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Abstract. — For every prime number p ě 3 and every integer m ě 1, we prove the
existence of a continuous Galois representation ρ : GQ Ñ GlmpZpq which has open image
and is unramified outside tp,8u (resp. outside t2, p,8u) when p ” 3 mod 4 (resp. p ” 1
mod 4).

Let K be a number field having r2 non-real embeddings, let p be a prime number and
let G be a finitely generated pro-p group of p-rank at most r2` 1. When the field K is p-
rational (see §1.2 for the full definition and background), the Galois group of the maximal
p-extension of K unramified outside p is a free pro-p group of rank r2 ` 1. Hence the
group G can be realized as the Galois group of an extension over K unramified outside p,
thanks to the universal property of free groups. In the context of Galois representations,
Greenberg in [11] developed this approach to realize continuous Galois representations
ρ : GQ Ñ GlmpZpq of the absolute Galois GQ of Q, with open image and such that
ρ is unramified outside tp,8u, under the hypotheses that p is a regular prime and m
satisfies 1` 4rm{2s ď p. The regularity of p is important because for the cyclotomic field
K “ Qpζpq, it is equivalent to the p-rationality of K.
A few years later this method was extended by Cornut and J. Ray [4] for more general
linear groups, but always under the assumption that p is regular and that all large m are
excluded when p is fixed.
In fact, it is possible to relax the condition on p-rationality to realize Galois represen-
tations with big image: this has been recently done by A. Ray in [21]. For example,
when p ě 2m`2`2ep , where ep is the index of irregularity of p, A. Ray shows the existence
of continuous Galois representations ρ : GQ Ñ GlmpZpq unramified outside tp,8u with
open image. But as in [11] and [4], the dimension of the representations is bounded for
fixed p.
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By a different approach, Katz in [13] constructs geometric Galois representations over
cyclotomic extensions, and by descent he gets finitely ramified continuous Galois repre-
sentations of GQ with open image in GlmpZpq, for p ” 1 mod 3 or p ” 1 mod 4 for every
even m ě 6. In particular, for such primes p, the result of Katz shows the existence of
Galois representations with open image for large m. We note that the representations
constructed by Katz are motivic but are ramified at sets consisting of primes of potentially
many different residue characteristics, whereas the earlier approach yields representations
unramified outside tp,8u which are, by contrast, what Katz calls “non-motivic”.
In this work, by extending the arithmetical approaches of [11], [4] and [21], we are able
to prove (Corollary 4.4):

Theorem A. — Given a prime number p ě 3, and an integer m ě 1, there exist con-
tinuous Galois representations ρ : GQ Ñ GlmpZpq with open image satisfying:
piq ρ is unramified ouside tp,8u if p ” ´1 mod 4,
piiq ρ is unramified ouside t2, p,8u if p ” 1 mod 4, and has potentially good reduction

at 2.

Remark. — The representations we construct have the property that “half” of the eigen-
values of complex conjugation are `1, the others being ´1.

Remark. — For m “ 1 take the Zp-extension of Q.

Our criteria coincide with those of Greenberg when the number field K fixed by the resid-
ual representation is p-rational. However our approach also works in greater generality.
In particular by passing through the number field K “ Qpζpq, the criteria we give are
specially adapted to produce, for many primes p ” 1 mod 4 and large m, continuous
Galois representations ρ : GQ Ñ GlmpZpq ramified only at tp,8u with open image. In
fact, this is the case for all but six primes p ” 1 mod 4 less than 4 ¨ 105. The main
technical result we obtain can be viewed as a refinement of Theorem A, piiq. To explain
it, let v2 be the 2-adic valuation, and let ω be the mod p reduction of the cyclotomic
character. We prove (Theorem 4.6):

Theorem B. — Let p ” 1 mod 4 be a prime number, and let m ě 3. Write p´ 1 “ 2λa
where 2 - a, so λ “ v2pp ´ 1q. Let tωk1 , ¨ ¨ ¨ , ωkeu be the characters corresponding to the
nontrivial components of the p-Sylow of the class group of Qpζpq. Suppose that:
piq v2pm´ 1q ě λ if m is odd and v2pm´ 2q ě λ if m is even;
piiq a - pki ´ 1q for i “ 1, ¨ ¨ ¨ , e.
Then there exist continuous Galois representations ρ : GQ Ñ GlmpZpq unramified outside
tp,8u, and with open image.

Example. — For p ď 4 ¨ 105, there are only six cases for which piiq fails, and the index
of irregularity e is 1 for all of them:

p 257 3329 11777 114689 163841 184577
k1 93 1951 8879 34343 140801 49029 ¨

Here is a sketch of our approach. We first revisit the question of the lifting of residual
Galois representations (of order coprime to p) in terms of embedding problems, by using
the criteria of Hoechsmann (see for example [19, Chapter III, §5]). The result we obtain
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involves the adjoint representation of a uniform group G (Theorem 3.3). We then exploit
a result of Kuranishi [14] that shows that a semisimple Lie algebra can be generated
by 2 elements; in particular we use the explicit form for slm recently given by Detinko-De
Graaf [5], and Chistopolskaya [3]. Thus we apply our embedding criteria to some special
subgroupH of SlmpZpq generated by two elements. Instead of considering number fields of
large degree, namely Qpζpq, we reduce the study of the existence of Galois representations
with open image, to properties of certain imaginary quadratic extensions.
In this work we restrict our attention to the problem introduced by Greenberg [11] for the
group SlmpZpq. But it seems likely the methods we introduce will apply more generally
for realizing other groups as well.
The paper contains 4 sections. In Section 2 and in Section 3, we recall facts about
the maximal pro-p-extension of a number field unramified outside p, and generalities
regarding uniform groups and Zp-Lie algebras. In Section 4, we develop the approach of
lifting mod pk representations via the embedding problem; in particular we give criteria
for lifting in some given uniform group (Theorem 3.3). The last section is devoted to
applications; in particular we prove the results presented in the Introduction.

