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Abstract. — The deficiency DefpGq of a finitely-generated pro-p group G is the difference
between its minimal numbers of relations and generators. For a number field K with max-
imal unramified p-extension KH, set GH “ GalpKH{Kq. Shafarevich (and independently
Koch) showed

0 ď DefpGHq ď dimpOˆK {pO
ˆ
K q

pq.

We explore connections between the relations of GH and the Galois module structure of
the units in the tower KH{K. If µp Ć K, we give an exact formula for DefpGHq in terms of
the number of independent Minkowski units in the tower. We also study the depth of the
relations of GH in the Zassenhaus filtration and provide evidence that the Shafarevich-Koch
upper bound is “almost always” sharp. In the other direction, we give the first examples of
infinite GH with DefpGHq “ 0 and dimpOˆK {pO

ˆ
K q

pq large, so that the upper bound is not
sharp.

Let p be a prime number, and let K be a number field. For a finite set S of places of K,
let KS be the maximal p-extension of K unramified outside S and GS “ GalpKS{Kq, its
Galois group. Note in particular that KH is the maximal pro-p extension of K unramified
everywhere and we call KH{K the p-class field tower of K. Let
dpGSq “ dimH1

pGSq “ dimH1
pGS,Z{pq and rpGSq “ dimH2

pGSq “ dimH2
pGS,Z{pq

be, respectively, the minimal number of generators and relations of GS. Define
DefpGSq :“ rpGSq ´ dpGSq as the deficiency of GS. p1q
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1. In most of the group theory literature the deficiency of G is defined as dpGq ´ rpGq.



Our goal in this paper is to better understand the pro-p group GS when S is tame, that
is when S does not contain all places above tp,8u. We are particularly interested in
the case S “ H. In the wild setting, when S contains all places above tp,8u, we have
at our disposal a very powerful tool, namely the global duality theorem for GS, which
immediately yields an explicit and easily computable formula for DefpGSq. While such
a tool is still missing in the tame, and in particular, unramified, case, Theorem A below
(see Theorem 2.9) is a step toward refining our understanding of the unramified situation
by relating it to the presence of Minkowski units in KH{K.

By class field theory, the maximal abelian quotient of GS is isomorphic to the p-Sylow
subgroup of a ray class group for K, and is therefore finite when S is tame. By the
Burnside Basis Theorem, dpGHq is the p-rank of the class group of K and is in particular
computable in any given case (at least in theory). In contrast, we do not know an
algorithm for computing rpGHq. However, thanks to the celebrated work of Shafarevich
[38] (and, independently, Koch – see for example [15, Chapter 11]) we know that

0 ď DefpGHq ď dpOˆ
K q,

where dpOˆ
K q :“ dpOˆ

K{pO
ˆ
K q

pq is the p-rank of the unit group Oˆ
K of the ring of integers

OK of K. We recall that if K has r1 embeddings into R and r2 pairs of complex conjugate
embeddings into C, then dpOˆ

K q “ r1`r2´1`δ where δ is 1 or 0 according to whether K
contains a primitive pth root of unity ζp or not. The number-theoretic work of Shafarevich
on the above deficiency bound [38] subsequently led to the group-theoretic work of Golod
and Shafarevich [8]. This pair of papers gave a criterion for the infinitude of GH and
produced the first such examples. More historical details can be found in [37], [29], [15],
and [25].

In this work, we investigate more closely the relationship between units in unramified class
field towers and defining relations for their Galois groups. Our main theorem is that the
existence of certain types of units along the tower KH{K provides two types of results:
(a) tighter bounds for the deficiency of GH, as well as (b) more refined information on
the depth of its defining relations. We introduce a constant λ measuring the free-part
of the Galois module structure of the units in KH{K (see §2.3). Here free-part means
the following: if F{K is a finite Galois extension in KH{K with Galois group G, we are
interested in the FprGs-structure of Fp b Oˆ

F , that is the units Oˆ
F modulo pth powers.

Recall that since G is a p-group, the category of FprGs-modules is not semisimple. When
the FprGs-free part of FpbOˆ

F is nontrivial, we say the extension F{K admits a Minkowski
unit (see §1.3 for further details). It is not difficult to see that the number of independent
Minkowski units is non-increasing and stabilizes as we move up the tower KH{K and
therefore after a finite number of steps reaches a constant value we denote λ :“ λKH{K.
We also define β to be

β :“

$

&

%

d

ˆ

OˆKXpO
ˆ
KH
qp

pOˆK q
p

˙

ζp P K

0 otherwise
.

Note that when ζp P K, if we set L “ KH X Kp p
a

Oˆ
K q, then rL : Ks “ pβ. Thus,

0 ď β ď min pr1 ` r2, dpGHqq. We also note that β ą 0 if and only if for some u P Oˆ
K ,

Kpu1{pq{K is a Z{p-unramified extension. More generally, the quantity β quantifies the
number of such independent extensions of K.
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Theorem A. — Recall λ is the number of independent Minkowski units in the p-Hilbert
class field tower KH{K. One has

dpOˆ
K q ´ λ´ β ď DefpGHq ď dpOˆ

K q ´ λ.

In particular if Oˆ
K X pO

ˆ
KHq

p “ pOˆ
K q

p or if K does not contain a primitive pth root of
unity, then DefpGHq “ dpOˆ

K q ´ λ.

We give two proofs of this result (see proof of Theorem 2.9). In our second more
constructive proof we realize GH as a quotient of some GS, where S is a well-chosen
finite set of tame (coprime to p) prime ideals of OK (see also Notations at the end of this
section), and we use the Hochschild-Serre spectral sequence induced by the natural map
GS � GH to produce dpGHq ` dpO

ˆ
K q ´ λ´ β independent elements of X2

H “ H2pGHq.

In §3.6 we also give examples of infinite GH with as many as seven independent Minkowski
units.

Remark. — As mentioned earlier, the non-negativity of DefpGHq follows from a basic
group-theoretical property of GH, namely that its maximal abelian quotient is finite. In
other words, one knows that GH has at least dpGHq relations. For the group GH, one
can concretely produce dpGHq relations for GH as follows. In Figure 1, we show a tower
of fields K Ă K1 Ă L11 Ă L12 for whose definition, the reader may consult the Notations
section at the end of this introduction. For the moment, the key point is that L12{L11
is an elementary abelian p-extension of dimension dpGHq. By the Chebotarev density
theorem, we can choose dpGHq primes of K whose Frobenius automorphisms form a basis
of the elementary p-abelian group GalpL12{L11q. Letting S1 be the set consisting of these
primes, in Section 2.2, we will describe in detail how applying the Gras-Munnier Theorem
(Theorem 1.1) and Lemma 1.5 (ii) to the primes in S1 gives us dpGHq independent
elements in X2

H “ H2pGHq, which in turn correspond to dpGHq distinct relations in a
minimal presentation of GH. We refer to relations constructed in this way as “easily
detected” via S1, or, when the context is clear, simply “easy.”

L12 :“ K1
`

p
a

VH
˘

L11 :“ K1

´

p
a

Oˆ
K

¯

K1 :“ Kpζpq

K

Figure 1.

A key observation we make in this work is that aside from the dpGHq relations easily
detected via S1, we can construct dpOˆ

K q ´ λ ´ β additional relations via a modification
of this construction using a further set S2 of auxiliary primes whose Frobenius auto-
morphisms span a Galois group in a more complicated tower of governing fields (Figure
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2) described in §2.2. The existence of such primes is tied up with the Galois module
structure of units in the Hilbert p-class field tower. We refer to the resulting relations
as “difficult” relations “detected” by S2. This set of ideas leads to the lower bound for
DefpGHq in the theorem. The upper bound, on the other hand, is a consequence of a
result of Wingberg [42]. When β “ 0 (which is always the case if K does not contain a
primitive pth root of unity), these upper and lower bounds coincide, in which case all the
relations are either easily detected by S1 or difficult and detected by S2. But when β ą 0,
only dpOˆ

K q ´ λ´ β of the relations are constructible in this way. Indeed, in the example
below β “ 1 and we find the final relation, which is difficult, by an ad hoc method.

Example. — Take p “ 2. Our method allows us to show that for K “ Qp
?
´5460q,

the example studied extensively by Boston-Wang [3], there are 4 easily detected relations
and another relation that is difficult. DefpGHq “ r ´ d “ 5´ 4 “ 1.

Thanks to the work of Labute [17], Schmidt [32] and others we know that there are
special sets S (finite and tame) for which GS is of cohomological dimension 2; however,
their methods do not allow S to be empty. In particular, the question of the computation
of the cohomological dimension of GH has only been resolved in a few cases, namely when
GH is known to be finite. A consequence of Theorem A is the following (Theorem 3.12):

Corollary. — Let K be a number field such that
(i) K contains a primitive pth root of unity;
(ii) Oˆ

K X pO
ˆ
KHq

p “ pOˆ
K q

p.
Then dimH3pGH,Fpq ą 0. Moreover:

´ If dimH3pGH,Fpq “ 1, then GH is finite or of cohomological dimension 3;
´ If DefpGHq “ 0 and GH is of cohomological dimension 3, then GH is a Poincaré

duality group.

We also deduce (Corollary 3.4):

Corollary. — Let K be a number field such that
(i) K contains a primitive pth root of unity;
(ii) Oˆ

K X pO
ˆ
KHq

p “ pOˆ
K q

p;
(iii) DefpGHq “ 0.

Then for every open normal subgroup H of GH, one has DefpHq “ 0.

When DefpHq “ 0 for all open subgroups of G, λ is maximal all along the tower. When
DefpGHq “ 0 and the tower is finite, it is a standard result from finite group theory that
GH is either cyclic or, when p “ 2, a generalized quaternion group. Observe also that
Poincaré groups of dimension 3 have deficiency zero.

When GH is infinite we suspect DefpGHq is maximal (namely equal to dpOˆ
K q) very

often in accordance with the heuristics of Liu-Wood-Zureick–Brown [20]. In fact, we
elaborate a strategy to investigate maximality of the deficiency by testing for the presence
of Minkowski units through computer computation. We further note that if in the first
steps of the tower KH{K there are α Minkowski unit preventing us from concluding
that DefpGHq is maximal, the group GH can be described by at least α relations of
high depth in the Zassenhaus filtration. Denote by pKnq the sequence in KH{K where
K1 :“ K and Kn`1 is the maximal elementary abelian p-extension of Kn in KH{K. Put
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Hn “ GalpKn{Kq. Let rmax “ dpGHq`dpO
ˆ
K q be the maximal possible value of rpGHq. To

each presentation of a pro-p group, there is associated a Golod-Shafarevich polynomial;
for the basic facts of these polynomials, see §4.1.2. Golod and Shafarevich proved that if
this polynomial vanishes on the open unit interval, then the group must be infinite. In
§4, we prove the following result (see Theorem 4.12). See also § 1.3.3.

Theorem B. — Let λn be the number of independent FprHns-Minkowski units in Kn.
Then GH can be generated by dpGHq generators and rmax relations tρ1, ¨ ¨ ¨ , ρrmaxu such
that at least λn relations are of depth greater than 2n. Hence, we can take 1´ dpGHqt`
prmax ´ λnqt

2 ` λnt
2n as a Golod-Shafarevich polynomial for GH.

The more familiar Golod-Shafarevich polynomial in this context is 1´ dpGHqt` rmaxt
2,

which is less likely to have a root and thus indicate #GH “ 8. Also, we will allow the
possibility of n “ 8, that is there may be fewer than rmax relations.

The imaginary quadratic case is particularly easy to study (here p “ 2). Indeed when K
is an imaginary quadratic field, one has DefpGHq P t0, 1u. Here we show that, almost
always, there is no Minkowski unit in any quadratic extension F{K of KH{K, which
implies DefpGHq “ 1 (see Theorem 5.12). Denote by F the set of imaginary quadratic
fields, and for X ě 2, put

F pXq “ tK P F , |discpKq| ď Xu, F0pXq “ tK P F pXq, DefpGHq “ 0u.

Theorem C. — Let K be imaginary quadratic and p “ 2. One has
#F0pXq

#F pXq
ď C

log logX
?

logX ,

where C is an absolute constant and X is large enough. In particular, the proportion of
imaginary quadratic fields of discriminant at most X for which DefpGHq “ 0 tends to
zero as X Ñ 8.

Notations.
‚ Let p be a prime number and K be a number field.
‚ We denote by

´ OK the ring of integers of K, and by Oˆ
K the group of units of OK,

´ EK “ Fp b Oˆ
K , the units modulo the pth-powers,

´ KH the Hilbert p-class field of K,
´ ClK the p-Sylow subgroup of class group of K.

‚ Let ζp P Qalg be a primitive pth root of 1. Put δ :“ δK,p :“ 1 when ζp P K, 0 otherwise.
‚ Let S “ tp1, ¨ ¨ ¨ , psu be a finite set of prime ideals of K. We identify a prime p P S
with the place v it defines.

