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By using rami"ed Hilbert Class Field Towers we improve lower asymptotic bounds
of the number of rational points of smooth algebraic curves over �

�
and �

�
. � 2002
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0. INTRODUCTION

For a function "eld F over �
�
, it is natural to compare the numberN (F) of

places of degree one of F with its genus. To do this, Ihara introduced the
quantity A(q). Let's recall its de"nition. Let
N

�
(g)"max�N(F), F is a function "eld with constant "eld �

�
of genus g�,

and de"ne

A(q)"lim sup
���

N
�
(g)

g
.

By the well-known Hasse}Weil bound N
�
(g)4q#1#2g�q, one has

immediatelyA(q)42�q. In 1981}1982, Ihara [5] showed by using modular
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208 ANGLES AND MAIRE
curves that A(q)5�q!1 if q is a square (in Tsfasman et al. [12] proved the
same lower bound only if q is a second or fourth power of a prime number).
In 1983, Drinfeld and Vladut [2] improved the lower bound by showing

that for all q,

A(q)4�q!1,

and so A(q)"�q!1 for q a square. For other values of q the problem of
determining A(q) is open. We may view the problem has having two direc-
tions: (1) What happens for large q? (2) What happens for small values of q,
especially for q"2, 3, 5? Much work has been done in the "rst direction:
Serre [10] proved that there is an absolute constant c such that
A(q)'c log q. In this paper we are interested in A(q) for q"3 and q"5.
A method for obtaining lower bounds for A(q) is to construct towers of

function "elds with restricted rami"cation and to use the Riemann}Hurwitz
formula. We should mention that by using explicit equations for such towers,
Garcia and Stichtenocth [3] found again that the bound of Drinfeld}Vladut
is optimal for q a square. Subsequently, Elkies has shown that the towers
constructed by Garcia and Stichtenocth are modular.
Recently Niederreiter and Xing [6] provided lower bounds for A (2), A(3),

and A(5). They obtained A(2)581/317 (the previous best lower bound was
A(2)52/9 due to Serre [10] and Schoof [9]); A(3)562/163+0.38;
A(5)52/3. Their method was to construct unrami"ed Hilbert Class "eld
towers with decomposition.
Here by constructing class "eld towers with rami,cation and decomposi-

tion, we obtain with simple examples that A(3)58/17+0.47 and
A(5)58/11+0.72. Note that the key Theorem (Theorem 6) is a special case
of a conjecture of Perret [7, Conjecture 1'].
In the number "elds setting, the analogous problem is to determine the

minimal asymptotic rate of growth of discriminants. For over 20 years, the
best known bound in this case has been that of Martinet. The idea of
considering rami"ed class "eld towers has allowed Hajir and the second
author to improve Martinet's bound [4].
We "rst recall some results from class "eld theory. In the second part, we

give relation between tamely rami"ed extensions and A (q), and then improve
lower bounds for A(3) and A(5).

1. PRELIMINARIES

Let �
�
(X) be a rational function "eld over �

�
; let F be a "nite separable

geometric extension of �
�
(X) (�

�
is the constant "eld of F ). Let S and¹ be two
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"nite sets of places of F (S is not empty) such that S�¹"�. We then de"ne:

� O (S)"�x3F, v(x)50, ∀v�S� the ring of S-integers of F;
� I(S) the group of fractional ideals of O (S);
� I(S, ¹) the sub-group of I(S) consisting of ideals prime to ¹;
� m"�P ��

P;
� P

�
"�(x)3I (S, ¹), x3F, x,1(modm)�;

� E (S)"�x3O
�
(S), v(x)"0, ∀v�S� the group of S-units of F;

� E (S, m)"�x3E (S), x,1(modm)�;
� and "nally the following ray class group:

Cl (S, ¹)"
I(S, ¹)

P
�

.

If ¹ is empty, Cl(S)"Cl (S, �) is the class group of O (S).

