Feuille 12

Exercice 1. Ecrire sous la forme "a + ib" les nombres complexes suivants :

(i)
$$(3+2i)(1-i)$$
, $(1+i)^2+i^3(2+i)$, $(5-i)(2+i)-5i$, i^5+i^6 .

(ii)
$$\frac{1}{i}$$
, $\frac{2}{1-i}$, $\frac{2-2i}{2-i}$, $\frac{3+i}{2+3i}$.

Exercice 2. Résoudre dans $\mathbb C$ les systèmes suivants :

(i)
$$2i + iz = z - 1$$

(ii)
$$1 - 2iz = (i - 1)(z - i)$$

(iii)
$$(z+1)(z-i) = z^2 - 3$$

(iv)
$$z + \overline{z} - 4 = 0$$

$$(v) z - \overline{z} + 5 = 0$$

Exercice 3. Résoudre dans \mathbb{C} les équations suivantes :

(i)
$$z^2 + iz - 1 = 0$$

(ii)
$$z^2 + 2z + 2 = 0$$

(iii)
$$z^2 + z + 1 = 0$$

(iv)
$$z^2 + 2z + 1 - i = 0$$

Exercice 4.

- (i) Résoudre dans \mathbb{C} l'équation $z^2 + (2+i)z + 2i = 0$.
- (ii) Résoudre dans \mathbb{C} l'équation $z^2 + (1+i)z + 1 = 0$.
- (iii) Résoudre dans $\mathbb C$ l'équation $z^2+iz+i=0$.

Exercice 5. Ecrire la forme trigonométrique des nombres complexes : 2 + 2i, $\frac{\sqrt{3} - i}{1 - i}$.

Exercice 6. Soit
$$z = \frac{\sqrt{3} + i}{1 - i}$$
.

- (i) Ecrire z sous la forme "a + ib".
- (ii) Ecrire z sous forme trigonométrique.
- (iii) En déduire la valeur de $\cos(5\pi/12)$ et de $\sin(5\pi/12)$.

Exercice 7. Ecrire sous la forme algébrique les nombres complexes : $(1+i)^{30}$, $(1+i\sqrt{3})^{20}$.