´ We assume each pi is tame (prime to p) and satisfies |OK{pi| ” 1pmod pq.
´ We denote by RCGKpp1, ¨ ¨ ¨ , psq the p-Sylow subgroup of the ray class group of K

of modulus p1 ¨ ¨ ¨ ps. When S “ H, one has RCGKpHq “ ClK.
´ Let KS be the maximal pro-p extension of K unramified outside S, put GS “

GK,S “ GalpKS{Kq.
´ By class field theory, one has Gab

S » RCGKpp1, ¨ ¨ ¨ , psq.
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´ Put VS :“ tx P Kˆ, pxq “ Ip as a fractional ideal of K; x P pKˆ
v q

p, @v P Su. Then
VS Ą pKˆqp and we have the exact sequence:

0 Ñ Oˆ
K{O

ˆp
K Ñ VH{pKˆ

q
p
Ñ ClKrps Ñ 0.

‚ If M is a Z-module, we set dpMq “ dimFppFp bMq.
´ When G is a pro-p group, we denote dpGq “ dpGabq, where Gab “ G{rG,Gs.
´ Let pr1, r2q be the signature of K. By Dirichlet’s Theorem dpOˆ

K q “ r1` r2´1` δ.
´ From the exact sequence above, dpVH{pKˆqpq “ dpOˆ

K q ` dpClKq.
‚ Unless otherwise specified, all cohomology groups have Z{p-coefficients.

´ Hence dpGHq :“ dpH1pGHqq “ dimH1pGH,Z{pq and rpGHq :“ dimH2pGH,Z{pq.
´ The deficiency DefpGHq of GH is defined to be rpGHq ´ dpGHq.

For the computations in this paper we have used the programs GP-PARI [27] and
MAGMA [40] and have often assumed the GRH to speed up the computations.

1. Preliminaries

In this section we develop the results we need to detect elements of H2pGHq “ X2
H as

described in the Remark in the Introduction. In particular, Lemma 1.5 shows how one
can detect elements of X2

H via ramified extensions of KH; we illustrate our strategy by
finding X2

H for the field Qp
?
´5460q with p “ 2.

In §1.2, we relate DefpGHq to norms of units from number fields in the tower KH{K. In
§1.3 we develop the basics of the theory of Minkowski units and show, using the Gras-
Munnier Theorem 1.1, that the existence of a Minkowski unit in some number field F in
the tower KH{K follows when Gab

F,tpu “ Gab
F,H for some prime p of K.

1.1. Saturated sets, and a spectral sequence. —
1.1.1. Degree-p cyclic extension with prescribed ramification. — Take p, K and S as in
the “Notations”. The fields L1i of Figure 1 are called governing fields as the existence of a
Z{p-extension of K ramified exactly at a given set of primes depends on their Frobenius
automorphisms in these extensions. See Theorem 1.1 below.
For each prime ideal p P S, let us choose a prime ideal P|p of OL12 , and denote by

σp :“
ˆ

L12{K1

P

˙

, the Frobenius at P in the governing extension L12{K1.

Using that L12 is formed by taking pth roots of elements of K (not K1), one can easily
show that σp depends, up to a nonzero scalar multiple, only on p. This serves our
purposes. By abuse we also denote by σp its restriction to L11. One says that the Frobenius
automorphisms σp, p P S, satisfy a nontrivial relation if

ź

pPS

σ
ap
p “ 1,

in GalpL12{K1q (or in GalpL11{K1q) with the ai P Z{p not all zero. Thus the existence of a
nontrivial relation is independent of the ambiguity in the choice of σp.

Theorem 1.1 (Gras-Munnier [11]). — Let S “ tp1, ¨ ¨ ¨ , ptu be a set of tame prime
ideals of K. One has:
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piq dpGSq ‰ dpGHq, if and only if the σp, p P S, satisfy a nontrivial relation in
GalpL12{K1q.

piiq |Gab
S | ą |Gab

H| if and only if the σp, p P S, satisfy a nontrivial relation in GalpL11{K1q.

For a generalization of Theorem 1.1, see [10, Chapter V].

Remark 1.2. — 1. The distinction between (i) and (ii) of Theorem 1.1 is that (ii)
can occur when dpGSq “ dpGHq. The governing fields for the width and depth of
Gab
S are different.

2. The Kummer radical of L11{K1 is Oˆ
K pK1ˆqp{pK1ˆqp which is isomorphic to EK since

Oˆ
K X pK1ˆqp “ pOˆ

K q
p and rK1 : Ks is coprime to p. For the same reason, VH{pKˆqp

is the Kummer radical of L12{K1.

1.1.2. Saturated sets. — For v P S, we denote by Gv the absolute Galois group of the
maximal pro-p extension Kv of the completion Kv of K at v. Let X2

S be the kernel of
the localization map of H2pGSq:

X2
S :“ ker

`

H2
pGSq Ñ ‘vPSH

2
pGvq

˘

.

Put BS “
`

VS{pKˆqp
˘_; then one has (see Theorem 11.3 of [15]) X2

S ãÑ BS. When S
contains the places of K above tp,8u this map is an isomorphism and X2

S is dual to
X1

Spµpq :“ ker
`

H1
pGS, µpq Ñ ‘vPSH

1
pGv, µpq

˘

.

The failures of the isomorphism and duality in the tame case are reasons it is especially
challenging.

Definition 1.3. — The set S of places K is called saturated if VS{pKˆqp “ t1u.

As consequence of Theorem 1.1, one has (see [13, Theorem 1.12])

Theorem 1.4. — A finite tame set S is saturated if and only if, the Frobenius σp, p P S,
span the elementary p-abelian group GalpK1p p

a

VHq{K1q.

We recall below the formula of Shafarevich applied in the case where S is tame (see for
example [25, Chapter X, §7, Corollary 10.7.7]):

dpGSq “ |S| ´ dpO
ˆ
K q ` dpVS{pKˆ

q
p
q.(1)

Hence when S is saturated, one has dpGSq “ |S| ´ dpO
ˆ
K q.

1.1.3. Spectral sequence. — Let us start with the natural exact sequence
1 ÝÑ HS ÝÑ GS ÝÑ GH ÝÑ 1,

where the group HS is the closed normal subgroup of GS generated by the tame inertia
elements τp P GS, p P S. Set

XS :“ HS{rHS,GHsHp
S.

Recall as GH is a pro-p group, the compact ring FpvGHw is local and acts continuously
on HS{rHS,HSsHp

S. We give an easy lemma that can be found in [13] (see Lemmas 1.11
and 1.12).

Lemma 1.5. — Let S be a finite set of tame prime ideals of OK.
piq The FpvGHw-module HS{rHS,HSsHp

S is topologically finitely generated by at most |S|
elements.
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piiq One has the exact sequence
1 ÝÑ H1

pGHq ÝÑ H1
pGSq ÝÑ X_S ÝÑX2

H ÝÑX2
S.

In particular, if S is such that H1pGHq » H1pGSq, then X_S ãÑX2
H. If moreover S

is also saturated then X_S »X2
H.

To conclude this subsection, let us observe the following: Let F0{KH be a cyclic extension
of degree p in KS{K such that F0{K is Galois. Then F0 comes from a finite level: there
exists a finite extension F{K and a cyclic extension F1{F of degree p, ramified at some
places above S, such that F2 “ KHF1. The estimate for dimH2pGHq can be done by
using the previous lemma, typically by seeking the fields F0: this is the spirit of the
method involving the Hochschild-Serre spectral sequence.

Example 1.6 (The field Qp
?
´5460)). — Set p “ 2 and K “ Qp

?
´5460q. The ra-

tional primes in t43, 53, 101, 149, 157u all split in K. Let S “ tp43, p53, p101, p149, p157u,
the first primes above each of these as MAGMA computes them. We denote the abelian
group

śd
i“1 Z{ai by pa1, ¨ ¨ ¨ , adq. Computations show that:

piq RCGKpHq “ p2, 2, 2, 2q;
piiq RCGKpp53, p101, p149, p157q “ p4, 8, 8, 8q; Furthermore, for each of these primes p we

compute RCGKppq “ p2, 2, 2, 4q.
piiiq RCGKpSq “ p8, 8, 8, 8q.
Since Oˆ

K “ ˘1, one easily sees dpVH{pKˆq2q “ 4 ` 1 “ 5 hence S is saturated by piiiq
and equality (1), and piiq implies dpXtp53,p101,p149,p157uq “ 4 and then dpXSq ě 4. As Xtpu
is nontrivial for p P tp53, p101, p149, p157u, we see there is a quadratic extension above KH

ramified at p. We have produced four independent elements of X2
H.

Now take F “ Kpiq Ă KH; p43 is inert in F{K. An easy computation shows that
RCGFpHq “ p4, 2, 2, 2q and RCGFpp43q “ p4, 4, 2, 2q. As FH “ KH we have an ex-
tension over KH ramified only at p43, so dpXSq “ 5, and by Lemma 1.5 we conclude that
rpGHq “ 5.

1.2. Universal norms and relations. — Put Oˆ
KH “

ď

F
Oˆ

F , where F{K run through

the finite Galois extensions in KH{K. Recall the following theorem due to Wingberg [42];
see also [25, Theorem 8.8.1, Chapter VIII, §8] where we take S “ T “ H, c to be the full
class of finite p-groups and A “ Z. We have written the results there in our notation.

Theorem 1.7 (Wingberg). — One has Ĥ ipGH,O
ˆ
KHq » Ĥ3´ipGH,Zq_.

The exact sequence 0 ÝÑ Z ˆp
ÝÑ Z ÝÑ Z{p ÝÑ 0 gives:

0 ÝÑ H2
pGH,Zq{p ÝÑ H2

pGH,Z{pq ÝÑ H3
pGH,Zqrps ÝÑ 0.

Taking the Pontryagin dual, one obtains:
0 ÝÑ H3

pGH,Zq_{p ÝÑ H2
pGH,Z{pq_ ÝÑ H2

pGH,Zq_rps ÝÑ 0.(2)
By Theorem 1.7:

H2
pGH,Zq_ » H1

pGH,O
ˆ
KHq, and H

3
pGH,Zq_ » Ĥ0

pGH,O
ˆ
KHq.

8



Recall
Ĥ0
pGH,O

ˆ
KHq » lim

Ð

F
Oˆ

K{NF{KOˆ
F ,

where F{K run through the finite Galois extensions in KH{K, NF{K is the norm in F{K,
and H1pGH,O

ˆ
KHq is the p-part of ClK (see for example [25, Lemma 8.8.4, Chapter VIII,

§8]).
This observation associated to Theorem 1.7 allows us to prove:

Corollary 1.8. — One has DefpGHq “ dpEK{NKH{KEKHq, where NKH{KEKH :“
č

F{K
NF{KEF.

In particular when rF : Ks is sufficiently large one has DefpGHq “ dpEK{NF{KEFq.

Proof. — If F{K is a finite Galois extension in KH{K then pOˆ
K q
rF:Ks Ă NF{KOˆ

F , hence
Oˆ

K{NF{KOˆ
F is a finite abelian p-group and lim

Ð

F
Oˆ

K{NF{KOˆ
F is an abelian pro-p group

(obviously finitely generated). Then lim
Ð

F
Oˆ

K{NF{KOˆ
F » lim

Ð

F
Zp b

`

Oˆ
K{NF{KOˆ

F
˘

. But as

Zp is Z-flat, one gets Zp b
`

Oˆ
K{NF{KOˆ

F
˘

» EK{
`

Zp b NF{KOˆ
F
˘

“ EK{NF{KOˆ
F , where

EK “ Zp b Oˆ
K and NF{KOˆ

F is the closure of NF{KOˆ
F in Zp b Oˆ

K . Hence,

lim
Ð

F
Oˆ

K{NF{KOˆ
F » EK{

č

F
NF{KOˆ

F .

Thus
Fp b lim

Ð

F
Oˆ

K{NF{KOˆ
F » EK{E

p
K

č

F
NF{KOˆ

F » EK{NKH{KEKH .

The exact sequence (2) becomes
0 ÝÑ EK{NKH{KEKH ÝÑ H2

pGH,Z{pq_ ÝÑ ClKrps ÝÑ 0,(3)
and computing dimensions gives the result.

For #GH ă 8 it has been known for a long time that the number of relations of GH is
related to the norm of the units in the tower. See for example §2 of [29]
As a consequence, one also has

Corollary 1.9. — Let F{K be a finite Galois extension in KH{K. Then DefpGHq ě

d
`

Oˆ
K{NF{KOˆ

F
˘

, and one has equality when F is sufficiently large.

Proof. — This is obvious using that EK{NKH{KEKH � EK{NF{KEF. For the equality, use
the fact that EK is finite.

When p “ 2, if ´1 is not a norm of a unit in a quadratic subextension F{K of KH{K, then
´1 R NKH{KOˆ

KH , which implies DefpGHq ě 1. We will see that this condition appears
almost all the time when K is an imaginary quadratic extension. We close this subsection
with a basic fact.

