ON TAME Z/pZ-EXTENSIONS WITH PRESCRIBED RAMIFICATION
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ABSTRACT. The tame Gras-Munnier Theorem gives a criterion for the existence of a Z/pZ-extension
of a number field K ramified at exactly a set S of places of K prime to p in terms of the exis-
tence of a dependence relation on the Frobenius elements of these places in a certain governing
extension. We give a short new proof which extends the theorem by showing the subset of ele-
ments of H'(Gs,Z/pZ) giving rise to such extensions of K has the same cardinality as the set of
these dependence relations. We then reprove the key Proposition [3] using the more sophisticated
Greenberg-Wiles formula based on global duality.

1. INTRODUCTION:

Let D € Z be squarefree and odd and write oo|D if D < 0. It is a standard result that there
exists a quadratic extension K /Q ramified at exactly the set of places {v : v|D} if and only if D =1
mod 4. The key is how the Frobenius elements of the v|D lie in the Galois group of the governing
extension Q(i)/Q. Let o, denote Frobenius at v in this extension with o being the nontrivial
element of Gal(Q(i)/Q). We frame this result as the following fact:

Fact There exists a quadratic extension K/Q ramified exactly at a tame (not containing 2 but

allowing 0o ) set S of places if and only z'fZav is the trivial element in Gal(Q(i)/Q).
veS

[GM] generalized this result to Z/pZ-extensions of a general number field K. To explain the
result precisely we need some notation and terminology. For a fixed prime p and set S of tame
places, let

Vsi={z e K* | (x)=JP; € K;?VveS}
Note K*P C Vg for all S and S CT = Vp C Vs. Let OF and Clk/[p] be, respectively, the units
of K and the p-torsion in the class group of K. That Vj/K*P lies in the exact sequence

(1.1) 0— Ok @F, = Vy/K*? — Clgp] - 0
is well-known. See Proposition 10.7.2 of [NSW]. Set K" = K(u,), L = K'({/V}) and let 71 and

ro be the number of real and pairs of complex embeddings of K. We call L/K’ the governing
extension for K. When K = Q and p = 2 we see L = QQ(¢) and have recovered the field of the Fact.

L:=K'(3/Vp)

/

K" = K(up)

K
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As L is obtained by adjoining to K’ the pth roots of elements of K (not K’), one easily shows
that places v}, v) of K’ above a fixed place v of K have Frobenius elements in Gal(L/K’) that
differ by a nonzero scalar multiple. We abuse notation and for any v’ of K’ above v in K denote
Frobenius at v" by o,. The theorem of [GM] (also see Chapter V of [G]) below and Theorem
implicitly use this abuse of notation.

Theorem (Gras-Munnier) Let p be a prime and S a finite set of tame places (allowing Archimedean
places if p = 2) of K. There exists a Z/pZ-extension of K ramified at exactly the places of S if

and only if there exists a dependence relation Zavav = 0 in the Fy-vector space Gal(L/K') with

vES
all a, # 0.

Theorem [1| below is a generalization of the Gras-Munnier Theorem. We first give a short proof
that uses only one element of class field theory, below, and elementary linear algebra in
characteristic p. We easily prove Proposition |3| from , after which one only needs a standard
inclusion-exclusion argument to prove Theorem [I} The cardinalities of the two sets of Theorem
being equal suggests a duality. In the final section of this note we give an alternative proof of
Proposition [3| using the Greenberg-Wiles formula whose proof requires the full strength of global
duality. Denote by Gg the Galois group over K of its maximal extension pro-p unramified outside
S and recall that for 0 # f € HY(Gs,Z/pZ) = Hom(Gg,Z/pZ), Kernel(f) fixes a Z/pZ-extension
of K unramified outside S. Our main result is:

Theorem 1. Let p be a prime and S a finite set of tame places of a number field K (allowing
Archimedean places if p=2). The sets

{f H'(Gg,Z/pZ)

Hi(Gy. Z/vZ) | the extension K;/K fized by Kernel(f) is ramified exactly at the places of S}

and
{Dependence relations Z%UU =0 in Gal(L/K') with all a, # 0}

ves
have the same cardinality.

When p = 2 both sets have cardinality at most one so the bijection is natural in this case.
We thank Brian Conrad for pointing out to us a proof of Lemma [4f(ii) and Peter Uttenthal for
helpful suggestions.