Notations. Throughout this article p is a prime number.
‚ If M is a finitely generated Zp-module, set dpM :“ dimFpM{M

p, M rps :“ tm P

M, pm “ 0u, and TorpMq “ tm PM, Dk, pkm “ 0u.
‚ If G is a pro-p group, set Gab :“ G{rG,Gs, Gp,el :“ Gab{pGabqp, and dpG :“ dpG

ab.
‚ If A is a Hausdorff, abelian and locally compact topological group, set A^ to be Pon-
tryagin dual of A.
For the computations we have used the program PARI/GP [20].

1. On the maximal pro-p extension unramified outside p: the results we need

1.1. On pro-p groups. — For classical properties on cohomology and homology of
pro-p groups, see for example [19, Chapters I and II].
Let 1 ÝÑ G ÝÑ Γ ÝÑ ∆ ÝÑ 1 be an exact sequence of profinite groups where G is a
finitely presented pro-p group, and ∆ is a finite group of order coprime to p. Recall that
by the Schur-Zassenhaus Theorem one has Γ » G˙∆.

Proposition 1.1. — LetM be a finite Γ-module of exponent p on which G acts trivially.
Then for i ě 1, we have the isomorphism: H ipΓ,Mq » pH ipG,Z{pq bMq∆.

Proof. — First, by the algebraic universal coefficients Theorem for G-homology over Fp,
one has the isomorphism
(1) F : HipG,Z{pq bM^ „

Ñ HipG,M
^
q,

where the tensor product is taken over Fp, and where F is defined by
F prf s bmq “ rf bms,

showing that (1) is also an isomorphism of ∆-modules. See for example [12, Chapter VI,
§15, Theorem 15.1]. By Pontryagin duality, we obtain H ipG,Mq » H ipG,Z{pq bM , as
∆-modules. Since |∆| is coprime to p, by the Hochschild-Serre spectral sequence one also
has H ipΓ,Mq » H ipG,Mq∆ (see for example [19, Chapter II, §1, Lemma 2.1.2]). By
combining these two observations we finally obtain the claimed isomorphism.
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Let us write Gab » Ztp ‘T , where T is the torsion subgroup of Gab.

Proposition 1.2. — LetM be a finite Γ-module of exponent p on which G acts trivially.
If H2pG,Qp{Zpq “ 0 then H2pG,Mq »

`

T rps^ bM
˘∆.

Proof. — By taking the G-homology of the exact sequence 0 ÝÑ Zp ÝÑ Zp ÝÑ
Z{pZ ÝÑ 0, we get the exact sequence of Fpr∆s-modules

H2pG,Zpq{p // H2pG,Z{pq // // H1pG,Zpqrps.

After observing that H2pG,Zpq^ » H2pG,Qp{Zpq “ 0, then H2pG,Z{pq is isomorphic to
`

H1pG,Zpqrps
˘^
» T rps^, and we conclude by Proposition 1.1.

By the way, the proof of Proposition 1.2 allows us to obtain:

Proposition 1.3. — One has

dpH
1
pG,Z{pq ´ dpH2

pG,Z{pq “ t´ dpH2pG,Zpq.

1.2. Restricted ramification. — Let K be a number field. To simplify when p “ 2
we assume K totally imaginary. Set
‚ EK :“ Zp b Oˆ

K the pro-p completion of the group of units of the ring of integers
OK of K,

‚ ClK the p-Sylow subgroup of the class group of K,
‚ Kp the completion of K at p|p, Up the local units of Kp,
‚ Up :“ lim

ÐÝ
n

Up{U
pn

p the pro-p completion of Up, and Up :“
ź

p|p

Up,

‚ ιK,p : EK Ñ Up the diagonal embedding of EK into p-adic units.
1.2.1. The pro-p group GK,p. — Let Kp{K be the maximal pro-p extension of K un-
ramified outside p; set GK,p “ GalpKp{Kq. The pro-p group GK,p is finitely presented.
More precisely, one has (see [19, Chapter VIII, Proposition 8.3.18; Chapter X, Corollary
10.4.9, Theorem 10.7.13]):

Theorem 1.4. — The pro-p group GK,p is of cohomological dimension 1 or 2, and
dpH

1pGK,p,Z{pq ´ dpH2pGK,p,Z{pq “ r2 ` 1.

Here as usual pr1, r2q is the signature of K.
Let us write Gab

K,p » FK,p ‘ TK,p, where TK,p :“ TorpGab
K,pq is the torsion of Gab

K,p, and
where FK,p :“ Gab

K,p{TK,p » Ztpp is the free part; the quantity tp is the Zp-rank of Gab
K,p.

By class field theory one has:

tp “ dimQpcokerpιK,pq “ r2 ` 1` dimQpkerpιK,pq.(2)

(See for example [8, Chapter III, §1, Corollary 1.6.3].)
Recall also that Leopoldt’s conjecture asserts that kerpιK,pq “ 1, and thanks to Baker
and Brumer [2] one knows that Leopoldt’s conjecture is true for abelian extensions K{Q.
One also has the following well-known result (see for example [19, Chapter X, Corollary
10.3.7]):

Proposition 1.5. — One has kerpιK,pq “ 1 ðñ H2pGK,p,Zpq “ 1.
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Proof. — By Proposition 1.3 and Theorem 1.4 one has:

tp ´ dpH2pGK,p,Zpq “ r2 ` 1;

thus by combining with p2q, we get: dimQpkerpιK,pq “ dpH2pGK,p,Zpq. Observe now
that H2pGK,p,Zpq is an abelian pro-p group, so H2pGK,p,Zpq is trivial if and only if
dpH2pGK,p,Zpq “ 0.

Regarding TK,p, we have the following:

Proposition 1.6. — Suppose ClK “ 1. Then TK,p » Tor
´

Up{ιK,ppEKq
¯

.

Proof. — By class field theory one has Up{ιK,ppEKq » Gab
K,p when ClK “ 1.

Hence, given a number field K, up to a finite set of primes (those that divide |ClK |) the
computation of TK,p is reduced to the computation of the torsion of Up{ιK,ppEKq. And
having some nontrivial element in Tor

`

Up{ιK,ppEKq
˘

is something that is rare; one has
the following conjecture ([7, Conjecture 8.11]).

