ON TAME Z/pZ-EXTENSIONS WITH PRESCRIBED RAMIFICATION
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ABSTRACT. The tame Gras-Munnier Theorem gives a criterion for the existence of a Z/pZ-extension
of a number field K ramified at exactly a tame set S of places of K, the finite v € S necessarily
having norm 1 mod p. The criterion is the existence of a dependence relation on the Frobenius
elements of these places in a certain governing extension. We give a short new proof which extends
the theorem by showing the subset of elements of H'(G's,Z/pZ) giving rise to such extensions of
K has the same cardinality as the set of these dependence relations. We then reprove the key
Proposition [3] using the more sophisticated Greenberg-Wiles formula based on global duality.

1. INTRODUCTION:

Let D € Z be squarefree and odd and write co|D if D < 0. It is well-known that there exists a
quadratic extension K /Q ramified at exactly the set of places {v : v|D} if and only if D = 1 mod 4.
The key is how the Frobenius elements of the v|D lie in the Galois group of the governing extension
Q(#)/Q. Let o, denote Frobenius at v in this extension with o, being the nontrivial element of
Gal(Q(i)/Q). We frame this result as the following Fact:

Fact. There exists a quadratic extension K/Q ramified exactly at a tame (not containing 2 but

allowing 0o ) set S of places if and only if Z oy =0 in Gal(Q(7)/Q).
veS

The paper [GM] extended this to Z/pZ-extensions of a general number field K and with some
hypotheses to Z/p®Z-extensions of K. To explain the result precisely we need some background.
For a fixed prime p and set S of tame places (prime to p and allowing real Archimedean places),
let

Vsi={z e K*|(x)=JP; € K,;? V veS}

where J is a fractional ideal of K. Note K*P C Vg for all Sand S CT = Vy C Vs. Let Of and
Clk|p] be, respectively, the units of K and the p-torsion in the class group of K. That Vj/K*? lies
in the exact sequence

(1.1) 0— O @F, = Vp/K"*? = Clg[p] = 0

is well-known (see, e.g., Proposition 10.7.2 of [NSW], though note that the definition of Vj in [NSW]
is formulated slightly differently than the one used here, but they are easily shown to be equivalent.
Click here for the updated online version 2.3). Set K’ := K(u,) and L := K'({/Vy). We call L/K’
the governing extension for K. When K = Q and p = 2 one easily has L = Q(i) and we have
recovered the field of the Fact.
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L= K'(YT)

/

K’ = K(up)

K

As L is obtained by adjoining to K’ the pth roots of elements of K (not K’), one easily shows
that places v}, v} of K’ above a fixed place v of K have Frobenius elements in Gal(L/K’) that
differ by a nonzero scalar multiple. We abuse notation and for any v" of K’ above v in K denote
Frobenius at v" by o,. The theorem of [GM] (also see Chapter V of [G]) below and Theorem
implicitly use this abuse of notation.

Theorem. (Gras-Munnier) Let p be a prime and S a finite set of tame places (prime to p and
allowing real Archimedean places if p=2) of K. For v € S finite we require that N(v) = 1 mod p.
There exists a Z/pZ-extension of K ramified at exactly the places of S if and only if there exists a

dependence relation Z ayoy = 0 with all a, # 0 in the Fy-vector space Gal(L/K').
vES

Theorem [1| below is a generalization of the Gras-Munnier Theorem. We first give a short proof
that uses only one element of Class Field Theory, the Koch-Shafarevich formula (2.1)). We easily
prove Proposition |3 from , after which one only needs a standard inclusion-exclusion argument
to prove Theorem [I| The cardinalities of the two sets of Theorem [1| being equal suggests a duality.
In the final section of this note we give an alternative proof of Proposition [3| using the Greenberg-
Wiles formula whose proof requires the full strength of global duality. Denote by Gg the Galois
group over K of its maximal extension pro-p unramified outside S and recall that for 0 # f €
HY(Gs,Z/pZ) = Hom(Gs,Z/pZ), Kernel(f) fixes a Z/pZ-extension of K unramified outside S.
Our main result is:

Theorem 1. Let p be a prime and S a finite set of tame places (prime to p and allowing real
Archimedean places if p = 2) of a number field K where we require N(v) =1 mod p. The sets below
have the same cardinality:

Hl(GS 7]pZ)
{f € H(Gy, 2/ | the extension K¢/K fized by Kernel(f) is ramified exactly at the places of S}

and
{Dependence relations Z%UU =0 with all a, # 0 in Gal(L/K'")}.
veS
When p = 2 there is clearly at most one dependence relation. If K( /aq) and K (y/az) are both
ramified at all v € S, the ‘diagonal’ extension K (,/ajcz) is unramified everywhere, so there is a
H'(Gg,Z/27)

unique f € W

giving rise to the ramified extension and the bijection is natural in this
case.

For examples and applications, we refer the reader to [HMR], especially the examples in §3. Note
that p = 2 in those examples and the primes of S all have trivial Frobenius element in the governing

extension.

2. PROOF OoF THEOREM [I]

1 pupCFk

0 pp E
is an [F)-vector space of dimension r; +rp — 1+ §(K) 4+ dim Clg [p] where 1 and 75 are the number

For any field E set 6(E) = { . Dirichlet’s unit theorem and (1.1)) imply Gal(L/K")
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of real and pairs of complex embeddings of K. The standard fact from class field theory that we
need (see §11.3 of [K] or §10.7 of [NSW]) is a formula of Koch and Shafarevich for the dimension
of the space of Z/pZ-extensions of K unramified outside a tame (prime to p and allowing real
Archimedean places if p = 2) set Z:

(2.1) dim HY(Gz,Z/pZ) = —r1 —rg +1 — §(K) + dim(Vz /K *?) + (Z 5(Kv)> .
veEZ

Fix a tame set S noting that H'(G'g,Z/pZ) may include cohomology classes that cut out Z/pZ-
extensions of K that could be ramified at proper subsets of S. As we vary Z from ) to S one
place at a time, dim(Vz/K*P) may remain the same or decrease by 1. Since §(K,) = 1, we see
dim H(G z,7Z/pZ) increases by 1 or remains the same respectively.

Let W C Gal(L/K') be the F,-subspace spanned by (o,)ves, the Frobenius elements of the
places in S. Recall that each o, is well-defined up to a non-zero scalar multiple so W is well-
defined. Let I := {uy,ug,--- ,u,} C S be such that {oy,,0u,, - ,04,} form a basis of W and let
D = {w;,wa,--- ,ws} C S be the remaining elements of S. We think of the oy, as independent
elements and the o, as the dependent elements. Recall L := K’ (%/Vp) so Gal(L/K') is dual to
Vo/K*P, so as we vary Z in from () to I by adding in one u; at a time, we are adding 1 through
the 0(K,,) term to the right side, but dim Vz/K*P becomes one dimension smaller. Thus both
sides remain unchanged. Then, as we add in the dependent places w; of D to get to S = ITU D, we
are not changing the span of the Frobenius elements so we have V;/K*P = Vg/K*P. Thus

H'(Gs, Z/pZ)>
Hl(G@,Z/pZ)

We write each oy, uniquely as a linear combination of the oy,

(2.2) HY(Gy,Z/pZ) = H'(Gy,Z/pZ) and dim <

,
R;: Ow; — E Fjioy, = 0.
i=1

For X C S let Rx be the Fp-vector space of all dependence relations on the elements {0, },cx C
Gal(L/K").

Lemma 2. The set {Ri, R, -, Rs} forms a basis of the Fy-vector space of Rg.
Proof. Clearly {R;};=1,. s is independent. We show they span Rg. Consider any dependence

relation R € Rg. We can eliminate any o,,; term in R by adding a suitable multiple of R;. We are
left with a dependence relation on the o,,, which are independent, so it is trivial. O

Hl(GX,Z/pZ)
HY(Gy,Z/pZ) )
Proof. Lemma and (2.2)) prove this for X = S. For X C S, let Wx C Gal(L/K') be the span of

the Frobenius elements of X. Form Ix and Dx as we formed I and D above and apply the proof
above with X, Ix and Dx playing the roles of S, I and D. O

