[GM] generalized this result to Z/pZ-extensions of a general number field K. To explain the
result precisely we need some notation and terminology. For a fixed prime p and set S of tame
places, let

VS := {x ∈ K× | (x) = Jp; x ∈ K×pv ∀ v ∈ S}.
Note K×p ⊂ VS for all S and S ⊆ T =⇒ VT ⊆ VS . Let O×K and ClK [p] be, respectively, the units
of K and the p-torsion in the class group of K. That V∅/K

×p lies in the exact sequence

(1.1) 0→ O×K ⊗ Fp → V∅/K
×p → ClK [p]→ 0

is well-known. See Proposition 10.7.2 of [NSW]. Set K ′ = K(µp), L = K ′( p
√
V∅) and let r1 and

r2 be the number of real and pairs of complex embeddings of K. We call L/K ′ the governing
extension for K. When K = Q and p = 2 we see L = Q(i) and have recovered the field of the Fact.

L := K ′( p
√
V∅)

K ′ := K(µp)

K
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As L is obtained by adjoining to K ′ the pth roots of elements of K (not K ′), one easily shows
that places v′1, v

′
2 of K ′ above a fixed place v of K have Frobenius elements in Gal(L/K ′) that

differ by a nonzero scalar multiple. We abuse notation and for any v′ of K ′ above v in K denote
Frobenius at v′ by σv. The theorem of [GM] (also see Chapter V of [G]) below and Theorem 1
implicitly use this abuse of notation.

Theorem (Gras-Munnier) Let p be a prime and S a finite set of tame places (allowing Archimedean
places if p = 2) of K. There exists a Z/pZ-extension of K ramified at exactly the places of S if

and only if there exists a dependence relation
∑
v∈S

avσv = 0 in the Fp-vector space Gal(L/K ′) with

all av 6= 0.

Theorem 1 below is a generalization of the Gras-Munnier Theorem. We first give a short proof
that uses only one element of class field theory, (2.1) below, and elementary linear algebra in
characteristic p. We easily prove Proposition 3 from (2.1), after which one only needs a standard
inclusion-exclusion argument to prove Theorem 1. The cardinalities of the two sets of Theorem 1
being equal suggests a duality. In the final section of this note we give an alternative proof of
Proposition 3 using the Greenberg-Wiles formula whose proof requires the full strength of global
duality. Denote by GS the Galois group over K of its maximal extension pro-p unramified outside
S and recall that for 0 6= f ∈ H1(GS ,Z/pZ) = Hom(GS ,Z/pZ), Kernel(f) fixes a Z/pZ-extension
of K unramified outside S. Our main result is:

Theorem 1. Let p be a prime and S a finite set of tame places of a number field K (allowing
Archimedean places if p = 2). The sets{
f ∈ H

1(GS ,Z/pZ)

H1(G∅,Z/pZ)
| the extension Kf/K fixed by Kernel(f) is ramified exactly at the places of S

}
and

{Dependence relations
∑
v∈S

avσv = 0 in Gal(L/K ′) with all av 6= 0}

have the same cardinality.

When p = 2 both sets have cardinality at most one so the bijection is natural in this case.
We thank Brian Conrad for pointing out to us a proof of Lemma 4(ii) and Peter Uttenthal for

helpful suggestions.

2. Proof of Theorem 1

For any field E set δ(E) =

{
1 µp ⊂ E
0 µp 6⊂ E

. Dirichlet’s unit theorem and (1.1) imply Gal(L/K ′)

is an Fp-vector space of dimension r1 + r2 − 1 + δ(K) + dimClK [p]. The standard fact from class
field theory that we need (see §11.3 of [K] or §10.7 of [NSW]) is a formula of Shafarevich and Koch
for the dimension of the space of Z/pZ-extensions of K unramified outside a tame set Z:

(2.1) dimH1(GZ ,Z/pZ) = −r1 − r2 + 1− δ(K) + dim(VZ/K
×p) +

(∑
v∈Z

δ(Kv)

)
.