Conjecture 1.7 (Gras). — Given a number field K, then TK,p “ 1 for p " 0.

Regarding this conjecture many computations provide some evidence, but very little
is known in general. See [8, Chapter IV, §3 and §4] and [9] for a good exposition.
Nevertheless, the p-group TK,p is a deep arithmetical object associated to K, as we can
see from the following result, for example.

Proposition 1.8. — The pro-p group GK,p is free pro-p (on r2 ` 1 generators) if and
only if kerpιK,pq “ 1 and TK,p “ 1.

Proof. — If GK,p is free pro-p then Gab
K,p » Ztpp , TK,p “ 1, H2pGK,p,Qp{Zpq “ 0, and by

Proposition 1.5 one gets kerpιK,pq “ 1.
For the reverse, suppose that kerpιK,pq “ 1 and GK,p » Ztpp . By Proposition 1.5,
H2pGK,p,Zpq “ 0; by Proposition 1.2, one gets H2pGK,p,Z{pq “ 0 (take ∆ trivial and
M “ Z{p), and then GK,p is pro-p free.
Regarding the p-rank of GK,p, see Theorem 1.4.

Example 1.9. — Take p ą 3, and let K{Q be an imaginary quadratic field. Observe
that EK “ 1 and that Up is torsion free. Hence when ClK “ 1, the pro-p group GK,p is
free pro-p on 2 generators.

Finally, let us recall that when GK,p is free pro-p then K is said to be p-rational ([18]).
1.2.2. With semisimple action. — Let ∆ be a finite group of order coprime to p. Let
Ψp be the set of irreducible Fp-characters of ∆. Let M be a finite Fpr∆s-module. For
ϕ P Ψp, set rϕM to be the ϕ-rank of M : that is the number of times that ϕ appears in
the decomposition of M as Fpr∆s-module. In particular if χpMq denotes the character of
M , then χpMq “

ř

ϕPΨp
rϕϕ. Put χpMq´1 :“

ř

ϕPΨp
rϕϕ

´1, where ϕ´1pgq :“ ϕpg´1q.
Recall that for a finite Zpr∆s-module M , one has χpM{Mpq “ χpM rpsq.

Definition 1.10. — Two finite Fpr∆s-modulesM and N are said to be orthogonal, and
write M K N , if for every ϕ P Ψp one has rϕM ¨ rϕN “ 0.
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We denote by Reg the character of the regular representation, by 1 the trivial character,
and for a subgroup D of ∆, by Ind∆

D1D the induced character from D to ∆ of the trivial
character 1D of D.
Since χpM bNq “ χpMqχpNq and χpM^q “ χ´1pMq, one has:

Lemma 1.11. — Let M and N be two finite Fpr∆s-modules.

Then
´

M^ bN
¯∆
“ 0 if and only if M K N .

Proof. — Indeed, χ
´

M^bN
¯∆
“ xχpM^qχpNq,1y “ xχpNq, χpMqy “

ř

ϕprϕM ¨ rϕNq.

For the end of this section, let us consider the following frame.
Let K{k be a finite Galois extension of degree coprime to p; put ∆ “ GalpK{kq. Observe
that Kp{k is Galois and that ∆ acts on GK,p, TK,p, FK,p, etc. Put Γ “ GalpKp{kq »
GK,p ˙∆.
As we will see, we need that the two pieces FK,p and TK,p of Gab

K,p must be orthogonal
to each other (as ∆-modules). First, the next Theorem will be essential to lift residual
representation.

Theorem 1.12. — Let M be a finite Γ-module of exponent p on which GK,p acts triv-
ially. Assuming Leopoldt’s conjecture for K at p, then H2pΓ,Mq »

`

TK,prps
^
bM

˘∆. In
particular H2pΓ,Mq “ 0 if and only if TK,prps KM .

Proof. — This is a consequence of Proposition 1.2, Proposition 1.5 and Lemma 1.11.

Remark 1.13. — When K contains ζp, the character of TK,prps is related to the mirror
character of Cl1K , where Cl1K is the p-Sylow of the p-class group of K. Typically when
K “ Qpζpq, rϕTK,prps “ rϕ˚ClK , where ϕ˚ :“ ωϕ´1. In this case, Qpζpq is p-rational if
and only if p is regular. For more general results see [10].

To finish, the following proposition will be the starting point for realizing residual repre-
sentations as Galois extensions of number fields.

Proposition 1.14. — Assuming the Leopoldt conjecture for K at p, one has

χpFK,p{pq “ 1` nReg ´
ÿ

v|8

IndGDv
1Dv ,

where n “ rk : Qs. In particular if K{k is a CM-field one has χpFK,p{pq “ 1`nϕ, where
ϕ is the nontrivial character of GalpK{kq.

Proof. — One has Qp bFK,p “ Qp bUp

M

Qp b ιK,ppEKq. Then use for example [10, §5
Theorem 5.12, and §6].

2. Uniform groups and Lie algebras

2.1. Generalities. — For this section we refer to [6, Chapters 4, 7 and 9].
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Let G be a finitely generated pro-p group. Set G1 “ G, and for n ě 1, Gn`1 “ Gp
nrG,Gns.

The pGnq is the p-descending central series of G. For n ě 1, consider the morphism:
αn : Gn{Gn`1 Ñ Gn`1{Gn`2

x ÞÑ xp.

Definition 2.1. — The pro-p group G is said to be uniform if for every n, the map αn
is an isomorphism.

Hence when G is uniform, there exists some d such that Gn{Gn`1 » pZ{pqd; the integer d
is called the dimension of G.

Theorem 2.2. — Let G be a uniform pro-p group. Then for all n ě 1, Gn`1 is uniform
and also equal to:
piq Gp

nrGn, Gns,
piiq Gpn

“ xgp
n
, g P Gy,

piiiq pGnq
p “ xgpn, gn P Gny.

Proof. — See [6, Chapter 3, Theorem 3.6].