DEFINITION 1. Let l be a prime. For a group A, we denote the dimension
over �l of A/A

l[A, A] by dlA.

PROPOSITION 2. By the approximation ¹heorem, Cl(S) is quotient of
Cl(S, ¹), and then one has dlCl (S, ¹)5dlCl(S ).

1.1. Dirichlet1s ;nit ¹heorem. Here we give the structure of E (S, m) as
�-module:

PROPOSITION 3. If ¹ is not empty, then E (S, m)K������.

Proof. Thanks to Dirichlet's Unit Theorem, one gets E (S)K��
�
.������.

Now, if ¹ is not empty then the torsion of E (S, m) is trivial and the
proposition follows. �

1.2. Artin1s Map. We now recall howCl (S, ¹) classi"es extensions of F in
which S splits and rami"ed places are restricted to ¹. For a place P of F, we
denote by FP the completion of F at P, ;P the unit group of FP and ;�P the
group of principal units. Let

;
�
(S, ¹)" �

P ��

F�
P �

P ����

;P �
P��

;�P.

DEFINITION 4. We de"ne F (S, ¹ ) to be the abelian extension of F asso-
ciated to ;

�
(S, ¹ ) by class "eld theory.

The following proposition is then immediate:

PROPOSITION 5. (1) F (S, ¹) is the maximal abelian extension of F such that:
� all places of S are decomposed,
� all places outside ¹ are unrami,ed,
� the rami,cation for P3¹ is tame.
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(2) ¹he Artin map induces the following isomorphism:

Cl (S, ¹ )KGal(F (S, ¹)/F).

1.3. ¹he ¹-¹amely Rami,ed and S-Decomposed Hilbert ¹ower. De"ne
by induction (F

�
)
�
a sequence of Galois extensions of F: F

�
"F and

F
�	�

"F
�
(S

�
, ¹

�
) where S

�
(resp. ¹

�
) is the set of places of F

�
above S (resp. ¹).

Put F
�
(S, ¹ )"�

�
F
�
.

DEFINITION 6. F
�
(S, ¹ ) is called the ¹-S-Hilbert tower of F. For a prime

l, F
�
(S, ¹)(l) is the maximal l-extension of F included in F

�
(S, ¹ ). It is the

¹-S-Hilbert l-tower of F.

We now make two observations:
(1) if l �q, then F (S, ¹) (l)"F (S, �)(l);
(2) if (q, l)"1, then the rami"cation in l-extension is always tame.

We work with the l-tower as opposed to the bigger extension because we
know a criterion for F

�
(S, ¹) (l )/F to be in"nite, namely the Theorem of

Golod}Shafarevich.

1.4. ¹heorem of Golod}Shafarevich. We now give the key theorem:

THEOREM 7. ¸et F be a geometric extension of �
�
(X) and S and¹ two ,nite

sets of places of F, SO�. ¸et l be a prime with (q, l)"1. Denote by
F
�
(S, ¹ ) (l) the maximal l-extension of F, S-decomposed and unrami,ed

outside ¹.
If F

�
(S, ¹) (l )/F is ,nite then

dlCl(S, ¹)(2#2�dlE (S, m)#1.

In particular if ¹ is not empty, one gets (thanks to Proposition 2)

dlCl (S, ¹)(2#2��S�.

Remark. There are two bene"ts in the introduction of tame rami"cation:
(1) As dlCl (S, ¹)5dlCl (S), the inequality in Theorem 6 may be true for

Cl(S) but false forCl(S, ¹); as a consequence wemay not be able to determine
what's happening for F

�
(S)/F, in many cases where we can prove F

�
(S, ¹)/F

to be in"nite.
(2) If l � (q!1) then dlE (S, m)"dlE(S)#1, and so the result of The-

orem 6 is better for¹ not empty than for¹ empty. For this reason, we will try
to "nd examples with l �(q!1).