Proposition 3. For any X C S, dim Rx = dim (

Proposition [3| does not complete the proof of Theorem [I] as Rg may contain dependence relations
H'(Gs,Z/pZ)
HY(Gy, Z/pL)
extensions of K ramified at proper subsets of S.

with support properly contained in S and may contain elements giving rise to

Proof Theorem[]l The set of dependence relations with support ezactly in S is
(2.3) Rs\ | Rs\fuy

veS
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those with support contained in S less the union of those with proper maximal support in S. For
any sets A; C S it is clear that () Ra, = Rn 4,, so by inclusion-exclusion

(2.4) # U Rg\ v} = Z #Rs\ (v} — Z #Rs\ w0y +
veS vES vFWES

Similarly the set of cohomology classes giving rise to Z/pZ-extensions ramified exactly at the
places of S (up to unramified extensions) is

(2.5)

HY(Ggs,Z/pZ) \ U HY (G s\ (o} Z/PZ)‘
Hl GWZ/pZ Hl G(Z)7Z/pZ)
Since for any sets A; C S we have

HI(GANZ/])Z) — HI(GQANZ/pZ)
HY(Gy,Z/pZ)  HYGy,Z/pZ) ’

we see

GS v 7Z/pZ) Hl(GS v aZ/pZ) H1<G5 VW 7Z/pZ)
#U \{v} _Z \{v} o Z \{v,w}

2
6) H(Gy, Z/pZ) H1(Gy, Z/vZ) (G, Z/vZ)

vES vAWES

Proposition [3] implies the terms on the right sides of (2.4)) and (2.6)) are equal so the left sides are
equal as well. The theorem follows from (2.3), (2.5) and applying Proposition [3| with X =S. O

3. A PROOF VIA THE GREENBERG-WILES FORMULA

As the association of dependence relations and cohomology classes in Theorem [I] resembles a
duality result, we reprove Proposition [3| using the Greenberg-Wiles formula, which follows from
global duality. We assume familiarity with local and global Galois cohomology.

Henceforth we assume the hypothesis of the Greenberg-Wiles formula that Z is a set of places
of K containing all those above {p,oo}. For each v € Z, let G, := Gal(K,/K,) where K, is an
algebraic closure of K, and consider a subspace L, C H'(G,,Z/pZ). Under the perfect local
duality pairing (see Chapter 7, §2 of [NSW])

1
HY(Gy, Z/pZ) x H'(Gy, pp) = H*(Gy, p1p) = 5Z/Z
L, has an annihilator L;- € HY(Gy, u1p). Set

HY Gy, Z/pZ
Hé(GZ,Z/pZ) := Kernel <H1(G2,Z/pZ) N @veZ(G’/p)>

L,
and
Hl (Gva .up)
Lt )
We call {Ly}pez and {L;} }yez the Selmer and dual Selmer conditions and H}(Gz,Z/pZ) and
K HL, (Gz,up) the Selmer and dual Selmer groups.
We need Lemma [ and the Greenberg-Wiles formula below for our second proof of Proposition [3}
As Lemma 4] (ii) is perhaps not so well-known, we include a sketch of its proof.

,CJ- (GZ7 'up) = Kernel (HI(GZ7 /J‘p) - @UGZ

Lemma 4. (i) For v { p the unramified cohomology classes H} (Gy,Z/pZ) and H},(Gy,pp) are
exact annihilators of one another under the local duality pairing.

(ii) Suppose v|p and set K| = K,(up). The annihilator of H} (Gy,Z/pZ) C HY(G,,Z/pZ) is
H}(Gv,up) C HY(Gy, pp), the peu ramifiée classes, namely those f € H' (G, up) whose fived field
Ly g of Kernel(fla,,) arises from adjoining the pth root of a unit uy € K.
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Proof. (i) This is standard - see Theorem 7.2.15 of [NSW].
(ii) This result is Corollary 1.4 of Chapter IIT of [M], but we sketch the proof. It follows once we
explain the commutative diagram below.