Fact. — For S a finite set of tame places, 0 ď DefpGSq.

Proof. — We refer to [28], especially Lemma 6.8.6, for the facts we need concerning the
homology of profinite groups. From the exact sequence of compact groups

0 ÝÑ Zp
ˆp
ÝÑ ZpÝÑZ{p ÝÑ 0

9



we obtain the homology sequence
¨ ¨ ¨ ÝÑ H2pGS,Z{pq� H1pGS,Zpqrps.

As H1pGS,Zpq » Gab
S , we have dpGSq “ d

`

Gab
S rps

˘

ď d
`

H2pGS,Z{pq
˘

“ rpGSq.

1.3. Minkowski units. —
1.3.1. — Recall that for a finite group G, the ring FprGs is a Frobenius algebra (see
for example [4, §62]): every free submodule of an FprGs-module M is in direct sum so
we may write M “ FprGst ‘ N, where N is torsion (for every element n P N, there
exists 0 ‰ h P FprGs such that h ¨ n “ 0), and t :“ tGpMq is uniquely determined
(by Krull-Schmidt Theorem). Observe that if M^ is the Pontryagin dual of M, then
tGpMq “ tGpM^q.
We record some useful properties. Let H Ă G be a subgroup of G.
piq Recall first that by Mackey’s decomposition theorem, one has the isomorphism of
FprHs-modules ResHFprGs » FprHs‘

rG:Hs .
piiq Suppose moreover HC G, and denote by NH “

ř

hPH h P FprGs the norm map from
H. For an FprGs-module M let MH denote the invariants. Then one easily obtains the
isomorphism of FprGs-modules

FprG{Hs » Fp bFprHs FprGs » FprGsH(4)
and NHpFprGsq “ FprGsH so

NHpFprGsq » FprG{Hs(5)
as FprG{Hs-modules.
1.3.2. — Let F{K be a finite Galois extension of number fields with Galois group G.

Definition 1.10. — Let EF :“ FpbOˆ
F . We say that F{K has a Minkowski unit (at p),

if EF contains a nontrivial free FprGs-submodule. In other word, F{K has a Minkowski
unit if tGpEFq ě 1.

Hence the quantity tGpEFq measures "the number" of independent Minkowski units in
F{K.
If pp, |G|q “ 1 then EF is a semisimple FprGs-module. Determining the existence of
Minkowski units is more difficult when pp, |G|q “ p. When G is a p-group, and F{K is
unramified, it is tempting to regard the existence of a Minkowski unit in F{K as rare.
1.3.3. Example. — We want to illustrate the notion of Minkowski units.

Lemma 1.11. — Let F{K be a p-extension with Galois group G. Let S “ tp1, ¨ ¨ ¨ , pku
be a set of tame primes of K that split completely in F{K. If dpGF,Sq “ dpGF,Hq then
tGpVF,Hq ě k, and if |Gab

F,S| “ |Gab
F,H| then tGpEFq ě k.

Proof. — Observe first that G acts on GalpF1p p
a

VF,Hq{F1q (resp. on GalpF1p p
a

Oˆ
F q{F1q).

Then by Remark 1.2, one has
tG
`

VF{pFˆqp
˘

“ tG
`

GalpF1p p
a

VF,Hq{F1q
˘

,(6)
and

tGpEFq “ tG
`

pEFq
^
˘

“ tG
`

GalpF1p p
b

Oˆ
F {F1q

˘

.(7)
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For all prime ideals Pij|pi of OF we consider the Frobenius automorphisms σPij in
GalpF1p p

a

VF,Hq{F1q. Note that we are no longer in an abelian over K situation as just
before Theorem 1.1. By Theorem 1.1 piq, the hypothesis dpGF,Sq “ dpGF,Hq implies the
Frobenius automorphisms σPij in GalpF1p p

a

VF,Hq{F1q are without nontrivial relation. As
each pi splits completely in F{K, we have that GalpF1p p

a

VF,Hq{F1q contains k distinct
free FprGs-modules, one for each pi. The first assertion follows by (6). For the second
assertion, use the second part of Theorem 1.1 and (7).

Recall that we denote the abelian group
śd

i“1 Z{aiZ by pa1, ¨ ¨ ¨ , adq. Let p “ 2 and
K “ Qp

?
5 ¨ 13 ¨ 17 ¨ 29q and let H “ Qp

?
5,
?

13,
?

17,
?

29q be its Hilbert class field.
Here ClK “ p2, 2, 2q, and ClH “ p4, 4q. Consider the primes ` “ 2311 and q “ 3319. We
easily see `OK “ l1l2 and qOK “ q1q2 and these ideals are all principal. In the table below
we compute the 2-parts of the ray class groups for K and H of the given conductors. The

Table 1. Ray Class Groups

Conductor K H
1 p2, 2, 2q p4, 4q

li, i P t1, 2u p2, 2, 2q p4, 4q
qi, i P t1, 2u p2, 2, 2q p4, 4q

l1q1 p2, 2, 2q p2, 2, 2, 4, 4q
l1q2 p2, 2, 2, 2q p2, 2, 2, 2, 2, 4, 8q
l2q1 p2, 2, 2, 2q p2, 2, 2, 2, 2, 4, 8q
l2q2 p2, 2, 2q p2, 2, 2, 4, 4q

computations were done with MAGMA (see [40]) and assume the GRH. Note that in the
first three rows, the ray class groups are identical. As the principal ideals li and qi split
completely in H{K, by Lemma 1.11 one sees that Oˆ

H b F2 has a Minkowski unit over
K: in other words putting G “ GalpH{Kq » pZ{2Zq3, one has tGpEHq ě 1. Note H is a
degree 16 totally real field so dim EH “ 16 and EH »G F2rGs ‘M where dimM “ 8 so
M a priori could be free.
We now show that M is not free. Set K0 “ K, K1 “ Qp

?
5 ¨ 17q, and K2 “ Qp

?
13 ¨ 29q.

Let F be the biquadratic field K1K2. Computations show that ClK1 “ p2q, ClK2 “ p2q,
and ClF “ p2, 4q. Denote by εi the fundamental unit of Ki, and put

e “ #
`

Oˆ
F {x´1, εi, i “ 0, 1, 2y

˘

.

Applying the Brauer class formula in the biquadratic extension F{Q, i.e. |ClF| “
1
4e|ClK||ClK1 ||ClK2 |, to deduce e “ 1, and then Oˆ

F “ x´1, εi, i “ 0, 1, 2y.
Let σ be a generator of G “ GpF{Kq. We compute:
piq the norm of ε2 in F{K is `1,
piiq the norm of ε1 in F{K is ´1,
piiiq σ acts trivially on ε0,
Hence, as we will observe in Lemma 5.1, one obtains that EF » F2rG1s ‘ F2

2, where G1 “

GalpF{Kq. Finally since EH � EF, and tG1pEFq ě tGpEHq we conclude that tGpEHq “ 1.
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2. Detecting the relations along KH{K

As mentioned in the remark in the introduction, we can easily find d elements of X2
H by

constructing ramified extensions at a low level in the tower KH{K. For pGnq a sequence

of open normal subgroups of G with
8
č

n“1
Gn “ teu, let Kn be the fixed field of Gn and set

Hn “ GalpKn{Kq. In this section we show that the presence of torsion elements in the
FprHns-module Gal

´

K1
n

´

p

b

Oˆ
Kn

¯

{K1
n

¯

can give rise to more relations.

2.1. First observations. — Let p be a prime number and K be a number field.
If F{K is a Galois extension with Galois group G, the norm map NG sends EF to

Oˆ
K

Oˆ
K X pO

ˆ
F q

p
Ă EF; denote by N 1

G : EF Ñ EK the map from EF to EK induced by the

norm in F{K. The commutative diagram:

EF
NG
//

N 1G ##

OˆK
OˆKXpO

ˆ
F q

p

� � // EF

EK

OOOO

implies the following easy lemma:

Lemma 2.1. — One has N 1
GpEFq � NGpEFq. Moreover, Oˆ

K X pO
ˆ
F q

p “ pOˆ
K q

p ùñ

N 1
GpEFq » NGpEFq.

The study of the norm map NG is "purely algebraic", i.e. it does not involve number
theory. Lemma 2.2 below is proved at the beginning of the proof of [26, Lemma 2]).
Since that Lemma is stated differently we include a proof that is essentially from [26].

Lemma 2.2. — Let G be a finite p-group and M an FprGs-module. Let NG : M Ñ M
be the norm map. Let m PM . Then NGpmq “ 0 if and only if m is a torsion element.

Proof. — Let 0 ‰ m PM . Recall that the annihilator Am of a nontrivial element m PM
is an ideal of FprGs and that m is a torsion element if and only if Am ‰ 0.
If Am “ 0 then the FprGs-span of m is isomorphic to FprGs and as NGpFprGsq “ Fp by
(5), we see NGpmq ‰ 0.
Conversely, suppose that Am ‰ 0. Then AG

m ‰ 0 since G is a p-group acting on a
nontrivial Fp-vector space. Hence AG

m Ă pFprGsqG which is in turn the one-dimensional
vector space Fp ¨ NG. Thus Fp ¨ NG “ AG

m Ă Am so NGpmq “ 0.

More generally, one has

Theorem 2.3. — Let F{K be a finite p-extension with Galois group G and write
N1GpEFq » Ftp. Then tGpEFq ď t ď tGpEFq ` d

´

OˆKXpO
ˆ
F q

p

pOˆK q
p

¯

. In particular if Oˆ
K X pO

ˆ
F q

p “

pOˆ
K q

p, then t “ tGpEFq.

Proof. — Write EF » FprGstGpEFq ‘ N, where N is generated by torsion elements as an
FprGs-module. By (5) and Lemma 2.2 one has NGpEFq » FtGpEFq

p . So by Lemma 2.1 we
see N1GpEFq » NGpEFq » FtGpEFq

p , proving the result when Oˆ
K X pO

ˆ
F q

p “ pOˆ
K q

p.
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By noting that the ‘difference’ between NGpEFq and N1GpEFq is exactly NGpO
ˆ
F qXpO

ˆ
F q

p

pOˆK q
p which

has p-rank at most d
´

OˆKXpO
ˆ
F q

p

pOˆK q
p

¯

, we obtain the general case.

2.2. Exhibiting relations via the Hochschild-Serre spectral sequence. — In
this subsection, we flesh out the details of the process described in the Remark of the
Introduction for explicitly exhibiting dpGHq relations in a minimal presentation of GH.
It would be helpful to refer to Figure 1 from the introduction. Put K1 “ Kpζpq. Let
S “ S1 Y S2 be a set of tame prime ideals of OK such that:
´ S1 is a minimal set whose Frobenius automorphisms generate the dpGHq-dimensional

Fp-vector space Gal
´

K1p p
a

VHq{K1p p
a

Oˆ
K q
¯

, and
´ S2 is a minimal set whose Frobenius automorphisms generate the Fp-vector space

Gal
´

K1p p
a

Oˆ
K q{K1

¯

of dimension r1 ` r2 ´ 1` δ.
Recall the Frobenius automorphisms above are well-defined up to nonzero scalar multiples
in the Galois groups, which are vector spaces over Fp. This ambiguity does not affect
their spanning properties. One has

Lemma 2.4. — The set S is saturated, in particular X2
S “ t0u. Moreover dpGSq “

dpGHq, and rpGHq “ dpXSq.

Proof. — That S is saturated follows immediately from Theorem 1.4. As there is no
dependence relation between the Frobenius automorphisms (the set S is minimal), Theo-
rem 1.1 implies d :“ dpGSq “ dpGHq. That rpGHq “ dpXSq follows from the second part
with Lemma 1.5.

Lemma 2.5. — Write pa1, ¨ ¨ ¨ , adq for the p-part of RCGKpHq and let S1 “ tp1, ¨ ¨ ¨ , pdu
as above. Then RCGKpp1, ¨ ¨ ¨ , pdq� ppa1, ¨ ¨ ¨ , padq.

Proof. — This is a consequence of Theorem 1.1. As the primes of S1 split completely in
the governing extension GalpK1p p

a

Oˆ
K q{K1q, for each prime ideal p P S1 we have #Gab

tpu ‰

#Gab
H. We conclude by noting that dpGS1q “ dpGHq.

Lemma 2.5 implies the existence of d independent degree-p cyclic extensions Fi of KH,
each totally ramified at pi, i “ 1, ¨ ¨ ¨ , d, and on which GH acts trivially, implying that
dpXSq ě d. The rest of the relations are difficult and detected via the set S2.

2.3. Proof of Theorem A. — Let pGnq be a sequence of open normal subgroups of
GH such that Gn Ă Gn`1 and

Ş

n Gn “ teu. Put Hn :“ GH{Gn, Kn :“ KGn
H , and write

EKn :“ FprHns
tn ‘ Nn where Nn is torsion as an FprHns-module.