Fix a tame set S noting that H1(GS ,Z/pZ) may include cohomology classes that cut out Z/pZ-
extensions of K that could be ramified at proper subsets of S. If δ(Kv) = 0 there are no ramified
Z/pZ-extensions of Kv and thus no Z/pZ-extensions of K ramified at v, so we always assume
δ(Kv) = 1. As we vary Z from ∅ to S one place at a time, dim(VZ/K

×p) may remain the same or
decrease by 1. In these cases dimH1(GZ ,Z/pZ) increases by 1 or remains the same respectively.
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Let W ⊂ Gal(L/K ′) be the Fp-subspace spanned by 〈σv〉v∈S , the Frobenius elements of the
places in S. Recall that each σv is only well-defined up to the line that it spans so W is well-
defined Let I := {u1, u2, · · · , ur} ⊂ S be such that {σu1 , σu2 , · · · , σur} form a basis of W and let
D := {w1, w2, · · · , ws} ⊂ S be the remaining elements of S. We think of the σui as independent
elements and the σwj as the dependent elements. As we vary Z in (2.1) from ∅ to I by adding

in one ui at a time, we are adding 1 through the δ(Kui) term to the right side, but dimVZ/K
×p

becomes one dimension smaller, so both sides remain unchanged. Then, as we add in the places wj
of D to get to S = I ∪D we have VI/K

×p = VS/K
×p. Thus

(2.2) H1(G∅,Z/pZ) = H1(GI ,Z/pZ) and dim

(
H1(GS ,Z/pZ)

H1(G∅,Z/pZ)

)
= s.

We write each σwj uniquely as a linear combination of the σui :

Rj : σwj −
r∑
i=1

Fjiσui = 0.

Lemma 2. The set {R1, R2, · · · , Rs} forms a basis of the Fp-vector space of dependence relations
on the σui and σwj .

Proof. Consider any dependence relation R among the σui and σwj . We can eliminate each σwj

by adding to R a suitable multiple of Rj . We are then left with a dependence relation on the σui ,
which are independent, so it is trivial, proving the lemma. �

For X ⊆ S let RX be the Fp-vector space of all dependence relations on the elements {σv}v∈X ⊂
Gal(L/K ′).

Proposition 3. For any X ⊆ S, dimRX = dim

(
H1(GX ,Z/pZ)

H1(G∅,Z/pZ)

)
.

Proof. Lemma 2 and (2.2) prove this for X = S. Apply the same proof to X ⊆ S. �

Proposition 3 does not complete the proof of Theorem 1 as RS may contain dependence relations

with support properly contained in S and
H1(GS ,Z/pZ)

H1(G∅,Z/pZ)
may contain elements giving rise to

extensions of K ramified at proper subsets of S.

Proof Theorem 1. The set of dependence relations with support exactly in S is

(2.3) RS \
⋃
v∈S

RS\{v},

those with support contained in S less the union of those with proper maximal support in S. For
any sets Ai ⊂ S it is clear that

⋂
RAi = R⋂

Ai
, so by inclusion-exclusion

(2.4) #
⋃
v∈S

RS\{v} =
∑
v∈S

#RS\{v} −
∑

v 6=w∈S
#RS\{v,w} + · · ·

Similarly the set of cohomology classes giving rise to Z/pZ-extensions ramified exactly at the
places of S (up to unramified extensions) is

(2.5)
H1(GS ,Z/pZ)

H1(G∅,Z/pZ)
\
⋃
v∈S

H1(GS\{v},Z/pZ)

H1(G∅,Z/pZ)
.
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Since for any sets Ai ⊂ S we have⋂ H1(GAi ,Z/pZ)

H1(G∅,Z/pZ)
=
H1(G∩Ai ,Z/pZ)

H1(G∅,Z/pZ)
,

we see

(2.6) #
⋃
v∈S

H1(GS\{v},Z/pZ)

H1(G∅,Z/pZ)
=
∑
v∈S

#
H1(GS\{v},Z/pZ)

H1(G∅,Z/pZ)
−

∑
v 6=w∈S

#
H1(GS\{v,w},Z/pZ)

H1(G∅,Z/pZ)
+ · · ·

Proposition 3 implies the terms on the right sides of (2.4) and (2.6) are equal so the left sides are
equal as well. The result follows from (2.3), (2.5) and applying Proposition 3 with X = S. �

3. A proof via the Greenberg-Wiles formula

As the association of dependence relations and cohomology classes in Theorem 1 resembles a
duality result, we reprove Proposition 3 using the Greenberg-Wiles formula, which follows from
global duality. We assume familiarity with local and global Galois cohomology.