Recall that a p-adic analytic group is a topological group G having a structure of p-adic
analytic manifold for which the sum and the inverse are analytic. Since Lazard [15] one
knows that uniform pro-p groups are the socle of p-adic analytic groups. Indeed:

Theorem 2.3. — piq A uniform group G of dimension d is a p-adic analytic group of
dimension d (as analytic manifold).
piiq Every p-adic analytic group of (analytic) dimension d contains an open subgroup
which is uniform of dimension d.
piiiq Let G be a pro-p group which is a p-adic analytic group, then G ãÑ GlmpZpq for
some m.

Proof. — See [6, Interlude A].

In what follows, we will consider uniform groups G as subgroups of GlmpZpq.

2.2. Exponential and logarithm. —
2.2.1. The Lie algebras glm and slm. — Set ε “ 0 if p ą 2, and ε “ 1 if p “ 2.
Take m ě 2. Let glm be the Zp-free module of dimension m2 generated by the matrices
Ei,jppq :“ p1`εEi,j, where Ei,j are the elementary matrices. Then glm is a Zp-Lie algebra,
subalgebra of the algebra glmpQpq of the matrices of size m ˆm with coefficients in Qp,
equipped with the Lie bracket pA,Bq “ AB ´BA.
It is not difficult to see that pglm, glmq Ă p1`ε glm: the algebra glm is said to be powerful
(see [6, Chapter 9, §9.4]).
Thanks to [15, Chapter IV, Theorem 1.3.5.1], one knows that the exponential map exp :
x ÞÑ

ř

ně0pn!q´1x and the logarithm map logpzq :“
ř

ně1p´1qn`1n´1pz´1qn converge for
x P glm and z P Gl1m, where Gl1m “ tA P GlmpZpq, A ” 1 mod p1`εu. Moreover exp and
log are reciprocal on these two spaces. Hence exppglmq “ Gl1m and since glm is powerful,
Gl1m is uniform ([6, Chapter 5, Theorem 5.2]).
Let slm be the Zp-Lie subalgebra of glm consisting of matrices with zero trace. The algebra
slm is also powerful, and then Sl1m :“ exppslmq is uniform. More, since slmpQpq :“ Qpbslm
is simple, one has slmpQpq “ pslmpQp, slmpQpqq which implies that the abelianization of
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SlmpZpq is finite. Observe that exp ˝ Trace “ det ˝ exp, confirming that Sl1m “ exppslmq
is also the subgroup of Gl1m of matrices of determinant 1.
2.2.2. Uniform groups and Zp-Lie algebras. — For k ě 1, let ϕk be the reduction map:

ϕk : GlmpZpq Ñ GlmpZ{pkZq.

Set Glpkqm “ kerpϕk`εq and Slpkqm “ kerpϕk`εq X SlmpZpq

Proposition 2.4. — piq One has Gl1m “ Glp1qm and Sl1m “ Slp1qm .
piiq The subgroups Glpkqm (resp. Slpkqm ) correspond to the p-descending central series of Gl1m
(resp. Sl1m). In other words, Glpkqm “ pGlmqk and Slpkqm “ pSlmqk.
piiiq For k ě 1 one has Glpkqm “ expppk´1glmq, and Slpkqm “ expppk´1slmq.

Proof. — For piq and piiq see [6, Chapter 5, Theorem 5.2]; for piiiq see [6, Chapter 4,
Lemma 4.14].

Proposition 2.4 is a special case of the following result:

Theorem 2.5. — There is an isomorphism between the category of uniform pro-p
groups G and the category of powerful Zp-Lie algebras L. When G Ă Gl1m this correspon-
dence is given by the exponential and the logarithm; in particular L “ logpGq P glm.

Proof. — See [6, Chapter 9, Theorem 9.10].

Definition 2.6. — Let G Ă Gl1m be a uniform pro-p group of dimension d. Set g :“
logpGq Ă glm, and gp :“ g{pg. Observe that gp is a Fp-vector space of dimension d.

As for Gl1m in Proposition 2.4, the p-descending central series pGnq of a uniform group
G Ă GlmpZpq is easy to describe. Indeed:

Proposition 2.7. — One has Gn “ expppn´1gq.
In particular, Gn{Gn`1 » pn´1g{png » gp.

Proof. — See [6, Chapter 4, Lemma 4.14].

2.2.3. The Lie algebra g as a sub-module of glm. — Let G Ă Gl1m be uniform; set
g “ logpGq. Recall that g is the powerful sub-Lie Zp-algebra of glm such that exppgq “ G.
Let ∆1 be a finite subgroup of GlmpZpq of order coprime to p, acting by conjugation
on G; observe that ∆1 also acts on Glm, on glm,p :“ glm{pglm, and on gp. Since p - |∆1|,
the Zpr∆1s-module glm is projective (see [22, Chapter 14, §14.4]) and then, glm,p and
glmpQpq :“ Qp b glm have the ‘same’ character (as ∆1-modules). Of course, for the same
reason, gp and gpQpq have the same character. Since gpQpq Ă glmpQpq we obtain:

Proposition 2.8. — Let ∆1 Ă GlmpZpq be a subgroup of order coprime to p acting on g
by conjugation. Then gp is isomorphic to a sub-∆1-module of glm,p.

Definition 2.9. — When the action is given via a Galois representation ρ0 : ∆ Ñ

GlmpZpq (here ∆1 “ ρ0p∆q), the ∆-module gp is called the adjoint of G following ρ0.
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2.3. Semisimple algebras. — The next Theorem, due to Kuranishi ([14]), is essential
for our strategy. See also [1].

Theorem 2.10 ([14]). — Let L be a semisimple Qp-Lie algebra. Then L can be gen-
erated by 2 elements.

Let L Ă glm be a powerful Zp-Lie algebra. For x P L, put wLpxq :“ maxtk, x P pkLu,
wLp0q “ 8; it is a valuation on L (following Lazard’s terminology, see [15, Chapter I,
§2.2]). When starting with a uniform group G, for g P G define wGpgq :“ wgplogpgqq,
where g “ logpGq: this is a filtration on G (see [15, Chapter II, §1]).

Definition 2.11. — Two topological groups G and H are said to be locally the same if
they have a common open subgroup.