Lemma 2.6. — The sequence ptnq is nonincreasing.

Proof. — Recall from (4) that the norm map from Hn`1,n :“ GalpKn`1{Knq on FprHn`1s

induces the following FprHns-isomorphisms:
FprHns » FprHn`1sHn`1,n » FprHn`1s

Hn`1,n .

The norm map NHn`1,n of Kn`1{Kn induces a morphism from EKn`1 to EKn`1 which allows
us to obtain

FprHns
tn`1 ãÑ

Oˆ
Kn

Oˆ
Kn X pO

ˆ
Kn`1q

p
� EKn ,
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which implies tn ě tn`1.

Definition 2.7. — Set λ :“ λKH{K “ limn tn. We call this the Minkowski-rank of the
units along KH{K.

One easily sees that λ does not depend on the sequence pGnq.
Let us write pβ :“ rK1p p

a

Oˆ
K q X K1KH : K1s “

“

Oˆ
K X pO

ˆ
KHq

p : pOˆ
K q

p
‰

. Obviously,
β ď minpdpOˆ

K q, dpGHqq.

Proposition 2.8. — One has: δ “ 0 ùñ β “ 0.

Proof. — Recall K1 :“ Kpζpq. Let ∆ “ GalpK1{Kq be the Galois group of K1{K; by
hypothesis ∆ is of order coprime to p. As ∆ acts trivially on Oˆ

K , by Kummer duality the
action of ∆ over GalpK1p p

a

Oˆ
K q{K1q is given by the cyclotomic character; in particular,

there is no nontrivial subspace of GalpK1p p
a

Oˆ
K q{K1q on which ∆ acts trivially. As ∆ acts

trivially on GalpK1KH{K1q, the result holds.

Theorem 2.9. — We have the estimates:
dpOˆ

K q ´ λ´ β ď DefpGHq ď dpOˆ
K q ´ λ.

In particular,
— if Oˆ

K X pO
ˆ
KHq

p “ pOˆ
K q

p or if δ “ 0, then DefpGHq “ dpOˆ
K q ´ λ.

— if λ “ dpOˆ
K q then DefpGHq “ 0.

Proof. — We keep the notations of the beginning of the section.
We give two proofs for the lower bound. The first one is ‘algebraic’ while the second is
number-theoretic and is more ‘explicit’ in how we determine the existence of the relations.
We first establish the upper bound. Denote by NHn the norm map for the extension
Kn{K. Observe that by Corollary 1.9, DefpGHq “ dpEKq ´ dpN 1

HnpEKnqq for n " 0. Take
n sufficiently large such that tn “ λ. One has dpNHnpEKnqq ě λ (see Theorem 2.3),
implying that dpN 1

HnpEKnqq ě λ. Hence one gets:
DefpGHq ď dpOˆ

K q ´ λ.

Below are the two proofs of the lower bound.
‚ First proof:
Observe that β “ d

ˆ

OˆKXpO
ˆ
Kn q

p

pOˆK q
p

˙

since n " 0. By Theorem 2.3 one also has

dpN 1
HnpEKnqq ď λ` β, and then by Corollary 1.8 we get

DefpGHq ě dpOˆ
K q ´ λ´ β.

‚ Second proof:
Here we show dpOˆ

K q ´ λ ´ β ď DefpGHq using saturated sets and the Hochschild-Serre
exact sequence.
First assume that ζp P K i.e. δ “ 1. Choose n " 0, and write EKn “ FprHns

λ‘Nn, where
Nn is a Hn-torsion FprHns-module.
Put E 1K :“ OˆK

OˆKXpO
ˆ
Kn q

p ãÑ EKn .
Hence rL4 : Kns “ #E 1K. Observe that GalpL4{Knq » Ftp, where t “ dpOˆ

K q ´ β.
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RiKH

KH

L5 :“ Kn

´

p

b

Oˆ
Kn

¯

Ri L4 :“ Kn

´

p
a

Oˆ
K

¯

Kn L3 :“ K
`

p
a

VH
˘

L2 :“ K
´

p
a

Oˆ
K

¯

L1 :“ Kn XK
´

p
a

Oˆ
K

¯

K

Figure 2.

We will find a set of primes of S “ tp1, ¨ ¨ ¨ pt´λu in K such that:
— pi splits completely in Kn{K,
— Their Frobenius automorphisms span a pt´λq-dimensional space in GalpL2{L1q »

GalpL4{Knq,
— For each i, let bij be the primes above pi in Kn. There is a dependence relation

on the Frobenius automorphisms of the bij in GalpL5{Knq. By Gras-Munnier
(Theorem 1.1) this implies the existence of a Z{p-extension Ri{Kn ramified only
at (these primes above) pi. Let R̃i be the Galois closure over K of Ri. As the p-
group GalpKn{Kq must act on the Fp-vector space GalpR̃i{Knq with a fixed point,
by iteration we may assume Ri{K is Galois. The Z{p-extension RiKH is ramified
only at pi and gives an element of X2

H. We have produced t´ λ elements of X2
H

in addition to the d elements of X2
H we get by choosing primes tq1, ¨ ¨ ¨ , qdu of K

whose Frobenius automorphisms form a basis of GalpL3{L2q.
This gives the lower bound. We now construct S.
As L2{K is abelian (ζp P K), Hn “ GalpKn{Kq acts trivially on GalpL2{L1q (and thus on
GalpL4{Knq as well).
After taking the Kummer dual of EKn , one obtains GalpL5{Knq » FprHns

λ ‘Mn, where
Mn “ N_n is a Hn-torsion FprHns-module. The natural surjection π : GalpL5{Knq �
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GalpL4{Knq induces, upon taking Hn-coinvariants, the map

GalpL5{KnqHn » Fλp ‘ pMnqHn
π
� GalpL4{Knq » GalpL2{L1q » Ftp.

Thus
dpπppMnqHnqq ě t´ λ “ dpOˆ

K q ´ β ´ λ.

Take (at least) t´λ elements xi in GalpL5{Knq, such that their image under the projection
π forms a basis of πppMnqHnq Ă GalpL4{Knq » GalpL2{L1q » Ftp. We choose pi to split
completely in Kn{K and have Frobenius πpxiq P GalpL2{L1q, so clearly pi satisfies the first
two points above. We have chosen pi so that the primes above it in Kn have Frobenius
automorphisms generating a FprHns-torsion module in GalpL5{Knq. This settles the third
point and the case δ “ 1.
Now suppose δ “ 0. Replace every field Li above by Li

1 :“ Lipζpq. The key fact is this:
by Proposition 2.8, one has dpGalpL12{L11qq “ dpOˆ

K q so L12 X Kn “ K. This disjointness
allows us to apply the Chebotarev density theorem as above. The rest of the proof is
word for word the same from this point on.
The last result follows since DefpGHq ě 0.

Remark 2.10. — Observe that
piq the inequality DefpGHq ď dpOˆ

K q ´ λ comes from universal norms of units and is
Wingberg’s result (Theorem 1.7);

piiq the group GH has at least λ fewer relations than the maximal possible number,
dim VH{pKˆqp.

Corollary 2.11. — Suppose KH{K is finite. Then λ ă dpOˆ
K q ´ d

2{4` d.

Proof. — By the Theorem of Golod-Shafarevich one has DefpGHq ą d2{4´d; then apply
Theorem 2.9.

2.4. Remarks when GH is abelian. — ‚ Consider first the case where GH is cyclic.
Clearly dpGq “ rpGq “ 1 so DefpGHq “ 0. By Theorem 2.3, we get

λ “ tGHpEKHq ě dpOˆ
K q ´ β ě dpOˆ

K q ´ 1,
due to the fact that β ď 1. In particular, this situation forces KH to have a Minkowski
unit provided K is neither Q nor imaginary quadratic. We can recover this fact by using
the well-known following result: as GH is cyclic, every element of Oˆ

K is the norm of an
element of Oˆ

KH . Note this last argument applies in the quadratic imaginary case as well.
As an example, take the imaginary quadratic number field K “ Qp

?
´q ¨ `q, with ´q ”

` ” 1pmod 4q. Here, p “ 2, GH is cyclic, and Oˆ
K X Oˆ2

KH “ Oˆ2
K . We find λ “ 1, and

finally that EKH » F2rGHs.
Observe that if GH » Z{2Z, then the fundamental unit of the biquadratic extension
Kp
?
`q is exactly the fundamental unit of the quadratic field Qp

?
`q and then is of

norm ´1. We again have EKH » F2rGHs.
‚ Take p “ 2, and K such that GH » pZ{2Zq2. Here dpGq “ 2 and rpGq “ 3 so
DefpGHq “ 1, implying the existence of a difficult relation. By Theorem 2.3, we get

λ “ tGHpEKHq ě dpOˆ
K q ´ 2,

due to the fact that β ď 2.
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Let us be more precise: Kisilevsky in [14] showed that if GH » pZ{2Zq2, then for every
quadratic subextension Fi{K in KH{K, one has

`

Oˆ
K : NFi{KOˆ

Fi

˘

“ 2. We prove

Proposition 2.12. — Let K{Q be a quadratic extension such that GH » pZ{2Zq2. Then
the difficult relation is detected at one of the three quadratic subextensions F{K in KH{K.

Proof. — Suppose first that K{Q is an imaginary quadratic extension. By Kisilevsky’s
result ´1 is not a norm of any unit in each of the three subextensions Fi{K of KH{K. Let
us choose F :“ Fi such that F ‰ Kp

?
´1q; put G “ GalpF{Kq. By using NGpO

ˆ
F q Ă t˘1u,

it is then easy to see that, modulo Oˆ2
F , ´1 is not a norm of any unit in F{K implying

that the norm map NG : EF Ñ
OˆK

OˆKXOˆ2
F

is not onto.

Recall that OˆK
OˆKXOˆ2

F
ãÑ EF. As dimF2 EF “ 2, the only possibilities for the F2rGs-module

EF are F2
2 and F2rGs. As the norm map is onto in the latter case we see EF » F2

2 and then
tGpEFq “ 0 so λ “ 0: the difficult relation is detected by the quadratic extension F{K.
We now settle the case where K{Q is real quadratic extension. Denote by ε the posi-
tive fundamental unit of K. By Kisilevsky’s result, one knows that for every quadratic
subextension Fi{K, ´1 or ε is not a norm of any unit in Fi{K. Take one such quadratic
extension F{K, and put G “ GalpF{Kq.
Suppose that ´1 is not a norm of from F to K of any unit but ´1 P NGpO

ˆ
F qO

ˆ2
F .

First, NGpO
ˆ
F q Ă t1,˘εu modulo squares. The equations ´1 “ z2 and ´1 “ εz2 have

no solutions with z P Oˆ
F for sign reasons. Hence the only possible solution is that

´1 “ ´εz2, and then, necessarily F “ Kp
?
εq.

Suppose now that ε is not a norm of any unit in F{K. As before, if we test the condition
ε P NGpO

ˆ
F qO

ˆ2
F , we see the equations ε “ ´z2, and ε “ ´εaz2 have no solution for sign

reasons. Suppose that ε “ εaz2 for some odd integer a with εa P NGpO
ˆ
F q. As NGpεq “ ε2,

it is easy to see this implies ε P NGpO
ˆ
F q, which contradicting our assumption. Thus a is

even. and we conclude that ε P Oˆ2
F , i.e. F “ Kp

?
εq.

Hence, in any quadratic subextension F{K in KH{K such that F ‰ Kp
?
εq, one has that

the map NG : EF Ñ
OˆK

OˆKXOˆ2
F

is not onto, and the result follows as in the imaginary
case.

3. Applications

Throughout this section, we explore applications of the previous results, including:
— How λ and deficiency change as we move up the tower KH{K;
— That DefpGHq “ 0 implies the same for open subgroups of GH when δ “ 1;
— The rapid growth of λ as we move up a p-adic analytic quotient tower of GH. The

Tame Fontaine-Mazur conjecture predicts that infinite p-adic analytic quotients of
GH do not exist; thus, proving λ cannot grow rapidly would lend support to the
Fontaine-Mazur conjecture;

— Some results in the direction of better understanding the cohomological dimension
of GH;

— A computable test for maximality of DefpGHq.
— We recall a well-known example of a quadratic imaginary field K where, for p “ 3,

we have rpGK,Hq “ dpGK,Hq “ 3 so DefpGK,Hq “ 0 and |GK,H| “ 8. We give
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examples of degree 8 extensions M{K whose 3-Hilbert class field tower is the base
change of GK,H, thus providing examples of fields M where |GM,H| “ 8 and
DefpGM,Hq “ 0. The infinite towers over M have 7 independent Minkowski units.

3.1. Conserving the deficiency along the tower. — Let F be a number field in the
tower KH{K and recall that FH “ KH. We denote by λFH{F the asymptotic Minkowski
rank in FH{F.

Proposition 3.1. — One has λFH{F ě rF : KsλKH{K.

