

ANNALES DE L'institut fourier

Farshid HAJIR, Christian MAIRE & Ravi RAMAKRISHNA **Deficiency of** *p***-class tower groups and Minkowski units** Article à paraître, mis en ligne le 5 février 2025, 48 p.

Article mis à disposition par ses auteurs selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE [CC] BY-ND http://creativecommons.org/licenses/by-nd/3.0/fr/

Les Annales de l'Institut Fourier sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1777-5310

DEFICIENCY OF *p*-CLASS TOWER GROUPS AND MINKOWSKI UNITS

by Farshid HAJIR, Christian MAIRE & Ravi RAMAKRISHNA (*)

ABSTRACT. — The deficiency Def(G) of a finitely presented pro-p group G is the difference between its minimal numbers of relations and generators. For a number field K with maximal unramified p-extension K_{\emptyset} , set $G_{\emptyset} = Gal(K_{\emptyset}/K)$. Shafarevich (and independently Koch) showed

 $0 \leq \operatorname{Def}(G_{\emptyset}) \leq \dim(\mathcal{O}_{K}^{\times}/(\mathcal{O}_{K}^{\times})^{p}).$

We explore connections between the relations of G_{\emptyset} and the Galois module structure of the units in the tower K_{\emptyset}/K . If $\mu_p \not\subset K$, we give an exact formula for $Def(G_{\emptyset})$ in terms of the number of independent Minkowski units in the tower. We also study the depth of the relations of G_{\emptyset} in the Zassenhaus filtration and provide evidence that the Shafarevich–Koch upper bound is "almost always" sharp. In the other direction, we give the first examples of infinite G_{\emptyset} with $Def(G_{\emptyset}) = 0$ and $\dim(\mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^p)$ large, so that the upper bound is not sharp.

RÉSUMÉ. — Le défaut Def(G) d'un pro-p groupe G de type fini est la différence entre son nombre minimal de relations et son nombre minimal de générateurs. Pour un corps de nombres K de p-extension non ramifiée maximale K_{\emptyset} , posons $G_{\emptyset} = \operatorname{Gal}(K_{\emptyset}/K)$. Shafarevich (et indépendamment Koch) a montré que

$$0 \leq \operatorname{Def}(G_{\emptyset}) \leq \dim(\mathcal{O}_{K}^{\times}/(\mathcal{O}_{K}^{\times})^{p}).$$

Nous explorons les connexions entre les relations de G_{\emptyset} et la structure galoisienne des unités dans la tour K_{\emptyset}/K . Si $\mu_p \not\subset K$, nous donnons une formule exacte pour

Keywords: Deficiency, Golod–Shafarevich polynomial, p-class field tower, Zassenhaus filtration.

²⁰²⁰ Mathematics Subject Classification: 11R29, 11R37.

^(*) This work started when the second author held a visiting scholar position at Cornell University, funded by the program "Mobilité sortante" of the Région Bourgogne Franche-Comté, during the 2017-18 academic year. It continued during visits to the Harbin Institute of Technology and Cornell University. CM thanks the Department of Mathematics at Cornell University and the Institute for Advanced Study in Mathematics of HIT for providing excellent conditions for conducting research. The second author was partially supported by the ANR project FLAIR (ANR-17-CE40-0012) and by the EIPHI Graduate School (ANR-17-EURE-0002). The third author was supported by Simons Collaboration grant #524863. All three authors were supported by Mathematisches Forschungsinstitut Oberwolfach for a Research in Pairs visit in January, 2019 and by ICERM for a Research in Pairs visit in January, 2020.

 $\operatorname{Def}(G_{\emptyset})$ en termes du nombre d'unités de Minkowski indépendantes dans la tour. Nous étudions également la profondeur des relations de G_{\emptyset} suivant la filtration de Zassenhaus et montrons que la borne supérieure de Shafarevich–Koch est « presque toujours » optimale. Mais dans l'autre sens, nous donnons les premiers exemples pour lesquels G_{\emptyset} est infini avec $\operatorname{Def}(G_{\emptyset}) = 0$ et $\dim(\mathcal{O}_{K}^{\times}/(\mathcal{O}_{K}^{\times})^{p})$ grand, de sorte que la borne supérieure n'est pas optimale.

Introduction

Let p be a prime number, and let K be a number field. For a finite set S of places of K, let K_S be the maximal p-extension of K unramified outside S and $G_S = \text{Gal}(K_S/\text{K})$, its Galois group. Note in particular that K_{\emptyset} is the maximal pro-p extension of K unramified everywhere; we call K_{\emptyset}/K the p-class field tower of K. Let

$$d(\mathbf{G}_S) = \dim H^1(\mathbf{G}_S) = \dim H^1(\mathbf{G}_S, \mathbb{Z}/p)$$

and $r(\mathbf{G}_S) = \dim H^2(\mathbf{G}_S) = \dim H^2(\mathbf{G}_S, \mathbb{Z}/p)$

be, respectively, the minimal number of generators and relations of G_S . Define $Def(G_S) := r(G_S) - d(G_S)$ as the deficiency of G_S .⁽¹⁾

Our goal in this paper is to better understand the pro-p group G_S when S is tame, that is when S does not contain any places above $\{p, \infty\}$. We are particularly interested in the case $S = \emptyset$. In the wild setting, when S contains all places above $\{p, \infty\}$, we have at our disposal a very powerful tool, namely the global duality theorem for G_S , which immediately yields an explicit and easily computable formula for $Def(G_S)$. While such a tool is still missing in the tame, and in particular, unramified, case, Theorem A below (see Theorem 2.9) is a step toward refining our understanding of the unramified situation by relating it to the presence of Minkowski units in K_{\emptyset}/K .

By class field theory, the maximal abelian quotient of G_S is isomorphic to the *p*-Sylow subgroup of a ray class group for K, and is therefore finite when S is tame. By the Burnside Basis Theorem, $d(G_{\emptyset})$ is the *p*-rank of the class group of K and is in particular computable in any given case (at least in theory). In contrast, we do not know an algorithm for computing $r(G_{\emptyset})$. However, thanks to the celebrated work of Shafarevich [37] (and, independently, Koch – see for example [15, Chapter 11]) we know that

$$0 \leq \operatorname{Def}(\mathbf{G}_{\emptyset}) \leq d(\mathcal{O}_{\mathbf{K}}^{\times}),$$

⁽¹⁾ In most of the group theory literature the deficiency of G is defined as d(G) - r(G).

where $d(\mathcal{O}_{\mathrm{K}}^{\times}) := d(\mathcal{O}_{\mathrm{K}}^{\times}/(\mathcal{O}_{\mathrm{K}}^{\times})^p)$ is the *p*-rank of the unit group $\mathcal{O}_{\mathrm{K}}^{\times}$ of the ring of integers \mathcal{O}_{K} of K. We recall that if K has r_1 embeddings into \mathbb{R} and r_2 pairs of complex conjugate embeddings into \mathbb{C} , then $d(\mathcal{O}_{\mathrm{K}}^{\times}) = r_1 + r_2 - 1 + \delta$ where δ is 1 or 0 according to whether K contains a primitive *p*th root of unity ζ_p or not. The number-theoretic work of Shafarevich on the above deficiency bound [37] subsequently led to the group-theoretic work of Golod and Shafarevich [9]. This pair of papers gave a criterion for the infinitude of G_{\emptyset} and produced the first such examples. More historical details can be found in [15, 24, 28, 36].

In this work, we investigate more closely the relationship between units in unramified class field towers and defining relations for their Galois groups. Our main theorem is that the existence of certain types of units along the tower K_{\emptyset}/K provides two types of results: (a) tighter bounds for the deficiency of G_{\emptyset} , as well as (b) more refined information on the depth of its defining relations.

We introduce a constant λ measuring the free-part of the Galois module structure of the units in K_{\emptyset}/K (see Section 2.3). Here free-part means the following: if F/K is a finite Galois extension in K_{\emptyset}/K with Galois group G, we are interested in the $\mathbb{F}_p[G]$ -structure of $\mathbb{F}_p \otimes \mathcal{O}_F^{\times}$, that is the units \mathcal{O}_F^{\times} modulo *p*th powers. Recall that since G is a *p*-group, the category of $\mathbb{F}_p[G]$ -modules is not semisimple. When the $\mathbb{F}_p[G]$ -free part of $\mathbb{F}_p \otimes$ \mathcal{O}_F^{\times} is nontrivial, we say the extension F/K admits a *Minkowski unit* (see Section 1.3 for further details). It is not difficult to see that the number of independent Minkowski units is non-increasing and stabilizes as we move up the tower K_{\emptyset}/K and therefore after a finite number of steps reaches a constant value we denote $\lambda := \lambda_{K_{\emptyset}/K}$. We also define β to be

$$\beta := \begin{cases} d \left(\frac{\mathcal{O}_{\mathbf{K}}^{\times} \cap (\mathcal{O}_{\mathbf{K}_{\emptyset}}^{\times})^{p}}{(\mathcal{O}_{\mathbf{K}}^{\times})^{p}} \right) & \zeta_{p} \in \mathbf{K} \\ 0 & \text{otherwise.} \end{cases}$$

Note that when $\zeta_p \in \mathcal{K}$, if we set $\mathcal{L} = \mathcal{K}_{\emptyset} \cap \mathcal{K}(\sqrt[p]{\mathcal{O}_{\mathcal{K}}^{\times}})$, then $[\mathcal{L} : \mathcal{K}] = p^{\beta}$. Thus, $0 \leq \beta \leq \min(r_1 + r_2, d(\mathcal{G}_{\emptyset}))$. We also note that $\beta > 0$ if and only if for some $u \in \mathcal{O}_{\mathcal{K}}^{\times}$, $\mathcal{K}(u^{1/p})/\mathcal{K}$ is a \mathbb{Z}/p -unramified extension. More generally, the quantity β quantifies the number of such independent extensions of \mathcal{K} .

THEOREM A. — With notations as above, for the deficiency of the *p*-class tower group G_{\emptyset} , we have the following upper and lower bounds:

$$d(\mathcal{O}_{\mathrm{K}}^{\times}) - \lambda - \beta \leq \mathrm{Def}(\mathrm{G}_{\emptyset}) \leq d(\mathcal{O}_{\mathrm{K}}^{\times}) - \lambda.$$

In particular if $\mathcal{O}_{K}^{\times} \cap (\mathcal{O}_{K_{\emptyset}}^{\times})^{p} = (\mathcal{O}_{K}^{\times})^{p}$ or if K does not contain a primitive pth root of unity, then $Def(G_{\emptyset}) = d(\mathcal{O}_{K}^{\times}) - \lambda$.

We give two proofs of this result (see proof of Theorem 2.9). In our second more constructive proof we realize G_{\emptyset} as a quotient of some G_S , where S is a well-chosen finite set of tame (coprime to p) prime ideals of \mathcal{O}_K (see also Notations at the end of this section), and we use the Hochschild– Serre spectral sequence induced by the natural map $G_S \twoheadrightarrow G_{\emptyset}$ to produce $d(G_{\emptyset}) + d(\mathcal{O}_K^{\times}) - \lambda - \beta$ independent elements of $\coprod_{\emptyset}^2 = H^2(G_{\emptyset})$.

In Section 3.6 we also give examples of infinite G_{\emptyset} with as many as seven independent Minkowski units.

Remark. — As mentioned earlier, the non-negativity of $Def(G_{\emptyset})$ follows from a basic group-theoretical property of G_{\emptyset} , namely that its maximal abelian quotient is finite. In other words, one knows that G_{\emptyset} has at least $d(G_{\emptyset})$ relations. For the group G_{\emptyset} , one can concretely produce $d(G_{\emptyset})$ relations for G_{\emptyset} as follows. In Figure 1, we show a tower of fields $K \subset K' \subset L_1' \subset L_2'$ for whose definition, the reader may consult the Notations section at the end of this introduction. For the moment, the key point is that L'_2/L'_1 is an elementary abelian *p*-extension of dimension $d(G_{\emptyset})$. By the Chebotarev density theorem, we can choose $d(G_{\emptyset})$ primes of K whose Frobenius automorphisms form a basis of the elementary *p*-abelian group $\operatorname{Gal}(L'_2/L'_1)$. Letting S_1 be the set consisting of these primes, in Section 2.2, we will describe in detail how applying the Gras-Munnier Theorem (Theorem 1.1) and Lemma 1.5 (ii) to the primes in S_1 gives us $d(G_{\emptyset})$ independent elements in $\operatorname{III}_{\emptyset}^2 = H^2(\mathbf{G}_{\emptyset})$, which in turn correspond to $d(\mathbf{G}_{\emptyset})$ distinct relations in a minimal presentation of G_{\emptyset} . We refer to relations constructed in this way as "easily detected" via S_1 , or, when the context is clear, simply "easy."

A key observation we make in this work is that aside from the $d(G_{\emptyset})$ relations easily detected via S_1 , we can construct $d(\mathcal{O}_K^{\times}) - \lambda - \beta$ additional relations via a modification of this construction using a further set S_2 of auxiliary primes whose Frobenius automorphisms span a Galois group in a more complicated tower of governing fields (Figure 2.1) described in Section 2.2. The existence of such primes is tied up with the Galois module structure of units in the Hilbert *p*-class field tower. We refer to the resulting relations as "difficult" relations "detected" by S_2 . This set of ideas leads to the lower bound for $\text{Def}(G_{\emptyset})$ in the theorem. The upper bound, on the other hand, is a consequence of a result of Wingberg [40]. When $\beta = 0$ (which is always the case if K does not contain a primitive *p*th root of unity), these upper and lower bounds coincide, in which case all the relations are either

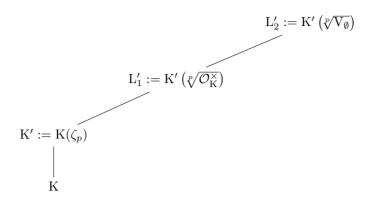


Figure 0.1.

easily detected by S_1 or difficult and detected by S_2 . But when $\beta > 0$, only $d(\mathcal{O}_{\mathrm{K}}^{\times}) - \lambda - \beta$ of the relations are constructible in this way. Indeed, in the example below $\beta = 1$ and we find the final relation, which is difficult, by an ad hoc method.

Example. — Take p = 2. Our method allows us to show that for $K = \mathbb{Q}(\sqrt{-5460})$, the example studied extensively by Boston–Wang [4], there are 4 easily detected relations and another relation that is difficult. Def(G_{\emptyset}) = r - d = 5 - 4 = 1.

Thanks to the work of Labute [16], Schmidt [31] and others we know that there are special sets S (finite and tame) for which G_S is of cohomological dimension 2; however, their methods do not allow S to be empty. In particular, the question of the computation of the cohomological dimension of G_{\emptyset} has only been resolved in a few cases, namely when G_{\emptyset} is known to be finite. A consequence of Theorem A is the following (Theorem 3.12):

COROLLARY. — Let K be a number field such that

(i) K contains a primitive *p*th root of unity;

(ii)
$$\mathcal{O}_{\mathrm{K}}^{\times} \cap (\mathcal{O}_{\mathrm{K}_{\emptyset}}^{\times})^{p} = (\mathcal{O}_{\mathrm{K}}^{\times})^{p}$$

Then dim $H^3(G_{\emptyset}, \mathbb{F}_p) > 0$. Moreover:

- If dim H³(G_∅, F_p) = 1, then G_∅ is finite or of cohomological dimension 3;
- If Def(G_∅) = 0 and G_∅ is of cohomological dimension 3, then G_∅ is a Poincaré duality group.

We also deduce (Corollary 3.4):

COROLLARY. — Let K be a number field such that

- (i) K contains a primitive *p*th root of unity;
- (ii) $\mathcal{O}_{\mathrm{K}}^{\times} \cap (\mathcal{O}_{\mathrm{K}_{\emptyset}}^{\times})^{p} = (\mathcal{O}_{\mathrm{K}}^{\times})^{p};$
- (iii) $\operatorname{Def}(G_{\emptyset}) = 0.$

Then for every open subgroup H of G_{\emptyset} , one has Def(H) = 0.

When Def(H) = 0 for all open subgroups of G, λ is maximal all along the tower. When $\text{Def}(G_{\emptyset}) = 0$ and the tower is finite, it is a standard result from finite group theory that G_{\emptyset} is either cyclic or, when p = 2, a generalized quaternion group. Observe also that Poincaré groups of dimension 3 have deficiency zero.

When G_{\emptyset} is infinite we suspect $Def(G_{\emptyset})$ is maximal (namely equal to $d(\mathcal{O}_{\kappa}^{\times}))$ very often in accordance with the heuristics of Liu, Wood and Zureick-Brown [19]. In fact, we elaborate a strategy to investigate maximality of the deficiency by testing for the presence of Minkowski units through computer computation. We further note that if in the first steps of the tower K_{\emptyset}/K there are α Minkowski units preventing us from concluding that $Def(G_{\emptyset})$ is maximal, the group G_{\emptyset} can be described by at least α relations of high depth in the Zassenhaus filtration. Denote by (K_n) the sequence in K_{\emptyset}/K where $K_1 := K$ and K_{n+1} is the maximal elementary abelian p-extension of K_n in K_{\emptyset}/K . Put $H_n = \text{Gal}(K_n/K)$. Let $r_{\max} = d(\mathbf{G}_{\emptyset}) + d(\mathcal{O}_{\mathbf{K}}^{\times})$ be the maximal possible value of $r(\mathbf{G}_{\emptyset})$. To each presentation of a pro-p group, there is associated a Golod–Shafarevich polynomial; for the basic facts of these polynomials, see Section 4.1.2. Golod and Shafarevich proved that if this polynomial vanishes on the open unit interval, then the group must be infinite. In Section 4, we prove the following result (see Theorem 4.12). See also Section 1.3.3.

THEOREM B. — Let λ_n be the number of independent $\mathbb{F}_p[\mathbb{H}_n]$ -Minkowski units in \mathbb{K}_n . Then \mathbb{G}_{\emptyset} can be generated by $d(\mathbb{G}_{\emptyset})$ generators and r_{\max} relations $\{\rho_1, \ldots, \rho_{r_{\max}}\}$ such that at least λ_n relations are of depth greater than 2^n . Hence, we can take $1 - d(\mathbb{G}_{\emptyset})t + (r_{\max} - \lambda_n)t^2 + \lambda_n t^{2^n}$ as a Golod–Shafarevich polynomial for \mathbb{G}_{\emptyset} .

The more familiar Golod–Shafarevich polynomial in this context is $1 - d(\mathbf{G}_{\emptyset})t + r_{\max}t^2$, which is less likely to have a root and thus indicate $\#\mathbf{G}_{\emptyset} = \infty$. Also, we will allow the possibility of $n = \infty$, that is there may be fewer than r_{\max} relations.

The imaginary quadratic case is particularly easy to study (here p = 2). Indeed when K is an imaginary quadratic field, one has $Def(G_{\emptyset}) \in \{0, 1\}$. Here we show that, almost always, there is no Minkowski unit in any quadratic extension F/K in K_{\emptyset}/K , which implies $Def(G_{\emptyset}) = 1$ (see Theorem 5.12). Denote by \mathcal{F} the set of imaginary quadratic fields, and for $X \ge 2$, put

 $\mathcal{F}(X) = \{ \mathbf{K} \in \mathcal{F}, \ |\operatorname{disc}(\mathbf{K})| \leqslant X \}, \ \ \mathcal{F}_0(X) = \{ \mathbf{K} \in \mathcal{F}(X), \ \operatorname{Def}(\mathbf{G}_{\emptyset}) = 0 \}.$

THEOREM C. — Let p = 2. One has

$$\frac{\#\mathcal{F}_0(X)}{\#\mathcal{F}(X)} \leqslant C \frac{\log \log X}{\sqrt{\log X}},$$

where C is an absolute constant and X is large enough. In particular, the proportion of imaginary quadratic fields of discriminant at most X for which $\text{Def}(G_{\emptyset}) = 0$ tends to zero as $X \to \infty$.

Notations.