As we will need to apply the Greenberg-Wiles formula, we henceforth assume its hypothesis
that Z is a set of places of K containing all those above infinity and p. For each v ∈ Z, let
Gv := Gal(K̄v/Kv) and consider a subspace Lv ⊆ H1(Gv,Z/pZ). Under the perfect local duality
pairing (see Chapter 7, §2 of [NSW])

H1(Gv,Z/pZ)×H1(Gv, µp)→ H2(Gv, µp) '
1

p
Z/Z

Lv has an annihilator L⊥v ⊆ H1(Gv, µp). Set

H1
L(GZ ,Z/pZ) := Kernel

(
H1(GZ ,Z/pZ)→ ⊕v∈Z

H1(Gv,Z/pZ)

Lv

)
and

H1
L⊥(GZ , µp) := Kernel

(
H1(GZ , µp)→ ⊕v∈Z

H1(Gv, µp)

L⊥v

)
.

We call {Lv}v∈Z and {L⊥v }v∈Z the Selmer and dual Selmer conditions and H1
L(GZ ,Z/pZ) and

H1
L⊥(GZ , µp) the Selmer and dual Selmer groups.
We need Lemma 4 and the Greenberg-Wiles formula below for our second proof of Proposition 3.

As Lemma 4 (ii) is perhaps not so well-known, we include a sketch of its proof.

Lemma 4. (i) For v - p the unramified cohomology classes H1
nr(Gv,Z/pZ) and H1

nr(Gv, µp) are
exact annihilators of one another under the local duality pairing.
(ii) Suppose v|p and set K ′v = Kv(µp). The annihilator of H1

nr(Gv,Z/pZ) ⊂ H1(Gv,Z/pZ) is
H1
f (Gv, µp) ⊂ H1(Gv, µp), the peu ramifiée classes, namely those f ∈ H1

f (Gv, µp) whose fixed field

Lv,f of Kernel(f |GK′
v
) arises from adjoining the pth root of a unit uf ∈ Kv.

Proof. (i) This is standard - see 7.2.15 of [NSW].
(ii) Cohomology taken over Spec(OKv) in what follows is flat. Here

H1
f (Gv, µp) = H1(Spec(OKv), µp) = O×Kv

/O×pKv
⊂ K×v /K×pv

where the containment is codimension one as Fp-vector spaces. Recall

Z/pZ ' H1
nr(Gv,Z/pZ) = H1(Spec(OKv),Z/pZ)

and by Lemma 1.1 of Chapter III of [M] we have the injections

H1(Spec(OKv),Z/pZ) ↪→ H1(Gv,Z/pZ) and H1(Spec(OKv), µp) ↪→ H1(Gv, µp)

and the pairing

H1(Spec(OKv),Z/pZ)×H1(Spec(OKv), µp)→ H2(Spec(OKv), µp) = 0.
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This last pairing is consistent with the local duality pairing

(3.1) H1(Gv,Z/pZ)×H1(Gv, µp)→ H2(Gv, µp) =
1

p
Z/Z.

AsH1(Spec(OKv),Z/pZ) = H1
nr(Gv,Z/pZ) andH1(Spec(OKv), µp) = H1

f (Gv, µp) are, respectively,

dimension 1 and codimension 1 in H1(Gv,Z/pZ) and H1(Gv, µp), they are exact annihilators of
one another in (3.1), proving (ii). �

Theorem (Greenberg-Wiles) Assume Z contains all places above {p,∞}. Then

dimH1
L(GZ ,Z/pZ)− dimH1

L⊥(GZ , µp)
= dimH0(GZ ,Z/pZ)− dimH0(GZ , µp) +

∑
v∈Z

(
dimLv − dimH0(Gv,Z/pZ)

)
.

See 8.7.9 of [NSW] for a proof.

Second proof of Proposition 3. RecallX is tame and writeX := X<∞∪X∞. Set Z := Zp∪X<∞∪Z∞
where Zp := {v : v|p} and Z∞ is the set of all real Archimedean places of K (so X∞ ⊆ Z∞).

For v complex Archimedean we have Gv = {e} so the Selmer and dual Selmer conditions are
trivial. For v real Archimedean, dimH1(Gv,Z/2Z) = dimH1(Gv, µ2) = 1 and the pairing between
them is perfect - see Chapter I, Theorem 2.13 of [M]. It is easy to see in this case that the unramified
cohomology groups are trivial.

In the table below we choose {Mv}v∈Z and {Nv}v∈Z so that H1
M(GZ ,Z/pZ) = H1(GX ,Z/pZ)

and H1
N (GZ ,Z/pZ) = H1(G∅,Z/pZ). The previous paragraph and Lemma 4 justify the stated dual

Selmer conditions of the table.