Proof. — Let L Ą F Ą K in KH{K be a large enough number field so that λL{K “ λKH{K

and λL{F “ λFH{F. Set G “ GalpL{Kq and H “ GalpL{Fq. Then EL “ FprGsλKH{K ‘

N, where N is G-torsion. The result follows by noting that FprGs »H FprHsrF:Ks (see
§1.3.1).

Corollary 3.2. — For every number field F in KH{K, we have
DefpGF,Hq ď dpOˆ

F q ´ rF : KsλKH{K.

Proof. — This follows immediately from Theorem 2.9 and Proposition 3.1.

Remark 3.3. — When δ “ 0 the above Corollary is a consequence of strictly group-
theoretic considerations. Namely, from equations p5.2q and p5.4q of [15] one deduces that
for an open subgroup H of a pro-p group G, one has

DefpHq ` 1 ď pG : Hq
`

DefpGq ` 1
˘

.

3.2. When DefpGHq “ 0. —

Corollary 3.4. — Let K be a number field containing ζp. Suppose that Oˆ
K X pO

ˆ
KHq

p “

pOˆ
K q

p, and that DefpGHq “ 0. Then, for every finite extension F{K in KH{K, one has
DefpGF,Hq “ 0.

Proof. — Applying Theorem 2.9, we see λ “ dpOˆ
K q and is maximal and hence constant

in the tower KH{K, relative to the base field K. By Proposition 3.1 we see
λFH{F ě rF : Ksλ “ rF : KsdpOˆ

K q “ dpOˆ
F q.

The result follows by Theorem 2.9.

Corollary 3.5. — Let G be a pro-2 group such that:
piq DefpGq “ 0,
piiq there exists a normal open subgroup H of G such that rpHq ‰ dpHq.
Then G cannot be realized as the 2-tower of an imaginary quadratic field K of discriminant
discK ” 1pmod 4q nor discK ” 0pmod 8q.

Proof. — The discriminant hypotheses imply ´1 R Oˆ2
KH . The result follows from Corol-

lary 3.4.
The condition that the number of Minkowski units is maximal is very strong p2q:

2. We thank Ozaki for bringing this result to our attention.
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Proposition 3.6. — The finite p-groups G that have the property DefpHq “ 0 for every
subgroup H of G are exactly the cyclic groups and generalized quaternion group Q2n “

xx, y | x2n´1
“ 1, x2n´2

“ y2, yxy´1 “ x´1y, n ě 3.

Proof. — For G with this property, every abelian subgroup H of G is of deficiency 0, forc-
ing H to be cyclic. Then, G is cyclic or the generalized quaternion group Q2n of order 2n
(see for example [35, Theorem 9.7.3]). For the converse, obviously cyclic groups G satisfy
DefpHq “ 0 for every subgroup H of G. Concerning Q2n , recall that its subgroups are
cyclic or isomorphic to Q2n´1 , and that the Schur multiplier of the generalized quaternion
groups Q2k are trivial (or in other words that DefpQ2kq “ 0).

Remark 3.7. — Take p “ 2, and let K be an imaginary quadratic field. Recall that
DefpGHq P t0, 1u. We suspect that when GH is infinite then DefpGHq is maximal. If
this is not the case and the hypothesis of Corollary 3.4 holds (discK ” 1pmod 4q or
discK ” 0pmod 8q), then rpHq “ dpHq for every open normal subgroup H of GH.

Remark 3.8. — Observe that Poincaré pro-p groups of dimension 3 satisfy condition
of Corollary 3.4, see for example [25, Chapter III, §7].

We close this subsection with an explicit, albeit contrived, example with p “ 2.

Example 3.9. — Let K “ Qp
?
´3 ¨ 5 ¨ 53q. An easy MAGMA computation gives that

the class group of K is p2, 2q and its 2-Hilbert class field tower has degree 8 over K.
Straightforward computations show this group has at least three cyclic subgroups of
order 4, hence it is the quaternion group of order 8. Here Oˆ

K “ t1,´1u, and as the
discriminant of K is prime to 4, i2 “ ´1 R Oˆ2

KH so Oˆ
K X Oˆ2

KH “ t1u and β “ 0. Then
Theorem 2.9 gives DefpGHq “ 1 ´ λ. But it is well-known the quaternion group has
deficiency 0 so λ “ 1. There is a Minkowski unit in this (short) tower. Indeed, if one
computed a basis of the units of the degree 16 field that is the top of the tower and
computed norms to K, the elements with norm ´1 (which exist!) are Minkowski units.

3.3. In the context of the Fontaine-Mazur conjecture. — The conjecture of
Fontaine-Mazur [6, Conjecture 5a] asserts that every analytic quotient of GH must be
finite. By class field theory, one knows that every infinite analytic quotient of GH must
be of analytic dimension at least 3 (see [22, Proposition 2.12]).
One knows that GH is not p-analytic when the p-rank dpClKq of the class group ClK of
K is large compared to rK : Qs. See A.3.11 of [19]. Alternatively, this is (literally!) an
exercise on page 78 of [36].
Suppose G :“ GH is infinite and analytic. One knows that every infinite analytic pro-p
group contains an open uniform subgroup. To simplify, assume G is uniform. Denote by
pGnq the p-central descending series of G (it is also the Frattini series), and let Kn “ KGn

H .
Put Hn “ GalpKn{Kq; recall that #Hn “ pdn, where d “ dpGHq is also the dimension of
GH as analytic group. For n ě 1, denote by λn the Minkowski-rank of the units along
KH{Kn.
The hypothesis of Corollary 3.10 below is, assuming the Fontaine-Mazur Conjecture,
never satisfied. We include the Corollary to indicate a possible strategy to prove GH is
not analytic, namely show the number of Minkowski units does not grow so rapidly in
the tower.
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Corollary 3.10. — Let GH be pro-p analytic of dimension d. Then for m large,

pr1 ` r2qrKm : Ks ´ 1` δ ´ dpd´ 1q
2 ď λm ď pr1 ` r2qrKm : Ks ´ 1` δ ´ dpd´ 3q

2 .

Proof. — Theorem 2.9 here, Theorem 4.35 of [5], and the assumption that GH is uni-

form imply DefpGmq is constant and equal to DefpGHq “
dpd´ 3q

2 . As remarked in the
introduction, βm ď dpGmq “ dpGq “ d. We immediately see λm „ pr1 ` r2qrKm : Ks,
proving the main terms in the estimates.
We now prove the more refined estimates. Let us choose n " m " 0 such that:

EKn “ FprHn,ms
λm ‘ Nn,m “ FprHns

λ
‘ Nn

where λ “ λKH{K, λm “ λKH{Km , Hn,m “ GalpKn{Kmq, and Nn,m and Nn are torsion
modules over FprHn,ms and FprHns respectively.
Then by Proposition 3.1, we see λm “ rKm : Ksλ ` λnewm,n; the quantity λnewm,n corresponds
to the FprHn,ms-free part in Nn. Hence, by Theorem 2.9, one has

DefpGmq ě dpOˆ
Kmq ´ λm ´ βm ě dpOˆ

Kmq ´ rKm : Ksλ´ λnewm,n ´ dpGmq.

After noting that dpOˆ
Kmq “ pr1 ` r2qrKm : Ks ´ 1` δ, we get

DefpGmq ě pr1 ` r2 ´ λqrKm : Ks ´ 1` δ ´ d´ λnewm,n(8)

But DefpGmq “ DefpGHq “
dpd´ 3q

2 . Hence (8) becomes

λnewm,n ě pr1 ` r2 ´ λqrKm : Ks ´ 1` δ ´ dpd´ 1q
2 .(9)

and

λm ě pr1 ` r2qrKm : Ks ´ 1` δ ´ dpd´ 1q
2 ,(10)

proving the first inequality. The upper bound follows as DefpGmq ď dpOˆ
Kmq ´ λm so

λm ď pr1 ` r2qrKm : Ks ´ 1` δ ´ dpd´ 3q
2 .(11)

3.4. On the cohomological dimension of GH. — Since the works of Labute [17],
Labute-Mináč [18] and Schmidt [32], etc. one knows that in certain cases the groups
GS, for S tame, are of cohomological dimension 2. In all the examples of these papers
S ‰ H. The question of the computation of cohomological dimension of GH is still an
open problem (one can find partial negative answers in [21]). To prove Theorem 3.12,
we need the following lemma due to Schmidt [30, Proposition 1].

Lemma 3.11. — (Schmidt) Let G be an infinite pro-p group such that for a fixed con-
stant n ě 0 and every open subgroup H of G, one has

´χ3pHq ` n :“ ´1´DefpHq ` dimH3
pHq ` n

ě rG : Hs
`

´ 1´DefpGq ` dimH3
pGq

˘

:“ ´rG : Hsχ3pGq.
Then cdpGq ď 3.
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Theorem 3.12. — Let K be a number field such that
(i) K contains a primitive pth root of unity;
(ii) Oˆ

K X pO
ˆ
KHq

p “ pOˆ
K q

p.
Then dimH3pGHq ą 0. Moreover:

´ If dimH3pGHq “ 1, then GH is finite or of cohomological dimension 3;
´ If DefpGHq “ 0, and if GH is of cohomological dimension 3, then GH is a Poincaré

duality group.

Proof. — As Oˆ
K X pO

ˆ
KHq

p “ pOˆ
K q

p and δ “ 1, one has, by Theorem 2.9,

DefpGHq “ dpOˆ
K q ´ λKH{K “ r1 ` r2 ´ λKH{K.

Let H be an open normal subgroup of GH and set F “ KH
H. Proposition 3.1 implies

λFH{F ě λKH{KrGH : Hs, so Theorem 2.9 implies DefpHq ď rGH : Hspr1 ` r2 ´ λKH{Kq.
Recalling that χ2 is the Euler characteristic truncated at second cohomology,

χ2pHq “ 1`DefpHq ď 1` rGH : Hspr1 ` r2 ´ λKH{Kq,

so χ2pHq cannot be equal to rGH : Hsχ2pGHq “ rGH : Hsp1`r1`r2´λKH{Kq, a necessary
condition, by Theorem 5.4 of [15], for GH to be of cohomological dimension 2. Hence
GH is not of cohomological 2 so dimH3pGHq ą 0.
Now suppose GH is infinite and dimH3pGHq “ 1. By Theorem 2.9 and Proposition 3.1,
one has

“

´ 1´DefpHq ` dimH3
pHq

‰

` 1 “ λFH{F ´ dpO
ˆ
F q ` dimH3

pHq
ě rGH : Hs

`

λKH{K ´ pr1 ` r2q
˘

“ rGH : Hs
`

´ 1´DefpGHq ` dimH3
pGHq

˘

where the last equality follows from Theorem 2.9 using that β “ 0 and dimH3pGHq “ 1.
Now take n “ 1 in Lemma 3.11 to conclude cdpGHq “ 3.
Finally, to check that our group is a Poincaré group, following [25, Chapter III, §7], we
need only verify that DipZ{pq :“ lim

Ñ

U
H i
pUq^ “ 0 for i “ 0, 1, 2, where the limit is taken

over open subgroups U of GH and the transition maps are dual to the corestriction. Recall
that cohomological dimension is nonincreasing when one restricts to a closed subgroup
and that cyclic groups have infinite cohomological dimension, so as GH is assumed to be
of finite cohomological dimension, it is infinite and thus D0pZ{pq “ 0. Moreover that

D1pZ{pq “ lim
Ñ

U
Uab
{p “ 0

follows from the proof of the Principal Ideal Theorem: Namely, for a group G let G1 be
its (closed) commutator subgroup and let G2 be the (closed) commutator subgroup of
G1. The key part of the proof of the Principal Ideal Theorem is that the transfer map

Ver : G{G1
Ñ G1

{G2

is the zero map. As the transfer map is the dual of the corestriction map, D1pZ{pq “ 0.
We now show D2pZ{pq “ 0. Let U Ă GH be open. Taking the U -cohomology of the
short exact sequence of trivial U-modules

0 Ñ Z{pÑ Q{Z p
Ñ Q{ZÑ 0
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gives
H1
pU,Q{Zq p

Ñ H1
pU,Q{Zq Ñ H2

pU,Z{pq
which yields pUabq_{p ãÑ H2pU,Z{pq. As dimpUabq_{p “ dimH1pUq and DefpUq “ 0,
this injection is an isomorphism and H2pU,Z{pq^ » Uab{p » H1pU,Z{pq^. Since the
duals of the two corestriction maps are induced by the transfer, D1pZ{pq “ 0 ùñ

D2pZ{pq “ 0.

Remark 3.13. — The first part of Theorem 3.12 extends the following observation that
can be deduced from the relationship between Galois cohomology and étale cohomology.
We use the the formalism of étale cohomology as in [24]. Suppose DefpGHq is maximal.
Then the étale version of the Hochschild-Serre spectral sequence with [31, Theorem 3.4]
shows that H ipGHq » H i

étpSpec OKq for i “ 1, 2. Moreover, if GH has cohomological
dimension 2, then GH is infinite: by [31, Lemma 3.7]) and from the Hochschild-Serre
spectral sequence we also get t0u “ H3pGHq » H3

étpSpec OKq » µK,p, where here µK,p “

xζpy XK (by [31, Theorem 3.4]). Hence δ must be zero.