- Let p be a prime number and K be a number field.
- We denote by
 - \mathcal{O}_{K} the ring of integers of K, and by \mathcal{O}_{K}^{\times} the group of units of \mathcal{O}_{K} ,
 - $\mathcal{E}_{\mathrm{K}} = \mathbb{F}_p \otimes \mathcal{O}_{\mathrm{K}}^{\times}$, the units modulo the *p*th-powers,
 - \mathbf{K}^H the Hilbert *p*-class field of K,
 - Cl_K the *p*-Sylow subgroup of class group of K.
- Let $\zeta_p \in \mathbb{Q}^{alg}$ be a primitive *p*th root of 1. Put $\delta := \delta_{\mathrm{K},p} := 1$ when $\zeta_p \in \mathrm{K}, 0$ otherwise.
- Let S = {p₁,..., p_s} be a finite set of prime ideals of K of cardinality s. We identify a prime p ∈ S with the place v it defines.
 - We assume each \mathfrak{p}_i is tame (prime to p) and satisfies $|\mathcal{O}_{\mathrm{K}}/\mathfrak{p}_i| \equiv 1 \pmod{p}$.
 - We denote by $\operatorname{RCG}_{K}(\mathfrak{p}_{1},\ldots,\mathfrak{p}_{s})$ the *p*-Sylow subgroup of the ray class group of K of modulus $\mathfrak{p}_{1}\cdots\mathfrak{p}_{s}$. When $S = \emptyset$, one has $\operatorname{RCG}_{K}(\emptyset) = \operatorname{Cl}_{K}$.
 - Let K_S be the maximal pro-*p* extension of K unramified outside S, put $G_S = G_{K,S} = \text{Gal}(K_S/\text{K})$.
 - By class field theory, one has $G_S^{ab} \simeq RCG_K(\mathfrak{p}_1, \ldots, \mathfrak{p}_s)$.
 - Put $V_S := \{x \in K^{\times}, (x) = I^p \text{ as a fractional ideal of } K; x \in (K_v^{\times})^p, \forall v \in S\}$. Then $V_S \supset (K^{\times})^p$ and we have the exact sequence:

 $0 \longrightarrow \mathcal{O}_{\mathrm{K}}^{\times}/\mathcal{O}_{\mathrm{K}}^{\times p} \longrightarrow \mathrm{V}_{\emptyset}/(\mathrm{K}^{\times})^{p} \longrightarrow \mathrm{Cl}_{\mathrm{K}}[p] \longrightarrow 0.$

The group $V_{\emptyset}/(K^{\times})^p$ is often called the Selmer group of K.

• If M is a \mathbb{Z} -module, we set $d(M) = \dim_{\mathbb{F}_p}(\mathbb{F}_p \otimes M)$.

- When G is a pro-*p* group, we denote $d(G) = d(G^{ab})$, where $G^{ab} = G/[G, G]$.
- Let (r_1, r_2) be the signature of K. By Dirichlet's Theorem $d(\mathcal{O}_{\mathrm{K}}^{\times}) = r_1 + r_2 1 + \delta.$

- From the exact sequence above, $d(V_{\emptyset}/(K^{\times})^p) = d(\mathcal{O}_K^{\times}) + d(Cl_K)$.

- Unless otherwise specified, all cohomology groups have \mathbb{Z}/p -coefficients.
 - Hence $d(\mathbf{G}_{\emptyset}) := d(H^1(\mathbf{G}_{\emptyset})) = \dim H^1(\mathbf{G}_{\emptyset}, \mathbb{Z}/p)$ and $r(\mathbf{G}_{\emptyset}) := \dim H^2(\mathbf{G}_{\emptyset}, \mathbb{Z}/p).$
 - The deficiency $Def(G_{\emptyset})$ of G_{\emptyset} is defined to be $r(G_{\emptyset}) d(G_{\emptyset})$.

For the computations in this paper we have used the programs GP-PARI [26] and MAGMA [3] and have often assumed the GRH to speed up the computations.

1. Preliminaries

In this section we develop the results we need to detect elements of $H^2(G_{\emptyset}) = \coprod_{\emptyset}^2$ as described in the Remark in the Introduction. In particular, Lemma 1.5 shows how one can detect elements of \coprod_{\emptyset}^2 via ramified extensions of K_{\emptyset} ; we illustrate our strategy by finding \coprod_{\emptyset}^2 for the field $\mathbb{Q}(\sqrt{-5460})$ with p = 2.

In Section 1.2, we relate $\text{Def}(G_{\emptyset})$ to norms of units from number fields in the tower K_{\emptyset}/K . In Section 1.3 we develop the basics of the theory of Minkowski units and show, using the Gras–Munnier Theorem 1.1, that the existence of a Minkowski unit in some number field F in the tower K_{\emptyset}/K follows when $G_{F,\{\mathfrak{p}\}}^{ab} = G_{F,\emptyset}^{ab}$ for some prime \mathfrak{p} of K.

1.1. Saturated sets, and a spectral sequence

1.1.1. Degree-p cyclic extensions with prescribed ramification

Take p, K and S as in the "Notations". The fields L'_i of Figure 0.1 are called *governing fields* as the existence of a \mathbb{Z}/p -extension of K ramified exactly at a given set of primes depends on their Frobenius automorphisms in these extensions. See Theorem 1.1 below.

For each prime ideal $\mathfrak{p} \in S$, let us choose a prime ideal $\mathfrak{P}|\mathfrak{p}$ of $\mathcal{O}_{L'_2}$, and denote by $\sigma_{\mathfrak{p}} := \left(\frac{L'_2/K'}{\mathfrak{P}}\right)$, the Frobenius at \mathfrak{P} in the governing extension L'_2/K' .

Using that L'_2 is formed by taking *p*th roots of elements of K (not K'), one can easily show that $\sigma_{\mathfrak{p}}$ depends, up to a nonzero scalar multiple, only on \mathfrak{p} . This serves our purposes. By abuse we also denote by $\sigma_{\mathfrak{p}}$ its restriction to L'_1 . One says that the Frobenius automorphisms $\sigma_{\mathfrak{p}}, \mathfrak{p} \in S$, satisfy a *nontrivial relation* if

$$\prod_{\mathfrak{p}\in S}\sigma_{\mathfrak{p}}^{a_{\mathfrak{p}}}=1,$$

in $\operatorname{Gal}(L'_2/K')$ (or in $\operatorname{Gal}(L'_1/K')$) with the $a_i \in \mathbb{Z}/p$ not all zero. Thus the existence of a nontrivial relation is independent of the ambiguity in the choice of $\sigma_{\mathfrak{p}}$.

THEOREM 1.1 (Gras-Munnier [12]). — Let $S = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_t\}$ be a set of tame prime ideals of K. One has:

- (i) $d(G_S) \neq d(G_{\emptyset})$, if and only if the $\sigma_{\mathfrak{p}}, \mathfrak{p} \in S$, satisfy a nontrivial relation in Gal(L'₂/K').
- (ii) $|\mathbf{G}_{S}^{ab}| > |\mathbf{G}_{\emptyset}^{ab}|$ if and only if the $\sigma_{\mathfrak{p}}, \mathfrak{p} \in S$, satisfy a nontrivial relation in $\operatorname{Gal}(\mathbf{L}_{1}'/\mathbf{K}')$.

For a generalization of Theorem 1.1, see [10, Chapter V].

Remark 1.2.

- (1) The distinction between (i) and (ii) of Theorem 1.1 is that (ii) can occur when $d(G_S) = d(G_{\emptyset})$. The governing fields for the width and depth of G_S^{ab} are different.
- (2) The Kummer radical of L'_1/K' is $\mathcal{O}_K^{\times}(K'^{\times})^p/(K'^{\times})^p$ which is isomorphic to \mathcal{E}_K since $\mathcal{O}_K^{\times} \cap (K'^{\times})^p = (\mathcal{O}_K^{\times})^p$ and [K':K] is coprime to p. For the same reason, $V_{\emptyset}/(K^{\times})^p$ is the Kummer radical of L'_2/K' .

1.1.2. Saturated sets

For $v \in S$, we denote by G_v the absolute Galois group of the maximal pro-*p* extension \overline{K}_v of the completion K_v of K at *v*. Let \coprod_S^2 be the kernel of the localization map of $H^2(G_S)$:

$$\mathrm{III}_{S}^{2} := \ker \left(H^{2}(\mathbf{G}_{S}) \longrightarrow \bigoplus_{v \in S} H^{2}(\mathbf{G}_{v}) \right).$$

Put $\mathbb{B}_S = (\mathbb{V}_S/(\mathbb{K}^{\times})^p)^{\vee}$; then one has (see Theorem 11.3 of [15]) a very important natural injective map $\mathrm{III}_S^2 \hookrightarrow \mathbb{B}_S$. When S contains the places of K above $\{p, \infty\}$ this map is an isomorphism and III_S^2 is dual to

$$\amalg^1_S(\mu_p) := \ker \left(H^1(\mathcal{G}_S, \mu_p) \longrightarrow \bigoplus_{v \in S} H^1(\mathcal{G}_v, \mu_p) \right)$$

The failures of the isomorphism and duality in the tame case are reasons it is especially challenging. DEFINITION 1.3. — The set S of places K is called saturated if $V_S/(K^{\times})^p = \{1\}.$

As consequence of Theorem 1.1, one has (see [13, Theorem 1.12])

THEOREM 1.4. — A finite tame set S is saturated if and only if the Frobenius automorphisms $\sigma_{\mathfrak{p}}, \mathfrak{p} \in S$, span the elementary p-abelian group $\operatorname{Gal}(\mathrm{K}'(\sqrt[p]{V_{\emptyset}})/\mathrm{K}')$.

We recall below the formula of Shafarevich applied in the case where S is tame (see for example [24, Chapter X, Section 7, Corollary 10.7.7]):

(1.1)
$$d(\mathbf{G}_S) = |S| - d(\mathcal{O}_{\mathbf{K}}^{\times}) + d(\mathbf{V}_S/(\mathbf{K}^{\times})^p).$$

Hence when S is saturated, one has $d(G_S) = |S| - d(\mathcal{O}_K^{\times})$.

1.1.3. Spectral sequence

Let us start with the natural exact sequence

$$1 \longrightarrow \mathcal{H}_S \longrightarrow \mathcal{G}_S \longrightarrow \mathcal{G}_{\emptyset} \longrightarrow 1,$$

where the group H_S is the closed normal subgroup of G_S generated by the tame inertia elements $\tau_{\mathfrak{p}} \in G_S$, $\mathfrak{p} \in S$. Set

$$\mathbf{X}_S := \mathbf{H}_S / [\mathbf{H}_S, \mathbf{G}_{\emptyset}] \mathbf{H}_S^p.$$

Recall as G_{\emptyset} is a pro-*p* group, the compact ring $\mathbb{F}_p[\![G_{\emptyset}]\!]$ is local and acts continuously on $H_S/[H_S, H_S]H_S^p$. We give an easy lemma that can be found in [13] (see Lemmas 1.11 and 1.12).

LEMMA 1.5. — Let S be a finite set of tame prime ideals of \mathcal{O}_{K} .

- (i) The F_p[G_∅]-module H_S/[H_S, H_S]H^p_S is topologically finitely generated by at most |S| elements.
- (ii) One has the exact sequence

$$1 \longrightarrow H^1(\mathbf{G}_{\emptyset}) \longrightarrow H^1(\mathbf{G}_S) \longrightarrow \mathbf{X}_S^{\vee} \longrightarrow \mathrm{III}_{\emptyset}^2 \longrightarrow \mathrm{III}_S^2.$$

In particular, if S is such that $H^1(G_{\emptyset}) \simeq H^1(G_S)$, then $X_S^{\vee} \hookrightarrow \coprod_{\emptyset}^2$. If moreover S is also saturated then $X_S^{\vee} \simeq \coprod_{\emptyset}^2$.

To conclude this subsection, let us observe the following: Let F_0/K_{\emptyset} be a cyclic extension of degree p in K_S/K such that F_0/K is Galois. Then F_0 comes from a finite level: there exists a finite extension F/K and a cyclic extension F_1/F of degree p, ramified at some places above S, such that $F_0 = K_{\emptyset}F_1$. The estimate for dim $H^2(G_{\emptyset})$ can be done by using the previous lemma, typically by seeking the fields F_0 : this is the spirit of the method involving the Hochschild–Serre spectral sequence. Example 1.6 (The field $\mathbb{Q}(\sqrt{-5460})$). — Set p = 2 and $K = \mathbb{Q}(\sqrt{-5460})$. The rational primes in {43, 53, 101, 149, 157} all split in K. Let $S = \{\mathfrak{p}_{43}, \mathfrak{p}_{53}, \mathfrak{p}_{101}, \mathfrak{p}_{149}, \mathfrak{p}_{157}\}$, the first primes above each of these as MAGMA computes them. We denote the abelian group $\prod_{i=1}^{d} \mathbb{Z}/a_i$ by (a_1, \ldots, a_d) . Computations show that:

- (i) $RCG_K(\emptyset) = (2, 2, 2, 2);$
- (ii) $\text{RCG}_{K}(\mathfrak{p}_{53},\mathfrak{p}_{101},\mathfrak{p}_{149},\mathfrak{p}_{157}) = (4,8,8,8)$; Furthermore, for each of these primes \mathfrak{p} we compute $\text{RCG}_{K}(\mathfrak{p}) = (2,2,2,4)$.
- (iii) $\operatorname{RCG}_{K}(S) = (8, 8, 8, 8).$

Since $\mathcal{O}_{\mathrm{K}}^{\times} = \pm 1$, one easily sees $d(\mathrm{V}_{\emptyset}/(\mathrm{K}^{\times})^2) = 4 + 1 = 5$ hence S is saturated by (iii) and equality (1.1), and (ii) implies $d(\mathrm{X}_{\{\mathfrak{p}_{53},\mathfrak{p}_{101},\mathfrak{p}_{149},\mathfrak{p}_{157}\}}) = 4$ and then $d(\mathrm{X}_S) \geq 4$. As $\mathrm{X}_{\{\mathfrak{p}\}}$ is nontrivial for $\mathfrak{p} \in \{\mathfrak{p}_{53}, \mathfrak{p}_{101}, \mathfrak{p}_{149}, \mathfrak{p}_{157}\}$, we see there is a quadratic extension above K_{\emptyset} ramified at \mathfrak{p} . We have produced four independent elements of $\mathrm{III}_{\emptyset}^2$.

Now take $F = K(i) \subset K_{\emptyset}$; \mathfrak{p}_{43} is inert in F/K. An easy computation shows that $\operatorname{RCG}_{F}(\emptyset) = (4, 2, 2, 2)$ and $\operatorname{RCG}_{F}(\mathfrak{p}_{43}) = (4, 4, 2, 2)$. As $F_{\emptyset} = K_{\emptyset}$ we have an extension over K_{\emptyset} ramified only at \mathfrak{p}_{43} , so $d(X_{S}) = 5$, and by Lemma 1.5 we conclude that $r(G_{\emptyset}) = 5$.

1.2. Universal norms and relations

Put $\mathcal{O}_{K_{\emptyset}}^{\times} = \bigcup_{F} \mathcal{O}_{F}^{\times}$, where F/K run through the finite Galois extensions in K_{\emptyset}/K . Recall the following theorem due to Wingberg [40]; see also [24, Theorem 8.8.1, Chapter VIII, Section 8] where we take $S = T = \emptyset$, \mathfrak{c} to be the full class of finite *p*-groups and $A = \mathbb{Z}$. We have written the results there in our notation.

THEOREM 1.7 (Wingberg). — One has $\widehat{H}^{i}(G_{\emptyset}, \mathcal{O}_{K_{\emptyset}}^{\times}) \simeq \widehat{H}^{3-i}(G_{\emptyset}, \mathbb{Z})^{\vee}.$

The exact sequence $0 \to \mathbb{Z} \xrightarrow{\times p} \mathbb{Z} \to \mathbb{Z}/p \to 0$ gives:

$$0 \longrightarrow H^2(\mathcal{G}_{\emptyset}, \mathbb{Z})/p \longrightarrow H^2(\mathcal{G}_{\emptyset}, \mathbb{Z}/p) \longrightarrow H^3(\mathcal{G}_{\emptyset}, \mathbb{Z})[p] \longrightarrow 0.$$

Taking the Pontryagin dual, one obtains:

 $(1.2) \quad 0 \longrightarrow H^3(\mathbf{G}_{\emptyset}, \mathbb{Z})^{\vee}/p \longrightarrow H^2(\mathbf{G}_{\emptyset}, \mathbb{Z}/p)^{\vee} \longrightarrow H^2(\mathbf{G}_{\emptyset}, \mathbb{Z})^{\vee}[p] \longrightarrow 0.$ By Theorem 1.7:

$$H^2(\mathcal{G}_{\emptyset},\mathbb{Z})^{\vee} \simeq H^1(\mathcal{G}_{\emptyset},\mathcal{O}_{\mathcal{K}_{\emptyset}}^{\times}), and \ H^3(\mathcal{G}_{\emptyset},\mathbb{Z})^{\vee} \simeq \widehat{H}^0(\mathcal{G}_{\emptyset},\mathcal{O}_{\mathcal{K}_{\emptyset}}^{\times}).$$

Recall

$$\widehat{H}^{0}(\mathcal{G}_{\emptyset}, \mathcal{O}_{\mathcal{K}_{\emptyset}}^{\times}) \simeq \varprojlim_{\mathcal{F}} \mathcal{O}_{\mathcal{K}}^{\times}/\mathcal{N}_{\mathcal{F}/\mathcal{K}} \mathcal{O}_{\mathcal{F}}^{\times}$$

where F/K run through the finite Galois extensions in K_{\emptyset}/K , $N_{F/K}$ is the norm in F/K, and $H^1(G_{\emptyset}, \mathcal{O}_{K_{\emptyset}}^{\times})$ is the *p*-part of Cl_K (see for example [24, Lemma 8.8.4, Chapter VIII, Section 8]).

This observation associated to Theorem 1.7 allows us to prove:

COROLLARY 1.8. — One has $Def(G_{\emptyset}) = d(\mathcal{E}_{K}/N_{K_{\emptyset}/K}\mathcal{E}_{K_{\emptyset}})$, where $N_{K_{\emptyset}/K}\mathcal{E}_{K_{\emptyset}} := \bigcap_{F/K} N_{F/K}\mathcal{E}_{F}$. In particular when [F:K] is sufficiently large one has $Def(G_{\emptyset}) = d(\mathcal{E}_{K}/N_{F/K}\mathcal{E}_{F})$.

 $\begin{array}{lll} Proof. & -- \mathrm{If} \ \mathrm{F/K} \ \mathrm{is} \ \mathrm{a} \ \mathrm{finite} \ \mathrm{Galois} \ \mathrm{extension} \ \mathrm{in} \ \mathrm{K}_{\emptyset}/\mathrm{K} \ \mathrm{then} \\ (\mathcal{O}_{\mathrm{K}}^{\times})^{[\mathrm{F}:\mathrm{K}]} \subset \mathrm{N}_{\mathrm{F/K}}\mathcal{O}_{F}^{\times}, \ \mathrm{hence} \ \mathcal{O}_{\mathrm{K}}^{\times}/\mathrm{N}_{\mathrm{F/K}}\mathcal{O}_{F}^{\times} \ \mathrm{is} \ \mathrm{a} \ \mathrm{finite} \ \mathrm{abelian} \ p\text{-}\mathrm{group} \ \mathrm{and} \\ \varprojlim_{\mathrm{F}} \mathcal{O}_{\mathrm{K}}^{\times}/\mathrm{N}_{\mathrm{F/K}}\mathcal{O}_{\mathrm{F}}^{\times} \ \mathrm{is} \ \mathrm{an} \ \mathrm{abelian} \ \mathrm{pro-}p \ \mathrm{group} \ (\mathrm{obviously} \ \mathrm{finitely} \ \mathrm{generated}). \\ \mathrm{Then} \ \varprojlim_{\mathrm{F}} \mathcal{O}_{\mathrm{K}}^{\times}/\mathrm{N}_{\mathrm{F/K}}\mathcal{O}_{\mathrm{F}}^{\times} \simeq \operatornamewithlimits{\varprojlim}_{\mathrm{F}} \mathbb{Z}_{p} \otimes \left(\mathcal{O}_{\mathrm{K}}^{\times}/\mathrm{N}_{\mathrm{F/K}}\mathcal{O}_{\mathrm{F}}^{\times}\right). \ \mathrm{But} \ \mathrm{as} \ \mathbb{Z}_{p} \ \mathrm{is} \ \mathbb{Z}\text{-}\mathrm{flat}, \\ \mathrm{one} \ \mathrm{gets} \ \mathbb{Z}_{p} \otimes \left(\mathcal{O}_{\mathrm{K}}^{\times}/\mathrm{N}_{\mathrm{F/K}}\mathcal{O}_{\mathrm{F}}^{\times}\right) \simeq E_{\mathrm{K}}/(\mathbb{Z}_{p} \otimes \mathrm{N}_{\mathrm{F/K}}\mathcal{O}_{\mathrm{F}}^{\times}) = E_{\mathrm{K}}/\overline{\mathrm{N}_{\mathrm{F/K}}\mathcal{O}_{\mathrm{F}}^{\times}}, \ \mathrm{where} \\ E_{\mathrm{K}} = \mathbb{Z}_{p} \otimes \mathcal{O}_{\mathrm{K}}^{\times} \ \mathrm{and} \ \overline{\mathrm{N}_{\mathrm{F/K}}}\mathcal{O}_{\mathrm{F}}^{\times} \ \mathrm{is} \ \mathrm{the} \ \mathrm{closure} \ \mathrm{of} \ \mathrm{N}_{\mathrm{F/K}}\mathcal{O}_{\mathrm{F}}^{\times} \ \mathrm{in} \ \mathbb{Z}_{p} \otimes \mathcal{O}_{\mathrm{K}}^{\times}. \ \mathrm{Hence}, \end{array}$

$$\varprojlim_{\mathbf{F}} \mathcal{O}_{\mathbf{K}}^{\times}/\mathbf{N}_{\mathbf{F}/\mathbf{K}} \mathcal{O}_{\mathbf{F}}^{\times} \simeq E_{\mathbf{K}}/\bigcap_{\mathbf{F}} \overline{\mathbf{N}_{\mathbf{F}/\mathbf{K}} \mathcal{O}_{\mathbf{F}}^{\times}}.$$

Thus

$$\mathbb{F}_p \otimes \varprojlim_{\mathrm{F}} \mathcal{O}_{\mathrm{K}}^{\times} / \mathrm{N}_{\mathrm{F/K}} \mathcal{O}_{\mathrm{F}}^{\times} \simeq E_{\mathrm{K}} / E_{\mathrm{K}}^p \bigcap_{\mathrm{F}} \overline{\mathrm{N}_{\mathrm{F/K}} \mathcal{O}_{\mathrm{F}}^{\times}} \simeq \mathcal{E}_{\mathrm{K}} / \mathrm{N}_{\mathrm{K}_{\emptyset}/\mathrm{K}} \mathcal{E}_{\mathrm{K}_{\emptyset}}.$$

The exact sequence (1.2) becomes

(1.3)
$$0 \longrightarrow \mathcal{E}_K / \mathcal{N}_{\mathcal{K}_{\emptyset}/\mathcal{K}} \mathcal{E}_{\mathcal{K}_{\emptyset}} \longrightarrow H^2(\mathcal{G}_{\emptyset}, \mathbb{Z}/p)^{\vee} \longrightarrow \mathrm{Cl}_{\mathcal{K}}[p] \longrightarrow 0,$$

and computing dimensions gives the result.

