
Hardware-In-the-Loop simulation of a DC-machine

with INTEL FPGA boards

P. Saenger, M. Hilairet, Member, IEEE,

FEMTO-ST, CNRS, Univ. Bourgogne Franche-Comte, UTBM

FCLAB, CNRS, Univ. Bourgogne Franche-Comte, rue Thierry Mieg, F-90010 Belfort Cedex, France

Email: mickael.hilairet@univ-fcomte.fr

Abstract—This article details a low cost Hardware-In-the-
Loop architecture for education and research. As application
example, a speed controlled DC machine is detailed, where the

emulated power converter, machine, position and current sensors
are implemented on a INTEL FPGA DE1_SoC board, while
the controller and peripherals are implemented on a second
DE1_SoC board under test. The computed data are transferred
to a personal computer and display for man-machine interface
(IHM).

I. INTRODUCTION

Hardware-In-The-Loop (HIL) or Power-Hardware-In-The-

Loop (PHIL) are more and more used in the industries in

order to validate the implementation of the controller on

the electronic control unit (ECU) [1], [2]. In another hand,

HIL and PHIL are useful simulation tools for research and

education where unitary tests can be conducted on the ECU

without damaging the real system under test [3]–[5].

The use of the Field Programmable Gate Array (FPGAs)

for HIL and PHIL is generally mandatory because of their

performances, their computing capacity and their ability to per-

form parallel processing of data; they are very good candidates

for real-time simulation [6]. Repeating several times basic

mathematical operations (multiplications, additions), parallel

processing of the FPGA can perform the calculations required

for real-time simulation with sample-period nearly equal to

100ns or higher [7].

However, the use of FPGA technology generally requires

the use of fixed-point numbers where the precision and range

are defined by the designer contrary to most processors that

process floating-point data of 32 or 64 bits. It follow that

the implementation of FPGA is not user-friendly and time

consuming to manage the compromise between precision and

the use of FPGAs resources. It’s very difficult to optimize

an aspect relative to the other. Also, the increase of the data

streams reduces the performances in the FPGA, justifying the

importance of the arithmetic operations optimization of the

models under study. Therefore, the minimization of the FPGA

resources is very important in order to find the best behavioural

system performance [8].

Nowadays, System on Chip (SoC) offers all components

of a regular processor and other peripherals into a single

chip. SoC are very useful for electronics system due to their

flexibility and power [9]. In fact, multiple software-processors

(such as the NIOS II for INTEL FPGA boards) and/or

hardware-processors (such as the ARM) can exist with regular

glue-logic into a single chip offering flexibility with regular

implementation with floating numbers. Moreover, high-level

synthesis (HLS) tool such as Vivado HLS for Xilinx or INTEL

HLS can offers an abstraction level in order to avoid VHDL or

Verilog coding and where software directives lead to different

software and hardware implementations [10], [11].

This article is dedicated to the study of a low cost Hardware-

In-the-Loop (HIL) platform for education where VHDL blocks

and soft-processor are designed. In this paper, a speed con-

trolled DC-machine is detailed, as an example for such HIL

platform, where the emulation of a DC-machine with its

converter, position and current sensors are implemented on

a INTEL FPGA DE1_SoC board, while the controller and

the peripherals are implemented on a second DE1_SoC board.

Some computed data are transferred to a personal computer

and display on a man-machine interface (IHM).

In this work, the controller and associated peripherals are

implemented on one INTEL FPGA DE1_SoC board and con-

stitute the system under test. Therefore, all the control blocks

have been designed into one FPGA board, while the emulated

system has been designed in a totally separated FPGA board

in order to have a physical separation between the controller

and system that is representative of a real system. In an

educational context, we could have used a single development

board integrating all the command and system in a way to

reduce the cost. But in such configuration the control design

would need a hardware/software update in order to remove

the emulated system in an industrial context. This follows by

extra validation tests before a real industrial production of the

board.

The paper is organized into three main sections: section two

describes the controller, while the emulated system is detailed

in section III. Finally, a control interface is discussed in section

IV.

