Contrôle 1

Exercice 1. Simplifier les expressions suivantes :

$$A = \frac{4}{3} \left(\frac{2}{5} - \frac{3}{2} \right) \; ; \; B = \left(\frac{3}{2} + 1 \right) \left(2 - \frac{3}{5} \times \frac{3}{11} \right) \cdot$$

Exercice 2. Ecrire l'expression suivante sous la forme $a\sqrt{b}$ avec a,b des entiers, b le plus petit possible :

$$\sqrt{20} - 3\sqrt{45} + 6\sqrt{125}$$
.

Exercice 3. Ecrire l'expression suivante sous la forme $a + b\sqrt{c}$, avec a, b, c des entiers, c le plus petit possible :

$$\frac{2-3\sqrt{10}}{3+\sqrt{10}}.$$

Exercice 4. Résoudre les équations suivantes

(a)
$$\frac{1}{2}x - \frac{1}{3} = 5x - \frac{1}{4}$$
.

(b)
$$\frac{x}{x+1} = \frac{2x+1}{x}$$
.

Exercice 5. Résoudre les inégalités suivantes

(a)
$$\frac{(2x+1)(x-2)}{(x+1)(x-1)} < 0.$$

(b)
$$\frac{x^2+1}{x-1} \ge 1$$
.

Exercice 6. Expliquer comment obtenir la courbe d'équation $y = -x^2 + 2$ à partir de la courbe d'équation $y = x^2$. Tracer ces deux courbes.

Remise à niveau en Analyse

Contrôle 2

Exercice 1. Résoudre l'équation

$$\frac{2}{5}x - \frac{3}{8} = \frac{6}{7}x - \frac{1}{3}$$

Exercice 2. Résoudre l'inégalité suivante

$$\frac{x^2 - 4}{(x - 1)(x + 3)} > 0$$

Exercice 3. Calculer les dérivées des fonctions suivantes

- (i) $f(x) = \sqrt{x^2 + 2x + 1}$.
- (ii) $g(x) = \sqrt{x}\sin(x)$.
- (iii) $h(x) = \frac{x^2 1}{x^2 + 2}$.

Exercice 4. Soit la fonction f définie par $f(x) = x^3 - 3x - 1$. On note par C_f la courbe représentative de f.

- (i) Déterminer le domaine de définition de f.
- (ii) Calculer f'(x). Donner le sens de variation de f.
- (iii) Représenter C_f .
- (iv) Donner l'équation de la tangente en C_f au point d'abscisse x=2.
- (v) Déterminer les points de C_f en lesquels la tangente est parallèle à la droite d'équation y = 2x.
- (vi) Montrer qu'il n'existe pas de tangente à C_f parallèle à la droite d'équation y = ax dès que a < -3.
- (vii) Suivant la paramètre réel k, déterminer à partir de C_f le nombre de solutions de l'équation f(x) = k.

Exercice 5. Représenter graphiquement la fonction $x \mapsto 2|x| - 2|x - 1| + 2|x + 1|$.

Remise à niveau en Analyse

Contrôle 3

Exercice 1. Résoudre l'inégalité suivante

$$\frac{x^2 - 9}{(x - 2)(x + 1)} \le 0.$$

Exercice 2. Résoudre dans $\mathbb R$ l'équation

$$\ln(x^2 - 9) = 2\ln 5 + 3\ln 2.$$

Exercice 3. Résoudre dans \mathbb{R} l'équation

$$1 + \ln x = \frac{6}{\ln x}.$$

Exercice 4. Calculer les dérivées des fonctions suivantes

- (i) $f(x) = \ln(\sin x)$.
- (ii) $g(x) = x \exp(x^2 + 1)$.

Exercice 5. Soit la fonction f définie par $f(x) = \frac{x+2}{x+1}$.

- (i) Déterminer le domaine de définition de f.
- (ii) Calculer f'(x).
- (iii) Donner le tableau de variation de f.
- (iv) Tracer la courbe C_f d'équation y = f(x).
- (v) Indiquer les asymptotes à C_f .

Remise à niveau en Analyse

Contrôle 4

Exercice 1. Déterminer une primitive pour chacune des fonctions suivantes :

- $(i) \ f(x) = xe^{-x^2}.$
- (ii) $g(x) = \frac{x^3}{x^4 + 1}$.

Exercice 2. Calculer l'intégrale suivante

$$\int_0^1 xe^{-x}dx.$$

Indication. Effectuer une intégration par parties.

Exercice 3. Soit la suite (u_n) définie par $u_0 = 0$ et la relation

$$u_{n+1} = -2u_n + 3.$$

On pose $v_n = u_n - 1$.

- (i) Calculer u_1, u_2, u_3 et v_0, v_1, v_2, v_3 .
- (ii) Montrer que (v_n) est une suite géométrique de raison -2.
- (iii) Exprimer v_n puis u_n en fonction de n.
- (iv) Que vaut u_{100} ?

Exercice 4. Ecrire le nombre complexe $z = \frac{1+i}{2-i}$ sous la forme a+ib, avec a et b réels.

Exercice 5. Trouver les solutions complexes de l'équation $z^2 + z + 1 = 0$.