For $\#G_{\emptyset} < \infty$ it has been known for a long time that the number of relations of G_{\emptyset} is related to the norm of the units in the tower. See for example Section 2 of [28].

 \square

As a consequence, one also has

COROLLARY 1.9. — Let F/K be a finite Galois extension in K_{\emptyset}/K . Then $Def(G_{\emptyset}) \ge d(\mathcal{O}_{K}^{\times}/N_{F/K}\mathcal{O}_{F}^{\times})$, and one has equality when F is sufficiently large.

Proof. — This is obvious using that $\mathcal{E}_{K}/N_{K_{\emptyset}/K}\mathcal{E}_{K_{\emptyset}} \twoheadrightarrow \mathcal{E}_{K}/N_{F/K}\mathcal{E}_{F}$. For the equality, use the fact that \mathcal{E}_{K} is finite.

When p = 2, if -1 is not a norm of a unit in a quadratic subextension F/K of K_{\emptyset}/K , then $-1 \notin N_{K_{\emptyset}/K}\mathcal{O}_{K_{\emptyset}}^{\times}$, which implies $Def(G_{\emptyset}) \ge 1$. We will see that this condition appears almost all the time when K is an imaginary quadratic extension. We close this subsection with a basic fact.

FACT. — For S a finite set of tame places, $0 \leq \text{Def}(G_S)$.

Proof. — We refer to [27], especially Lemma 6.8.6, for the facts we need concerning the homology of profinite groups. From the exact sequence of compact groups

$$0 \longrightarrow \mathbb{Z}_p \xrightarrow{\times p} \mathbb{Z}_p \longrightarrow \mathbb{Z}/p \longrightarrow 0$$

we obtain the homology sequence

$$\cdots \longrightarrow H_2(\mathbf{G}_S, \mathbb{Z}/p) \longrightarrow H_1(\mathbf{G}_S, \mathbb{Z}_p)[p].$$

As $H_1(G_S, \mathbb{Z}_p) \simeq G_S^{ab}$, we have $d(G_S) = d(G_S^{ab}[p]) \leq d(H_2(G_S, \mathbb{Z}/p)) = r(G_S)$.

1.3. Minkowski units

Recall that for a finite group G, the ring $\mathbb{F}_p[G]$ is a Frobenius algebra (see for example [5, Section 62]): every free submodule of an $\mathbb{F}_p[G]$ -module M is in direct sum so we may write $\mathbf{M} = \mathbb{F}_p[G]^t \oplus \mathbf{N}$, where N is torsion (for every element $n \in \mathbf{N}$, there exists $0 \neq h \in \mathbb{F}_p[G]$ such that $h \cdot n = 0$), and $t := t_G(\mathbf{M})$ is uniquely determined (by Krull–Schmidt Theorem). Observe that if \mathbf{M}^{\wedge} is the Pontryagin dual of M, then $t_G(\mathbf{M}) = t_G(\mathbf{M}^{\wedge})$.

We record some useful properties. Let $H \subset G$ be a subgroup of G.

- (i) Recall first that by Mackey's decomposition theorem, one has the isomorphism of $\mathbb{F}_p[H]$ -modules $\operatorname{Res}_H \mathbb{F}_p[G] \simeq \mathbb{F}_p[H]^{[G:H]}$.
- (ii) Suppose moreover $\mathbf{H} \triangleleft \mathbf{G}$, and denote by $N_{\mathbf{H}} = \sum_{h \in \mathbf{H}} h \in \mathbb{F}_p[\mathbf{G}]$ the norm map from \mathbf{H} . For an $\mathbb{F}_p[\mathbf{G}]$ -module \mathbf{M} let \mathbf{M}^H denote the invariants. Then one easily obtains the isomorphism of $\mathbb{F}_p[\mathbf{G}]$ modules

(1.4)
$$\mathbb{F}_p[\mathbf{G}/\mathbf{H}] \simeq \mathbb{F}_p \otimes_{\mathbb{F}_p[\mathbf{H}]} \mathbb{F}_p[\mathbf{G}] \simeq \mathbb{F}_p[\mathbf{G}]^{\mathbf{H}}$$
and $N_{\mathbf{H}}(\mathbb{F}_p[\mathbf{G}]) = \mathbb{F}_p[\mathbf{G}]^{\mathbf{H}}$ so

(1.5)
$$N_{\rm H}(\mathbb{F}_p[{\rm G}]) \simeq \mathbb{F}_p[{\rm G}/{\rm H}]$$

as $\mathbb{F}_p[G/H]$ -modules.

1.3.2.

Let F/K be a finite Galois extension of number fields with Galois group G.

DEFINITION 1.10. — Let $\mathcal{E}_{\mathrm{F}} := \mathbb{F}_p \otimes \mathcal{O}_{\mathrm{F}}^{\times}$. We say that F/K has a Minkowski unit (at p), if \mathcal{E}_{F} contains a nontrivial free $\mathbb{F}_p[\mathrm{G}]$ -submodule. In other word, F/K has a Minkowski unit if $t_{\mathrm{G}}(\mathcal{E}_{\mathrm{F}}) \geq 1$.

Hence the quantity $t_{\rm G}(\mathcal{E}_{\rm F})$ measures "the number" of independent Minkowski units in F/K.

If (p, |G|) = 1 then \mathcal{E}_F is a semisimple $\mathbb{F}_p[G]$ -module. Determining the existence of Minkowski units is more difficult when (p, |G|) = p. When G is a *p*-group, and F/K is unramified, it is tempting to regard the existence of a Minkowski unit in F/K as rare.

1.3.3. Example

We want to illustrate the notion of Minkowski units.

LEMMA 1.11. — Let F/K be a p-extension with Galois group G. Let $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_k}$ be a set of tame primes of K that split completely in F/K. If $d(G_{F,S}) = d(G_{F,\emptyset})$ then $t_G(V_{F,\emptyset}) \ge k$, and if $|G_{F,S}^{ab}| = |G_{F,\emptyset}^{ab}|$ then $t_G(\mathcal{E}_F) \ge k$.

Proof. — Observe first that G acts on $\text{Gal}(F'(\sqrt[p]{V_{F,\emptyset}})/F')$ (resp. on $\text{Gal}(F'(\sqrt[p]{\mathcal{O}_F^{\times}})/F')$). Then by Remark 1.2, one has

(1.6)
$$t_{\rm G} \left(V_{\rm F} / ({\rm F}^{\times})^p \right) = t_{\rm G} \left({\rm Gal}({\rm F}'(\sqrt[p]{\rm V_{\rm F,\emptyset}}) / {\rm F}') \right),$$

and

(1.7)
$$t_{\rm G}(\mathcal{E}_{\rm F}) = t_{\rm G}((\mathcal{E}_{\rm F})^{\wedge}) = t_{\rm G}({\rm Gal}({\rm F}'(\sqrt[p]{\mathcal{O}_{\rm F}^{\times}}/{\rm F}')).$$

For all prime ideals $\mathfrak{P}_{ij}|\mathfrak{p}_i$ of \mathcal{O}_{F} we consider the Frobenius automorphisms $\sigma_{\mathfrak{P}_{ij}}$ in $\mathrm{Gal}(\mathrm{F}'(\sqrt[p]{V_{\mathrm{F},\emptyset}})/\mathrm{F}')$. Note that we are no longer in an abelian over K situation as just before Theorem 1.1. By Theorem 1.1(i), the hypothesis $d(\mathrm{G}_{\mathrm{F},S}) = d(\mathrm{G}_{\mathrm{F},\emptyset})$ implies the Frobenius automorphisms $\sigma_{\mathfrak{P}_{ij}}$ in $\mathrm{Gal}(\mathrm{F}'(\sqrt[p]{V_{\mathrm{F},\emptyset}})/\mathrm{F}')$ are independent. As each \mathfrak{p}_i splits completely in F/K , we have that $\mathrm{Gal}(\mathrm{F}'(\sqrt[p]{V_{\mathrm{F},\emptyset}})/\mathrm{F}')$ contains k distinct free $\mathbb{F}_p[\mathrm{G}]$ -modules, one for each \mathfrak{p}_i . The first assertion follows by (1.6). For the second assertion, use the second part of Theorem 1.1 and (1.7).

Recall that we denote the abelian group $\prod_{i=1}^{d} \mathbb{Z}/a_i\mathbb{Z}$ by (a_1, \ldots, a_d) . Let p = 2 and $K = \mathbb{Q}(\sqrt{5 \cdot 13 \cdot 17 \cdot 29})$ and let $H = \mathbb{Q}(\sqrt{5}, \sqrt{13}, \sqrt{17}, \sqrt{29})$ be its Hilbert class field. Here $\operatorname{Cl}_{\mathrm{K}} = (2, 2, 2)$, and $\operatorname{Cl}_{\mathrm{H}} = (4, 4)$. Consider the primes $\ell = 2311$ and q = 3319. We easily see $\ell \mathcal{O}_{\mathrm{K}} = \mathfrak{l}_1 \mathfrak{l}_2$ and $q \mathcal{O}_{\mathrm{K}} = \mathfrak{q}_1 \mathfrak{q}_2$ and these ideals are all principal. In the table below we compute the 2-parts of the ray class groups for K and H of the given conductors. The

Conductor	Κ	Н
1	(2, 2, 2)	(4, 4)
$\mathfrak{l}_i, i \in \{1, 2\}$	(2, 2, 2)	(4, 4)
$\mathfrak{q}_i, i \in \{1, 2\}$	(2, 2, 2)	(4, 4)
$\mathfrak{l}_1\mathfrak{q}_1$	(2, 2, 2)	(2, 2, 2, 4, 4)
$\mathfrak{l}_1\mathfrak{q}_2$	(2, 2, 2, 2)	(2, 2, 2, 2, 2, 4, 8)
$\mathfrak{l}_2\mathfrak{q}_1$	(2, 2, 2, 2)	(2, 2, 2, 2, 2, 4, 8)
$\mathfrak{l}_2\mathfrak{q}_2$	(2, 2, 2)	(2, 2, 2, 4, 4)

Table 1.1. Ray Class Groups

computations were done with MAGMA (see [3]) and assume the GRH.

Note that in the first three rows, the ray class groups are identical. As the principal ideals l_i and \mathfrak{q}_i split completely in H/K, by Lemma 1.11 one sees that $\mathcal{O}_{\mathrm{H}}^{\times} \otimes \mathbb{F}_2$ has a Minkowski unit over K: in other words putting $G = \mathrm{Gal}(\mathrm{H/K}) \simeq (\mathbb{Z}/2\mathbb{Z})^3$, one has $t_{\mathrm{G}}(\mathcal{E}_{\mathrm{H}}) \ge 1$. Note H is a degree 16 totally real field so dim $\mathcal{E}_{\mathrm{H}} = 16$ and $\mathcal{E}_{\mathrm{H}} \simeq_{\mathrm{G}} \mathbb{F}_2[\mathrm{G}] \oplus M$ where dim M = 8so M a priori could be free.

We now show that M is not free. Set $K_0 = K$, $K_1 = \mathbb{Q}(\sqrt{5 \cdot 17})$, and $K_2 = \mathbb{Q}(\sqrt{13 \cdot 29})$. Let F be the biquadratic field K_1K_2 . Computations show that $Cl_{K_1} = (2)$, $Cl_{K_2} = (2)$, and $Cl_F = (2, 4)$. Denote by ε_i the fundamental unit of K_i , and put

$$e = \# \left(\mathcal{O}_{\mathrm{F}}^{\times} / \langle -1, \varepsilon_i, i = 0, 1, 2 \rangle \right).$$

Applying the Brauer class number formula in the biquadratic extension F/\mathbb{Q} , i.e. $|Cl_F| = \frac{1}{4}e|Cl_K||Cl_{K_1}||Cl_{K_2}|$, to deduce e = 1, and then $\mathcal{O}_F^{\times} = \langle -1, \varepsilon_i, i = 0, 1, 2 \rangle$.

Let σ be a generator of G = Gal(F/K). We compute:

- (i) the norm of ε_2 in F/K is +1,
- (ii) the norm of ε_1 in F/K is -1,
- (iii) σ acts trivially on ε_0 ,

Hence, as we will observe in Lemma 5.1, one obtains that $\mathcal{E}_{\mathrm{F}} \simeq \mathbb{F}_2[\mathrm{G}'] \oplus \mathbb{F}_2^2$, where $\mathrm{G}' = \mathrm{Gal}(\mathrm{F}/\mathrm{K})$. Finally since $\mathcal{E}_{\mathrm{H}} \twoheadrightarrow \mathcal{E}_{\mathrm{F}}$, and $t_{\mathrm{G}'}(\mathcal{E}_{\mathrm{F}}) \geq t_{\mathrm{G}}(\mathcal{E}_{\mathrm{H}})$ we conclude that $t_{\mathrm{G}}(\mathcal{E}_{\mathrm{H}}) = 1$.

2. Detecting the relations along K_{\emptyset}/K

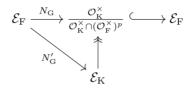
As mentioned in the remark in the introduction, we can easily find d elements of III_{\emptyset}^2 by constructing ramified extensions at a low level in the

tower K_{\emptyset}/K . For (G_n) a sequence of open normal subgroups of G with $\bigcap_{n=1}^{\infty} G_n = \{e\}$, let K_n be the fixed field of G_n and set $H_n = \text{Gal}(K_n/K)$. In this section we show that the presence of torsion elements in the $\mathbb{F}_p[H_n]$ -module $\text{Gal}(K'_n(\sqrt[p]{\mathcal{O}_{K_n}^{\times}})/K'_n)$ can give rise to more relations.

2.1. First observations

Let p be a prime number and K be a number field.

If F/K is a Galois extension with Galois group G, the norm map $N_{\rm G}$ sends $\mathcal{E}_{\rm F}$ to $\frac{\mathcal{O}_{\rm K}^{\times}}{\mathcal{O}_{\rm K}^{\times} \cap (\mathcal{O}_{\rm F}^{\times})^p} \subset \mathcal{E}_{\rm F}$; denote by $N'_{\rm G} : \mathcal{E}_{\rm F} \to \mathcal{E}_{\rm K}$ the map from $\mathcal{E}_{\rm F}$ to $\mathcal{E}_{\rm K}$ induced by the norm in F/K. The commutative diagram:



implies the following easy lemma:

LEMMA 2.1. — One has $N'_{\rm G}(\mathcal{E}_{\rm F}) \twoheadrightarrow N_{\rm G}(\mathcal{E}_{\rm F})$. Moreover, $\mathcal{O}_{\rm K}^{\times} \cap (\mathcal{O}_{\rm F}^{\times})^p = (\mathcal{O}_{\rm K}^{\times})^p \implies N'_{\rm G}(\mathcal{E}_{\rm F}) \simeq N_{\rm G}(\mathcal{E}_{\rm F})$.

The study of the norm map N_G is "purely algebraic", i.e. it does not involve number theory. Lemma 2.2 below is proved at the beginning of the proof of [25, Lemma 2]). Since that Lemma is stated differently we include a proof that is essentially from [25].

LEMMA 2.2. — Let G be a finite p-group and M an $\mathbb{F}_p[G]$ -module. Let $N_G: M \to M$ be the norm map. Let $m \in M$. Then $N_G(m) = 0$ if and only if m is a torsion element.

Proof. — Let $0 \neq m \in M$. Recall that the annihilator A_m of a nontrivial element $m \in M$ is an ideal of $\mathbb{F}_p[G]$ and that m is a torsion element if and only if $A_m \neq 0$.

If $A_m = 0$ then the $\mathbb{F}_p[G]$ -span of m is isomorphic to $\mathbb{F}_p[G]$ and as $N_G(\mathbb{F}_p[G]) = \mathbb{F}_p$ by (1.5), we see $N_G(m) \neq 0$.

Conversely, suppose that $A_m \neq 0$. Then $A_m^G \neq 0$ since G is a *p*-group acting on a nontrivial \mathbb{F}_p -vector space. Hence $A_m^G \subset (\mathbb{F}_p[G])^G$ which is in turn the one-dimensional vector space $\mathbb{F}_p \cdot \mathcal{N}_G$. Thus $\mathbb{F}_p \cdot \mathcal{N}_G = A_m^G \subset A_m$ so $\mathcal{N}_G(m) = 0$.

More generally, one has

THEOREM 2.3. — Let F/K be a finite *p*-extension with Galois group G and write $N'_G(\mathcal{E}_F) \simeq \mathbb{F}_p^t$. Then $t_G(\mathcal{E}_F) \leqslant t \leqslant t_G(\mathcal{E}_F) + d\left(\frac{\mathcal{O}_K^{\times} \cap (\mathcal{O}_F^{\times})^p}{(\mathcal{O}_K^{\times})^p}\right)$. In particular if $\mathcal{O}_K^{\times} \cap (\mathcal{O}_F^{\times})^p = (\mathcal{O}_K^{\times})^p$, then $t = t_G(\mathcal{E}_F)$.

Proof. — Write $\mathcal{E}_{\mathrm{F}} \simeq \mathbb{F}_p[\mathrm{G}]^{t_{\mathrm{G}}(\mathcal{E}_{\mathrm{F}})} \oplus \mathrm{N}$, where N is generated by torsion elements as an $\mathbb{F}_p[\mathrm{G}]$ -module. By (1.5) and Lemma 2.2 one has $\mathrm{N}_{\mathrm{G}}(\mathcal{E}_{\mathrm{F}}) \simeq \mathbb{F}_p^{t_{\mathrm{G}}(\mathcal{E}_{\mathrm{F}})}$. So by Lemma 2.1 we see $\mathrm{N}'_{\mathrm{G}}(\mathcal{E}_{\mathrm{F}}) \simeq \mathrm{N}_{\mathrm{G}}(\mathcal{E}_{\mathrm{F}}) \simeq \mathbb{F}_p^{t_{\mathrm{G}}(\mathcal{E}_{\mathrm{F}})}$, proving the result when $\mathcal{O}_{\mathrm{K}}^{\times} \cap (\mathcal{O}_{\mathrm{F}}^{\times})^p = (\mathcal{O}_{\mathrm{K}}^{\times})^p$.

By noting that the 'difference' between $N_G(\mathcal{E}_F)$ and $N'_G(\mathcal{E}_F)$ is exactly $\frac{N_G(\mathcal{O}_F^{\times})\cap(\mathcal{O}_F^{\times})^p}{(\mathcal{O}_K^{\times})^p}$ which has *p*-rank at most $d\left(\frac{\mathcal{O}_K^{\times}\cap(\mathcal{O}_F^{\times})^p}{(\mathcal{O}_K^{\times})^p}\right)$, we obtain the general case.

2.2. Exhibiting relations via the Hochschild–Serre spectral sequence

In this subsection, we flesh out the details of the process described in the Remark of the Introduction for explicitly exhibiting $d(G_{\emptyset})$ relations in a minimal presentation of G_{\emptyset} . It would be helpful to refer to Figure 0.1 from the introduction. Put $K' = K(\zeta_p)$. Let $S = S_1 \cup S_2$ be a set of tame prime ideals of \mathcal{O}_K such that:

- (1) S_1 is a minimal set whose Frobenius automorphisms generate the $d(\mathbf{G}_{\emptyset})$ -dimensional \mathbb{F}_p -vector space $\operatorname{Gal}(\mathbf{K}'(\sqrt[p]{V_{\emptyset}})/\mathbf{K}'(\sqrt[p]{\mathcal{O}_{\mathbf{K}}^{\times}}))$, and
- (2) S_2 is a minimal set whose Frobenius automorphisms generate the \mathbb{F}_p -vector space Gal $(\mathrm{K}'(\sqrt[p]{\mathcal{O}_{\mathrm{K}}^{\times}})/\mathrm{K}')$ of dimension $r_1 + r_2 1 + \delta$.