As corollary of Theorem 2.10 we get

Corollary 2.12. — Let G Ă Gl1m be a uniform group such that gpQpq is semisimple.
Then there exist two elements g and g1 in G such that
piq wGpgq “ wGpg

1q,
piiq g R xg1yGk`1,
piiiq the group G and the (closed) subgroup H generated by g and g1, are locally the same.

Proof. — Let g :“ logpGq be the powerful Zp-Lie algebra associated to G, and equipped
with the valuation ωg. Set L :“ Qpbg. By Theorem 2.10 there exist x, y P L such that
L “ xx, yy. By multiplying x and y by some powers of p, we can assume that x and y
have the same valuation k (and are also in g). Suppose now that x ” a0y mod pk`1g for
some a0 P ZpzpZp; then x´a0y and pk1y are of the same valuation k1`k for some k1 ě 1.
Suppose moreover that x ´ a0y ” a1p

k1y mod pk`k1`1g for some a1 P ZpzpZp; then for
some k2, the elements x´a0y´a1p

k1y and pk2y are of the same valuation k2`k ě k1`k`1.
If this process does not stop, we can construct a sequence of integers pknq, kn`1 ą kn,
and a sequence of p-adic integers panq such that x ´ a0y ´ a1p

k1y ´ ¨ ¨ ¨ ´ anp
kny is of

valuation kn`1 ` k, showing that x P xyy, which is impossible since L is not abelian.
In conclusion, there exists a0, ¨ ¨ ¨ , aki

P ZpzpZp, and integers k1, ¨ ¨ ¨ , ki such that x1 :“
x´ a0y ´ ¨ ¨ ¨ aki

pkiy is of valuation k ` ki`1, but such that x1 R xpki`1yy ` pk`ki`1`1g.
By abuse we note x by x1, pki`1y by y, and k ` ki by k. Thus, we may assume that x
and y are in g with the same valuation k, that they generate L , and that tx, yu is free
in pkg{pk`1g » gp » pFpqd, where d is the dimension of G.
Set g “ exppxq and g1 “ exppyq. Then by the previous observations one has: g R xg1yGk`1.
Let H “ xg, g1y be the closed subgroup of G generated by g and g1. The pro-p group
H is p-adic analytic as closed subgroup of a p-adic analytic group; let U be an open
uniform subgroup of H. Then for r " 0, gpr and pg1qpr are in U . Hence the Zp-Lie
algebra LU “ logpUq of U contains prx and pry, and then Qp bLU “ L . Thus, U and
G are locally isomorphic and even locally the same (due to the fact that U Ă G), see for
example [23, Part II, Chapter V, §2, Corollary 2], or [6, Chapter 9, §9.5, Theorem 9.11].
In other words, G and H are locally the same.

The two next examples make explicit Theorem 2.10.

Example 2.13. — Take m “ 2. Set x “ E1,2ppq ` E2,1ppq, and y “ E1,1ppq ´ E2,2ppq.
Observe that px, yq “ 2p

`

E2,1ppq ´ E1,2ppq
˘

, hence x and y generate the Lie algebra
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sl2pQpq. Set g “ exppxq and g1 “ exppyq, and H “ xg, g1y. Then H has Slp2q2 as open
subgroup.

Example 2.14 ([5] or [3]). — Take m ě 3. The Lie algebra slm is simple. Set x “
řm´1
i“1 Ei,i`1ppq, and

y “

"

Em,1ppq m odd,
Em´1,1ppq ` Em,2ppq m even.

Observe that xx, yyZp Ă slm. Thanks to [5, Proposition 2.5 and Proposition 2.6] and [3,
Example 2] one has xx, yy “ slmpQpq. Put g “ exppxq, g1 “ exppyq andH “ xg, g1y Ă Gl1m.
Observe that wGpgq “ wGpg

1q “ 1. Then H has Slpkqm as an open subgroup for some k " 0.

3. Lifting in uniform pro-p groups

To simplify we take p ą 2. The goal of this section is to give lifting criteria for uniform
groups including the well-known conditions when G “ Sl1m of Gl1m (see [17, §1.6]).

3.1. Compatible actions. — Let G be a pro-p group of p-rank ě d, and let ∆ Ă

AutpG q be finite of order coprime to p. Set Γ “ G ˙∆.

Let G p,el :“ G {G prG ,G s be the maximal abelian p-elementary quotient of G ; observe
that G p,el is a Fpr∆s-module.
LetM be a sub-Fpr∆s-module of G p,el, and let ρ0 : ∆ Ñ GlmpZpq be a representation of ∆
such that kerpρ0q acts trivially on M . Put ∆1 “ ρ0p∆q. Hence M is also a ∆1-module by
ρ0psq ¨m :“ s ¨m.

Let PrM : G Ñ G p,el ÑM be the projection of G on M .

Let H Ă GlmpZpq be a pro-p group such that dpH “ dpM . Suppose that ρ0p∆q acts on H
by conjugation. Hence Hp,el becomes a ∆-module via ρ0, by s ¨g1 :“ ρ0psq¨g

1. We suppose
now that the action of ∆ on M is compatible with that of ∆ on Hp,el: in other words,
χpHp,elq “ χpMq, as ∆-modules. Hence there exists a ∆-isomorphism β : Hp,el „

Ñ M
(which is equivalent to be an isomorphism of ∆1-modules).

3.2. Embedding problem. — Let G Ă Gl1m be a uniform pro-p group of dimension d.
Set g :“ logpGq Ă glm. Given 1 ď s ď d and k ě 0, let z1, ¨ ¨ ¨ , zs P pkg be some
independent elements in pkg{pk`1g » pZ{pqd. Set gi “ exppziq. Then for i “ 1, ¨ ¨ ¨ , k,
one has wGpgiq “ k.
Let us consider the closed subgroup H of G generated by the gi’s. The group H is p-adic
analytic. Observe that H Ă Gk Ă Glpkqm “ kerpGlmpZpq Ñ GlmpZ{pkqq. Recall that pGnq

is the p-central descending series of G.

For n ě 1, put Hrns :“ H XGn`k´1. Hence Hr1s “ H.