3.5. Detecting maximality. — The strategy of the Hochschild-Serre spectral se-
quence allows us to prove Theorem 3.14 below, a computationally feasible method of
showing X2

H is maximal.

Theorem 3.14. — Suppose there exist two linearly disjoint unramified (and nontrivial)
Z{p-extensions F1{K and F2{K such that tGipEFiq “ 0, i “ 1, 2, where Gi “ GalpFi{Kq.
Then DefpGHq “ dpOˆ

K q is maximal. Only one such extension Fi{K is sufficient if Fi Ć
K1p p

a

Oˆ
K q, which is the case when δ “ 0.

Proof. — We use the notations of §2.2. First note that Lemma 2.6 and the fact that
tGipEFiq “ 0 implies λ “ 0.
If δ “ 0, Proposition 2.8 implies β “ 0 so DefpGHq is maximal by Theorem 2.9.
We now address the δ “ 1 case. First suppose F1 Ć Kp p

a

Oˆ
K q. Then one can choose

dpOˆ
K q primes p of K that split completely in F1 and whose Frobenius automorphisms

form a basis of GalpKp p
a

Oˆ
K q{Kq. Since tG1pEF1q “ 0, by Theorem 1.1 we see that for

each p P S2 there is a Z{p-extension of F1, and hence of KH, ramified only at (the primes
above) p. Each of these elements gives rise to a relation of GH. As usual, one gets the
rest of the relations "for free" by choosing primes that split completely in Kp p

a

Oˆ
K q{K

but form a basis of Gal
´

Kp p
a

VK,Hq{Kp p
a

Oˆ
K q
¯

. For such primes p there is always an
abelian extension of K ramified only at p, also giving rise to a relation of GH.
We study the remaining case, namely when F1,F2 Ă Kp p

a

Oˆ
K q. Choose a prime q1 of

K such that its Frobenius generates GalpF1{Kq and q1 splits in F2. Choose q2 similarly.
Then, as before, when we allow ramification at q1 we obtain a ramified extension over
F2,H and when we allow ramification at q2 we obtain a ramified extension over F1,H.
In this case we build S2 by starting with S2 “ tq1, q2u and augmenting it to include
primes that split completely in F1F2 and whose Frobenius automorphisms, along with
those of q1 and q2, form a basis of GalpKp p

a

Oˆ
K q{Kq. For each of these primes when

we allow ramification at p we obtain a ramified extension over Fi,H for i “ 1, 2. Each
of these primes gives rise to a relation of GH and along with the "free relations" we get
DefpGHq “ dpOˆ

K q.
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3.6. Infinite towers having Minkowski units. — In this section, as we compare
towers of different fields, we include the field in the subscript of G. We produce examples
of number fields K for which GK,H is infinite, β “ 0, and DefpGK,Hq is minimal. By
Theorem 2.9 λ ą 0 in these cases.We first need some set up.
3.6.1. Stability of towers. — Let us start with the following context. Let K{k be a Galois
extension of order coprime to p. Observe that KH{k is Galois. Put ∆ :“ GalpK{kq and
Γ “ GalpKH{kq. By the Schur-Zassenhaus Theorem one has Γ » GK,H ˙∆.
Obviously GalpKkH{Kq » Gk,H and there is a natural surjective map GK,H � Gk,H. In
[9] Gras shows:

Theorem 3.15. — Suppose K{k is Galois and of degree prime to p. Then GK,H » Gk,H
if and only if dpGKq “ dpGkq.

We give an alternative proof of this result inspired by Wingberg [43], [41].
First, let N be the closed normal subgroup of GK,H generated by the gsg´1, g P GK,H, s P
∆; put G`

K,H :“ GK,H{N. In other words, G`
K,H is the largest quotient of GK,H on which

∆ acts trivially. Since ∆ acts trivially on Gk,H, the morphism ϕ : GK,H Ñ Gk,H factors
through G`

K,H.

Lemma 3.16. — One has H1pGk,Hq » H1pG`
K,Hq.

Proof. — By base change from k to K, using that p#∆, pq “ 1, we have an injection
H1pGk,Hq ãÑ H1pG`

K,Hq. As elements of the H1pG`
K,Hq correspond to Z{p-extensions

of K on whose Galois group ∆ acts trivially, these descend to k, so the injection is a
surjection.

Consider now Γppq the maximal pro-p quotient of Γ.

Lemma 3.17. — One has Γppq » Gk,H.

Proof. — Obviously, Γppq� Gk,H. But it is easy to see that Γppq corresponds to a pro-p
extension of k unramified everywhere. By maximality, we deduce the result.

We recall now the result of Wingberg (given in [43] when ∆ » Z{2, and in general in an
unpublished work [41]).

Proposition 3.18 (Wingberg). — If dpGK,Hq “ dpGk,Hq then the natural map
G`

K,H � Gk,H is an isomorphism and induces the injection H2pG`
K,Hq ãÑ H2pGK,Hq

∆.

Proof. — The Hochschild-Serre spectral sequence for
1 ÝÑ M ÝÑ G`

K,H ÝÑ Gk,H ÝÑ 1
gives the commutative diagram (by Lemmas 3.16 and 3.17):

0 // H1pMqGk,H // H2pGk,Hq //

»

��

H2pG`
K,Hq

Inf

��

H2pΓppqq
� _

Inf
��

H2pΓq »
// H2pGK,Hq

∆

23



We then deduce that H1pMqGk,H “ 0, or equivalently that M “ teu, and H2pGk,Hq »

H2pG`
K,Hq ãÑ H2pGK,Hq

∆.

We can now give an alternative proof of Theorem 3.15.

Proof. — Take the Hochschild-Serre spectral sequence of

1 ÝÑ N ÝÑ GK,H ÝÑ G`
K,H ÝÑ 1

to obtain

0 Ñ H1
pG`

K,Hq Ñ H1
pGK,Hq Ñ H1

pNqGK,H Ñ H2
pG`

K,Hq Ñ H2
pGK,Hq.

By Proposition 3.18, one gets:

0 Ñ H1
pG`

K,Hq Ñ H1
pGK,Hq Ñ H1

pNqGK,H Ñ 0.

Recall that N “ teu if and only if H1pNqGK,H “ 0. Hence GK,H » G`
K,H if and only if

dpG`
K,Hq “ dpGK,Hq, if and only if dpGk,Hq “ dpGK,Hq.

3.6.2. Example. — Let k “ Qp
?
´3321607q and p “ 3. It is easy to compute that

d “ r “ 3. Furthermore, the Galpk{Qq action on Gk,H gives that the depth of each
relation is at least three so we may take 1´ 3t` 3t3 as a Golod-Shafarevich polynomial
for Gk. As this polynomial has a root in s0, 1r we see |Gk,H| “ 8. This example is
well-known (see [34]).
We will find explicit multi-quadratic fields M{Q such that dpGMk,Hq “ dpGk,Hq “ 3.
Theorem 3.15 then gives pMkqH “ MpkHq. The largest M we give is degree 8 so Mk is a
totally complex field of degree 16 with r “ d “ 3 and DefpGMk,Hq “ 0. In this case λ “ 7,
that is there are 7 independent Minkowski units all the way up the tower pMkqH{Mk.

Lemma 3.19. — For M{Q multi-quadratic, to check that dpGMk,Hq “ dpGk,Hq “ 3, it
is equivalent to check that dpGNk,Hq “ dpGk,Hq “ 3 for every quadratic extension N{k
contained in Mk.

Proof. — Suppose dpGMk,Hq ą 3. The elementary 2-abelian group GalpMk{kq acts on
the F3-vector space G3´el,ab

Mk,H . Since 2 and 3 are relatively prime and both square roots of
unity lie in F3, G3´el,ab

Mk,H decomposes as a direct sum of one-dimensional F3rGalpMk{kqs
subspaces. The trivial summands descend to k. Since we are assuming dpGMk,Hq ą 3,
there is a non-trivial summand. The kernel of the action on this summand is GalpMk{Nq
where rN : ks “ 2. Thus any extra generators of GMk,H are realized over some N.

Proposition 3.20. — For M “ Qp
?

3,
?

7,
?

337q we have |GMk,H| “ 8, dpGMk,Hq “

dpGk,Hq “ 3 and DefpGMk,Hq “ 0 is minimal. Assuming the GRH, for M “

Qp
?

3,
?

7,
?
rq with r “ 383 or r “ 461 we have |GMk,H| “ 8, dpGMk,Hq “ dpGk,Hq “ 3

and DefpGMk,Hq “ 0 is minimal.

Proof. — As |Gk,H| “ 8, we immediately have |GMk,H| “ 8. We used GP-PARI and
MAGMA to check dpGN,Hq “ 3 for the seven quadratic extensions N{k inside Mk{k. For
the computations with r “ 337, we did not assume the GRH and these took several days.
For r “ 383 and 461 we assumed the GRH and the computations took several minutes.
Theorem 3.15 implies pMkqH “ MpkHq so r pGal ppMkqH{Mkqq “ r pGal pkH{kqq “ 3
which in turn gives DefpGMk,Hq “ 7.
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Remark 3.21. — The fields M above were found by checking all primes q less than 500
such that dpGkp?qq,Hq “ dpGk,Hq “ 3. The first such prime was 3. We then searched this
list for a second prime q2 such that for every quadratic extension N{k inside kp

?
3,?q2q

we had dpGN,Hqq “ 3. We found the first q2 “ 7. Finally, we searched for q3 such that for
every quadratic extension N{k inside kp

?
3,
?

7,?q3q we had dpGN,Hqq “ 3.
The natural question arises as to whether there are infinitely many fields M with M{k
Galois of degree prime to 3 such that dpGMk,Hq “ 3 so GMk,H “ Gk,H. One may also ask:
Does there exist a number field K such that |GK,H| “ 8 and DefpGK,Hq is not maximal,
but for every F Ă K we have either |GF,H| ă 8 or DefpGF,Hq is maximal?

Remark 3.22. — Take p “ 3. The previous approach does not allow us to produce
situations with Minkowski units and such that δ “ 1. Indeed, let k “ Qp

?
nq be a

quadratic extension, n P Z, n R Z2 Y ´3Z2, such that d “ 3. By the “Spiegelungssatz”
phenomenon of Scholz [33], the 3-rank of the class group of Qp

?
´3nq is at least 2,

showing that kHpζ3q ‰ pkpζ3qqH.

4. On the depth of the relations

In this section we show the existence of Minkowski units deep in the Frattini tower imply
that some of the relations of GH are very deep. This makes it "more likely" that one can
prove GH is infinite using the Golod-Shafarevich series. We also prove a converse, namely
the existence of very deep relations implies the existence of Minkowski units along the
Frattini tower. One reason we study the Frattini tower as opposed to the Zassenhaus
tower is that it is easier to use software for computations along the Frattini tower of
KH{K.

4.1. On the Zassenhaus filtration. —
4.1.1. Basic properties. — We refer to Lazard [19, Appendice A3]. Given a finitely
presented pro-p group G, let us take a minimal presentation of G

1 ÝÑ R ÝÑ F ϕ
ÝÑ G ÝÑ 1,

where F is a free pro-p group on d generators; here d “ dpGq. Let I “ kerpFpvFw Ñ Fpq
be the augmentation ideal of FpvFw, and for n ě 1 consider Fn “ tx P F, x´ 1 P Inu. The
sequence pFnq of open subgroups of F is the Zassenhaus filtration of F.
The depth ω of x P F is defined as being ωpxq “ maxtn, x´ 1 P Inu, with the convention
that ωp1q “ 8; the function ω is a valuation following terminology of Lazard. Hence
Fn “ tg P F, ωpgq ě nu. This allows us to define a depth ωG on G as follows: ωGpxq “
maxtωpgq, g P F, ϕpgq “ xu. Put Gn “ tx P G, ωGpxq ě nu. Observe that Gn “

FnR{R » Fn{ pFn X Rq; the sequence pGnq is the Zassenhaus series of G, it corresponds
to the filtration arising from the augmentation ideal IG of FvGw, see [19, Appendice A3,
Theorem 3.5]. One has the following property. If π : G1 � G is surjective, then ωG is the
restriction of ωG1 ; in other word, ωGpxq “ maxtωG1pyq, y P G1, πpyq “ xu.
Denote by pGnq the Frattini filtration of G. Recall the well-known relationship between
these two filtrations of G:

Lemma 4.1. — One has Gn Ă G2n´1.
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We say a few words about the reverse inclusions. Let H be an open normal subgroup of
G. Since the groups pGnq form a basis of neighborhoods of 1, let apHq be the smallest
integer such that GapHq Ă H. We want to give some estimates on apHq in some special
cases.