H*(Spec(Ok,), Z/pL) x H'(Spec(Ok, ), pp) — H?(Spec(Ok, ), p1p) = 0

HY(G,,Z/pZ) X HY(Gy, i)

H (G, ) = 12/2

Cohomology taken over Spec(Og,) is flat. The rows are cup product pairings in flat and Galois
cohomology. Recall Z/pZ ~ H}, (G, Z/pZ) = H*(Spec(Ok,),Z/pZ) C H'(Gy,Z/pZ) and

H}(Gvaﬂp) = Hl(Spec(OKv),,up) = (912,/0;2 C K, /K" = Hl(Gvaﬂp)

where the containment is codimension one as [Fp-vector spaces. Lemma 1.1 of Chapter III of
[M] gives the two left vertical injections and the triviality of the top pairing. This last pair-
ing is consistent with the local duality pairing of the bottom row of the above diagram. As
H} (G, Z/pZ) ¢ HYGy,Z/pZ) and H}(Gv,up) C HY(G,, pp) are dimension 1 and codimension 1

respectively, they are exact annihilators of one another, proving (ii). ]

Theorem (Greenberg-Wiles) Assume Z contains all places above {p,o0}. Then

dim H}(Gz,Z/pZ) — dim H., (G, pp) =
dim H*(Gz,Z/pZ) — dim H(Gz, pp) + ez (dim L, — dim H*(G,, Z/pZ)) .

See Theorem 8.7.9 of [NSW] for a proof.

Second proof of Proposition @ Recall X is tame and write X := X UX. Set Z := Z,UX cUZ
where Z,, := {v : v|p} and Z is the set of all real Archimedean places of K (so X C Zo).

For v complex Archimedean we have G, = {e} so the Selmer and dual Selmer conditions are
trivial. For v real Archimedean, dim H'(G,,Z/27) = dim H'(G,, u2) = 1 and the pairing between
them is perfect - see Chapter I, Theorem 2.13 of [M]. It is easy to see in this case that the unramified
cohomology groups are trivial.

In the table below we choose {M,},cz and {N,},cz so that H\,(Gz,Z/pZ) = H (Gx,Z/pZ)
and H\ (Gz,Z/pZ) = H'(Gy,Z/pZ). We now establish the validity of the entries in the table.
The previous paragraph and Lemma [4] justify the stated dual Selmer conditions of the table. The
first three entries of the right column are clear. As §(K,) = 1, local class field theory implies
dim H'(G,,Z/pZ) = 2. That dim H}, (G,,Z/pZ) = 1 follows as there is a unique unramified
Z/pZ-extension of any local field. This establishes the last entry.

| M, M N, NG dim M, — dim N,
vEZy H,,.(Gy, Z/pL) H}(vaﬂp) Hy, (G, Z/pZ) H}(vaﬂp> 0
v € Xoo HY(G,,Z/27) 0 H) (G,,2/27) =0 HY Gy, p2) 1
VE Zoo \ Xoo | HE(Go, Z)27) =0 HY (Gyypo) HE(Gy,Z/2Z) =0 HY Gy, o) 0
v € Xeoo HY(G,,7/pZ) 0 H! (Gy,Z/pZ)  HL.(Gy,pp) 1

Applying the Greenberg-Wiles formula for {M,},cz and {N,},cz and subtracting the second
equation from the first and recalling #X = #I + #D =r + s:

dim HY(Gx,Z/pZ) — dim HY(Gy, Z/pZ) =
dim H)(Gz,Z/pZ) — dim H\ /(G 7, Z/pZ) =
dim Hy, (Gz, pp) — dim Hy- (G z, pip) + Y, z(dim M, — dim N,,) =

(3.1) L (
dim H}ML(Gz, ,up) — dim Hjl\/’i (GZ7 Mp) +7r+s.
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To prove Proposition [3] we need to show this last quantity is dim Rx = s, the dimension of the
space of dependence relations on the set {o,}vex C W = Gal(K'({/Vp)/K').