Lemma 3.1. — piq The pro-p group H is of p-rank s, and Hp,el » H{Hr2s.
piiq For each n ě 1, Hrns CH, the quotient Hrns{Hrn`1s is p-elementary abelian, and H
acts trivially (by conjugation) on Hrns{Hrn`1s.
piiiq The Hrns are open in H, and

č

n

Hrns “ t1u.
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Proof. — piq One has the commutative diagram:

H{Hr2s
� � // Gk{Gk`1

»

log
// pkg{pk`1g

H{HprH,Hs

P

ffff

log

77

Hence the family tg1Hr2s, ¨ ¨ ¨ , gsHr2su is free inH{Hr2s, showing that dpH ě dpH{Hr2s ě s.
But H is generated by the gi’s. Thus dpH “ s, and P is an isomorphism.
piiq Clearly Hrns CH. Since Gn`1 “ Gp

nrG,Gns one has:

Hrns{Hrn`1s “ H XGn{H XGn`1
“

`

H XGn

˘

Gp
nrG,Gns

L

Gp
nrG,Gns.

Hence Hrns{Hrn`1s is p-elementary abelian, and G and then H acts trivially on
Hrns{Hrn`1s.
piiiq Point piiq shows that the Grns are of finite index in H, and then open since H is pro-p
finitely generated. Regarding the intersection, that is obvious since

č

n

Gn “ t1u.

We now summarize conditions of Section 3.1.
Via β and ρ0, suppose that Hp,el can be seen as a sub-∆-module of G p,el; or equivalently,
Hp,el is ∆1-isomorphic to a subspace M of G p,el.
Hence there exists a surjective morphism f2 : Γ Ñ H{Hr2s ˙∆1, such that
piq pf2q|G “ β´1 ˝ PrM ,
piiq pf2q|∆ “ ρ0.
Recall that H{Hr2s “ Hp,el.

More generally, suppose that for some n ě 2, there exists a surjective morphism fn : Γ Ñ
H{Hrns ˙∆1, where pfnq|∆ “ ρ0. Then let us consider the embedding problem pEnq:

Γ “ G ˙∆
ψn

vv

fn
����

1 // Hrns{Hrn`1s // H{Hrn`1s ˙∆1
gn

// // H{Hrns ˙∆1

where gn is the natural map (in particular gn|∆1 is the identity).
Thanks to the criteria of Hoechsmann (see for example [19, Chapter III, §5]), pEnq has
some solution when H2pΓ, Hrns{Hrn`1sq “ 0, where the action of Γ on Hrns{Hrn`1s is
induced by conjugation via fn. See for example [19, Chapter III, §5, Proposition 3.5.9].
In fact we need more:

Proposition 3.2. — If pEnq has a solution ψn, then ψn is an epimorphism (the solution
is called proper).

Proof. — The question is to see if the map ψn is surjective. Since H{Hrn`1s and H{Hrns
are p-groups, it is equivalent to see if these two groups have the same minimal number
of generators: that is Lemma 3.1, piq.
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3.3. Main Theorem. — We can now state the key theoretical result of our paper.
Let us write G ab » T ‘ Ztp, where T is the torsion part of G ab. Let us keep the
notations of the previous sections. In particular G is a uniform group of dimension d, H
is a closed subgroup of G, β is a ∆-isomorphism from Hp,el to a sub-∆-module of G p,el,
ρ0 : ∆ Ñ GlmpZpq is a representation of ∆, and ∆1 “ ρ0p∆q. We suppose moreover that
∆1 acts by conjugation on G. Hence, via ρ0, the group ∆ acts also on g :“ logpGq Ă gln,
and on gp :“ g{pg (see §2.2.3).

Theorem 3.3. — With the above notations, suppose given f : Γ “ G ˙ ∆ �
H{HprH,Hs ˙∆1 where f|∆ “ ρ0, such that: piq H2pG ,Qp{Zpq “ 0; and piiq T rps K gp.
Then the embedding problem

Γ “ G ˙∆
ψ

wwww

f
����

H ˙∆1
g
// // H{Hr2s ˙∆1

has a (proper) continuous solution ψ.

Proof. — We proceed step by step.
‚ First, for n ě 2 suppose we are given a surjective morphism fn : Γ Ñ H{Hrns ˙ ∆1,
where pfnq|∆ “ ρ0. And consider the embedding problem pEnq.
‚ Observe now that

Hrns{Hrn`1s GXGn

L

H XGn`1
„
// pH XGnqGn`1{Gn`1� _

��

Gn{Gn`1 GnGn`1{Gn`1„
oo

Since G is uniform, Gn{Gn`1 » gp, and this isomorphism is also compatible with the
action of ∆. In particular, Hrns{Hrn`1s is a sub-∆-module of gp.
‚ Since fnpG q Ă H{Hrns, by Lemma 3.1 the group G acts trivially (via fn) on Hrns{Hrn`1s.
By Theorem 1.12 we get

H2
pΓ, Hrns{Hrn`1sq »

´

T rps^ bHrns{Hrn`1s

¯∆
.

‚ But by hypothesis T rps K gp. Then as Hrns{Hrn`1s ãÑ gp, one has T rps K Hrns{Hrn`1s.
By Lemma 1.11 we finally get H2pΓ, Hrns{Hrn`1sq “ 0: the embedding problem pEnq has
some proper solution ψn thanks to Proposition 3.2.
Put fn`1 :“ ψn.
‚ By hypothesis f2 is given. Hence by the previous computation one deduces that pE2q has
a proper solution, which gives the existence of one f3. Then pE3q has a proper solution,
etc. To conclude, it suffices to take the projective limit of a system of compatible solutions
ψn, and to remember that

č

n

Hrns “ t1u.

Remark 3.4. — Observe thatH˙∆1 ãÑ GlmpZpq. Hence the continuous map ψ induces
a continuous Galois representation ρ : Γ Ñ GlmpZpq with image containing H as open
subgroup. Moreover for δ P ∆, one has ψpδq “ ρ0pδq; thus ρ|∆ » ρ0. In other words, ρ
is a lift of ρ0. Finally observe that changing the map β (which is possible since p ą 2),
changes the representation ρ.
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4. Applications

Before developing the arithmetical context, let us make a quick observation.