Definition 4.2. — For a pro-p group Γ, denote by IΓ :“ kerpFpvΓw Ñ Fpq, the aug-
mentation ideal of FpvΓw; and denote by kpΓq the smallest integer such that IkpΓqΓ “ t0u,
where we allow kpΓq “ 8.

Proposition 4.3. — ([15, Chapter 7, §7.6, Theorem 7.6]) Let 1 Ñ H Ñ G Ñ G{H Ñ 1
be an exact sequence of pro-p groups. Then IH “ kerpFpvGw Ñ FpvG{Hwq.

Following Koch’s book [15, Chapter 7, §7.4], we give some estimates for apHq.

Proposition 4.4. — One has:
piq apHq ď kpG{Hq ď |G{H|.
piiq If Γ1 C Γ are two finite p-groups, then kpΓq ď kpΓ{Γ1qkpΓ1q.
piiiq kpG{G2q “ p.

Proof. — piq Take k such that IkG{H “ t0u. Then by Proposition 4.3 one has IkG Ă IH,
which implies Gk Ă H, and then apHq ď k. In particular, apHq ď kpG{Hq. For the second
part of the inequality, observe that: for every finite p-group Γ, one has I|Γ|Γ “ t0u (see the
proof of Lemma 7.4 of [15, Chapter 7, §7.4]), showing that kpΓq ď |Γ|.
piiq By Proposition 4.3, one has IkpΓ{Γ

1q

Γ Ă IΓ1 , and then IkpΓ{Γ
1qkpΓ1q

Γ Ă IkpΓ
1q

Γ1 “ t0u.
piiiq This follows as G{G2 is p-elementary abelian.
For every integer n ě 1, put an :“ apGn`1q. Observe that a1 “ 1.

Proposition 4.5. — For n ě 2, one has an ď pn. Therefore Gn Ă G2n´1
Ă Gpn´1q logp2q{ logppq.

Proof. — That an ď pn follows from Proposition 4.4 and the fact that Gn{Gn`1 is ele-
mentary p-abelian. The second part follows from the first.
4.1.2. The Golod-Shafarevich polynomial. — Consider a minimal presentation of a
finitely generated pro-p group G:

1 ÝÑ R ÝÑ F ϕ
ÝÑ G ÝÑ 1.

Suppose that R{RprR,Rs is generated as an FpvFw-module by the family F “ pρiq of
elements ρi P F. For k ě 2, put rk “ |tρi, ωpρiq “ ku|; here we assume the ri’s finite.

Definition 4.6. — The series P ptq “ 1 ´ dt `
ř

kě2 rkt
k is a Golod-Shafarevich series

associated to the presentation F of G.

The theorem of Golod-Shafarevich asserts the following: if for some t0 P p0, 1q one has
P pt0q “ 0, then G is infinite (see [39] or [1]). Observe that when no information on the
depth of the ρi is available, then one may take 1 ´ dt ` rt2 as Golod-Shafarevich series
for G, where r “ dpH2pGqq.

Remark 4.7. — When G “ GH, the p-rank of Gn corresponds to the p-rank of the
class group of Kn, where Kn “ KGn

H . Hence by Class Field Theory and with the help of
a software package, in a certain sense it is easier to test if an element of G is in Gn than
if it is in Gn.
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4.2. Minkowski units and the Golod-Shafarevich polynomial of GH. —
4.2.1. The principle. — Let S be a finite saturated set of tame places of K as in Lemma
1.5, i.e. such that H1pGHq » H1pGSq and |S| “ dpVK,Hq. Put d “ dpGHq. Let F be the
free pro-p group on d generators x1, ¨ ¨ ¨ , xd. Consider now the minimal presentations of
GH and GS induced by F, and the following diagram

1 // RS
i1
//

��

F ϕS
//

“

��

GS
//

����

1

1 // RH i
// F ϕ

// GH
// 1

Put HS “ kerpGS Ñ GHq; the pro-p group HS is the normal subgroup of GS generated by
the tame inertia groups xτpypPS. Hence, this diagram induces the following exact sequence

1 Ñ RS Ñ RH
ψ1
Ñ HS Ñ 1,

where ψ1 “ ϕS ˝ i. The Hochschild-Serre spectral sequences induce the following isomor-
phisms

H2pGHq
^

»

vv

»

((

RH{Rp
HrRH,Fs »

ψ
// HS{Hp

SrGH,HSs

where ψ is induced by ψ1. Using ψ we will study the depth of the relations of G: in-
deed, RH{Rp

HrRH,Fs and HS{Hp
SrGH,HSs inherit the Zassenhaus valuation from RH

and HS, and thus the Zassenhaus valuation of F. Therefore an element of depth k in
RH{Rp

HrRH,Fs corresponds to an element of depth k in HS{Hp
SrGH,HSs.

4.2.2. Minkowski elements. — Here we extend the notion of Minkowski unit to the notion
of Minkowski element. Set VK “ VK,H{pKˆqp.

Definition 4.8. — Let L{K be a Galois extension with Galois group G. We denote by
λ1L{K :“ tGpVLq the FprGs-rank of VL. One says that L{K has a Minkowski element if
λ1L{K ě 1.

Lemma 4.9. — One has λ1L{K ě λL{K, so the existence of a Minkowski unit implies that
of a Minkowski element.

Proof. — This follows immediately from the exact sequence

1 ÝÑ EL ÝÑ VL ÝÑ ClLrps ÝÑ 1.(12)

When L{K is a subextension of KH{K one may give an upper bound for λ1L{K:

Proposition 4.10. — Let L{K be a nontrivial finite Galois extension in KH{K. Then
λ1L{K ď d ´ 1 ` r1 ` r2. Moreover, if KH{K is infinite then there exist infinitely many
Galois extensions L{K in KH{K such that λ1L{K ă d´ 1` r1 ` r2.
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Proof. — Set H “ GalpKH{Lq. By Schreier’s inequality (see [28], Corollary 3.6.3),
dpClLq “ dpHq ď |G{H|pd´ 1q ` 1. Hence by (12), we get

dpVLq ď |G{H|pd´ 1` r1 ` r2q ` δ,

showing that λ1L{K ď d´ 1` r1 ` r2.
Suppose now that GH is infinite and, except for finitely many Galois extensions L{K in
KH{K, one has λ1L{K “ d´ 1` r1 ` r2. Then dpVLq ě |G{H|pd´ 1` r1 ` r2q and

dpClLq ě 1´ δ ` |G{H|pd´ 1q ě |G{H|pd´ 1q,

implying
´χ1pHq ` 1 ě ´|G{H|χ1pGHq.

By [30, Proposition 1], the Galois group GH must be free pro-p, which is impossible.

The converse below of Lemma 1.11 follows easily from the Cheobatarev density theorem:

Proposition 4.11. — Let L{K be a finite p-extension with Galois group G.
piq If tGpEL,Hq ě k, then there exist infinitely many sets S “ tp1, ¨ ¨ ¨ , pku of tame

primes of K such that #Gab
L,S “ #Gab

L,H.
piiq If tGpVLq ě k, then there exist infinitely many sets S “ tp1, ¨ ¨ ¨ , pku of tame primes

of K such that dpGL,Sq “ dpGL,Hq.

From the computational view point, we will now consider the sequence of fields pKnq in
KH{K induced by the Frattini filtration pGnq: in other word, Kn “ KGn

H . Put Hn “

GalpKn{Kq, and denote by λ1n :“ λ1Kn the FprHns-free rank of VKn .
Put d :“ dpGHq, and rmax :“ d` dpOˆ

K q.

Theorem 4.12. — Take n ě 2. Then GH can be generated by dpGHq generators and
rmax relations tρ1, ¨ ¨ ¨ , ρrmaxu such that at least λ1n relations are of depth greater than 2n.

Proof. — We are assuming that the FprHns-module VKn is isomorphic to FprHns
λ1n ‘ N

where N is torsion. Using Chebotarev’s theorem, choose a set S 1 “ tp1, ¨ ¨ ¨ , pλ1nu of
primes of K such that

— Each pi splits completely from K to Kn,
— The Frobenius at a prime Pij of Kn above pi in GalpK1

np
p
a

VKnq{K1
nq lies in the ith

copy of FprHns Ă VKn and generates that copy of FprHns under the action of Hn.
We claim dpGKn,S1q “ dpGKn,Hq. Indeed, there are |Hn| primes Pij of Kn above pi and
they have independent Frobenius automorphisms in GalpK1

np
p
a

VKnq{K1
nq by choice, even

as we take the union over i from 1 to λ1n. Gras-Munnier (Theorem 1.1) gives the equality.
In fact, it gives more: dpGKm,S1q “ dpGKm,Hq for all m ă n. If this were false for
m0 ă n, there would exist a Z{p-extension of L{Km0 ramified at primes (above those) of
S 1. Thus LKn{Kn would be a Z{p-extension ramified only at primes (above those) of S 1
contradicting the result for n. We have shown that the p-Frattini towers of GS1 and GH

agree at the first n levels. Thus the generators τpi of the tame inertia groups all have
depth 2n in GS1 .
We have

0 ÑX2
S1 Ñ H2

pGS1q
res
Ñ ‘piPS1H

2
pGpiq
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and dimX2
S1 ď dimBS1 “ rmax´λ

1
n. We can say nothing about the depth of the relations

coming from X2
S1 , so we assume they have minimal depth two. The local relations are of

the form rσpi , τpisτ
Nppiq´1
pi and are easily seen to have depth at least 2n ` 1. As

GS1{xτp1 , ¨ ¨ ¨ , τpλ1n
y » GH

and taking this quotient trivializes the local relations, the theorem follows.

Corollary 4.13. — Assuming the hypothesis of Theorem 4.12, we may take 1 ´ dt `
prmax ´ λ

1
nqt

2 ` λ1nt
2n as a Golod-Shafarevich polynomial for GH.

Example 4.14. — Let us return to the field K “ Qp
?

5 ¨ 13 ¨ 17 ¨ 19q of § 1.3.3. Take
H “ K2, G “ GalpH{Kq. As seen earlier, tGpVHq ě 1. Indeed, the existence of a
Minkoswki element follows from that of a Minkowski unit. Here a Golod-Shafarevich
polynomial of GH can be taken to be 1´3t`4t2`t4 instead of the naive choice 1´3t`5t2.

4.2.3. The converse. — Theorem 4.12 shows that the presence of Minkowski elements in
the tower implies the existence of very deep relations in GH. Here we show the converse,
that the existence of very deep relations implies the presence of Minkowski elements.
For n ě 1, recall that F is a free pro-p group on d generators, Fm and Fm are the
Zassenhaus and Frattini filtrations, and an is the smallest integer such that Fan Ă Fn`1.
Recall from Lemma 4.1 that Fn Ă F2n´1 . See Section 4.1.1. Put Hn “ GH{Gn and
Kn “ KGn

H .

Theorem 4.15. — Suppose that all the relations of GH are of depth at least an. Then
piq if ζp P K, λ1Kn{K ě r1 ` r2;
piiq if ζp R K, λ1Kn{K “ r1 ` r2 ´ 1` d.

Proof. — Since all the relations of GH have depth an, we see that GH{Gan
H » F{Fan

has maximal Zassenhaus filtration for the first an steps. Thus for any set S satisfying
dpGSq “ dpGHq we have

F{Fan » GH{Gan
H » GS{Gan

S

and since Fan Ă Fn`1, we also have

F{Fn`1 » GH{GH,n`1 » GS{GS,n`1

so all relations of GH have depth at least n` 1 in the Frattini filtration.
We first address the case ζp P K. Consider the p-elementary abelian extensions
Kp p

a

VK,Hq{K and K2{K, the latter being the maximal unramified p-elementary abelian
extension of K. By Kummer theory each is formed by adjoining to K the pth roots
of elements α P K. Since K2{K is everywhere unramified, pαq is the pth power of an
ideal, that is α P VK,H so Kp p

a

VK,Hq Ą K2 and dpGalpKp p
a

VK,Hq{K2qq “ r1 ` r2. Note
Kn X Kp p

a

VK,Hq “ K2 as the intersection is both unramified over K and p-elementary
abelian over K. Let S :“ tp1, ¨ ¨ ¨ , pr1`r2u consist of primes that split completely from K
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to K2 to Kn and whose Frobenius automorphisms form a basis of GalpKp p
a

VK,Hq{K2q.

Kn Kp p
a

VK,Hq

K2

K
By the above discussion

F{Fn`1 » GH{GH,n`1 » GS{GS,n`1.(13)

This will imply λ1Kn{K ě r1 ` r2. Indeed, above each pi there are rKn : Ks primes Pij in
Kn upon which GalpKn{Kq acts transitively. If for some i the Frobenius automorphisms
of the Pij did not generate a distinct copy of FprGns in GalpKnp

p
a

VKn,Hq{Knq, then
there would be a dependence relation among them and by Gras-Munnier we would have
dpGKn,Sq ą dpGKn,Hq, contradicting (13). Thus λ1n ě r1 ` r2 completing the proof in the
δ “ 1 case.
We now consider the case ζp R K. As usual, the key fact is that K1

n X K1p p
a

VK,Hq “ K1

(following the proof of Proposition 2.8) so dpGalpK1
np

p
a

VK,Hq{K1
nqq “ r1 ` r2 ´ 1` d.

