Contrôle 1

Exercice 1. Simplifier l'expression suivante :

$$\frac{1}{2} + \frac{1}{5} \left(\frac{1}{3} - \frac{3}{2} \right) \cdot$$

Exercice 2. Ecrire l'expression suivante sous la forme $a + b\sqrt{c}$, avec a, b, c des entiers, c le plus petit possible :

$$\frac{1-\sqrt{37}}{6+\sqrt{37}}.$$

Exercice 3. Résoudre les équations suivantes

(a)
$$x + \frac{1}{5} = \frac{1}{3}x + \frac{1}{2}$$

$$(b) \quad \frac{x}{x-1} = \frac{x-2}{x}.$$

$$(c) \quad \frac{2x}{x-1} = \frac{x-2}{x}.$$

Exercice 4. Résoudre l'inégalité : $\frac{x(x+2)}{x-1} \le 0$.

Contrôle 2

Exercice 1. Résoudre l'équation

$$\sqrt{x+1}\sqrt{x-1} = 3.$$

Exercice 2. Résoudre l'inégalité suivante

$$\frac{x}{(x+2)(x-3)} > 0.$$

Exercice 3. Calculer les dérivées des fonctions suivantes

- (i) $g(x) = \sqrt{x}\cos(x)$.
- (ii) $h(x) = \frac{x+1}{x^2-2}$.

Exercice 4. Tracer le graphe de la fonction f(x) = |x+1| + |x+2| - |x|.

Exercice 5. Soit la fonction f définie par $f(x) = x^3 - 3x + 2$. On note par C_f la courbe représentative de f.

- (i) Calculer f'(x).
- (ii) Donner l'équation de la tangente en C_f au point d'abscisse x=2.
- (iii) Déterminer les points de C_f en lesquels la tangente est parallèle à la droite d'équation y = x.
- (iv) Montrer qu'il n'existe pas de tangente à C_f parallèle à la droite d'équation y = ax dès que a < -3.

Contrôle 3

Exercice 1. Résoudre dans \mathbb{R} l'équation : $e^x + 1 - e^{-x} = 0$.

Exercice 2. Résoudre dans \mathbb{R} l'équation : $\ln(x^2) + (\ln(x))^2 - 2 = 0$.

Exercice 3. Soit la suite (u_n) définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = 2u_n - 1 \end{cases}$

- 1) Calculer u_1 et u_2 .
- 2) Soit la suite (v_n) définie par $v_n = u_n 1$. Calculer v_0 , v_1 et v_2 .
- 3) Montrer que (v_n) est une suite géométrique de raison 2.
- 4) Exprimer u_n en fonction de n.

Exercice 4. Ecrire sous la forme "a+ib" les nombres complexes suivants :

- (i) $(1+i)^2 + i^5(1-i)$.
- (ii) $\frac{3-i}{2-i}$.

Exercice 5. Résoudre dans \mathbb{C} l'équation : (i+z)(2+i)=(z+i)(3-i).

Exercice 6. Résoudre dans \mathbb{C} l'équation : $z^2 + z + 3 = 0$.

Contrôle 4

Exercice 1. Soit $z = \frac{1 + i\sqrt{3}}{1 - i}$.

- (i) Ecrire z sous la forme "a + ib".
- (ii) Ecrire z sous forme trigonométrique.
- (iii) En déduire la valeur de $\cos(7\pi/12)$ et de $\sin(7\pi/12)$.

Exercice 2. Résoudre dans $\mathbb C$ l'équation : $z^2+z+i=0$.

Exercice 3. Soit la fonction $f(x) = \frac{1}{(x+1)(x-2)}$.

- (i) Montrer qu'il existe deux nombres réels a et b tels que $f(x) = \frac{a}{x+1} + \frac{b}{x-2}$.
- (ii) En déduire une primitive de f sur $]2, +\infty[$.

Exercice 4. Calculer les intégrales suivantes

(i)
$$\int_0^1 \frac{e^x + 2e^{2x}}{e^x + e^{2x}} dx.$$

(ii)
$$\int_0^1 (xe^{-x})dx$$
.

(iii)
$$\int_0^1 (x^2 e^{-x}) dx$$
.