Proposition 4.1. — Let k be a number field such that r2 ą 0. Suppose the Leopoldt and
Gras conjectures for k at p. Take p " 0. Then for every p-analytic group G for which the
Lie algebra is semisimple, there exist continuous Galois representations ρ : Galpk{kq Ñ
GlmpZpq with image locally the same as G.

Proof. — Here we assume that the pro-p group Gk,p is free of p-rank r2 ` 1. Let U Ă G
be a uniform subgroup of G. The group U is pro-p. We can assume that U Ă Gl1m, and
we conclude with Corollary 2.12 (as consequence of Theorem 2.10).

When k is totally real, one strategy is to start with a residual Galois representation of
Galpk{kq of order coprime to p (typically of order 2) in which at least one real place is
ramified.

4.1. The principle. — We apply Section 2.2.3 in our arithmetical context as developed
by Greenberg [11], Ray [21], etc.
‚ Let us start with a Galois extension K{k with Galois group ∆ of order coprime to p.
Recall that ∆ acts on GK,p, etc. Set Γ “ GalpKp{Kq » GK,p ˙∆.
Suppose kerpιK,pq trivial (equivalently, assume Leopoldt’s conjecture for K at p). Then
H2pGK,p,Qp{Zpq “ 0 by Proposition 1.5.
‚ Let ρ0 : ∆ Ñ GlmpZpq be a Galois representation of GalpK{kq.
For i “ 1, ¨ ¨ ¨ , s, let Li{K be cyclic degree p extensions in Kp{K. Let L be the com-
positum of the Li’s and set M “ GalpL{Kq. We suppose that ∆ acts on M but also
that kerpρ0q acts trivially on M as in Section 3.1. Hence ∆1 :“ ρ0p∆q acts on M by
ρ0psq ¨m :“ s ¨m.
‚ Let G Ă Gl1m be a uniform group, and let H be an open subgroup of G as in Section
3.2. Recall that H “ xg1, ¨ ¨ ¨ , gsy where the gi’s are in GkzGk`1. In particular H Ă Gk.
Observe that Gk`1 “ Gpk`1 by Theorem 2.3. Write G{pk`1 :“ pG mod Gpk`1

q.
We suppose now that ρ0p∆q acts by conjugation on H, such that there exists a ∆-
isomorphism β : Hp,el ÑM (which is equivalent to say that is a ∆1-isomorphism).
Hence, we also get GalpL{Kq ˙ ρ0p∆q » Hp,el ˙∆1. By Lemma 3.1 recall that

Hp,el
» H{Hp

rH,Hs » H{Hr2s » HGk`1{Gk`1.

We then have a continuous Galois representation

ρ1 : GalpKp{kq Ñ G{pk`1
˙∆1

such that:
piq pρ1q|GalpKp{Kq “ β´1 ˝ PrM ,
piiq ρ1|GalpK{kq

“ ρ0,
piiiq ρ1 mod Gpk

» ρ0.
The Galois representation ρ1 plays the role of the function f of Theorem 3.3.
‚ As ∆1 (or ∆) acts by conjugation on H, we assume moreover that it also acts on G.
Set g :“ logpGq Ă gln. Hence gp becomes a ∆-module (via ρ0).
As consequence of Theorem 3.3 and Remark 3.4, we get:
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Corollary 4.2. — If kerpιK,pq “ 1 and TK,prps K gp, then the representation ρ0 lifts to
a Galois representation ρ : GalpKp{kq Ñ GlmpZpq with image containing H as an open
subgroup.

4.2. Galois representations via imaginary quadratic fields. — We start with
an imaginary quadratic extension K{Q. Let p ą 2 be a prime number. Put ∆ “

GalpK{Qq “ xsy, and let ϕ be the nontrivial character of ∆.
‚ Suppose that p - |ClK |. For p “ 3, we assume moreover that Up{ιK,ppEKq is torsion
free; typically K “ Qp

?
´3q. The pro-p group GK,p is free (see Example 1.9), and

χpGab
K,p{pq “ 1 ` ϕ by Proposition 1.14. Take M “ Gp,el

K,p “ xh1, h2y » pZ{pq2, such that
s ¨ h1 “ h1 and s ¨ h2 “ h´1

2 .
‚ We recall observation of Example 2.14 from [3] and [5].
Take m ě 3, and consider z1 “ E1,2ppq ` E2,3ppq ` ¨ ¨ ¨ ` Em´1,mppq P glm, and

z2 “

"

Em,1ppq m odd
Em´1,1ppq ` Em,2ppq m even.

Set g1 “ exppz1q P Gl
1
m and g2 “ exppz2q P Gl

1
m, and H “ xg1, g2y. Take the uniform

group G :“ Sl1m. Of course H Ă G. As seen in 2.14 (thanks to Corollary 2.12), the
analytic groups H and SlmpZpq are locally the same.
Set A “

ř

ip´1qi`1Ei,i. By conjugation, A ¨ z1 “ ´z1 and A ¨ z2 “ z2, and then A acts by
´1 on g1 and by `1 on g2. Of course A acts also on SlmpZpq.
Let ρ0 : GalpK{Qq Ñ GlmpZpq be the Galois representation defined by ρ0psq “ A.
Here kerpρ0q “ 1, and the map β : M Ñ Hp,el defined by βph1q “ g1H

prH,Hs and
βph2q “ g2H

prH,Hs is an isomorphism of ∆-modules.
For m “ 2, consider Example 2.13 and take z1 “ E1,1ppq´E2,2ppq, z2 “ E1,2ppq`E2,1ppq,
g1 “ exppx1q, g2 “ exppx2q, and A “ E1,1 ´ E2,2.
In conclusion, the principle of Section 4.1 allows us to lift ρ0 to a Galois representation
of GalpKp{Qq Ñ GlmpZpq.

Theorem 4.3. — Given p ą 3, and m ě 1. Let K{Q be an imaginary quadratic
extension such that p - |ClK |. Then there exist continuous Galois representations ρ :
GalpKp{Qq Ñ GlmpZpq with open image.