K1
n K1p p

a

VK,Hq

K1

K
We choose S :“ tp1, ¨ ¨ ¨ , pr1`r2´1`du to consist of primes of K that split completely from
K to K1 to K1

n and whose Frobenius automorphisms form a basis of GalpKp p
a

VK,Hq{K1q.
We complete the proof exactly as in the ζp P K case.

Corollary 4.16. — If all the relations of GH are of depth at least p2 then K2 has a
Minkowski element.

Proof. — This follows immediately from Proposition 4.5 and Theorem 4.15.

4.3. Theorem 2.9 revisited. — There is another way by which we can obtain The-
orem 2.9 in the context of Golod-Shafarevich series P ptq. Indeed, such a series for a
pro-p group G approximates the Hilbert series HGptq of the Zassenhaus filtration of G.
In particular the Golod-Shafarevich Theorem is a consequence of this inequality: if there
is some t0 Ps0, 1r such that P pt0q ă 0 then necessarily HGpt0q diverges, implying the
infiniteness of G.
Retain the notations of Section §2.3, and fix n " 0. Apply Corollary 4.13 to Kn{K by
taking 1´ dt` prmax´ λqt

2` λt2
n as a Golod-Shafarevich polynomial for GH. Now, as n

can be arbitrarly large, we see that 1´dt`prmax´λqt
2 is a Golod-Shafarevich polynomial

for GH.
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Of course, the question of determining λ when it is nonzero seems a hard problem,
except in the case where at the beginning of the tower, we see λ “ 0. Here is an explicit
alternative.

Corollary 4.17. — Let n P Zą1. One has:
piq if tHnpEKnq “ 0 and β “ 0, then DefpGHq “ r1 ` r2 ´ 1` δ;
piiq if tHnpEKnq “ λn ą 0, then one may take 1´ dt` prmax ´ λnqt

2 ` λnt
2n as a Golod-

Shafarevich polynomial for GH.

Remark 4.18. — The condition β “ 0 can be relaxed as noted in Theorem 3.14.

5. The case of imaginary quadratic fields

In this section, we take p “ 2 and let K :“ Qp
?
Dq be an imaginary quadratic field of

discriminant D ă ´7. Since the unit rank of K is 1, we have DefpGHq P t0, 1u. In this
simplest of all non-trivial situations, we will discuss the deficiency of GH and explore
the extent to which we can detect relations using the machinery and notation set up in
Section 2.2.

5.1. The frame. — Let d “ dpClKq be the 2-rank of the class group of K :“ Qp
?
Dq.

By Gauss’s genus theory, we know thatD admits a unique (up to reordering) factorization
into d` 1 integers, each of which is a “prime fundamental discriminant” – meaning it is
the discriminant of a quadratic field in which a single prime ramifies. For an odd prime
q, we define q˚ :“ p´1qpq´1q{2q. The prime discriminants are then q˚ as q ranges over all
odd primes, as well as ´4 and ˘8. We write D “ q˚1 ¨ ¨ ¨ q

˚
d`1, with the convention that if

D is even, then q˚d`1 P t´4,´8, 8u.
Put q˚0 “ ´1 and for each i in the range 0 ď i ď d, put

Ki :“ Kp
a

q˚0 , ¨ ¨ ¨ ,
a

q˚i´1,
a

q˚i`1, ¨ ¨ ¨ ,
a

q1dq,

where

q1d “

$

&

%

q˚d if D is odd
q˚d if q˚d`1 “ ˘8
2 if q˚d`1 “ ´4.

Also define L1 :“ Kp
?
q˚0 ,
?
q˚1 , ¨ ¨ ¨ ,

a

q˚d´1,
a

q1dq. A direct computation shows that the
number field L1 is the governing field Kp

a

VHq (see Section 2.2). Choose prime numbers
p0, ¨ ¨ ¨ , pd that split in K and such that for each i in the range 0 ď i ď d, the Frobenius
automorphisms of the pj, j ‰ i in L1{Q generate the Galois group of the quadratic exten-
sion L1{Ki. Fix a prime pi|pi of K and put S2 “ tp0u, S1 “ tp1, ¨ ¨ ¨ , pdu, and S “ S1YS2.
Observe that the primes p1, ¨ ¨ ¨ , pd all are congruent to 1 mod 4 and that p0 ” 3 mod 4.
As the 2-part of the class group of K has d generators, Lemma 2.5 shows the existence of
d independent quadratic extensions Fi above KH, totally ramified at pi, i “ 1, ¨ ¨ ¨ , d, so
dpXSq ě d. This puts us in the situation where the difficult relations are detectable by the
set S2. Now, by studying the Galois module structure of units in imaginary biquadratic
number fields, we can specify conditions under which DefpGHq “ 1; see Theorem 5.3
below.
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Lemma 5.1. — Let K0{Q be a real quadratic field; G0 “ GalpK0{Qq. Then EK0 is
F2rG0s-free if and only if, the norm of the fundamental unit ε is ´1. More precisely, as

an F2rG0s-module, EK »

"

F2 ‘ F2 Npεq “ 1
F2rG0s Npεq “ ´1 .

Proof. — If the norm of ε is `1, then modulo pOˆ
Kq

2, we get εσ ” ε. If the norm of ε is
´1, then EK is generated by εpOˆ

K q
2 as G-module, and xεpOˆ

K q
2y is F2rG0s-free.

Recall this well-known result:

Lemma 5.2. — Let F{Q be an imaginary biquadratic field. Let K0 be the real quadratic
subfield, and let ε be the fundamental unit of K0. Then, |Oˆ

F {xµF, εy| “ 1 or 2. In
particular, if F{K0 is ramified at some odd prime, then Oˆ

F “ xµF, εy.

5.2. Main result. — We can now prove:

Theorem 5.3. — Let K be an imaginary quadratic field of discriminant D. Assume
that we can write D “ D1D2, where D1 ą 0 and D2 are fundamental discriminants, such
that:
piq the norm of the fundamental unit of Qp

?
D1q is `1,

piiq some odd prime number divides D2.
Then DefpGHq “ 1, and the difficult relation is detected by the quadratic extension
Kp
?
D1q{K.

Proof. — Put F :“ Kp
?
D1q. As D1 and D2 are fundamental discriminants, then F{K is

unramified. By assumption piiq and Lemma 5.2, Oˆ
F “ xε,´1y, where ε is the fundamental

unit of Qp
?
D1q. By assumption piq and Lemma 5.1, EF is not F2rGs-free, where G “

GalpF{Kq: in other words tGpEFq “ 0. The result follows by Theorem 3.14 (here
?
´1 R

F).

Remark 5.4. — To elaborate further, observe that p0 splits in F{K. Indeed, by the
choice of p0 we have, for i “ 1, ¨ ¨ ¨ , d´ 1,

´

q˚i
p0

¯

“

´

q1d
p0

¯

“ 1. Let us study two cases.

paq Suppose first that q1d “ q˚d . Then by recalling that
´

D
p0

¯

“ 1, one also gets
´

q˚
d`1
p0

¯

“ 1,

and then
´

D1
p0

¯

“ 1 (in this case D1 is the product of some of the q˚i ).

pbq Suppose now that q1d “ 2. Since p0 ” 3 mod 4 andD “ q˚1 ¨ ¨ ¨ q
˚
d`1, we have

´

q˚
d

p0

¯

“ ´1.
By assumption, there exists an odd prime p that divides D2. We may choose p “ qd

(before fixing p0). Then, D1 is the product of various q˚i , for i “ 1, ¨ ¨ ¨ , d´1 so
´

D1
p0

¯

“ 1.

As p0 splits completely in F{K, we see
ś

P|p0
UP{U 2

P is F2rGs-free of rank 1. But as
tGpEFq “ 0, the subgroup Ip0 of RCGFpp0q generated by the ramification at p0 is not
trivial. Put I :“ Ip0{I

2
p0 . By Nakayama’s lemma, the coinvariants IG are also not trivial,

hence there exists at least one quadratic extension F1{FH, Galois over K, totally ramified
at some P|p0, such that G acts trivially on GalpF1{FHq. The compositum F1KH{KH is
ramified at p0 and produces a pd` 1qst relation. This is the formalism of Example 1.6.

Corollary 5.5. — Let K be an imaginary quadratic field of discriminant D. Suppose
D is divisible by at least two odd primes p1, p2 such that p1 ” p2 ” 3 mod 4. Then
DefpGHq “ 1.
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Proof. — If there is another odd prime q that divides D, take D1 “ p1p2.
If K “ Qp

?
´p1p2q (resp. Qp

?
´2p1p2q), take D1 “ 4p1 (resp. D1 “ 8p1).

Example 5.6 (Martinet [23]). — Take K “ Qp
?
´21q. Then, by Odlyzko bounds the

2-tower KH{K is finite, and it is not hard to see GH » pZ{2Zq2, and DefpGHq “ 1.

Example 5.7 (See Example 1.6). — Take K “ Qp
?
´5460q, D1 “ 21 and D2 “

´260. We then get an difficult relation coming from the extension Kp
?

21q{K, and
DefpGHq “ 1.

Corollary 5.8. — Suppose k ě 2, and p1, . . . , pk are k distinct odd primes, exactly one
of which, say p1, is ” 3 mod 4. For the imaginary quadratic field K “ Qp

?
´2p1 ¨ ¨ ¨ pkq

with discriminant D “ ´8p1 ¨ ¨ ¨ pk, we have: DefpGHq “ 1.

Proof. — Take D1 “ 8p1.

Example 5.9. — Take K “ Qp
?
´p1p2q, with primes p1, p2 such that p1 ” 1 mod 4

and p2 ” 3 mod 4. Here the hypotheses of Theorem 5.3 do not apply and r “ d “ 1 so
DefpGHq “ 0.

Example 5.10. — The hypotheses of Theorem 5.3 do not apply for K “ Qp
?
´130q.

As noted by Martinet [23], in that case, GH is the quaternion group so r “ d “ 2.

Example 5.11. — Take K “ Qp
?
´5 ¨ 13 ¨ 41q. Here r “ d` 1 “ 3; indeed the norm of

the fundamental unit of Qp
?

5 ¨ 41q is `1.

5.3. DefpGHq is maximal almost all the time. — We easily deduce from Theorem
5.3 that the presence of a Minkowski unit in a quadratic unramified extension F{K is
rare, with the consequence that, generically, the deficiency of GH is maximal. Let us say
more precisely what we mean by the term “generically” here. Denote by F the set of
imaginary quadratic fields. For X ě 2, put

F pXq “ tK P F , |discpKq| ď Xu,

and
F0pXq “ tK P F pXq, DefpGHq “ 0u.

Theorem 5.12. — There is an absolute constant C ą 0 such that for all X large enough,
#F0pXq

#F pXq
ď C

log logX
?

logX ¨

In particular, when ordered by absolute value of the discriminant, the proportion of imag-
inary quadratic fields for which DefpGHq “ 0, tends to zero when X Ñ 8.

Proof. — We use the analytic number theory tools of [21, Theorem 4.6] due to Fouvry.
Let K be an imaginary quadratic field. Put

BpXq “ tK P F pXq, D 2 distinct odd primes p ” q ” 3 mod 4, pq | discpKqu.
By Corollary 5.5, for every K P BpXq one has DefpGHq “ 1. Hence F0pXq is in the
complement CpXq of BpXq.
Denote by AipXq the set of square-free integers n ď X having exactly i prime factors ” 3
mod 4, put ApXq “ A0pXq Y A1pXq. Clearly, |CpXq| “ Op|ApXq|q.
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In the proof of Theorem 4.6 of [21], it is shown that uniformly for X large enough, one has
|A0pXq| “ O

´

X{
?

logX
¯

and |A1pXq| “ O
´

X
log logX
?

logX

¯

. Thus |CpXq| “ O
´

X
log logX
?

logX

¯

.

We conclude by noting that |F pXq| “ 3
π2X `Op

a

logXq (see for example [7, §4]).

The referee asked whether the bulk of the deficiency zero cases for p “ 2 and imaginary
quadratic fields arise with tower group the quaternion group Q8 of order 8, suggesting a
criterion from Table II of [2] as a possible method of proving this. Let FQ8pXq be the
number quadratic imaginary fields having discriminant bounded in absolute value by X
with 2-tower group Q8. While it is not difficult to show, using the GRH versions of the
effective Chebotarev Theorem, that

c
plog logXq2

logpXq ď
#FQ8pXq

#F pXq

for some c ą 0 and X large enough, showing that Q8 towers are 100% of the deficiency
zero cases for p “ 2 seems difficult.
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