Recall the Frobenius automorphisms above are well-defined up to nonzero scalar multiples in the Galois groups, which are vector spaces over \mathbb{F}_p . This ambiguity does not affect their spanning properties. One has

LEMMA 2.4. — The set S is saturated, in particular $III_S^2 = \{0\}$. Moreover $d(G_S) = d(G_{\emptyset})$, and $r(G_{\emptyset}) = d(X_S)$.

Proof. — That S is saturated follows immediately from Theorem 1.4. As there is no dependence relation between the Frobenius automorphisms (the set S is minimal), Theorem 1.1 implies $d := d(G_S) = d(G_{\emptyset})$. That $r(G_{\emptyset}) = d(X_S)$ follows from the second part with Lemma 1.5.

LEMMA 2.5. — Write (a_1, \ldots, a_d) for the *p*-part of $\operatorname{RCG}_{\mathrm{K}}(\emptyset)$ and let $S_1 = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_d\}$ as above. Then $\operatorname{RCG}_{\mathrm{K}}(\mathfrak{p}_1, \ldots, \mathfrak{p}_d) \twoheadrightarrow (pa_1, \ldots, pa_d)$.

Proof. — This is a consequence of Theorem 1.1. As the primes of S_1 split completely in the governing extension $\operatorname{Gal}(K'(\sqrt[p]{\mathcal{O}_K^{\times}})/K')$, for each prime ideal $\mathfrak{p} \in S_1$ we have $\#G^{ab}_{\{\mathfrak{p}\}} \neq \#G^{ab}_{\emptyset}$. We conclude by noting that $d(G_{S_1}) = d(G_{\emptyset})$. □

Lemma 2.5 implies the existence of d independent degree-p cyclic extensions F_i of K_{\emptyset} , each totally ramified at \mathfrak{p}_i , $i = 1, \ldots, d$, and on which G_{\emptyset} acts trivially, implying that $d(X_S) \ge d$. The rest of the relations are difficult and detected via the set S_2 .

2.3. Proof of Theorem A

Let (G_n) be a sequence of open normal subgroups of G_{\emptyset} such that $G_n \subset G_{n+1}$ and $\bigcap_n G_n = \{e\}$. Put $H_n := G_{\emptyset}/G_n$, $K_n := K_{\emptyset}^{G_n}$, and write $\mathcal{E}_{K_n} := \mathbb{F}_p[H_n]^{t_n} \oplus N_n$ where N_n is torsion as an $\mathbb{F}_p[H_n]$ -module.

LEMMA 2.6. — The sequence (t_n) is nonincreasing.

Proof. — Recall from (1.4) that the norm map from $H_{n+1,n} := Gal(K_{n+1}/K_n)$ on $\mathbb{F}_p[H_{n+1}]$ induces the following $\mathbb{F}_p[H_n]$ -isomorphisms:

$$\mathbb{F}_p[\mathbf{H}_n] \simeq \mathbb{F}_p[\mathbf{H}_{n+1}]_{\mathbf{H}_{n+1,n}} \simeq \mathbb{F}_p[\mathbf{H}_{n+1}]^{\mathbf{H}_{n+1,n}}.$$

The norm map $N_{\mathrm{H}_{n+1,n}}$ of $\mathrm{K}_{n+1}/\mathrm{K}_n$ induces a morphism from $\mathcal{E}_{\mathrm{K}_{n+1}}$ to $\mathcal{E}_{\mathrm{K}_{n+1}}$ which allows us to obtain

$$\mathbb{F}_p[\mathrm{H}_n]^{t_{n+1}} \longleftrightarrow \frac{\mathcal{O}_{\mathrm{K}_n}^{\times}}{\mathcal{O}_{\mathrm{K}_n}^{\times} \cap (\mathcal{O}_{\mathrm{K}_{n+1}}^{\times})^p} \twoheadleftarrow \mathcal{E}_{\mathrm{K}_n},$$

which implies $t_n \ge t_{n+1}$.

DEFINITION 2.7. — Set $\lambda := \lambda_{K_{\emptyset}/K} = \lim_{n \to \infty} t_n$. We call this the Minkowski-rank of the units along K_{\emptyset}/K .

One easily sees that λ does not depend on the sequence (G_n).

Let us write $p^{\beta} := [\mathrm{K}'(\sqrt[p]{\mathcal{O}_{\mathrm{K}}^{\times}}) \cap \mathrm{K}'\mathrm{K}_{\emptyset} : \mathrm{K}'] = [\mathcal{O}_{\mathrm{K}}^{\times} \cap (\mathcal{O}_{\mathrm{K}_{\emptyset}}^{\times})^{p} : (\mathcal{O}_{\mathrm{K}}^{\times})^{p}].$ Obviously, $\beta \leq \min(d(\mathcal{O}_{\mathrm{K}}^{\times}), d(\mathrm{G}_{\emptyset})).$

PROPOSITION 2.8. — One has: $\delta = 0 \implies \beta = 0$.

Proof. — Recall $K' := K(\zeta_p)$. Let $\Delta = Gal(K'/K)$ be the Galois group of K'/K. As Δ acts trivially on \mathcal{O}_K^{\times} , by Kummer duality the action of Δ over $Gal(K'(\sqrt[p]{\mathcal{O}_K^{\times}})/K')$ is given by the cyclotomic character; in particular, there is no nontrivial subspace of $Gal(K'(\sqrt[p]{\mathcal{O}_K^{\times}})/K')$ on which Δ acts trivially. As Δ acts trivially on $Gal(K'K_{\emptyset}/K')$, the result holds.

THEOREM 2.9. — We have the estimates:

$$d(\mathcal{O}_{\mathrm{K}}^{\times}) - \lambda - \beta \leq \mathrm{Def}(\mathrm{G}_{\emptyset}) \leq d(\mathcal{O}_{\mathrm{K}}^{\times}) - \lambda.$$

In particular,

• if
$$\mathcal{O}_{\mathbf{K}}^{\times} \cap (\mathcal{O}_{\mathbf{K}_{\phi}}^{\times})^{p} = (\mathcal{O}_{\mathbf{K}}^{\times})^{p}$$
 or if $\delta = 0$, then $\mathrm{Def}(\mathbf{G}_{\emptyset}) = d(\mathcal{O}_{\mathbf{K}}^{\times}) - \lambda$.

• if $\lambda = d(\mathcal{O}_{K}^{K})$ then $\text{Def}(\mathbf{G}_{\emptyset}) = 0$.

Proof. — We keep the notations of the beginning of the section.

We give two proofs for the lower bound. The first one is 'algebraic' while the second is number-theoretic and is more 'explicit' in how we determine the existence of the relations.

We first establish the upper bound. Denote by N_{H_n} the norm map for the extension K_n/K . Observe that by Corollary 1.8, $\mathrm{Def}(\mathrm{G}_{\emptyset}) = d(\mathcal{E}_{\mathrm{K}}) - d(N'_{\mathrm{H}_n}(\mathcal{E}_{\mathrm{K}_n}))$ for $n \gg 0$. Take *n* sufficiently large such that $t_n = \lambda$. One has $d(N_{\mathrm{H}_n}(\mathcal{E}_{\mathrm{K}_n})) \geq \lambda$ (see Theorem 2.3), implying that $d(N'_{\mathrm{H}_n}(\mathcal{E}_{\mathrm{K}_n})) \geq \lambda$. Hence one gets:

$$\operatorname{Def}(\mathbf{G}_{\emptyset}) \leq d(\mathcal{O}_{\mathbf{K}}^{\times}) - \lambda.$$

Below are the two proofs of the lower bound.

First proof. — Observe that $\beta = d\left(\frac{\mathcal{O}_{\mathrm{K}}^{\times} \cap (\mathcal{O}_{\mathrm{K}n}^{\times})^{p}}{(\mathcal{O}_{\mathrm{K}}^{\times})^{p}}\right)$ since $n \gg 0$. By Theorem 2.3 one also has $d(N'_{\mathrm{H}_{n}}(\mathcal{E}_{\mathrm{K}_{n}})) \leq \lambda + \beta$, and then by Corollary 1.8 we get

$$\operatorname{Def}(\mathbf{G}_{\emptyset}) \ge d(\mathcal{O}_{\mathbf{K}}^{\times}) - \lambda - \beta.$$

Second proof. — Here we show $d(\mathcal{O}_{K}^{\times}) - \lambda - \beta \leq \text{Def}(G_{\emptyset})$ using saturated sets and the Hochschild–Serre exact sequence.

First assume that $\zeta_p \in \mathcal{K}$ i.e. $\delta = 1$. Choose $n \gg 0$, and write $\mathcal{E}_{\mathcal{K}_n} = \mathbb{F}_p[\mathcal{H}_n]^{\lambda} \oplus \mathcal{N}_n$, where \mathcal{N}_n is a \mathcal{H}_n -torsion $\mathbb{F}_p[\mathcal{H}_n]$ -module.

Put $\mathcal{E}'_{\mathrm{K}} := \frac{\mathcal{O}_{\mathrm{K}}^{\times}}{\mathcal{O}_{\mathrm{K}}^{\times} \cap (\mathcal{O}_{\mathrm{K}_{n}}^{\times})^{p}} \hookrightarrow \mathcal{E}_{\mathrm{K}_{n}}.$

Hence $[L_4 : K_n] = \# \mathcal{E}'_K$. Observe that $Gal(L_4/K_n) \simeq \mathbb{F}_p^t$, where $t = d(\mathcal{O}_K^{\times}) - \beta$.

We will find a set of primes of $S = \{\mathfrak{p}_1, \dots, \mathfrak{p}_{t-\lambda}\}$ in K such that:

- \mathfrak{p}_i splits completely in K_n/K ,
- Their Frobenius automorphisms span a $(t \lambda)$ -dimensional space in $\operatorname{Gal}(L_2/L_1) \simeq \operatorname{Gal}(L_4/K_n)$,
- For each *i*, let \mathfrak{b}_{ij} be the primes above \mathfrak{p}_i in K_n . There is a dependence relation on the Frobenius automorphisms of the \mathfrak{b}_{ij} in $\operatorname{Gal}(L_5/K_n)$. By Gras–Munnier (Theorem 1.1) this implies the existence of a \mathbb{Z}/p -extension R_i/K_n ramified only at (these primes

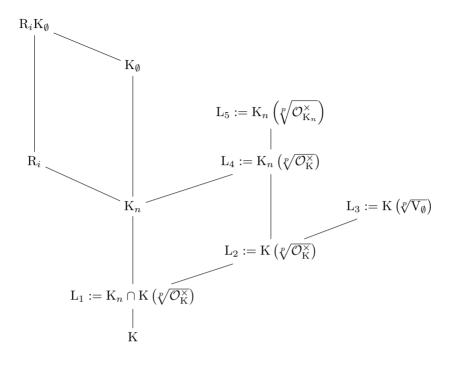


Figure 2.1.

above) \mathfrak{p}_i . Let $\widetilde{\mathbf{R}}_i$ be the Galois closure over K of \mathbf{R}_i . As the *p*-group $\operatorname{Gal}(\mathbf{K}_n/\mathbf{K})$ must act on the \mathbb{F}_p -vector space $\operatorname{Gal}(\widetilde{\mathbf{R}}_i/\mathbf{K}_n)$ with a fixed point, by iteration we may assume \mathbf{R}_i/\mathbf{K} is Galois. The \mathbb{Z}/p -extension $\mathbf{R}_i\mathbf{K}_{\emptyset}$ is ramified only at \mathfrak{p}_i and gives an element of $\operatorname{III}_{\emptyset}^2$. We have produced $t - \lambda$ elements of $\operatorname{III}_{\emptyset}^2$ in addition to the *d* elements of $\operatorname{III}_{\emptyset}^2$ we get by choosing primes $\{\mathfrak{q}_1, \ldots, \mathfrak{q}_d\}$ of K whose Frobenius automorphisms form a basis of $\operatorname{Gal}(\mathbf{L}_3/\mathbf{L}_2)$.

This gives the lower bound. We now construct S.

As L_2/K is abelian ($\zeta_p \in K$), $H_n = Gal(K_n/K)$ acts trivially on $Gal(L_2/L_1)$ (and thus on $Gal(L_4/K_n)$ as well).

After taking the Kummer dual of \mathcal{E}_{K_n} , one obtains $\operatorname{Gal}(L_5/K_n) \simeq \mathbb{F}_p[\operatorname{H}_n]^{\lambda} \oplus \operatorname{M}_n$, where $\operatorname{M}_n = \operatorname{N}_n^{\vee}$ is a H_n -torsion $\mathbb{F}_p[\operatorname{H}_n]$ -module. The natural surjection $\pi : \operatorname{Gal}(\operatorname{L}_5/\operatorname{K}_n) \twoheadrightarrow \operatorname{Gal}(\operatorname{L}_4/\operatorname{K}_n)$ induces, upon taking H_n -coinvariants, the map

$$\operatorname{Gal}(\mathrm{L}_5/\mathrm{K}_n)_{\mathrm{H}_n} \simeq \mathbb{F}_p^{\lambda} \oplus (\mathrm{M}_n)_{\mathrm{H}_n} \xrightarrow{\pi} \operatorname{Gal}(\mathrm{L}_4/\mathrm{K}_n) \simeq \operatorname{Gal}(\mathrm{L}_2/\mathrm{L}_1) \simeq \mathbb{F}_p^t$$

Thus

$$d(\pi((\mathbf{M}_n)_{\mathbf{H}_n})) \ge t - \lambda = d(\mathcal{O}_{\mathbf{K}}^{\times}) - \beta - \lambda$$

Take (at least) $t - \lambda$ elements x_i in $\operatorname{Gal}(L_5/K_n)$, such that their image under the projection π forms a basis of $\pi((M_n)_{H_n}) \subset \operatorname{Gal}(L_4/K_n) \simeq$ $\operatorname{Gal}(L_2/L_1) \simeq \mathbb{F}_p^t$. We choose \mathfrak{p}_i to split completely in K_n/K and have Frobenius $\pi(x_i) \in \operatorname{Gal}(L_2/L_1)$, so clearly \mathfrak{p}_i satisfies the first two points above. We have chosen \mathfrak{p}_i so that the primes above it in K_n have Frobenius automorphisms generating a $\mathbb{F}_p[H_n]$ -torsion module in $\operatorname{Gal}(L_5/K_n)$. This settles the third point and the case $\delta = 1$.

Now suppose $\delta = 0$. Replace every field L_i above by $L'_i := L_i(\zeta_p)$. The key fact is this: by Proposition 2.8, one has $d(\operatorname{Gal}(L'_2/L'_1)) = d(\mathcal{O}_K^{\times})$ so $L'_2 \cap K_n = K$. This disjointness allows us to apply the Chebotarev density theorem as above. The rest of the proof is word for word the same from this point on.

The last result follows since $Def(G_{\emptyset}) \ge 0$.

Remark 2.10. — Observe that

- (i) the inequality $\text{Def}(G_{\emptyset}) \leq d(\mathcal{O}_{K}^{\times}) \lambda$ comes from universal norms of units and is Wingberg's result (Theorem 1.7);
- (ii) the group G_{\emptyset} has at least λ fewer relations than the maximal possible number, dim $V_{\emptyset}/(K^{\times})^p$.

COROLLARY 2.11. — Suppose K_{\emptyset}/K is finite. Then $\lambda < d(\mathcal{O}_{K}^{\times}) - d^{2}/4 + d$.

Proof. — By the Theorem of Golod–Shafarevich one has $Def(G_{\emptyset}) > d^2/4 - d$; then apply Theorem 2.9.

2.4. Remarks when G_{\emptyset} is abelian

• Consider first the case where G_{\emptyset} is cyclic. Clearly d(G) = r(G) = 1 so $Def(G_{\emptyset}) = 0$. By Theorem 2.3, we get

$$\lambda = t_{\mathcal{G}_{\emptyset}}(\mathcal{E}_{\mathcal{K}_{\emptyset}}) \ge d(\mathcal{O}_{\mathcal{K}}^{\times}) - \beta \ge d(\mathcal{O}_{\mathcal{K}}^{\times}) - 1,$$

due to the fact that $\beta \leq 1$. In particular, this situation forces K_{\emptyset} to have a Minkowski unit provided K is neither \mathbb{Q} nor imaginary quadratic. We can recover this fact by using the well-known following result: as G_{\emptyset} is cyclic, every element of \mathcal{O}_{K}^{\times} is the norm of an element of $\mathcal{O}_{K_{\emptyset}}^{\times}$. Note this last argument applies in the quadratic imaginary case as well.

As an example, take the imaginary quadratic number field $K = \mathbb{Q}(\sqrt{-q \cdot \ell})$, with $-q \equiv \ell \equiv 1 \pmod{4}$. Here, p = 2, G_{\emptyset} is cyclic, and $\mathcal{O}_{K}^{\times} \cap \mathcal{O}_{K_{\emptyset}}^{\times 2} = \mathcal{O}_{K}^{\times 2}$. We find $\lambda = 1$, and finally that $\mathcal{E}_{K_{\emptyset}} \simeq \mathbb{F}_{2}[G_{\emptyset}]$.

Observe that if $G_{\emptyset} \simeq \mathbb{Z}/2\mathbb{Z}$, then the fundamental unit of the biquadratic extension $K(\sqrt{\ell})$ is exactly the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{\ell})$ and then is of norm -1. We again have $\mathcal{E}_{K_{\emptyset}} \simeq \mathbb{F}_{2}[G_{\emptyset}]$.

• Take p = 2, and K such that $G_{\emptyset} \simeq (\mathbb{Z}/2\mathbb{Z})^2$. Here d(G) = 2 and r(G) = 3 so $\text{Def}(G_{\emptyset}) = 1$, implying the existence of a difficult relation. By Theorem 2.3, we get

$$\lambda = t_{\mathcal{G}_{\emptyset}}(\mathcal{E}_{\mathcal{K}_{\emptyset}}) \ge d(\mathcal{O}_{\mathcal{K}}^{\times}) - 2,$$

due to the fact that $\beta \leq 2$.

Let us be more precise: Kisilevsky in [14] showed that if $G_{\emptyset} \simeq (\mathbb{Z}/2\mathbb{Z})^2$, then for every quadratic subextension F_i/K in K_{\emptyset}/K , one has $(\mathcal{O}_K^{\times}: N_{F_i/K}\mathcal{O}_{F_i}^{\times}) = 2$. We prove

PROPOSITION 2.12. — Let K/\mathbb{Q} be a quadratic extension such that $G_{\emptyset} \simeq (\mathbb{Z}/2\mathbb{Z})^2$. Then the difficult relation is detected at one of the three quadratic subextensions F/K in K_{\emptyset}/K .

Proof. — Suppose first that K/Q is an imaginary quadratic extension. By Kisilevsky's result −1 is not a norm of any unit in each of the three subextensions F_i/K of K_{\emptyset}/K . Let us choose $F := F_i$ such that $F \neq K(\sqrt{-1})$; put G = Gal(F/K). By using $N_G(\mathcal{O}_F^{\times}) \subset \{\pm 1\}$, it is then easy to see that, modulo $\mathcal{O}_F^{\times 2}$, −1 is not a norm of any unit in F/K implying that the norm map $N_G : \mathcal{E}_F \to \frac{\mathcal{O}_K^{\times}}{\mathcal{O}_K^{\times} \cap \mathcal{O}_F^{\times 2}}$ is not onto.

Recall that $\frac{\mathcal{O}_{\mathrm{K}}^{\times}}{\mathcal{O}_{\mathrm{K}}^{\times} \cap \mathcal{O}_{\mathrm{F}}^{\times^2}} \hookrightarrow \mathcal{E}_{\mathrm{F}}$. As $\dim_{\mathbb{F}_2} \mathcal{E}_{\mathrm{F}} = 2$, the only possibilities for the $\mathbb{F}_2[\mathrm{G}]$ -module \mathcal{E}_{F} are \mathbb{F}_2^2 and $\mathbb{F}_2[\mathrm{G}]$. As the norm map is onto in the latter case we see $\mathcal{E}_{\mathrm{F}} \simeq \mathbb{F}_2^2$ and then $t_{\mathrm{G}}(\mathcal{E}_{\mathrm{F}}) = 0$ so $\lambda = 0$: the difficult relation is detected by the quadratic extension F/K .

We now settle the case where K/\mathbb{Q} is real quadratic extension. Denote by ε the positive fundamental unit of K. By Kisilevsky's result, one knows that for every quadratic subextension F_i/K , -1 or ε is not a norm of any unit in F_i/K . Take one such quadratic extension F/K, and put G = Gal(F/K).