Proof. — Here the field K is p-rational and EK “ 1; then apply Corollary 4.2. Hence
there exists a continuous Galois representation ρ1 : GalpKp{Qq Ñ Sl1m˙ρ0p∆q ãÑ GlmpZpq
with image containing Slkm for some k " 0, as open subgroup.
Let ω1 : GQ Ñ Zˆp be the cyclotomic character. Now, recall that since SlmpQpq is
semisimple, every open subgroup of Sl1m has finite abelianization. Hence the image of the
Galois representation ρ :“ ρ1 b ω1 : GalpKp{Qq Ñ GlmpZpq has p-adic dimension m2; in
conclusion the image of ρ is open in GlmpZpq.

As a corollary, we obtain:

Corollary 4.4. — There exist continuous Galois representations ρ : GalpQ{Qq Ñ
GlmpZpq with open image satisfying:
piq ρ is unramified ouside tp,8u if p ” ´1 mod 4,
piiq ρ is unramified ouside t2, p,8u if p ” 1 mod 4.
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Proof. — Take K “ Qp
?
´pq. Thanks to an explicit version of Brauer-Siegel (see for

example [16]), p - |ClK |. (For p “ 3, the number field Qp
?
´3q is 3-rational). Apply

Theorem 4.3.

Remark 4.5. — Observe that ramification at 2 only occurs in Qp
?
´pq{Q.

4.3. Galois representations via K “ Qpζpq. — The study of Galois representations
through Qpζpq allows us to realize, for many primes p ” 1 mod 4 and large m, Galois
representations ρ : GQ Ñ GlmpZpq unramified outside tp,8u, and with open image.
Take k “ Q, K “ Qpζpq. Let s be a generator of ∆ “ GalpK{Qq. Recall that ιK,p is
injective, and by Proposition 1.14, χpFK,p{pq “ 1`ω`ω3` ¨ ¨ ¨`ωp´2, where ω : GQ Ñ

Fˆp Ă Zˆp is the mod p reduction of the cyclotomic character.
Take m ě 3. Let g1 and g2 be the elements of Sl1m as in the previous section. Set
H “ xg1, g2y Ă Sl1m.

Given an odd integer a, set Aapsq “
m
ÿ

i“1
ωiapsqEi,i. Consider the Galois representation

ρ0 : GalpK{Qq Ñ GlmpZpq defined by ρ0psq “ Aapsq.
Then Aapsq ¨ z1 “ ω´apsq z1 and

Aapsq ¨ z2 “

"

ωapm´1qpsq z2 m odd
ωapm´2qpsq z2 m even.

Put g1 “ exppz1q and g2 “ exppz2q. The action of Aapsq is odd on g1, and even on g2. Of
course Aapsq acts also on Sl1m.
Thanks to the decomposition of χpFK,p{pq, we can find h1 and h2 in FK,p such that
s ¨ h1 “ h

ωa psq
1 , and s ¨ h2 “ h

ωapm´1qpsq
2 if apm ´ 1q “ 0 mod p ´ 1 for m odd, and

s ¨ h2 “ hω
apm´2q

2 if apm´ 2q “ 0 mod p´ 1 for m even; there is no condition for the odd
character, but the even character must be trivial.
Put M “ Fph1 ` Fph2 Ă Gp,el

K,p. Then ∆ acts on M , kerpρ0q “ kerpωaq acts trivially on
M , and the two ∆-modules M and Hp,el are isomorphic.
Here, it is not difficult to see that the character χpglm,pq of glm,p (via ρ0) contains only
characters of the form ωpi´jqa with i, j P t1, ¨ ¨ ¨ ,mu.
We can apply the previous techniques. As before, the representation ρ0 lifts when ωaa1

does not appear in χpTK,prpsq “ χ˚pClKrpsq, for every a1 P t˘1,˘2, ¨ ¨ ¨ ,˘mu (in fact
class modulo p´ 1 of).
Let a be the odd part of p´ 1; in other words, p´ 1 “ a2λ with 2 - a; so λ “ v2pp´ 1q.
We obtain the first condition (regarding the existence of h1 and h2): for m odd we must
have v2pm´1q ě v2pp´1q; for m even we must have v2pm´2q ě v2pp´1q. For a regular
prime p, that is the only condition.
Regarding the condition so that TK,p K glm,p: Let us start with a character ωki that
appears in χpClKrpsq, that is equivalent to say that ω1´ki appears in χpTK,prps); if ω1´ki

appears in χpglm,pq then a divides ki ´ 1.
Let us look at the p ” 3 mod 4 case; here a “ pp´ 1q{2.
There is no condition on m, and the condition regarding TK,p becomes rωpp´1q{2pTK,pq “

0. Observe that rωpp´1q{2pTK,pq “ rϕpTK0,pq, where K0 “ Qp
?
´pq and where ϕ is the

nontrivial character of GalpK0{Qq. Hence since rϕTK0,p “ 0 (see the proof of Corollary
4.4), we get that there is no obstruction for the embedding problem. In fact, observe
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that in this case the representation we obtain through Qpζpq can be deduced by the one
of Corollary 4.4.
We have proved:

Theorem 4.6. — Let p ” 1 mod 4 be a prime number, and let m ě 3. Write p ´ 1 “
2λa where 2 - a. Let tωk1 , ¨ ¨ ¨ , ωkeu be the characters corresponding to the nontrivial
components of the p-Sylow of the class group of Qpζpq. Suppose that:
piq v2pm´ 1q ě v2pp´ 1q if m is odd, and v2pm´ 2q ě v2pp´ 1q if m is even;
piiq a - pki ´ 1q for i “ 1, ¨ ¨ ¨ , e.
Then there exist continuous Galois representations ρ : GQ Ñ GlmpZpq unramified outside
tp,8u, and with open image.

Corollary 4.7. — Let p ” 1 mod 4 be a regular prime. Then there exist continuous
Galois representations ρ : GQ Ñ GlmpZpq unramified outside tp,8u and with open image,
for every oddm such that v2pm´1q ě v2pp´1q, and for every evenm such that v2pm´2q ě
v2pp´ 1q.
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