An element f € Hjlv 1 (Gz, pp) gives rise to the field diagram below where Ly/K' is a Z/pZ-
extension peu ramifiée at v € Z,,, with no condition on v € Z,, and unramified at v € X. We
show the composite of all such Ly is K’ ({/V@)

Ly := K' (¢/a5)

/

K" = K(up)

K
By the nature of cohomology classes in Hl(GZ,,up), the extension L;/K is Galois. Kummer
Theory implies ay € K'/K'*P, which decomposes into w'-eigenspaces where w : Gal(K'/K) —
(Z/pZ)* is the cyclotomic character given by o({,) = ¢ @) for (p a primitive pth root of unity. As
pp =~ Z/pZ(w), Kummer Theory gives the Gal(K'/K)-equivariant pairing

apK'™*P
K'*xp

X Gal(Ly/K'") — pp ~ Z/pZ(w).

That f € HY(Gz,Z/pZ(w)) implies Gal(L¢/K') is in the w-eigenspace as is Z/pZ(w). Thus ay is
in the trivial eigenspace of K'*/K'*P.  We will show we may assume ay € K. If K’ = K this is
obvious so we assume 1 < d = [K’: K] | p— 1. Since ay is in the trivial eigenspace, N& (as) = oz?
mod K"*?. But NE (ay) € K* and (d,p) = 1 so a suitable power N (ay)" is congruent to ay
mod K'*P. Just replace oy by NE (as)" € K.

Since Ly/K' is unramified at all finite tame v we have ay = uml) where u € K, is a unit and
T, is a uniformizer. At v € Z, being peu ramifiée implies that locally at v € X, we again have
ay = umy . Together, these mean that the fractional ideal (af) of K is a pth power, which implies
that ay € V. Conversely, if o € Vj, then, recalling that (o) = J? for some ideal of K, we have
that K’ (¢/a) /K’ is a Z/pZ-extension peu ramifiée at v € Z,, with no condition at v € Zs,. Thus
a gives rise to an element f, € H}\/L (Gz,pp) so L == K’ ({/7@) is the composite of all Ly for
feH\ (Gz,pp) and dim H, ., (G, pp) = dim(Vy/K*P).

An element f € Hjl\/l L (Gz, p1p) gives rise to a Z/pZ-extension of K’ peu ramifiée at v € Z, and
split completely at v € X. We denote the composite of all these fields by D ¢ K’ ({/V@)

L= K ({/7)

/

D

/

K" = K(up)

K

Recall that r is the dimension of the space (oy)yex C Gal(L/K'). Clearly D is the field fixed
of (0y)vex so dimg, Gal (K’ (¢/Vy) /D) = r = #I from the second section of this note. Thus
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dim H, (, (Gz, pp) = dim(Vy/K*P) — r so the right side of (3.1 is
(dim(Vy/K*P) —r) — dim(Vy/K*P) + (r + s) = s = dim Rx
proving Proposition O

REFERENCES

[G] G. Gras, Class Field Theory: from theory to practice, corr. 2nd ed., Springer Monographs in Mathematics,
Springer (2005), xiii+507 pages.

[GM] Gras, G.; Munnier, A., Extensions cycliques T-totalement ramifiées, Publ. Math. Besangon, 1997/98.

[HMR] Hajir, F.; Maire, C.; Ramakrishna, R. On the Shafarevich group of restricted ramification extensions of number
fields in the tame case, Indiana Univ. Math. J. 70 (2021), no. 6, 2693-2710.

[K] Koch, H. Galois Theory of p-extensions, Springer 2002.

[M] Milne, J. Arithmetic duality Theorems, Academic press, 1986 First Edition. Second edition available
https://www.jmilne.org/math/Books/ADTnot.pdf.

[NSW] Neukirch, J.; Schmidt, A.; Wingberg, K. Cohomology of Number Fields, Springer. Second edition, corrected
second printing. 2013.

DEPARTMENT OF MATHEMATICS & STATISTICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MA 01003, USA

FEMTO-ST INSTITUTE, UNIVERSITE DE FRANCHE-CoMTE, CNRS, 15B AVENUE DES MONTBOUCONS, 25000
BEsangoN, FRANCE

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14853-4201USA
E-mail address: hajir@math.umass.edu, christian.maire@univ-fcomte.fr, ravi@math.cornell.edu


https://www.jmilne.org/math/Books/ADTnot.pdf

	1. Introduction:
	2. Proof of Theorem 1
	3. A proof via the Greenberg-Wiles formula
	References