Suppose that -1 is not a norm of from F to K of any unit but $-1 \in N_{\rm G}(\mathcal{O}_{\rm F}^{\times})\mathcal{O}_{\rm F}^{\times 2}$. First, $N_{\rm G}(\mathcal{O}_{\rm F}^{\times}) \subset \{1, \pm \varepsilon\}$ modulo squares. The equations $-1 = z^2$ and $-1 = \varepsilon z^2$ have no solutions with $z \in \mathcal{O}_{\rm F}^{\times}$ for sign reasons. Hence the only possible solution is that $-1 = -\varepsilon z^2$, and then, necessarily ${\rm F} = {\rm K}(\sqrt{\varepsilon})$.

Suppose now that ε is not a norm of any unit in F/K. As before, if we test the condition $\varepsilon \in N_{\rm G}(\mathcal{O}_{\rm F}^{\times})\mathcal{O}_{\rm F}^{\times 2}$, we see the equations $\varepsilon = -z^2$, and $\varepsilon = -\varepsilon^a z^2$ have no solution for sign reasons. Suppose that $\varepsilon = \varepsilon^a z^2$ for

some odd integer a with $\varepsilon^a \in N_G(\mathcal{O}_F^{\times})$. As $N_G(\varepsilon) = \varepsilon^2$, it is easy to see this implies $\varepsilon \in N_G(\mathcal{O}_F^{\times})$, which contradicts our assumption. Thus a is even, and we conclude that $\varepsilon \in \mathcal{O}_F^{\times 2}$, i.e. $F = K(\sqrt{\varepsilon})$.

Hence, in any quadratic subextension F/K in K_{\emptyset}/K such that $F \neq K(\sqrt{\varepsilon})$, one has that the map $N_{\rm G} : \mathcal{E}_{\rm F} \to \frac{\mathcal{O}_{\rm K}^{\times}}{\mathcal{O}_{\rm K}^{\times} \cap \mathcal{O}_{\rm F}^{\times 2}}$ is not onto, and the result follows as in the imaginary case.

3. Applications

Throughout this section, we explore applications of the previous results, including:

- How λ and deficiency change as we move up the tower K_{\emptyset}/K ;
- That Def(G_∅) = 0 implies the same for open subgroups of G_∅ when δ = 1;
- The rapid growth of λ as we move up a *p*-adic analytic quotient tower of G_{\emptyset} . The Tame Fontaine–Mazur conjecture predicts that infinite *p*-adic analytic quotients of G_{\emptyset} do not exist; thus, proving λ cannot grow rapidly would lend support to the Fontaine–Mazur conjecture;
- Some results in the direction of better understanding the cohomological dimension of G₀;
- A computable test for maximality of $Def(G_{\emptyset})$.
- We recall a well-known example of a quadratic imaginary field K where, for p = 3, we have $r(G_{K,\emptyset}) = d(G_{K,\emptyset}) = 3$ so $Def(G_{K,\emptyset}) = 0$ and $|G_{K,\emptyset}| = \infty$. We give examples of degree 8 extensions M/K whose 3-Hilbert class field tower is the base change of $G_{K,\emptyset}$, thus providing examples of fields M where $|G_{M,\emptyset}| = \infty$ and $Def(G_{M,\emptyset}) =$ 0. The infinite towers over M have 7 independent Minkowski units.

3.1. Conserving the deficiency along the tower

Let F be a number field in the tower K_{\emptyset}/K and recall that $F_{\emptyset} = K_{\emptyset}$. We denote by $\lambda_{F_{\emptyset}/F}$ the asymptotic Minkowski rank in F_{\emptyset}/F .

PROPOSITION 3.1. — One has $\lambda_{F_{\emptyset}/F} \ge [F:K]\lambda_{K_{\emptyset}/K}$.

Proof. — Let L ⊃ F ⊃ K in K_∅/K be a large enough number field so that $\lambda_{L/K} = \lambda_{K_∅/K}$ and $\lambda_{L/F} = \lambda_{F_∅/F}$. Set G = Gal(L/K) and H = Gal(L/F). Then $\mathcal{E}_L = \mathbb{F}_p[G]^{\lambda_{K_∅/K}} \oplus N$, where N is G-torsion. The result follows by noting that $\mathbb{F}_p[G] \simeq_H \mathbb{F}_p[H]^{[F:K]}$ (see Section 1.3.1).

COROLLARY 3.2. — For every number field F in K_{\emptyset}/K , we have

$$Def(G_{F,\emptyset}) \leq d(\mathcal{O}_F^{\times}) - [F:K]\lambda_{K_{\emptyset}/K}.$$

Proof. — This follows immediately from Theorem 2.9 and Proposition 3.1. $\hfill \Box$

Remark 3.3. — When $\delta = 0$ the above Corollary is a consequence of strictly group-theoretic considerations. Namely, from equations (5.2) and (5.4) of [15] one deduces that for an open subgroup H of a pro-*p* group G, one has

$$Def(H) + 1 \leq (G:H)(Def(G) + 1).$$

3.2. When $Def(G_{\emptyset}) = 0$

COROLLARY 3.4. — Let K be a number field containing ζ_p . Suppose that $\mathcal{O}_{K}^{\times} \cap (\mathcal{O}_{K_{\emptyset}}^{\times})^{p} = (\mathcal{O}_{K}^{\times})^{p}$, and that $\text{Def}(G_{\emptyset}) = 0$. Then, for every finite extension F/K in K_{\emptyset}/K , one has $\text{Def}(G_{F,\emptyset}) = 0$.

Proof. — Applying Theorem 2.9, we see $\lambda = d(\mathcal{O}_{K}^{\times})$ and is maximal and hence constant in the tower K_{\emptyset}/K , relative to the base field K. By Proposition 3.1 we see

$$\lambda_{\mathbf{F}_{\emptyset}/\mathbf{F}} \geq [\mathbf{F}:\mathbf{K}]\lambda = [\mathbf{F}:\mathbf{K}]d(\mathcal{O}_{\mathbf{K}}^{\times}) = d(\mathcal{O}_{\mathbf{F}}^{\times}).$$

The result follows by Theorem 2.9.

COROLLARY 3.5. — Let G be a pro-2 group such that:

(i) Def(G) = 0,

(ii) there exists a normal open subgroup H of G such that $r(H) \neq d(H)$. Then G cannot be realized as the 2-tower of an imaginary quadratic field K of discriminant disc_K $\equiv 1 \pmod{4}$ nor disc_K $\equiv 0 \pmod{8}$.

Proof. — The discriminant hypotheses imply $-1 \notin \mathcal{O}_{K_{\emptyset}}^{\times 2}$. The result follows from Corollary 3.4.

The condition that the number of Minkowski units is maximal is very $\operatorname{strong}^{(2)}$:

PROPOSITION 3.6. — The finite p-groups G that have the property Def(H) = 0 for every subgroup H of G are exactly the cyclic groups and generalized quaternion group $Q_{2^n} = \langle x, y | x^{2^{n-1}} = 1, x^{2^{n-2}} = y^2, yxy^{-1} = x^{-1} \rangle$, $n \ge 3$.

⁽²⁾We thank Ozaki for bringing this result to our attention.

Proof. — For G with this property, every abelian subgroup H of G is of deficiency 0, forcing H to be cyclic. Then, G is cyclic or the generalized quaternion group Q_{2^n} of order 2^n (see for example [34, Theorem 9.7.3]). For the converse, obviously cyclic groups G satisfy Def(H) = 0 for every subgroup H of G. Concerning Q_{2^n} , recall that its subgroups are cyclic or isomorphic to $Q_{2^{n-1}}$, and that the Schur multipliers of the generalized quaternion groups Q_{2^k} are trivial (or in other words that $Def(Q_{2^k}) = 0$).

Remark 3.7. — Take p = 2, and let K be an imaginary quadratic field. Recall that $Def(G_{\emptyset}) \in \{0, 1\}$. We suspect that when G_{\emptyset} is infinite then $Def(G_{\emptyset})$ is maximal. If this is not the case and the hypothesis of Corollary 3.4 holds (disc_K $\equiv 1 \pmod{4}$) or disc_K $\equiv 0 \pmod{8}$), then r(H) = d(H) for every open normal subgroup H of G_{\emptyset} .

Remark 3.8. — Observe that Poincaré pro-p groups of dimension 3 are examples of infinite groups satisfying the condition of Corollary 3.4, see for example [24, Chapter III, Section 7].

We close this subsection with an explicit, albeit contrived, example with p = 2.

Example 3.9. — Let $K = \mathbb{Q}(\sqrt{-3 \cdot 5 \cdot 53})$. An easy MAGMA computation gives that the class group of K is (2, 2) and its 2-Hilbert class field tower has degree 8 over K. Straightforward computations show this group has at least three cyclic subgroups of order 4, hence it is the quaternion group of order 8. Here $\mathcal{O}_{K}^{\times} = \{1, -1\}$, and as the discriminant of K is prime to $4, i^2 = -1 \notin \mathcal{O}_{K_{\emptyset}}^{\times 2}$ so $\mathcal{O}_{K}^{\times} \cap \mathcal{O}_{K_{\emptyset}}^{\times 2} = \{1\}$ and $\beta = 0$. Then Theorem 2.9 gives $\text{Def}(G_{\emptyset}) = 1 - \lambda$. But it is well-known the quaternion group has deficiency 0 so $\lambda = 1$. There is a Minkowski unit in this (short) tower. Indeed, if one computed a basis of the units of the degree 16 field that is the top of the tower and computed norms to K, the elements with norm -1 (which exist!) are Minkowski units. We have not explored computing the Minkowski unit explicitly in this case, but knowledge of the unit group of the genus field should make such an effective calculation possible.

3.3. In the context of the Fontaine–Mazur conjecture

The conjecture of Fontaine–Mazur [7, Conjecture 5a] asserts that every analytic quotient of G_{\emptyset} must be finite. By class field theory, one knows that every infinite analytic quotient of G_{\emptyset} must be of analytic dimension at least 3 (see [20, Proposition 2.12]). One knows that G_{\emptyset} is not *p*-analytic when the *p*-rank $d(Cl_K)$ of the class group Cl_K of K is large compared to $[K : \mathbb{Q}]$. See A.3.11 of [18]. Alternatively, this is (literally!) an exercise on page 78 of [35].

Suppose $G := G_{\emptyset}$ is infinite and analytic. One knows that every infinite analytic pro-*p* group contains an open *uniform* subgroup. To simplify, assume G is uniform. Denote by (G_n) the *p*-central descending series of G (it is also the Frattini series), and let $K_n = K_{\emptyset}^{G_n}$. Put $H_n = \text{Gal}(K_n/K)$; recall that $\#H_n = p^{dn}$, where $d = d(G_{\emptyset})$ is also the dimension of G_{\emptyset} as analytic group. For $n \ge 1$, denote by λ_n the Minkowski-rank of the units along K_{\emptyset}/K_n .

The hypothesis of Corollary 3.10 below is, assuming the Fontaine–Mazur Conjecture, never satisfied. We include the Corollary to indicate a possible strategy to prove G_{\emptyset} is not analytic, namely show the number of Minkowski units does not grow so rapidly in the tower.

COROLLARY 3.10. — Let G_{\emptyset} be pro-*p* analytic of dimension *d*. Then for *m* large,

$$(r_1 + r_2)[\mathbf{K}_m : \mathbf{K}] - 1 + \delta - \frac{d(d-1)}{2} \leq \lambda_m$$

 $\leq (r_1 + r_2)[\mathbf{K}_m : \mathbf{K}] - 1 + \delta - \frac{d(d-3)}{2}$

Proof. — Theorem 2.9 here, Theorem 4.35 of [6], and the assumption that G_{\emptyset} is uniform imply $Def(G_m)$ is constant and equal to $Def(G_{\emptyset}) = \frac{d(d-3)}{2}$. As remarked in the introduction, $\beta_m \leq d(G_m) = d(G) = d$. We immediately see $\lambda_m \sim (r_1 + r_2)[K_m : K]$, proving the main terms in the estimates.

We now prove the more refined estimates. Let us choose $n \gg m \gg 0$ such that:

$$\mathcal{E}_{\mathbf{K}_n} = \mathbb{F}_p[\mathbf{H}_{n,m}]^{\lambda_m} \oplus \mathbf{N}_{n,m} = \mathbb{F}_p[\mathbf{H}_n]^{\lambda} \oplus \mathbf{N}_n$$

where $\lambda = \lambda_{K_{\emptyset}/K}$, $\lambda_m = \lambda_{K_{\emptyset}/K_m}$, $H_{n,m} = \text{Gal}(K_n/K_m)$, and $N_{n,m}$ and N_n are torsion modules over $\mathbb{F}_p[H_{n,m}]$ and $\mathbb{F}_p[H_n]$ respectively.

Then by Proposition 3.1, we see $\lambda_m = [K_m : K]\lambda + \lambda_{m,n}^{new}$; the quantity $\lambda_{m,n}^{new}$ corresponds to the $\mathbb{F}_p[H_{n,m}]$ -free part in N_n . Hence, by Theorem 2.9, one has

$$Def(G_m) \ge d(\mathcal{O}_{K_m}^{\times}) - \lambda_m - \beta_m \ge d(\mathcal{O}_{K_m}^{\times}) - [K_m : K]\lambda - \lambda_{m,n}^{new} - d(G_m).$$

After noting that $d(\mathcal{O}_{\mathbf{K}_m}^{\times}) = (r_1 + r_2)[\mathbf{K}_m : \mathbf{K}] - 1 + \delta$, we get

(3.1)
$$\operatorname{Def}(\mathbf{G}_m) \ge (r_1 + r_2 - \lambda)[\mathbf{K}_m : \mathbf{K}] - 1 + \delta - d - \lambda_{m,m}^{\operatorname{new}}$$

ANNALES DE L'INSTITUT FOURIER

But $Def(G_m) = Def(G_{\emptyset}) = \frac{d(d-3)}{2}$. Hence (3.1) becomes

(3.2)
$$\lambda_{m,n}^{\text{new}} \ge (r_1 + r_2 - \lambda)[\mathbf{K}_m : \mathbf{K}] - 1 + \delta - \frac{d(d-1)}{2}$$

and

(3.3)
$$\lambda_m \ge (r_1 + r_2)[\mathbf{K}_m : \mathbf{K}] - 1 + \delta - \frac{d(d-1)}{2},$$

proving the first inequality. The upper bound follows as $Def(G_m) \leq d(\mathcal{O}_{K_m}^{\times}) - \lambda_m$ so

(3.4)
$$\lambda_m \leq (r_1 + r_2)[\mathbf{K}_m : \mathbf{K}] - 1 + \delta - \frac{d(d-3)}{2}.$$

3.4. On the cohomological dimension of G_{\emptyset}

Since the works of Labute [16], Labute–Mináč [17] and Schmidt [31], etc. one knows that in certain cases the groups G_S , for S tame, are of cohomological dimension 2. In all the examples of these papers $S \neq \emptyset$. The question of the computation of cohomological dimension of G_{\emptyset} is still an open problem (one can find partial negative answers in [21]). To prove Theorem 3.12, we need the following lemma due to Schmidt [29, Proposition 1]. We first need to define the level 3 partial Euler characteristic of a pro-p group G as

$$\chi_3(G) := 1 - d(G) + r(G) - \dim H^3(G) = 1 + \operatorname{Def}(G) - \dim H^3(G).$$

LEMMA 3.11 (Schmidt). — Let G be an infinite pro-p group such that for a fixed constant $n \ge 0$ and every open subgroup H of G, one has

$$-\chi_3(H) + n \ge -[G:H]\chi_3(G).$$

Then $cd(G) \leq 3$.

THEOREM 3.12. — Let K be a number field such that

(i) K contains a primitive *p*th root of unity;

(ii) $\mathcal{O}_{\mathrm{K}}^{\times} \cap (\mathcal{O}_{\mathrm{K}_{\emptyset}}^{\times})^p = (\mathcal{O}_{\mathrm{K}}^{\times})^p.$

Then dim $H^3(G_{\emptyset}) > 0$. Moreover:

- If dim H³(G_∅) = 1, then G_∅ is finite or of cohomological dimension 3;
- If Def(G_∅) = 0, and if G_∅ is of cohomological dimension 3, then G_∅ is a Poincaré duality group.

Proof. — As $\mathcal{O}_{\mathrm{K}}^{\times} \cap (\mathcal{O}_{\mathrm{K}_{\emptyset}}^{\times})^{p} = (\mathcal{O}_{\mathrm{K}}^{\times})^{p}$ and $\delta = 1$, one has, by Theorem 2.9, $\mathrm{Def}(\mathrm{G}_{\emptyset}) = d(\mathcal{O}_{\mathrm{K}}^{\times}) - \lambda_{\mathrm{K}_{\emptyset}/\mathrm{K}} = r_{1} + r_{2} - \lambda_{\mathrm{K}_{\emptyset}/\mathrm{K}}.$

Let H be an open normal subgroup of G_{\emptyset} and set $F = K_{\emptyset}^{H}$. Proposition 3.1 implies $\lambda_{F_{\emptyset}/F} \ge \lambda_{K_{\emptyset}/K}[G_{\emptyset}:H]$, so Theorem 2.9 implies

$$Def(H) \leq [G_{\emptyset} : H](r_1 + r_2 - \lambda_{K_{\emptyset}/K}).$$

Recalling that χ_2 is the Euler characteristic truncated at second cohomology,

$$\chi_2(\mathbf{H}) = 1 + \mathrm{Def}(\mathbf{H}) \leqslant 1 + [\mathbf{G}_{\emptyset} : \mathbf{H}](r_1 + r_2 - \lambda_{\mathbf{K}_{\emptyset}/\mathbf{K}}),$$

so $\chi_2(\mathbf{H})$ cannot be equal to $[\mathbf{G}_{\emptyset}:\mathbf{H}]\chi_2(\mathbf{G}_{\emptyset}) = [\mathbf{G}_{\emptyset}:\mathbf{H}](1+r_1+r_2-\lambda_{\mathbf{K}_{\emptyset}/\mathbf{K}})$, a necessary condition, by Theorem 5.4 of [15], for \mathbf{G}_{\emptyset} to be of cohomological dimension 2. Hence \mathbf{G}_{\emptyset} is not of cohomological 2 so dim $H^3(\mathbf{G}_{\emptyset}) > 0$.

Now suppose G_{\emptyset} is infinite and dim $H^3(G_{\emptyset}) = 1$. By Theorem 2.9 and Proposition 3.1, one has

$$\begin{bmatrix} -1 - \operatorname{Def}(\mathbf{H}) + \dim H^{3}(\mathbf{H}) \end{bmatrix} + 1 = \lambda_{\mathrm{F}_{\emptyset}/\mathrm{F}} - d(\mathcal{O}_{\mathrm{F}}^{\times}) + \dim H^{3}(\mathbf{H})$$
$$\geq [\mathrm{G}_{\emptyset} : \mathrm{H}] (\lambda_{\mathrm{K}_{\emptyset}/\mathrm{K}} - (r_{1} + r_{2}))$$
$$= [\mathrm{G}_{\emptyset} : \mathrm{H}] (-1 - \operatorname{Def}(\mathrm{G}_{\emptyset}) + \dim H^{3}(\mathrm{G}_{\emptyset}))$$

where the last equality follows from Theorem 2.9 using that $\beta = 0$ and $\dim H^3(G_{\emptyset}) = 1$. Now take n = 1 in Lemma 3.11 to conclude $cd(G_{\emptyset}) = 3$.

Finally, to check that our group is a Poincaré group, following [24, Chapter III, Section 7], we need only verify that $D_i(\mathbb{Z}/p) := \lim_{U \to U} H^i(U)^{\wedge} = 0$ for i = 0, 1, 2, where the limit is taken over open subgroups U of G_{\emptyset} and the transition maps are dual to the corestriction. Recall that cohomological dimension is nonincreasing when one restricts to a closed subgroup and that cyclic groups have infinite cohomological dimension, so as G_{\emptyset} is assumed to be of finite cohomological dimension, it is infinite and thus $D_0(\mathbb{Z}/p) = 0$. Moreover that

$$D_1(\mathbb{Z}/p) = \lim_{\substack{\to\\ \mathbf{U}}} \mathbf{U}^{ab}/p = 0$$

follows from the proof of the Principal Ideal Theorem: Namely, for a group G let G' be its (closed) commutator subgroup and let G'' be the (closed) commutator subgroup of G'. The key part of the proof of the Principal Ideal Theorem is that the transfer map

$$\operatorname{Ver}: \operatorname{G/G'} \longrightarrow \operatorname{G'/G''}$$

is the zero map. As the transfer map is the dual of the corestriction map, $D_1(\mathbb{Z}/p) = 0.$ We now show $D_2(\mathbb{Z}/p) = 0$. For $U \subset G_{\emptyset}$ open, taking the U-cohomology of the short exact sequence of trivial U-modules

$$0 \longrightarrow \mathbb{Z}/p \longrightarrow \mathbb{Q}/\mathbb{Z} \xrightarrow{p} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

gives

$$H^1(\mathbf{U}, \mathbb{Q}/\mathbb{Z}) \xrightarrow{p} H^1(\mathbf{U}, \mathbb{Q}/\mathbb{Z}) \longrightarrow H^2(\mathbf{U}, \mathbb{Z}/p)$$

which yields $(U^{ab})^{\vee}/p \hookrightarrow H^2(U, \mathbb{Z}/p)$. As $\dim(U^{ab})^{\vee}/p = \dim H^1(U)$ and Def(U) = 0 by Corollary 3.4, this injection is an isomorphism and $H^2(U, \mathbb{Z}/p)^{\wedge} \simeq U^{ab}/p \simeq H^1(U, \mathbb{Z}/p)^{\wedge}$. Since the duals of the two corestriction maps are induced by the transfer, $D_1(\mathbb{Z}/p) = 0 \Longrightarrow D_2(\mathbb{Z}/p) = 0$. \Box

Remark 3.13. — The first part of Theorem 3.12 extends the following observation that can be deduced from the relationship between Galois co-homology and étale cohomology.