Mv M⊥v Nv N⊥v
v ∈ Zp H1

nr(Gv,Z/pZ) H1
f (Gv, µp) H1

nr(Gv,Z/pZ) H1
f (Gv, µp)

v ∈ X∞ H1(Gv,Z/2Z) 0 H1
nr(Gv,Z/2Z) = 0 H1(Gv, µ2)

v ∈ Z∞ \X∞ H1
nr(Gv,Z/2Z) = 0 H1(Gv, µ2) H1

nr(Gv,Z/2Z) = 0 H1(Gv, µ2)
v ∈ X<∞ H1(Gv,Z/pZ) 0 H1

nr(Gv,Z/pZ) H1
nr(Gv, µp)

Applying the Greenberg-Wiles formula for {Mv}v∈Z and {Nv}v∈Z and subtracting the first equation
from the second:

dimH1(GX ,Z/pZ)− dimH1(G∅,Z/pZ) =
dimH1

M(GZ ,Z/pZ)− dimH1
N (GZ ,Z/pZ) =

dimH1
M⊥(GZ , µp)− dimH1

N⊥(GZ , µp) +
∑

v∈Z(dimMv − dimNv).

For v ∈ X<∞ local class field theory implies dimH1
nr(Gv,Z/pZ) = 1 and dimH1(Gv,Z/pZ) = 2 so

dimMv − dimNv =


0 v ∈ Zp
1 v ∈ X∞, p = 2
0 v ∈ Z∞ \X∞
1 v ∈ X<∞

,

and then

(3.2) dim

(
H1(GX ,Z/pZ)

H1(G∅,Z/pZ)

)
= dimH1

M⊥(GZ , µp)− dimH1
N⊥(GZ , µp) + #X.

To prove Proposition 3 we need to show this last quantity is dimRX = s, the dimension of the
space of dependence relations on the set {σv}v∈X ⊂W = Gal(K ′( p

√
V∅)/K

′).

An element f ∈ H1
N⊥(GZ , µp) gives rise to the field diagram below where Lf/K

′ is a Z/pZ-
extension peu ramifiée at v ∈ Zp, with no condition on v ∈ Z∞ and unramified at v ∈ X<∞. We

show the composite of all such Lf is K ′
(

p
√
V∅
)
.
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Lf := K ′
(

p
√
αf
)

K ′ := K(µp)

K

Kummer Theory implies αf ∈ K ′/K ′×p, which decomposes into eigenspaces under the action of
Gal(K ′/K). If it is not in the trivial eigenspace, then Gal(Lf/K

′) is not acted on by Gal(K ′/K)
via the cyclotomic character, a contradiction, so we may assume (up to pth powers) αf ∈ K. Since
Lf/K

′ is unramified at v ∈ X<∞, we see that at all such v that αf = uπprv where u ∈ Kv is a unit.
At v ∈ Zp being peu ramifiée implies that locally at v ∈ Xp we have αf = uπprv where u ∈ Kv

is a unit. Together, these mean that the fractional ideal (αf ) of K is a pth power, which implies
that αf ∈ V∅. Conversely, if α ∈ V∅, then, recalling that (α) = Jp for some ideal of K, we have
that K ′ ( p

√
α) /K ′ is a Z/pZ-extension peu ramifiée at v ∈ Zp, with no condition at v ∈ Z∞. Thus

α gives rise to an element fα ∈ H1
N⊥(GZ , µp) so L := K ′

(
p
√
V∅
)

is the composite of all Lf for

f ∈ H1
N⊥(GZ , µp) and dimH1

N⊥(GZ , µp) = dim(V∅/K
×p).

An element f ∈ H1
M⊥(GZ , µp) gives rise to a Z/pZ-extension of K ′ peu ramifiée at v ∈ Zp and

split completely at v ∈ X. We denote the composite of all these fields by D ⊂ K ′
(

p
√
V∅
)
.

L := K ′
(

p
√
V∅
)

D

K ′ := K(µp)

K

Recall that r is the dimension of the space 〈σv〉v∈X ⊂ Gal(L/K ′). Clearly D is the field fixed
of 〈σv〉v∈X so dimFp Gal

(
K ′
(

p
√
V∅
)
/D
)

= r = #I from the first section of this note. Thus

dimH1
M⊥(GZ , µp) = dim(V∅/K

×p)− r so

dimH1
M⊥(GZ , µp)− dimH1

N⊥(GZ , µp) + #X =(
dim(V∅/K

×p)− r
)
− dim(V∅/K

×p) + (r + s) = s = dimRX

and we have shown the the left hand side of (3.2) is dimRX proving Proposition 3. �
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FEMTO-ST Institute, Université de Franche-Comté, CNRS, 15B avenue des Montboucons, 25000
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