2. PROOF OF THEOREM [1

1 ppCFE

0 pp E
is an Fp-vector space of dimension 1 + 72 — 14 6(K) + dim Clg [p]. The standard fact from class

field theory that we need (see §11.3 of [K] or §10.7 of [NSW]) is a formula of Shafarevich and Koch
for the dimension of the space of Z/pZ-extensions of K unramified outside a tame set Z:

For any field E set 6(E) = { . Dirichlet’s unit theorem and (1.1)) imply Gal(L/K")

(2.1) dim HY(Gz,Z/pZ) = —r1 — 19 +1 = §(K) + dim(Vz/K*P) + (Z 5(Kv)> :
veZ

Fix a tame set S noting that H'(G'g,Z/pZ) may include cohomology classes that cut out Z/pZ-
extensions of K that could be ramified at proper subsets of S. If §(K,) = 0 there are no ramified
Z/pZ-extensions of K, and thus no Z/pZ-extensions of K ramified at v, so we always assume
d(K,) = 1. As we vary Z from () to S one place at a time, dim(V;/K*P) may remain the same or
decrease by 1. In these cases dim H'(Gz,Z/pZ) increases by 1 or remains the same respectively.
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Let W C Gal(L/K') be the Fp-subspace spanned by (o,)ycg, the Frobenius elements of the
places in S. Recall that each o, is only well-defined up to the line that it spans so W is well-
defined Let I := {uy,ug,---,u,} C S be such that {oy,,0u,, - ,04.} form a basis of W and let
D = {w;i,wa,- -+ ,ws} C S be the remaining elements of S. We think of the oy, as independent
elements and the o, as the dependent elements. As we vary Z in from () to I by adding
in one u; at a time, we are adding 1 through the §(K,,) term to the right side, but dim V;/K*P
becomes one dimension smaller, so both sides remain unchanged. Then, as we add in the places w;
of D to get to S =1 U D we have V;/K*P = Vg/K*P. Thus

1
(22) Hl(G@,Z/pZ) — Hl(GhZ/pZ> and dim (W) =

We write each oy, uniquely as a linear combination of the oy,

.
— Y Fjiow, =0.
=1

Lemma 2. The set {R1, Ry, , Rs} forms a basis of the Fp-vector space of dependence relations
on the oy, and Ow, -

Proof. Consider any dependence relation R among the o, and 0,,;. We can eliminate each o,
by adding to R a suitable multiple of R;. We are then left with a dependence relation on the o,
which are independent, so it is trivial, proving the lemma. ]

For X C S'let Rx be the [F)-vector space of all dependence relations on the elements {ov}vex C
Gal(L/K").

H'(Gx,Z/pZ
Proposition 3. For any X C S, dim Rx = dim <(G‘X’/p)>

HY(Gy,Z/pL)
Proof. Lemma [2{ and ([2.2)) prove this for X = S. Apply the same proof to X C S. O

Proposition [3] does not complete the proof of Theorem [I] as Rg may contain dependence relations
HY(Ggs,7/pZ)
HY(Gy, Z/pL)
extensions of K ramified at proper subsets of S.

with support properly contained in .S and may contain elements giving rise to

Proof Theorem[]l The set of dependence relations with support ezactly in S is
(2.3) Rs\ | J Rs\(o}
vES

those with support contained in S less the union of those with proper maximal support in S. For
any sets A; C S it is clear that (| Ra, = RA a;, so by inclusion-exclusion

(24) #J Rovpy = D #BRs\oy = D #Rsvfuuy +
veS veS vAWES

Similarly the set of cohomology classes giving rise to Z/pZ-extensions ramified exactly at the
places of S (up to unramified extensions) is

Hl(GSaZ/pZ \U GS\{U}az/pZ)
HI(G@,Z/pZ Hl GQ)’Z/pZ) ‘

(2.5)
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Since for any sets A; C S we have
HY(Ga,,Z/pZ) _ HY(Gna,,Z/pZ)
HYGy,Z/pZ) — HY Gy, Z/pZ) ’

we see
(26) # U H'(Gs\(v}, Z/PZ) _ -y HY(Gg\(o}, Z/DZ) T HY(Gs\{o,w}, L/DZ)
H'(Gy, /9L HGo 2/0) 2 T HGy L)
Proposmon I implies the terms on the right sides of (2.4]) and (2.6) are equal so the left sides are
equal as well. The result follows from ([2.3)), (2.5) and applying Proposition [3{ with X = S. O

3. A PROOF VIA THE GREENBERG-WILES FORMULA

As the association of dependence relations and cohomology classes in Theorem [I| resembles a
duality result, we reprove Proposition [3| using the Greenberg-Wiles formula, which follows from
global duality. We assume familiarity with local and global Galois cohomology.