We use the formalism of étale cohomology as in [23]. Suppose $Def(G_{\emptyset})$ is maximal. Then the étale version of the Hochschild–Serre spectral sequence with [30, Theorem 3.4] shows that $H^i(G_{\emptyset}) \simeq H^i_{\text{ét}}(\operatorname{Spec} \mathcal{O}_K)$ for i = 1, 2. Moreover, if G_{\emptyset} has cohomological dimension 2, then G_{\emptyset} is infinite: by [30, Lemma 3.7]) and from the Hochschild–Serre spectral sequence we also get $\{0\} = H^3(G_{\emptyset}) \simeq H^3_{\text{ét}}(\operatorname{Spec} \mathcal{O}_K) \simeq \mu_{K,p}$, where here $\mu_{K,p} = \langle \zeta_p \rangle \cap K$ (by [30, Theorem 3.4]). Hence δ must be zero.

3.5. Detecting maximality

The strategy of the Hochschild–Serre spectral sequence allows us to prove Theorem 3.14 below, a computationally feasible method of showing III_{\emptyset}^2 is maximal.

THEOREM 3.14. — Suppose there exist two linearly disjoint unramified \mathbb{Z}/p -extensions F_1/K and F_2/K such that $t_{G_i}(\mathcal{E}_{F_i}) = 0$, i = 1, 2, where $G_i = Gal(F_i/K)$. Then $Def(G_{\emptyset}) = d(\mathcal{O}_K^{\times})$ is maximal. Only one such extension F_i/K is sufficient if $F_i \not\subset K'(\sqrt[p]{\mathcal{O}_K^{\times}})$, which is the case when $\delta = 0$.

Proof. — We use the notations of Section 2.2. First note that Lemma 2.6 and the fact that $t_{G_i}(\mathcal{E}_{F_i}) = 0$ implies $\lambda = 0$.

If $\delta = 0$, Proposition 2.8 implies $\beta = 0$ so $\text{Def}(G_{\emptyset})$ is maximal by Theorem 2.9.

We now address the $\delta = 1$ case. First suppose $F_1 \not\subset K(\sqrt[p]{\mathcal{O}_K^{\times}})$. Then one can choose a set S_2 consisting of $d(\mathcal{O}_K^{\times})$ primes \mathfrak{p} of K that split completely in F_1 and whose Frobenius automorphisms form a basis of $\operatorname{Gal}(\operatorname{K}(\sqrt[p]{\mathcal{O}_{\mathrm{K}}^{\times}})/\operatorname{K})$. Since $t_{\mathrm{G}_{1}}(\mathcal{E}_{\mathrm{F}_{1}}) = 0$, by Theorem 1.1 we see that for each $\mathfrak{p} \in S_{2}$ there is a \mathbb{Z}/p -extension of F_{1} , and hence of K_{\emptyset} , ramified only at (the primes above) \mathfrak{p} . Each of these elements gives rise to a relation of G_{\emptyset} . As usual, one gets the rest of the relations "for free" by choosing primes that split completely in $\mathrm{K}(\sqrt[p]{\mathcal{O}_{\mathrm{K}}^{\times}})/\mathrm{K}$ but form a basis of $\operatorname{Gal}(\mathrm{K}(\sqrt[p]{V_{\mathrm{K},\emptyset}})/\mathrm{K}(\sqrt[p]{\mathcal{O}_{\mathrm{K}}^{\times}}))$. For such primes \mathfrak{p} there is always an abelian extension of K ramified only at \mathfrak{p} , also giving rise to a relation of G_{\emptyset} .

We study the remaining case, namely when $F_1, F_2 \subset K(\sqrt[p]{\mathcal{O}_K^{\times}})$. Choose a prime \mathfrak{q}_1 of K such that its Frobenius generates $\operatorname{Gal}(F_1/K)$ and \mathfrak{q}_1 splits in F_2 . Choose \mathfrak{q}_2 similarly. Then, as before, when we allow ramification at \mathfrak{q}_1 we obtain a ramified extension over $F_{2,\emptyset}$ and when we allow ramification at \mathfrak{q}_2 we obtain a ramified extension over $F_{1,\emptyset}$. In this case we build S_2 by starting with $S_2 = {\mathfrak{q}_1, \mathfrak{q}_2}$ and augmenting it to include primes that split completely in F_1F_2 and whose Frobenius automorphisms, along with those of \mathfrak{q}_1 and \mathfrak{q}_2 , form a basis of $\operatorname{Gal}(K(\sqrt[p]{\mathcal{O}_K^{\times}})/K)$. For each of these primes when we allow ramification at \mathfrak{p} we obtain a ramified extension over $F_{i,\emptyset}$ for i = 1, 2. Each of these primes gives rise to a relation of G_{\emptyset} and along with the "free relations" we get $\operatorname{Def}(G_{\emptyset}) = d(\mathcal{O}_K^{\times})$.

3.6. Infinite towers having Minkowski units

In this section, as we compare towers of different fields, we include the field in the subscript of G. We produce examples of number fields K for which $G_{K,\emptyset}$ is infinite, $\beta = 0$, and $Def(G_{K,\emptyset})$ is minimal. By Theorem 2.9 $\lambda > 0$ in these cases. We first need some set up.

3.6.1. Stability of towers

Let us start with the following context. Let K/k be a Galois extension of order coprime to p. Observe that K_{\emptyset}/k is Galois. Put $\Delta := \text{Gal}(K/k)$ and $\Gamma = \text{Gal}(K_{\emptyset}/k)$. By the Schur–Zassenhaus Theorem one has $\Gamma \simeq G_{K,\emptyset} \ltimes \Delta$.

Obviously $Gal(Kk_{\emptyset}/K) \simeq G_{k,\emptyset}$ and there is a natural surjective map $G_{K,\emptyset} \twoheadrightarrow G_{k,\emptyset}$. In [11] Gras shows:

THEOREM 3.15. — Suppose K/k is Galois and of degree prime to p. Then $G_{K,\emptyset} \simeq G_{k,\emptyset}$ if and only if $d(G_K) = d(G_k)$.

We give an alternative proof of this result inspired by Wingberg [39, 41]. First, let N be the closed normal subgroup of $G_{K,\emptyset}$ generated by the $g^s g^{-1}, g \in G_{K,\emptyset}, s \in \Delta$; put $G_{K,\emptyset}^+ := G_{K,\emptyset}/N$. In other words, $G_{K,\emptyset}^+$ is the largest quotient of $G_{K,\emptyset}$ on which Δ acts trivially. Since Δ acts trivially on $G_{k,\emptyset}$, the morphism $\varphi: G_{K,\emptyset} \to G_{k,\emptyset}$ factors through $G^+_{K,\emptyset}$.

Lemma 3.16. — One has $H^1(G_{k,\emptyset}) \simeq H^1(G^+_{K,\emptyset})$.

Proof. — By base change from k to K, using that $(\#\Delta, p) = 1$, we have an injection $H^1(G_{k,\emptyset}) \hookrightarrow H^1(G_{K,\emptyset}^+)$. As elements of the $H^1(G_{K,\emptyset}^+)$ correspond to ℤ/p-extensions of K on whose Galois group Δ acts trivially, these descend to k, so the injection is a surjection.

Consider now $\Gamma(p)$ the maximal pro-*p* quotient of Γ .

LEMMA 3.17. — One has $\Gamma(p) \simeq G_{k,\emptyset}$.

Proof. — Obviously, $\Gamma(p) \twoheadrightarrow G_{k,\emptyset}$. But it is easy to see that $\Gamma(p)$ corresponds to a pro-*p* extension of k unramified everywhere. By maximality, we deduce the result. □

We recall now the result of Wingberg (given in [39] when $\Delta \simeq \mathbb{Z}/2$, and in general in an unpublished work [41]).

PROPOSITION 3.18 (Wingberg). — If $d(G_{K,\emptyset}) = d(G_{k,\emptyset})$ then the natural map $G_{K,\emptyset}^+ \twoheadrightarrow G_{k,\emptyset}$ is an isomorphism and induces the injection $H^2(G_{K,\emptyset}^+) \hookrightarrow H^2(G_{K,\emptyset})^{\Delta}$.

Proof. — The Hochschild–Serre spectral sequence for

$$1 \longrightarrow M \longrightarrow G^+_{K, \emptyset} \longrightarrow G_{k, \emptyset} \longrightarrow 1$$

gives the commutative diagram (by Lemmas 3.16 and 3.17):

We then deduce that $H^1(\mathcal{M})^{\mathcal{G}_{\mathbf{k},\emptyset}} = 0$, or equivalently that $\mathcal{M} = \{e\}$ so $\mathcal{G}^+_{\mathbf{K},\emptyset} \twoheadrightarrow \mathcal{G}_{\mathbf{k},\emptyset}$ is an isomorphism and $H^2(\mathcal{G}_{\mathbf{k},\emptyset}) \simeq H^2(\mathcal{G}^+_{\mathbf{K},\emptyset}) \hookrightarrow H^2(\mathcal{G}_{\mathbf{K},\emptyset})^{\Delta}$.

We can now give an alternative proof of Theorem 3.15.

Proof. — Take the Hochschild–Serre spectral sequence of

$$1 \longrightarrow N \longrightarrow G_{K,\emptyset} \longrightarrow G^+_{K,\emptyset} \longrightarrow 1$$

to obtain

$$0 \longrightarrow H^{1}(\mathcal{G}_{\mathcal{K},\emptyset}^{+}) \longrightarrow H^{1}(\mathcal{G}_{\mathcal{K},\emptyset}) \longrightarrow H^{1}(\mathcal{N})^{\mathcal{G}_{\mathcal{K},\emptyset}^{+}} \longrightarrow H^{2}(\mathcal{G}_{\mathcal{K},\emptyset}^{+}) \longrightarrow H^{2}(\mathcal{G}_{\mathcal{K},\emptyset}).$$

By Proposition 3.18, one gets:

$$0 \longrightarrow H^{1}(\mathcal{G}^{+}_{\mathcal{K},\emptyset}) \longrightarrow H^{1}(\mathcal{G}_{\mathcal{K},\emptyset}) \longrightarrow H^{1}(\mathcal{N})^{\mathcal{G}^{+}_{\mathcal{K},\emptyset}} \longrightarrow 0.$$

Recall that $N = \{e\}$ if and only if $H^1(N)^{G_{K,\emptyset}} = 0$. Hence $G_{K,\emptyset} \simeq G^+_{K,\emptyset} \simeq G_{k,\emptyset}$ if and only if $d(G^+_{K,\emptyset}) = d(G_{K,\emptyset})$, if and only if $d(G_{k,\emptyset}) = d(G_{K,\emptyset})$. \Box

3.6.2. Example

Let $k = \mathbb{Q}(\sqrt{-3321607})$ and p = 3. It is easy to compute that d = r = 3. Furthermore, the Gal (k/\mathbb{Q}) action on $G_{k,\emptyset}$ gives that the depth of each relation is at least three so we may take $1 - 3t + 3t^3$ as a Golod–Shafarevich polynomial for G_k . As this polynomial has a root in]0, 1[we see $|G_{k,\emptyset}| = \infty$. This example is well-known (see [33]).

We will find explicit multi-quadratic fields M/\mathbb{Q} such that $d(G_{Mk,\emptyset}) = d(G_{k,\emptyset}) = 3$. Theorem 3.15 then gives $(Mk)_{\emptyset} = M(k_{\emptyset})$. The largest M we give is degree 8 so Mk is a totally complex field of degree 16 with r = d = 3 and $Def(G_{Mk,\emptyset}) = 0$. In this case $\lambda = 7$, that is there are 7 independent Minkowski units all the way up the tower $(Mk)_{\emptyset}/Mk$.

LEMMA 3.19. — For M/\mathbb{Q} multi-quadratic, to check that $d(G_{Mk,\emptyset}) = d(G_{k,\emptyset}) = 3$, it is equivalent to check that $d(G_{Nk,\emptyset}) = d(G_{k,\emptyset}) = 3$ for every quadratic extension N/k contained in Mk.

Proof. — Suppose $d(G_{Mk,\emptyset}) > 3$. The elementary 2-abelian group Gal(Mk/k) acts on the \mathbb{F}_3 -vector space $G_{Mk,\emptyset}^{3-el,ab}$. Since 2 and 3 are relatively prime and both square roots of unity lie in \mathbb{F}_3 , $G_{Mk,\emptyset}^{3-el,ab}$ decomposes as a direct sum of one-dimensional $\mathbb{F}_3[Gal(Mk/k)]$ subspaces. The trivial summands descend to k. Since we are assuming $d(G_{Mk,\emptyset}) > 3$, there is a non-trivial summand. The kernel of the action on this summand is Gal(Mk/N) where [N : k] = 2. Thus any extra generators of $G_{Mk,\emptyset}$ are realized over some N. □

PROPOSITION 3.20. — For $M = \mathbb{Q}(\sqrt{3}, \sqrt{7}, \sqrt{337})$ we have $|G_{Mk,\emptyset}| = \infty$, $d(G_{Mk,\emptyset}) = d(G_{k,\emptyset}) = 3$ and $Def(G_{Mk,\emptyset}) = 0$ is minimal. Assuming the GRH, for $M = \mathbb{Q}(\sqrt{3}, \sqrt{7}, \sqrt{r})$ with r = 383 or r = 461 we have $|G_{Mk,\emptyset}| = \infty$, $d(G_{Mk,\emptyset}) = d(G_{k,\emptyset}) = 3$ and $Def(G_{Mk,\emptyset}) = 0$ is minimal.

Proof. — As $|G_{k,\emptyset}| = \infty$, we immediately have $|G_{Mk,\emptyset}| = \infty$. We used GP-PARI and MAGMA to check $d(G_{N,\emptyset}) = 3$ for the seven quadratic extensions N/k inside Mk/k. For the computations with r = 337, we did not assume the GRH and these took several days. For r = 383 and 461 we assumed the GRH and the computations took several minutes. Theorem 3.15 implies $(Mk)_{\emptyset} = M(k_{\emptyset})$ so $r (Gal ((Mk)_{\emptyset}/Mk)) = r (Gal (k_{\emptyset}/k)) = 3$ which in turn gives $Def(G_{Mk,\emptyset}) = 7$. □

Remark 3.21. — The fields M above were found by checking all primes q less than 500 such that $d(G_{k(\sqrt{q}),\emptyset}) = d(G_{k,\emptyset}) = 3$. The first such prime was 3. We then searched this list for a second prime q_2 such that for every quadratic extension N/k inside $k(\sqrt{3}, \sqrt{q_2})$ we had $d(G_{N,\emptyset}) = 3$. We found the first $q_2 = 7$. Finally, we searched for q_3 such that for every quadratic extension N/k inside $k(\sqrt{3}, \sqrt{7}, \sqrt{q_3})$ we had $d(G_{N,\emptyset}) = 3$.

The natural question arises as to whether there are infinitely many fields M with M/k Galois of degree prime to 3 such that $d(G_{Mk,\emptyset}) = 3$ so $G_{Mk,\emptyset} = G_{k,\emptyset}$. One may also ask: Does there exist a number field K such that $|G_{K,\emptyset}| = \infty$ and $Def(G_{K,\emptyset})$ is not maximal, but for every $F \subset K$ we have either $|G_{F,\emptyset}| < \infty$ or $Def(G_{F,\emptyset})$ is maximal?

Remark 3.22. — Take p = 3. The previous approach does not allow us to produce situations with Minkowski units and such that $\delta = 1$. Indeed, let $k = \mathbb{Q}(\sqrt{n})$ be a quadratic extension, $n \in \mathbb{Z}$, $n \notin \mathbb{Z}^2 \cup -3\mathbb{Z}^2$, such that d = 3. By the "Spiegelungssatz" phenomenon of Scholz [32], the 3-rank of the class group of $\mathbb{Q}(\sqrt{-3n})$ is at least 2, showing that $k_{\emptyset}(\zeta_3) \neq (\mathbf{k}(\zeta_3))_{\emptyset}$.

4. On the depth of the relations

In this section we show the existence of Minkowski units deep in the Frattini tower imply that some of the relations of G_{\emptyset} are very deep. This makes it "more likely" that one can prove G_{\emptyset} is infinite using the Golod–Shafarevich series. We also prove a converse, namely the existence of very deep relations implies the existence of Minkowski units along the Frattini tower. One reason we study the Frattini tower as opposed to the Zassenhaus tower is that it is easier to use software for computations along the Frattini tower of K_{\emptyset}/K .

4.1. On the Zassenhaus filtration

4.1.1. Basic properties

We refer to Lazard [18, Appendice A3]. Given a finitely presented pro-p group G, let us take a minimal presentation of G

 $1 \longrightarrow \mathbf{R} \longrightarrow \mathbf{F} \stackrel{\varphi}{\longrightarrow} \mathbf{G} \longrightarrow \mathbf{1},$

where F is a free pro-p group on d generators; here d = d(G). Let I = $\ker(\mathbb{F}_p[\![F]\!] \to \mathbb{F}_p)$ be the augmentation ideal of $\mathbb{F}_p[\![F]\!]$, and for $n \ge 1$ consider $F^n = \{x \in F, x - 1 \in I^n\}$. The sequence (F^n) of open subgroups of F is the Zassenhaus filtration of F.

The depth ω of $x \in F$ is defined as being $\omega(x) = \max\{n, x - 1 \in I^n\}$, with the convention that $\omega(1) = \infty$; the function ω is a valuation following terminology of Lazard. Hence $F^n = \{g \in F, \omega(g) \ge n\}$. This allows us to define a depth ω_G on G as follows: $\omega_G(x) = \max\{\omega(g), g \in F, \varphi(g) = x\}$. Put $G^n = \{x \in G, \omega_G(x) \ge n\}$. Observe that $G^n = F^n R/R \simeq F^n/(F^n \cap R)$; the sequence (G^n) is the Zassenhaus series of G, it corresponds to the filtration arising from the augmentation ideal I_G of $\mathbb{F}[\![G]\!]$, see [18, Appendice A3, Theorem 3.5]. One has the following property. If $\pi : G' \twoheadrightarrow G$ is surjective, then ω_G is the restriction of $\omega_{G'}$; in other words,

$$\omega_{\mathcal{G}}(x) = \max\{\omega_{\mathcal{G}'}(y), y \in \mathcal{G}', \ \pi(y) = x\}.$$

Denote by (G_n) the Frattini filtration of G. Recall the well-known relationship between these two filtrations of G:

LEMMA 4.1. — One has $G_n \subset G^{2^{n-1}}$.

We say a few words about the reverse inclusions. Let H be an open normal subgroup of G. Since the groups (G^n) form a basis of neighborhoods of 1, let a(H) be the smallest integer such that $G^{a(H)} \subset H$. We want to give some estimates on a(H) in some special cases.

DEFINITION 4.2. — For a pro-p group Γ , denote by

$$\mathbf{I}_{\Gamma} := \ker(\mathbb{F}_p[\![\Gamma]\!] \longrightarrow \mathbb{F}_p),$$

the augmentation ideal of $\mathbb{F}_p[\![\Gamma]\!]$; and denote by $k(\Gamma)$ the smallest integer such that $I_{\Gamma}^{k(\Gamma)} = \{0\}$, where we allow $k(\Gamma) = \infty$.

PROPOSITION 4.3 ([15, Chapter 7, Section 7.6, Theorem 7.6]). — Let $1 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow \mathbf{1}$ be an exact sequence of pro-*p* groups. Then $I_H = \ker(\mathbb{F}_p[\![G]\!] \rightarrow \mathbb{F}_p[\![G/H]\!]).$

Following Koch's book [15, Chapter 7, Section 7.4], we give some estimates for a(H).

PROPOSITION 4.4. — One has:

(i) $a(H) \leq k(G/H) \leq |G/H|$.

- (ii) If $\Gamma' \triangleleft \Gamma$ are two finite *p*-groups, then $k(\Gamma) \leq k(\Gamma/\Gamma')k(\Gamma')$.
- (iii) $k(G/G_2) = p$.

Proof.

(i). — Take k such that $I_{G/H}^k = \{0\}$. Then by Proposition 4.3 one has $I_G^k \subset I_H$, which implies $G^k \subset H$, and then $a(H) \leq k$. In particular, $a(H) \leq k(G/H)$. For the second part of the inequality, observe that: for every finite p-group Γ , one has $I_{\Gamma}^{|\Gamma|} = \{0\}$ (see the proof of Lemma 7.4 of [15, Chapter 7, Section 7.4]), showing that $k(\Gamma) \leq |\Gamma|$.