Proof. Denote by ¸"F
�
(S, ¹) (l) and G the Galois group of ¸/F; G is

a pro-l group. As we have de"ned ;(S, ¹), E(S, m), etc., for F, we de"ne
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;


(S



, ¹



), E



(S



, m



), etc., for ¸ where the S



(resp. ¹



) are the places of

¸ above S (resp.¹). The following proposition is the crucial point of the proof
of Theorem 7:

PROPOSITION 8. For all i3�, HK �(G,;


(S



,¹



))"1.

Thanks to Shapiro's lemma [1], one has

HK �(G,;


(S



, ¹



))" �

P ��

HK � (GP,FP
�) �

P����

HK � (GP,;P) �
P ��

HK � (GP, ;�P),

where GP is the decomposition group of P in ¸/F. Now for P3S,

HK � (GP, FP
�)"1

because GP is trivial. For other P we have the following lemma:

LEMMA 9. ¸et k be a complete ,eld with respect to a discrete valuation. ¸et
F be the residue ,eld of k. Assume that F is ,nite; char (F)"p'0. ¸et K/k be
a ,nite Galois extension; G"Gal(K/k). Denote by ; the group of units of
K and by ;� the group of principal units of K. ¹hen:

(1) If K/k is unrami,ed, HK � (G,;)"1, ∀i3�;
(2) If K/k is tamely rami,ed, HK � (G,;�)"1, ∀i3�.

Proof. The "rst point is a well-known result [1, p. 131]. Using a criteria of
trivial cohomology (see [1, p. 113]) to prove (2) it su$ces to show that for all
prime l and for one l-sylow Gl of G, one has

HK �(Gl, ;�)"1, ∀i51. (1)

First suppose (p, l)"1. Then for j51,

HK �(Gl,;�/;�	�)"1,

because ;�/;�	� is a "nite p-group. Using the fact that ;�"lim�
�

;�/;�	�

and that ;� is a decreasing sequence of Gl-modules then a result of Serre (see
[1, p. 132]) implies (1).
Now suppose p"l. Let k

�
"K
�. AsK/k

�
is a tamely rami"ed p-extension

then K/k
�
is unrami"ed and so HK � (G

�
,;)"1 by "rst point. Moreover

HK � (G
�
, ;/;�) is trivial because;/;� is prime to p. So these remarks with the

following exact sequence of G
�
-modules

1P;�P;P;/;�P1,

show (1). �
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The proof of Theorem 6 is then classical. One has two exact sequences,

1PE


(S



, m



)P;



(S



, ¹



)P
;



(S



, ¹



)

E


(S



, m



)
P1, (2)

1P
;



(S



, ¹



)

E


(S



, m



)
P

J



¸
�PCl (S



, ¹



)P1, (3)

where J


is the group of ideles of ¸. The second sequence comes from

the Approximation Theorem. Next, remark that, since the tower ends at ¸,
the order of Cl



(S



, ¹



) is not divisible by l, and so HK �(G, Cl



(S



, ¹



))"1.

Also by Proposition 8, HK ��(G,;


(S



, ¹



)/E



(S



, m



)) is isomorphic

to HK � (G, E (S


, m



)) which is isomorphic to HK ��(G, J



/¸�), which is isomor-

phic to H
�
(G, �) (cf. [1]). But the Theorem of Golod}Shafarevich [8] says

that

1

4
dlG�!dlG4dlH�

(G, �)

and this establishes the theorem. �

1.5. Genus ¹heory. Using classical result about genus theory, we give
a lower bound of the l-rank of Cl

�
(S, ¹):

THEOREM 10. ¸et F/k be a cyclic Galois extension of degree l of geometric
function ,elds over �

�
; let S

�
be a ,nite set of places of k (not empty) and let S be

the set of places of F above S
�
. Denote by � the number of places of k which are

rami,ed in F/k. ¹hen

dlCl�
(S, ¹)5�!�S

�
�!	,

where 	"1 if l �(q!1) and 0 otherwise.

