Licence Sciences fondamentales et Applications 1ère année - 2025/26

Parcours aménagé

Feuille 7

Exercice 1.

Soit un triangle ABC rectangle en A d'angle $\pi/3$ en B.

- 1) Que vaut AB si BC = 2?
- 2) Que vaut AC si BC = 3?
- 3) Que vaut AC si AB = 1?

Exercice 2.

Remplir le tableau suivant

θ	$\pi/4$			$5\pi/2$	$4\pi/3$	$5\pi/6$
$\cos(\theta)$		1/2	$-\sqrt{2}/2$			
$\sin(\theta)$		$-\sqrt{3}/2$	$\sqrt{2}/2$			

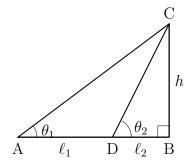
Exercice 3.

Étudier et représenter les fonctions $y = \cos(x)$, $y = \sin(x)$ et $y = \tan(x)$.

Exercice 4.

Soit $t \in [\pi/2; 3\pi/2]$ tel que $\sin t = \frac{1}{5}$.

- 1) Calculer $\cos t$.
- 2) Calculer les sinus et cosinus de $t + \pi$, $t + \frac{\pi}{2}$ et $\frac{\pi}{2} t$.


Exercice 5.

Soit un triangle ABC. On note par \hat{a} l'angle en A, \hat{b} l'angle en B, \hat{c} l'angle en C, puis a=BC, b=AC et c=AB. Montrer

$$\frac{\sin \hat{a}}{a} = \frac{\sin \hat{b}}{b} = \frac{\sin \hat{c}}{c}.$$

Exercice 6.

Soit la figure géométrique ci-dessous, où $\ell_1 = AD$ et $\ell_2 = DB$.

- 1) Montrer la formule $\frac{\tan(\theta_2)}{\tan(\theta_1)} = 1 + \frac{\ell_1}{\ell_2}$.
- 2) Application. On prend $\ell_1 = \ell_2 = h$. Que vaut θ_2 ? Que vaut θ_1 ?

Exercice 7.

On suppose connu la relation cos(a - b) = cos a cos b + sin a sin b.

- 1) Donner une relation liant $\cos(a+b)$ à $\cos a$, $\cos b$, $\sin a$ et $\sin b$. Faire de même avec $\sin(a+b)$ et $\sin(a-b)$.
- 2) Application. Que vaut $\cos(\pi/12)$? $\sin(\pi/12)$? $\cos(\pi/8)$? $\sin(\pi/8)$? $\cos(\pi/24)$? $\sin(\pi/24)$?

Exercice 8.

- 1) Résoudre dans \mathbb{R} : $\cos(x) = -\frac{\sqrt{3}}{2}$.
- 2) Résoudre dans $[0, 2\pi]$ la double inéquation : $-\frac{1}{2} \le \sin(x) \le \frac{\sqrt{3}}{2}$.
- 2) Résoudre dans $[0, 2\pi]$ la double inéquation : $-\frac{1}{2} \le \cos(x) \le \frac{\sqrt{3}}{2}$.

Exercice 9.

Résoudre dans $[0, 2\pi]$ l'inégalité : $\cos(x) \le \sin(x)$.

Exercice 10. Résoudre dans \mathbb{R} l'équation : $2\cos^2(x) - 3\cos(x) - 2 = 0$.