(ii). — By Proposition 4.3, one has $I_{\Gamma}^{k(\Gamma/\Gamma')} \subset I_{\Gamma'}$, and then $I_{\Gamma}^{k(\Gamma/\Gamma')k(\Gamma')} \subset I_{\Gamma'}$, $I_{\Gamma'}^{k(\Gamma')} = \{0\}$.

(iii). — This follows as G/G_2 is *p*-elementary abelian.

For every integer $n \ge 1$, put $a_n := a(\mathbf{G}_{n+1})$. Observe that $a_1 = 1$.

PROPOSITION 4.5. — For $n \ge 2$, one has $a_n \le p^n$. Therefore $G_n \subset G^{2^{n-1}} \subset G_{(n-1)\log(2)/\log(p)}$.

Proof. — That $a_n \leq p^n$ follows from Proposition 4.4 and the fact that G_n/G_{n+1} is elementary *p*-abelian. The second part follows from the first. □

4.1.2. The Golod–Shafarevich polynomial

Consider a minimal presentation of a finitely generated pro-p group G:

$$1 \longrightarrow \mathbf{R} \longrightarrow \mathbf{F} \stackrel{\varphi}{\longrightarrow} \mathbf{G} \longrightarrow 1.$$

Suppose that $R/R^p[R, R]$ is generated as an $\mathbb{F}_p[\![F]\!]$ -module by the family $\mathcal{F} = (\rho_i)$ of elements $\rho_i \in F$. For $k \ge 2$, put $r_k = |\{\rho_i, \omega(\rho_i) = k\}|$; here we assume the r_i 's finite.

DEFINITION 4.6. — The series $P(t) = 1 - dt + \sum_{k \ge 2} r_k t^k$ is a Golod–Shafarevich series associated to the presentation \mathcal{F} of G.

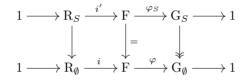
The theorem of Golod–Shafarevich asserts the following: if for some $t_0 \in (0, 1)$ one has $P(t_0) = 0$, then G is infinite (see [1] or [38]). Observe that when no information on the depth of the ρ_i is available, then one may take $1 - dt + rt^2$ as Golod–Shafarevich series for G, where $r = d(H^2(G))$.

Remark 4.7. — When $G = G_{\emptyset}$, the *p*-rank of G_n corresponds to the *p*-rank of the class group of K_n , where $K_n = K_{\emptyset}^{G_n}$. Hence by Class Field Theory and with the help of a software package, in a certain sense it is easier to test if an element of G is in G_n than if it is in G^n .

4.2. Minkowski units and the Golod–Shafarevich polynomial of G_{\emptyset}

4.2.1. The principle

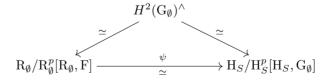
Let S be a finite saturated set of tame places of K as in Lemma 1.5, i.e. such that $H^1(G_{\emptyset}) \simeq H^1(G_S)$ and $|S| = d(V_{K,\emptyset})$. Put $d = d(G_{\emptyset})$. Let F be the free pro-p group on d generators x_1, \ldots, x_d . Consider now the minimal presentations of G_{\emptyset} and G_S induced by F, and the following diagram



Put $H_S = \ker(G_S \to G_{\emptyset})$; the pro-*p* group H_S is the normal subgroup of G_S generated by the tame inertia groups $\langle \tau_{\mathfrak{p}} \rangle_{\mathfrak{p} \in S}$. Hence, this diagram induces the following exact sequence

$$1 \longrightarrow \mathbf{R}_S \longrightarrow \mathbf{R}_{\emptyset} \xrightarrow{\psi'} \mathbf{H}_S \longrightarrow 1,$$

where $\psi' = \varphi_S \circ i$. The Hochschild–Serre spectral sequences induce the following isomorphisms



where ψ is induced by ψ' . Using ψ we will study the depth of the relations of G_{\emptyset} : indeed, $R_{\emptyset}/R_{\emptyset}^{p}[R_{\emptyset}, F]$ and $H_{S}/H_{S}^{p}[H_{S}, G_{\emptyset}]$ inherit the Zassenhaus valuation from R_{\emptyset} and H_{S} , and thus the Zassenhaus valuation of F. Therefore an element of depth k in $R_{\emptyset}/R_{\emptyset}^{p}[R_{\emptyset}, F]$ corresponds to an element of depth k in $H_{S}/H_{S}^{p}[H_{S}, G_{\emptyset}]$.

4.2.2. Minkowski elements

Here we extend the notion of Minkowski unit to the notion of Minkowski element. Set $\mathcal{V}_{K} = V_{K,\emptyset}/(K^{\times})^{p}$.

DEFINITION 4.8. — Let L/K be a Galois extension with Galois group G. We denote by $\lambda'_{L/K} := t_G(\mathcal{V}_L)$ the $\mathbb{F}_p[G]$ -rank of \mathcal{V}_L . One says that L/K has a Minkowski element if $\lambda'_{L/K} \ge 1$.

LEMMA 4.9. — One has $\lambda'_{L/K} \ge \lambda_{L/K}$, so the existence of a Minkowski unit implies that of a Minkowski element.

Proof. — This follows immediately from the exact sequence

$$(4.1) 1 \longrightarrow \mathcal{E}_{\mathcal{L}} \longrightarrow \mathcal{V}_{\mathcal{L}} \longrightarrow \operatorname{Cl}_{\mathcal{L}}[p] \longrightarrow 1. \Box$$

When L/K is a subextension of K_{\emptyset}/K one may give an upper bound for $\lambda'_{L/K}$:

PROPOSITION 4.10. — Let L/K be a nontrivial finite Galois extension in K_{\emptyset}/K . Then $\lambda'_{L/K} \leq d - 1 + r_1 + r_2$. Moreover, if K_{\emptyset}/K is infinite then there exist infinitely many Galois extensions L/K in K_{\emptyset}/K such that $\lambda'_{L/K} < d - 1 + r_1 + r_2$.

Proof. — Set H = Gal(K_∅/L). By Schreier's inequality (see [27], Corollary 3.6.3), $d(Cl_L) = d(H) \leq |G/H|(d-1) + 1$. Hence by (4.1), we get

$$d(\mathcal{V}_{\mathrm{L}}) \leqslant |\mathrm{G}/\mathrm{H}|(d-1+r_1+r_2)+\delta,$$

showing that $\lambda'_{L/K} \leq d - 1 + r_1 + r_2$.

Suppose now that G_{\emptyset} is infinite and, except for finitely many Galois extensions L/K in K_{\emptyset}/K , one has $\lambda'_{L/K} = d - 1 + r_1 + r_2$. Then

$$d(\mathcal{V}_{\mathrm{L}}) \ge |\mathrm{G/H}|(d-1+r_1+r_2)$$

and
$$d(\mathrm{Cl}_{\mathrm{L}}) \ge 1-\delta + |\mathrm{G/H}|(d-1) \ge |\mathrm{G/H}|(d-1).$$

implying

$$-\chi_1(\mathbf{H}) + 1 \ge -|\mathbf{G}/\mathbf{H}|\chi_1(\mathbf{G}_{\emptyset}).$$

By [29, Proposition 1], the Galois group G_{\emptyset} must be free pro-*p*, which is impossible.

The converse below of Lemma 1.11 follows easily from the Cheobatarev density theorem:

PROPOSITION 4.11. — Let L/K be a finite p-extension with Galois group G.

- (i) If $t_{\rm G}(\mathcal{E}_{{\rm L},\emptyset}) \ge k$, then there exist infinitely many sets $S = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_k\}$ consisting of k distinct tame primes of K such that $\# {\rm G}_{{\rm L},{\rm S}}^{ab} = \# {\rm G}_{{\rm L},\emptyset}^{ab}$.
- (ii) If t_G(V_L) ≥ k, then there exist infinitely many sets S = {p₁,..., p_k} consisting of k distinct tame primes of K such that d(G_{L,S}) = d(G_{L,Ø}).

From the computational view point, we will now consider the sequence of fields (K_n) in K_{\emptyset}/K induced by the Frattini filtration (G_n) : in other word, $K_n = K_{\emptyset}^{G_n}$. Put $H_n = \text{Gal}(K_n/K)$, and denote by $\lambda'_n := \lambda'_{K_n}$ the $\mathbb{F}_p[H_n]$ -free rank of \mathcal{V}_{K_n} .

Put $d := d(\mathbf{G}_{\emptyset})$, and $r_{\max} := d + d(\mathcal{O}_{\mathbf{K}}^{\times})$.

THEOREM 4.12. — Take $n \ge 2$. Then G_{\emptyset} can be generated by $d(G_{\emptyset})$ generators and r_{\max} relations $\{\rho_1, \ldots, \rho_{r_{\max}}\}$ such that at least λ'_n relations are of depth greater than 2^n .

Proof. — We are assuming that the $\mathbb{F}_p[\mathbb{H}_n]$ -module $\mathcal{V}_{\mathbb{K}_n}$ is isomorphic to $\mathbb{F}_p[\mathbb{H}_n]^{\lambda'_n} \oplus N$ where N is torsion. Using Chebotarev's theorem, choose a set $S' = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_{\lambda'_n}\}$ of primes of K such that

- Each \mathfrak{p}_i splits completely from K to K_n ,
- The Frobenius at a prime \mathfrak{P}_{ij} of K_n above \mathfrak{p}_i in $\operatorname{Gal}(K'_n(\sqrt[p]{\mathcal{V}_{K_n}})/K'_n)$ lies in the *i*th copy of $\mathbb{F}_p[\operatorname{H}_n] \subset \mathcal{V}_{K_n}$ and generates that copy of $\mathbb{F}_p[\operatorname{H}_n]$ under the action of H_n .

We claim $d(G_{K_n,S'}) = d(G_{K_n,\emptyset})$. Indeed, there are $|H_n|$ primes \mathfrak{P}_{ij} of K_n above \mathfrak{p}_i and they have independent Frobenius automorphisms in $Gal(K'_n(\sqrt[p]{V_{K_n}})/K'_n)$ by choice, even as we take the union over *i* from 1 to λ'_n . Gras-Munnier (Theorem 1.1) gives the equality. In fact, it gives more: $d(G_{K_m,S'}) = d(G_{K_m,\emptyset})$ for all m < n. If this were false for $m_0 < n$, there would exist a \mathbb{Z}/p -extension of L/K_{m_0} ramified at primes (above those) of *S'*. Thus LK_n/K_n would be a \mathbb{Z}/p -extension ramified only at primes (above those) of *S'* contradicting the result for *n*. We have shown that the *p*-Frattini towers of $G_{S'}$ and G_{\emptyset} agree at the first *n* levels. Thus the generators $\tau_{\mathfrak{p}_i}$ of the tame inertia groups all have depth 2^n in $G_{S'}$.

We have

$$0 \longrightarrow \amalg^2_{S'} \longrightarrow H^2(\mathbf{G}_{S'}) \xrightarrow{res} \oplus_{\mathfrak{p}_i \in S'} H^2(\mathbf{G}_{\mathfrak{p}_i})$$

and dim $\operatorname{III}_{S'}^2 \leq \dim \mathbb{B}_{S'} = r_{\max} - \lambda'_n$. We can say nothing about the depth of the relations coming from $\operatorname{III}_{S'}^2$, so we assume they have minimal depth

two. The local relations are of the form $[\sigma_{\mathfrak{p}_i}, \tau_{\mathfrak{p}_i}]\tau_{\mathfrak{p}_i}^{1-N(\mathfrak{p}_i)}$ and are easily seen to have depth at least $2^n + 1$. As

$$G_{S'}/\langle \tau_{\mathfrak{p}_1},\ldots,\tau_{\mathfrak{p}_{\lambda'_n}}\rangle\simeq \mathcal{G}_{\emptyset}$$

and taking this quotient trivializes the local relations, the theorem follows. $\hfill \square$

COROLLARY 4.13. — Assuming the hypothesis of Theorem 4.12, we may take $1 - dt + (r_{\max} - \lambda'_n)t^2 + \lambda'_n t^{2^n}$ as a Golod–Shafarevich polynomial for G_{\emptyset} .

Example 4.14. — Let us return to the field $K = \mathbb{Q}(\sqrt{5 \cdot 13 \cdot 17 \cdot 19})$ of Section 1.3.3. Take $H = K_2$, G = Gal(H/K). As seen earlier, $t_G(\mathcal{V}_H) \ge$ 1. Indeed, the existence of a Minkoswki element follows from that of a Minkowski unit. Here a Golod–Shafarevich polynomial of G_{\emptyset} can be taken to be $1 - 3t + 4t^2 + t^4$ instead of the naive choice $1 - 3t + 5t^2$.

4.2.3. The converse

Theorem 4.12 shows that the presence of Minkowski elements in the tower implies the existence of very deep relations in G_{\emptyset} . Here we show the converse, that the existence of very deep relations implies the presence of Minkowski elements.

For $n \ge 1$, recall that F is a free pro-*p* group on *d* generators, \mathbf{F}^m and \mathbf{F}_m are the Zassenhaus and Frattini filtrations, and a_n is the smallest integer such that $\mathbf{F}^{a_n} \subset \mathbf{F}_{n+1}$. Recall from Lemma 4.1 that $\mathbf{F}_n \subset \mathbf{F}^{2^{n-1}}$. See Section 4.1.1. Put $\mathbf{H}_n = \mathbf{G}_{\emptyset}/\mathbf{G}_n$ and $\mathbf{K}_n = \mathbf{K}_{\emptyset}^{\mathbf{G}_n}$.

THEOREM 4.15. — Suppose that all the relations of G_{\emptyset} are of depth at least a_n . Then

(i) if
$$\zeta_p \in \mathbf{K}, \ \lambda'_{\mathbf{K}_p/\mathbf{K}} \ge r_1 + r_2;$$

(ii) if $\zeta_p \notin K$, $\lambda'_{K_r/K} = r_1 + r_2 - 1 + d$.

Proof. — Since all the relations of G_{\emptyset} have depth a_n , we see that $G_{\emptyset}/G_{\emptyset}^{a_n} \simeq F/F^{a_n}$ has maximal Zassenhaus filtration for the first a_n steps. Thus for any set S satisfying $d(G_S) = d(G_{\emptyset})$ we have

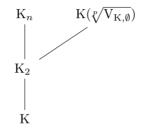
$$\mathrm{F}/\mathrm{F}^{a_n} \simeq \mathrm{G}_{\emptyset}/\mathrm{G}_{\emptyset}^{a_n} \simeq \mathrm{G}_S/\mathrm{G}_S^{a_n}$$

and since $\mathbf{F}^{a_n} \subset \mathbf{F}_{n+1}$, we also have

$$F/F_{n+1} \simeq G_{\emptyset}/G_{\emptyset,n+1} \simeq G_S/G_{S,n+1}$$

so all relations of G_{\emptyset} have depth at least n + 1 in the Frattini filtration.

We first address the case $\zeta_p \in K$. Consider the *p*-elementary abelian extensions $K(\sqrt[p]{V_{K,\emptyset}})/K$ and K_2/K , the latter being the maximal unramified *p*-elementary abelian extension of K. By Kummer theory each is formed by adjoining to K the *p*th roots of elements $\alpha \in K$. Since K_2/K is everywhere unramified, (α) is the *p*th power of an ideal, that is $\alpha \in$ $V_{K,\emptyset}$ so $K(\sqrt[p]{V_{K,\emptyset}}) \supset K_2$ and $d(\operatorname{Gal}(K(\sqrt[p]{V_{K,\emptyset}})/K_2)) = r_1 + r_2$. Note $K_n \cap K(\sqrt[p]{V_{K,\emptyset}}) = K_2$ as the intersection is both unramified over K and *p*elementary abelian over K. Let $S := \{\mathfrak{p}_1, \ldots, \mathfrak{p}_{r_1+r_2}\}$ consist of primes that split completely from K to K_2 to K_n and whose Frobenius automorphisms form a basis of $\operatorname{Gal}(K(\sqrt[p]{V_{K,\emptyset}})/K_2)$.

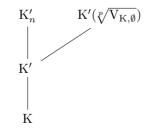


By the above discussion

(4.2)
$$\mathbf{F}/\mathbf{F}_{n+1} \simeq \mathbf{G}_{\emptyset}/\mathbf{G}_{\emptyset,n+1} \simeq \mathbf{G}_S/\mathbf{G}_{S,n+1}$$

This will imply $\lambda'_{\mathbf{K}_n/\mathbf{K}} \ge r_1 + r_2$. Indeed, above each \mathfrak{p}_i there are $[\mathbf{K}_n : \mathbf{K}]$ primes \mathfrak{P}_{ij} in \mathbf{K}_n upon which $\operatorname{Gal}(\mathbf{K}_n/\mathbf{K})$ acts transitively. If for some i the Frobenius automorphisms of the \mathfrak{P}_{ij} did not generate a distinct copy of $\mathbb{F}_p[\mathbf{G}_n]$ in $\operatorname{Gal}(\mathbf{K}_n(\sqrt[p]{\mathbf{V}_{\mathbf{K}_n,\emptyset}})/\mathbf{K}_n)$, then there would be a dependence relation among them and by Gras–Munnier we would have $d(\mathbf{G}_{\mathbf{K}_n,S}) > d(\mathbf{G}_{\mathbf{K}_n,\emptyset})$, contradicting (4.2). Thus $\lambda'_n \ge r_1 + r_2$ completing the proof in the $\delta = 1$ case.

We now consider the case $\zeta_p \notin K$. As usual, the key fact is that $\mathbf{K}'_n \cap \mathbf{K}'(\sqrt[p]{V_{\mathbf{K},\emptyset}}) = \mathbf{K}'$ (following the proof of Proposition 2.8) so $d(\operatorname{Gal}(\mathbf{K}'_n(\sqrt[p]{V_{\mathbf{K},\emptyset}})/\mathbf{K}'_n)) = r_1 + r_2 - 1 + d$.



We choose $S := \{\mathfrak{p}_1, \ldots, \mathfrak{p}_{r_1+r_2-1+d}\}$ to consist of primes of K that split completely from K to K' to K'_n and whose Frobenius automorphisms form a basis of Gal(K($\sqrt[p]{V_{K,\emptyset}})/K'$). We complete the proof exactly as in the $\zeta_p \in K$ case.

COROLLARY 4.16. — If all the relations of G_{\emptyset} are of depth at least p^2 then K_2 has a Minkowski element.

Proof. — This follows immediately from Proposition 4.5 and Theorem 4.15. $\hfill \Box$

4.3. Theorem 2.9 revisited

There is another way by which we can obtain Theorem 2.9 in the context of Golod–Shafarevich series P(t). Indeed, such a series for a pro-p group G approximates the Hilbert series $H_G(t)$ of the Zassenhaus filtration of G. In particular the Golod–Shafarevich Theorem is a consequence of this inequality: if there is some $t_0 \in [0, 1]$ such that $P(t_0) < 0$ then necessarily $H_G(t_0)$ diverges, implying the infiniteness of G.

Retain the notations of Section 2.3, and fix $n \gg 0$. Apply Corollary 4.13 to K_n/K by taking $1 - dt + (r_{\max} - \lambda)t^2 + \lambda t^{2^n}$ as a Golod–Shafarevich polynomial for G_{\emptyset} . Now, as *n* can be arbitrarily large, we see that $1 - dt + (r_{\max} - \lambda)t^2$ is a Golod–Shafarevich polynomial for G_{\emptyset} .

Of course, the question of determining λ when it is nonzero seems a hard problem, except in the case where at the beginning of the tower, we see $\lambda = 0$. Here is an explicit alternative.

COROLLARY 4.17. — Let $n \in \mathbb{Z}_{>1}$. One has:

- (i) if $t_{\mathbf{H}_n}(\mathcal{E}_{\mathbf{K}_n}) = 0$ and $\beta = 0$, then $\mathrm{Def}(\mathbf{G}_{\emptyset}) = r_1 + r_2 1 + \delta$;
- (ii) if $t_{\mathrm{H}_n}(\mathcal{E}_{\mathrm{K}_n}) = \lambda_n > 0$, then one may take $1 dt + (r_{\mathrm{max}} \lambda_n)t^2 + \lambda_n t^{2n}$ as a Golod–Shafarevich polynomial for G_{\emptyset} .

Remark 4.18. — The condition $\beta = 0$ can be relaxed as noted in Theorem 3.14.

5. The case of imaginary quadratic fields

In this section, we take p = 2 and let $K := \mathbb{Q}(\sqrt{D})$ be an imaginary quadratic field of discriminant D < -7. Since the unit rank of K is 1, we have $\text{Def}(G_{\emptyset}) \in \{0, 1\}$. In this simplest of all non-trivial situations, we will discuss the deficiency of G_{\emptyset} and explore the extent to which we can detect relations using the machinery and notation set up in Section 2.2.