As we will need to apply the Greenberg-Wiles formula, we henceforth assume its hypothesis
that Z is a set of places of K containing all those above infinity and p. For each v € Z, let
G, := Gal(K,/K,) and consider a subspace L, C H'(G,,Z/pZ). Under the perfect local duality
pairing (see Chapter 7, §2 of [NSW])

HY Gy, Z/pZ) x HY (G, p1p) — H* (G, pip) = fZ/Z
L, has an annihilator L- C HY(Gy, u1p). Set
H}:(Gz,7./pZ) := Kernel <H1(GZ,Z/pZ) — @UGZHI(G”L’Z/M)>
and )

HY(G,,
H};J_ (GZwu’p) := Kernel (HI(GZ“U;D) — @UEZ(LJ_W) .

We call {L,}yez and {L}},cz the Selmer and dual Selmer conditions and H}(Gz,Z/pZ) and
Hé 1 (Gz, pp) the Selmer and dual Selmer groups.

We need Lemma[d] and the Greenberg-Wiles formula below for our second proof of Proposition [3]
As Lemma {4 (ii) is perhaps not so well-known, we include a sketch of its proof.

Lemma 4. (i) For v { p the unramified cohomology classes H} (Gy,Z/pZ) and H},(Gy,pp) are
exact annihilators of one another under the local duality pairing.

(ii) Suppose v|p and set K| = K,(up,). The annihilator of H} (Gy,Z/pZ) C HYG,,Z/pZ) is
H}(Gv,up) C HY(Gy, pp), the peu ramifiée classes, namely those f € H}(GU,,up) whose fixed field
Ly s of Kemel(f]GK,) arises from adjoining the pth root of a unit uy € K,.

Proof. (i) This is standard - see 7.2.15 of [NSW].
(ii) Cohomology taken over Spec(Ok,) in what follows is flat. Here
H}(Gopty) = HY(Spec(Ok, ). ) = Of O € K3 K
where the containment is codimension one as [F-vector spaces. Recall
202 = HY, (Go, Z/pT) = H'(Spec(Ox, ), Z/p7)
and by Lemma 1.1 of Chapter III of [M] we have the injections
H'(Spec(Ok,), Z/pZ) — H (G, Z/pZ) and H'(Spec(Ok,), ptp) — H (G, pip)
and the pairing
H'(Spec(Ok,), Z/pZ) x H'(Spec(Ok,), ip) — H*(Spec(Ok, ), p1p) = 0.
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This last pairing is consistent with the local duality pairing
1
(3.1) HY(Gy, Z/pZ) x H"(Gy, pp) = H* (G, i) = SZIZ.

As HY(Spec(Ok,),Z/pZ) = H},(Gy, Z/pZ) and H'(Spec(Ok, ), p1p) = H}(GU, [tp) are, respectively,
dimension 1 and codimension 1 in H'(G,,Z/pZ) and H(G,,p,), they are exact annihilators of
one another in (3.1)), proving (ii). O

Theorem (Greenberg-Wiles) Assume Z contains all places above {p,o0}. Then

dim H:(Gz,Z/pZ) — dimHéL(GZ, Lp)
= dim H%(Gz,Z/pZ) — dim H(Gz, pp) + > ez (dim L, — dim HY(G,,, Z/pZ)) .

See 8.7.9 of [NSW] for a proof.

Second proof of Proposition @ Recall X is tame and write X := X UX,. Set Z := Z,UX cUZ
where Z,, := {v : v|p} and Z is the set of all real Archimedean places of K (s0 Xoo € Zoo).

For v complex Archimedean we have G, = {e} so the Selmer and dual Selmer conditions are
trivial. For v real Archimedean, dim H'(G,,Z/27Z) = dim H'(G,, p12) = 1 and the pairing between
them is perfect - see Chapter I, Theorem 2.13 of [M]. It is easy to see in this case that the unramified
cohomology groups are trivial.