Proof. We use the remark of Theorem 7 and a result of Schoof [9] �

The following corollary is a consequence of Theorems 7 and 10.

COROLLARY 11. ¸et F/k be a cyclic Galois extension of degree l of geometric
function ,elds over �

�
; assume that l � (q!1). ¸et S

�
be a ,nite set of places of

k (not empty) and S the set of places of F above S
�
. Denote by � the number of

places of k which are rami,ed in F/k. If �53#�S
�
�#2��S�, then for all

non-empty sets ¹ of places of F, F
�
(S, ¹)(l )/F is in,nite.
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2. MAIN RESULT

We now show how an in"nite tamely rami"ed extension gives a lower
bound for A (q).

2.1. ¹he Riemann}Hurwitz Formula

PROPOSITION 12. ¸et F be a function ,eld with constant ,eld �
�
. ¸et S be

a set of places of F of degree one; assume that S is not empty. ¸et ¹ be a ,nite
set of places of F with S�¹"�. Assume now that F

�
(S, ¹)/F is in,nite.¹hen

A(q)5
�S�

g!1#(1/2)�P��
degP

,

where g is the genus of F.

Proof. We use the notation of Section 1.3. Let g
�
be the genus of F

�
.

Remark "rst that the constant "eld of F
�
is �

�
because F

�
/F is S-decomposed.

Denote by N
�
the number of places of F

�
of degree one. Then

N
�
5�S�[F

�
:F].

But one has, thanks to the Hasse}Weil Theorem,

N
�
4q#1#2g

�
�q,

so g
�
tends to in"nity because F

�
(S, ¹)/F is in"nite. Let i be large enough so

that g
�
52. Using the Riemann}Hurwitz formula with the fact that the

rami"cation is tame, one gets

2g
�
!2"[F

�
:F](2g!2)# �

P3�

(e
�
(P)!1) f

�
(P)degP,

where e
�
(P) (resp. f

�
(P)) is the rami"cation index (resp. residue degree) of P

in F
�
/F. So

2g
�
!25

�S
�
�

�S� �2g!2# �
P��

degP�,
and

g
�
!1

�S
�
�

4

g!1#(1/2)�P��
degP

�S�
.
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Remark that g!1#�P��
degP'0. So one gets

�S
�
�

g
�
!1

5

�S�
g!1#(1/2)�P��

degP
,

and "nally

A(q)5 lim inf
�

N
�
g
�

5

�S�
g!1#(1/2)�P ��

degP
. �

2.2. Quadratic Case. Let qO2, and F"�
�
(X, >) with > satisfying

>�"D(X), D(X)3�
�
[X] square free. We want to use Corollary 11 with

l"2, k"�
�
(X), (q, 2)"1, �S

�
�"2, �S�"4, and ¹"�P�. The places of S

�
should be decomposed in F/k. Moreover we want that P is a place of degree
one which is rami"ed in F/k. Let � be the number of places of k rami"ed in F.
With these conditions using Proposition 12, we obtain:

PROPOSITION 13. =ith the above assumptions, if �59 then

A(q)5
4

g!1/2
.

PROPOSITION 14. =e have:

� A(3)5
8

17
;

� A(5)5
8

11
.

Proof. We apply Proposition 13, with S
�
"�X; 1/X�.

For q"3, we take D(X)"(X!1)(X!2)(X�#1)(X�#X#2)
(X�#2X#2) (X�#2X#1) (X�#2X#2)(X�#X�#2) (X�#X�#X
#2), and P the place of F above X!1. Then g"9.
For q"5, we take D (X)"(X!1)(X!2)(X!3)(X!4)(X�#X#1)

(X�#3)(X�#2)(X�#X#2)(X�#2X#3), and P the place of F above
X!1. Then g"6. �
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