5.1. The frame

Let $d = d(\operatorname{Cl}_{\mathrm{K}})$ be the 2-rank of the class group of $\mathrm{K} := \mathbb{Q}(\sqrt{D})$. By Gauss's genus theory, we know that D admits a unique (up to reordering) factorization into d + 1 integers, each of which is a "prime fundamental discriminant" – meaning it is the discriminant of a quadratic field in which a single prime ramifies. For an odd prime q, we define $q^* := (-1)^{(q-1)/2}q$. The prime discriminants are then q^* as q ranges over all odd primes, as well as -4 and ± 8 . We write $D = q_1^* \dots q_{d+1}^*$, with the convention that if D is even, then $q_{d+1}^* \in \{-4, -8, 8\}$.

Put $q_0^* = -1$ and for each *i* in the range $0 \leq i \leq d$, put

$$\mathbf{K}_i := \mathbf{K}\left(\sqrt{q_0^*}, \dots, \sqrt{q_{i-1}^*}, \sqrt{q_{i+1}^*}, \dots, \sqrt{q_d^*}\right),$$

where

$$q'_{d} = \begin{cases} q_{d}^{*} & \text{if } D \text{ is odd} \\ q_{d}^{*} & \text{if } q_{d+1}^{*} = \pm 8 \\ 2 & \text{if } q_{d+1}^{*} = -4. \end{cases}$$

Also define L' := $K(\sqrt{q_0^*}, \sqrt{q_1^*}, \dots, \sqrt{q_{d-1}^*}, \sqrt{q_d'})$. A direct computation shows that the number field L' is the governing field $K(\sqrt{V_{\emptyset}})$ (see Section 2.2). Choose prime numbers p_0, \dots, p_d that split in K and such that for each *i* in the range $0 \leq i \leq d$, the Frobenius automorphisms of the $p_j, j \neq i$ in L'/ \mathbb{Q} generate the Galois group of the quadratic extension L'/K_i. Fix a prime $\mathfrak{p}_i | p_i$ of K and put $S_2 = \{\mathfrak{p}_0\}, S_1 = \{\mathfrak{p}_1, \dots, \mathfrak{p}_d\}$, and $S = S_1 \cup S_2$. Observe that the primes p_1, \dots, p_d all are congruent to 1 mod 4 and that $p_0 \equiv 3 \mod 4$.

As the 2-part of the class group of K has d generators, Lemma 2.5 shows the existence of d independent quadratic extensions F_i above K_{\emptyset} , totally ramified at \mathfrak{p}_i , $i = 1, \ldots, d$, so $d(X_S) \ge d$. This puts us in the situation where where a difficult relation, if it exists, is detectable by the set S_2 . Now, by studying the Galois module structure of units in imaginary biquadratic number fields, we can specify conditions under which $\text{Def}(G_{\emptyset}) = 1$; see Theorem 5.3 below.

LEMMA 5.1. — Let K_0/\mathbb{Q} be a real quadratic field; $G_0 = Gal(K_0/\mathbb{Q})$. Then \mathcal{E}_{K_0} is $\mathbb{F}_2[G_0]$ -free if and only if, the norm of the fundamental unit ε is -1. More precisely, as an $\mathbb{F}_2[G_0]$ -module,

$$\mathcal{E}_{\mathrm{K}} \simeq \begin{cases} \mathbb{F}_2 \oplus \mathbb{F}_2 & N(\varepsilon) = 1\\ \mathbb{F}_2[\mathrm{G}_0] & N(\varepsilon) = -1. \end{cases}$$

ANNALES DE L'INSTITUT FOURIER

Proof. — If the norm of ε is +1, then modulo $(\mathcal{O}_K^{\times})^2$, we get $\varepsilon^{\sigma} \equiv \varepsilon$. If the norm of ε is -1, then \mathcal{E}_K is generated by $\varepsilon(\mathcal{O}_K^{\times})^2$ as G-module, and $\langle \varepsilon(\mathcal{O}_K^{\times})^2 \rangle$ is $\mathbb{F}_2[G_0]$ -free.

Recall this well-known result:

LEMMA 5.2. — Let F/\mathbb{Q} be an imaginary biquadratic field. Let K_0 be the real quadratic subfield, and let ε be the fundamental unit of K_0 . Then, $|\mathcal{O}_F^{\times}/\langle \mu_F, \varepsilon \rangle| = 1$ or 2. In particular, if F/K_0 is ramified at some odd prime, then $\mathcal{O}_F^{\times} = \langle \mu_F, \varepsilon \rangle$.

5.2. Main result

We can now prove:

THEOREM 5.3. — Let K be an imaginary quadratic field of discriminant D. Assume that we can write $D = D_1D_2$, where $D_1 > 0$ and D_2 are fundamental discriminants, such that:

- (i) the norm of the fundamental unit of $\mathbb{Q}(\sqrt{D_1})$ is +1,
- (ii) some odd prime number divides D_2 .

Then $\text{Def}(G_{\emptyset}) = 1$, and the difficult relation is detected by the quadratic extension $K(\sqrt{D_1})/K$.

Proof. — Put $F := K(\sqrt{D_1})$. As D_1 and D_2 are fundamental discriminants, then F/K is unramified. By assumption (ii) and Lemma 5.2, $\mathcal{O}_F^{\times} = \langle \varepsilon, -1 \rangle$, where ε is the fundamental unit of $\mathbb{Q}(\sqrt{D_1})$. By assumption (i) and Lemma 5.1, \mathcal{E}_F is not $\mathbb{F}_2[G]$ -free, where G = Gal(F/K): in other words $t_G(\mathcal{E}_F) = 0$. The result follows by Theorem 3.14 (here $\sqrt{-1} \notin F$).

Remark 5.4. — To elaborate further, observe that p_0 splits in F/K. Indeed, by the choice of p_0 we have, for $i = 1, \ldots, d-1$, $\left(\frac{q_i^*}{p_0}\right) = \left(\frac{q'_d}{p_0}\right) = 1$. Let us study two cases.

(a). — Suppose first that $q'_d = q^*_d$. Then by recalling that $\left(\frac{D}{p_0}\right) = 1$, one also gets $\left(\frac{q^*_{d+1}}{p_0}\right) = 1$, and then $\left(\frac{D_1}{p_0}\right) = 1$ (in this case D_1 is the product of some of the q^*_i).

(b). — Suppose now that $q'_d = 2$. Since $p_0 \equiv 3 \mod 4$ and $D = q_1^* \dots q_{d+1}^*$, we have $\left(\frac{q_d^*}{p_0}\right) = -1$. By assumption, there exists an odd prime p that divides D_2 . We may choose $p = q_d$ (before fixing p_0). Then, D_1 is the product of various q_i^* , for $i = 1, \dots, d-1$ so $\left(\frac{D_1}{p_0}\right) = 1$.

As p_0 splits completely in F/K, we see $\prod_{\mathfrak{P}|\mathfrak{p}_0} \mathcal{U}_{\mathfrak{P}}/\mathcal{U}_{\mathfrak{P}}^2$ is $\mathbb{F}_2[G]$ -free of rank 1. But as $t_G(\mathcal{E}_F) = 0$, the subgroup $I_{\mathfrak{p}_0}$ of $\mathrm{RCG}_F(\mathfrak{p}_0)$ generated by

the ramification at \mathfrak{p}_0 is not trivial. Put $I := I_{\mathfrak{p}_0}/I_{\mathfrak{p}_0}^2$. By Nakayama's lemma, the coinvariants I_G are also not trivial, hence there exists at least one quadratic extension F_1/F_{\emptyset} , Galois over K, totally ramified at some $\mathfrak{P}|\mathfrak{p}_0$, such that G acts trivially on $\operatorname{Gal}(F_1/F_{\emptyset})$. The compositum $F_1K_{\emptyset}/K_{\emptyset}$ is ramified at \mathfrak{p}_0 and produces a (d+1)st relation. This is the formalism of Example 1.6.

COROLLARY 5.5. — Let K be an imaginary quadratic field of discriminant D. Suppose D is divisible by at least two odd primes p_1, p_2 such that $p_1 \equiv p_2 \equiv 3 \mod 4$. Then $\text{Def}(G_{\emptyset}) = 1$.

Proof. — If there is another odd prime q that divides D, take $D_1 = p_1 p_2$. If $\mathbf{K} = \mathbb{Q}(\sqrt{-p_1 p_2})$ (resp. $\mathbb{Q}(\sqrt{-2p_1 p_2})$), take $D_1 = 4p_1$ (resp. $D_1 = 8p_1$).

Example 5.6 (Martinet [22]). — Take $K = \mathbb{Q}(\sqrt{-21})$. Then, by Odlyzko bounds the 2-tower K_{\emptyset}/K is finite, and it is not hard to see $G_{\emptyset} \simeq (\mathbb{Z}/2\mathbb{Z})^2$, and $\text{Def}(G_{\emptyset}) = 1$.

Example 5.7 (See Example 1.6). — Take $K = \mathbb{Q}(\sqrt{-5460})$, $D_1 = 21$ and $D_2 = -260$. We then get a difficult relation coming from the extension $K(\sqrt{21})/K$, and $\text{Def}(G_{\emptyset}) = 1$.

COROLLARY 5.8. — Suppose $k \ge 2$, and p_1, \ldots, p_k are k distinct odd primes, exactly one of which, say p_1 , is $\equiv 3 \mod 4$. For the imaginary quadratic field $K = \mathbb{Q}(\sqrt{-2p_1 \ldots p_k})$ with discriminant $D = -8p_1 \ldots p_k$, we have: $\text{Def}(G_{\emptyset}) = 1$.

Proof. — Take $D_1 = 8p_1$.

Example 5.9. — Take $K = \mathbb{Q}(\sqrt{-p_1p_2})$, with primes p_1, p_2 such that $p_1 \equiv 1 \mod 4$ and $p_2 \equiv 3 \mod 4$. Here the hypotheses of Theorem 5.3 do not apply and r = d = 1 so $\text{Def}(G_{\emptyset}) = 0$.

 \Box

Example 5.10. — The hypotheses of Theorem 5.3 do not apply for $K = \mathbb{Q}(\sqrt{-130})$. As noted by Martinet [22], in that case, G_{\emptyset} is the quaternion group so r = d = 2.

Example 5.11. — Take $K = \mathbb{Q}(\sqrt{-5 \cdot 13 \cdot 41})$. Here r = d+1 = 3; indeed the norm of the fundamental unit of $\mathbb{Q}(\sqrt{5 \cdot 41})$ is +1.

5.3. $Def(G_{\emptyset})$ is maximal almost all the time

We easily deduce from Theorem 5.3 that the presence of a Minkowski unit in a quadratic unramified extension F/K is rare, with the consequence that, generically, the deficiency of G_{\emptyset} is maximal. Let us say more precisely what we mean by the term "generically" here. Denote by \mathcal{F} the set of imaginary quadratic fields. For $X \ge 2$, put

$$\mathcal{F}(X) = \{ \mathbf{K} \in \mathcal{F}, \ |\operatorname{disc}(\mathbf{K})| \leq X \},\$$

and

$$\mathcal{F}_0(X) = \{ \mathbf{K} \in \mathcal{F}(X), \ \mathrm{Def}(\mathbf{G}_{\emptyset}) = 0 \}$$

THEOREM 5.12. — There is an absolute constant C > 0 such that for all X large enough,

$$\frac{\#\mathcal{F}_0(X)}{\#\mathcal{F}(X)} \leqslant C \frac{\log \log X}{\sqrt{\log X}} \cdot$$

In particular, when ordered by absolute value of the discriminant, the proportion of imaginary quadratic fields for which $Def(G_{\emptyset}) = 0$, tends to zero when $X \to \infty$.

Proof. — We use the analytic number theory tools of [21, Theorem 4.6] due to Fouvry. Let K be an imaginary quadratic field. Put

$$B(X) = \begin{cases} \mathbf{K} \in \mathcal{F}(X), \exists \ 2 \ \text{distinct odd primes } p \equiv q \equiv 3 \ \text{mod } 4, \\ pq \mid \text{disc}(K) \end{cases}$$

By Corollary 5.5, for every $K \in B(X)$ one has $Def(G_{\emptyset}) = 1$. Hence $\mathcal{F}_0(X)$ is in the complement C(X) of B(X).

Denote by $A_i(X)$ the set of square-free integers $n \leq X$ having exactly *i* prime factors $\equiv 3 \mod 4$, put $A(X) = A_0(X) \cup A_1(X)$. Clearly, |C(X)| = O(|A(X)|).

In the proof of Theorem 4.6 of [21], it is shown that uniformly for X large enough, one has $|A_0(X)| = O(X/\sqrt{\log X})$ and $|A_1(X)| = O(X\frac{\log \log X}{\sqrt{\log X}})$. Thus $|C(X)| = O(X\frac{\log \log X}{\sqrt{\log X}})$. We conclude by noting that $|\mathcal{F}(X)| = \frac{3}{\pi^2}X + O(\sqrt{\log X})$ (see for example [8, Section 4]).

The referee asked whether the bulk of the deficiency zero cases for p = 2and imaginary quadratic fields arise with tower group the quaternion group Q_8 of order 8, suggesting a criterion from Table II of [2] as a possible method of proving this. Let $\mathcal{F}_{Q_8}(X)$ be the number quadratic imaginary fields having discriminant bounded in absolute value by X with 2-tower group Q_8 . While it is not difficult to show, using the GRH versions of the effective Chebotarev Theorem, that

$$c\frac{(\log\log X)^2}{\log(X)} \leqslant \frac{\#\mathcal{F}_{Q_8}(X)}{\#\mathcal{F}(X)}$$

for some c > 0 and X large enough, showing that Q_8 towers are 100% of the deficiency zero cases for p = 2 seems difficult.

Acknowledgments

We thank the referee for thoroughly reading the paper, making a number of helpful suggestions and asking some interesting questions.

BIBLIOGRAPHY

- I. V. ANDOŽSKI, "On some classes of closed pro-*p*-groups", Math. USSR, Izv. 9 (1965), no. 4, p. 663-691.
- [2] E. BENJAMIN, F. LEMMERMEYER & C. SNYDER, "Imaginary quadratic fields k with cyclic Cl₂(k¹)", J. Number Theory 67 (1997), no. 2, p. 229-245.
- [3] W. BOSMA, J. CANNON & C. PLAYOUST, "The MAGMA algebra system. I. The user language", J. Symb. Comput. 24 (1997), no. 3-4, p. 235-265.
- [4] N. BOSTON & J. WANG, "The 2-class tower of Q(√-5460)", in Geometry, algebra, number theory, and their information technology applications, Springer Proceedings in Mathematics & Statistics, vol. 251, Springer, 2018, p. 71-80.
- [5] C. W. CURTIS & I. REINER, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, vol. 11, John Wiley & Sons, 1988.
- [6] J. D. DIXON, M. P. F. DU SAUTOY, A. MANN & D. SEGAL, Analytic pro-p groups, 2nd ed., London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, 1999.
- [7] J.-M. FONTAINE & B. MAZUR, "Geometric Galois representations", in *Elliptic curves, modular forms, and Fermat's last theorem*, Series in Number Theory, vol. 1, International Press, 1995, p. 41-78.
- [8] É. FOUVRY & J. KLÜNERS, "On the 4-rank of the class groups of quadratic number fields", Invent. Math. 167 (2007), no. 3, p. 455-513.
- [9] E. S. GOLOD & I. R. SHAFAREVICH, "On the class field tower", Izv. Akad. Nauk SSSR, Ser. Mat. 28 (1964), p. 261-272.
- [10] G. GRAS, Class Field Theory, From theory to practice, corr. 2nd ed., Springer Monographs in Mathematics, Springer, 2005.
- [11] —, "On the *T*-ramified, *S*-split *p*-class field towers over an extension of degree prime to *p*", *J. Number Theory* **129** (2009), no. 11, p. 2843-2852.
- [12] G. GRAS & A. MUNNIER, "Extensions cycliques T-totalement ramifiées", Publ. Math. Besançon 1998 (1998), article no. 6 (17 pages).
- [13] F. HAJIR, C. MAIRE & R. RAMAKRISHNA, "On the Shafarevich group of restricted ramification extensions of number fields in the tame case", *Indiana Univ. Math. J.* 70 (2021), no. 6, p. 2693-2710.
- [14] H. KISILEVSKY, "Number Fields with Class Number congruent to 4 mod 8 and Hilbert's Theorem 94", J. Number Theory 8 (1976), p. 271-279.
- [15] H. KOCH, Galois Theory of p-Extensions, Springer Monographs in Mathematics, Springer, 2002.
- [16] J. LABUTE, "Mild pro-p-groups and Galois groups of p-extensions of Q", J. Reine Angew. Math. 596 (2006), p. 155-182.

- [17] J. LABUTE & J. MINÁČ, "Mild pro-2-groups and 2-extensions of Q with restricted ramification", J. Algebra 332 (2011), p. 136-158.
- [18] M. LAZARD, "Groupes analytiques p-adiques", Publ. Math., Inst. Hautes Étud. Sci. 26 (1965), p. 389-603.
- [19] Y. LIU, M. M. WOOD & D. ZUREICK-BROWN, "A predicted distribution for Galois groups of maximal unramified extensions", *Invent. Math.* 237 (2024), p. 49-116.
- [20] C. MAIRE, "Cohomology of number fields and analytic pro-p-groups", Mosc. Math. J. 10 (2010), no. 2, p. 399-414.
- [21] —, "On the quotients of the maximal unramified 2-extensions of a number field", Doc. Math. 23 (2018), p. 1263-1290.
- [22] J. MARTINET, "Tours de corps de classes et estimations de discriminants", Invent. Math. 44 (1978), p. 65-73.
- [23] B. MAZUR, "Notes on étale cohomology of number fields", Ann. Sci. Éc. Norm. Supér. 6 (1973), p. 521-553.
- [24] J. NEUKIRCH, A. SCHMIDT & K. WINGBERG, Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, vol. 323, Springer, 2013, second edition, corrected second printing.
- [25] M. OZAKI, "Construction of maximal unramified *p*-extensions with prescribed Galois groups", Invent. Math. 183 (2011), no. 3, p. 649-680.
- [26] THE PARI GROUP, "PARI/GP version 2.9.4", 2018, available from http://pari. math.u-bordeaux.fr/.
- [27] L. RIBES & P. ZALESSKII, Profinite Groups, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 40, Springer, 2010.
- [28] P. ROQUETTE, "On Class Field Towers", in Algebraic Number Theory (J. W. S. Cassels & A. Fröhlich, eds.), Academic Press Inc., 1967, p. 231-249.
- [29] A. SCHMIDT, "Bounded defect in partial Euler characteristics", Bull. Lond. Math. Soc. 28 (1996), no. 5, p. 463-464.
- [30] , "Rings of integers of type $K(\pi, 1)$ ", Doc. Math. **12** (2007), p. 441-471.
- [31] ——, "Über Pro-p-Fundamentalgruppen markierter arithmetischer Kurven", J. Reine Angew. Math. 640 (2010), p. 203-235.
- [32] A. SCHOLZ, "Über die Beziehung der Klassenzahlen quadratischer Körper zueinander", J. Reine Angew. Math. 166 (1932), p. 201-203.
- [33] R. SCHOOF, "Infinite class field towers of quadratic fields", J. Reine Angew. Math. 372 (1986), p. 209-220.
- [34] W. R. SCOTT, Group Theory, Dover Publications, 1987.
- [35] J.-P. SERRE, Cohomologie Galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer, 1997.
- [36] I. R. SHAFAREVICH, "Algebraic number fields", in Proceedings of the International Congress of Mathematicians 1962, Inst. Mittag-Leffler, 1963, p. 163-176.
- [37] ——, "Extensions with prescribed ramification points", Publ. Math., Inst. Hautes Étud. Sci. 18 (1964), p. 71-95, in Russian; English translation Amer. Math. Soc. Transl., 59, p. 128-149.
- [38] È. B. VINBERG, "On a theorem concerning on infinite dimensionality of an associative algebra", Izv. Akad. Nauk SSSR, Ser. Mat. 29 (1965), p. 208-214, in Russian; English translation Amer. Mat. Soc. Transl. (2) 82, p. 237-242.
- [39] K. WINGBERG, "On Demuškin groups with involution", Ann. Sci. Éc. Norm. Supér. 22 (1989), no. 4, p. 555-567.
- [40] —, "On the Fontaine–Mazur conjecture for CM-fields", Compos. Math. 131 (2002), no. 3, p. 341-354.
- [41] ——, "Free quotients of Demushkin groups with operators", preprint, 2004.

Manuscrit reçu le 24 juillet 2021, révisé le 23 mai 2022, accepté le 10 novembre 2022.

Farshid HAJIR Department of Mathematics & Statistics University of Massachusetts Amherst, MA 01003, USA hajir@math.umass.edu

Christian MAIRE FEMTO-ST Institute, Université Bourgogne Franche-Comté, CNRS 15B avenue des Montboucons 25000 Besançon, France christian.maire@univ-fcomte.fr

Ravi RAMAKRISHNA Department of Mathematics, Cornell University Ithaca, USA ravi@math.cornell.edu