In the table below we choose {M,}yez and {Ny}yez so that H},(Gz,Z/pZ) = H (Gx,Z/pZ)
and Hy (G, Z/pL) = HY(Gy,Z/pZ). The previous paragraph and Lemma justify the stated dual
Selmer conditions of the table.

| M, My Ny N
vEZy H, (G ZfpL)  H{(Co.pp)  H}(Go.Z/pZ)  H(Go.pip)
v € Xoo HY(G,,7./27) 0 H! (G, Z/27) =0 HY Gy, u2)
VE Zoo \ Xoo | H: (Gy, Z/27) =0 HY(Gy,po) HE(Gy,Z/27) =0 HY Gy, o)
v E Xeoo HY(Gv, Z/pZ) 0 H,, (G, Z/pZ)  Hpy (G, prp)

Applying the Greenberg-Wiles formula for { M, },cz and { N, },cz and subtracting the first equation
from the second:

dim HY(Gx,Z/pZ) — dim HY (G, Z/pZ) =

d%mH/i\A(GZ,Z/pZ) —.dimlif}v(GZ,Z/pZ) = . ‘

dim H,,, (Gz,pp) —dim H ., (Gz, pp) + 3 e z(dim M, — dim N,,).

For v € X. local class field theory implies dim H;}.(G,,Z/pZ) = 1 and dim H*(G.,,Z/pZ) = 2 so

0 veZz,

V€ Xoo, p=2
VE Zoo \ Xoo '
v € Xeoo

dim M, — dim N,, =

—_ 0

and then
H'(Gx,Z/pZ)
3.2 dim | =2 202
52 - < H'(Gy, Z/yL)
To prove Proposition [3| we need to show this last quantity is dim Rx = s, the dimension of the
space of dependence relations on the set {o,}yex C W = Gal(K'(¢/Vp)/K').
An element f € HJI\/ 1 (Gz, pp) gives rise to the field diagram below where L;/K’ is a Z/pZ-

extension peu ramifiée at v € Z,,, with no condition on v € Z,, and unramified at v € X. We
show the composite of all such Ly is K’ ({/Vp).

> — dim HY, (Gz, tp) — dim HY., (G, 1) + #X.
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Ly =K' (yaj)

/

K" = K(up)

K

Kummer Theory implies ay € K'/K’ *Pwhich decomposes into eigenspaces under the action of
Gal(K'/K). If it is not in the trivial eigenspace, then Gal(Ls/K') is not acted on by Gal(K'/K)
via the cyclotomic character, a contradiction, so we may assume (up to pth powers) ay € K. Since
Lf/K' is unramified at v € X<, we see that at all such v that ay = urh” where u € K, is a unit.
At v € Z, being peu ramifiée implies that locally at v € X, we have ay = un}) where u € K,
is a unit. Together, these mean that the fractional ideal (o) of K is a pth power, which implies
that ay € V. Conversely, if o € Vj, then, recalling that (o) = J? for some ideal of K, we have
that K’ (¢/a) /K’ is a Z/pZ-extension peu ramifiée at v € Z,, with no condition at v € Z,,. Thus
o gives rise to an element f, € H}\/L (Gz,pp) so L := K’ ({/Vy) is the composite of all Ly for
feHy (Gz,pp) and dim Hy .\ (G g, pp) = dim(Vy/K*P).

An element f € Hjlvt L (Gz, pp) gives rise to a Z/pZ-extension of K’ peu ramifiée at v € Z, and
split completely at v € X. We denote the composite of all these fields by D c K’ ({/V@)

L=K'(y/7)

/

D

/

K" = K(up)

K
Recall that r is the dimension of the space (oy)yex C Gal(L/K'). Clearly D is the field fixed
r =

of (oy)vex so dimp, Gal (K/ ({/V@) /D) = #1I from the first section of this note. Thus
dimH}ML(GZ, pp) = dim(Vy/K*P) —r so

dimH/lvll (Gz, Mp) — dim H_/{/L (GZnUJp) +#X =
(dim(Vy/K*P) —r) — dim(Vy/K*P) + (r + s) = s = dim Ry

and we have shown the the left hand side of (3.2]) is dim Rx proving Proposition O
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