II. CONTROLLER

A. Introduction

The controller is implemented on an INTEL FPGA

DE1_SoC board and constitute the system under test. It is

based on 4 main blocks (see Fig. 1):

• A NIOS II microcontroller composed of 3 Interrupt

Service Routines (ISR) based on 3 Timers with Vectored

Interrupt Controller (VIC),



DC-machine

NIOS II

DE1 SoC

DAC

full-bridge

converter

trigger DAC

current

1

12

14 average

voltage

current

speed

NIOS II

DE1 SoC

ADC
12

14
PWM

current

Speed

controller

duty cycle

Timer 0 100µs

INT 0

RXTXPC

ISR 0

interrupt

generation
interrupt

1

ISR 1

ISR 0

ISR 2

duty-cycle

computation

RS232 com-

munication

ON/OFF

Timer 1 1ms

Timer 2 50ms

incremental

encoder

1

16
QEP

20
position

SCLK
CS
D0
D1 Pmod AD1 Pmod DA2

PWM SoC

SCLK
CS
D0
D1

EN

IN1

A

B

IN2

sign

speed

position

Figure 1. Controller and emulated DC-machine.

• A Quadrature Encoder Pulse (QEP) VHDL block in order

to decode the two signals coming from the position

sensor,

• A ADC converter to capture the current value,

• A Pulse Width Modulation (PWM) VHDL block in

order to generate the command signals of the full-bridge

converter that is synchronized with one ISR.

B. Quadrature Encoder Pulse

The QEP module is composed of a first module that detects

both edges of the A and B signals of an incremental encoder

and a second module that count/countdown at each transition

of the A/B signals. Fig. 2 shows the clock generation from the

QEP input signals, where the frequency of the clock QCLK

generated by the QEP logic is four times that of each input

sequence. The QCLK signal is produced based on 3 flip-flop

circuits with XOR modules. In order to exclude random glitch,

the QCLK signal is produced base on the output of the first

flip-flop circuit.

At each rising edge of QCLK, the state machine represented

in Fig. (3) determines the direction of the counter (up or down)

according to the level of A and B signals, and thus increment

or decrement the counter that is an image of the relative rotor

position.

�

B

QCLK

positive direction of rot
tion neg
tive direction of rot
tion

Figure 2. Quadrature-clock decoding.

�AB)
00

01

10

11

increment
counter

increment
counter

increment
counter

increment
counter

decrement
counter

decrement
counter

decrement
counter

decrement
counter

Figure 3. State machine of the Quadrature Encoder Pulse decoding.



Figure 4. ADC timing.

C. Analog to digital converter

A Digilent Pmod AD1 module has been used [12]. It

includes two channels, 12-bit analog-to-digital converters that

features Analog Devices AD7476A with simultaneous A/D

conversion at up to 1 million samples per second.

The Pmod AD1 module communicates with the main board

via an SPI-like communication protocol. An acquisition start

by pulling the CS low followed by four zeroes and twelve

bits transmitted data, with the MSB first as shown in Fig. 4.

Here, the ADC clock at been fixed at 25MHz that leads to a

conversion time equal to 720ns (16 ADC clock cycles plus 2

extra clocks in order to respect the minimum quiet time and

start of next conversion [13]).

The ADC conversion is triggered each 50µs using the

PWM_SoC (PWM Start of Conversion) signal that it generated

at the middle of the PWM signal.

D. Speed and current controllers

As an application example, a speed controlled DC machine

with current control has been implemented in a NIOS II. The

encoder count (position) is read once during each unit time

event fixed at Tsw = 1ms base on Timer 1. Based on the

measurement of the rotor position, the “measured” speed is

deduced from an Euler backward differentiation:

ω[k] =
θ[k]− θ[k − 10]

10Tsw

(1)

where a time base equal to 10Tsw have been opt in order to

introduce a filtering of the estimated speed.

The reference current i∗ is computed by a Proportional-

Integral (IP) controller represented in Fig. 5.a and discretized

afterwards by the Euler Backward approximation. Finally, in

order to prevent from saturation of the integral term, an anti-

windup scheme has been added as shown in Fig. 5.b.

Finally, IP gains Kpw and Kiw are computed so that the

closed-loop transfer function is analog to a second order

transfer function, as follows:

ω

ω∗
=

1

1 +
Kpw

Kiw
p+ 1

Kiw
p2

=
1

1 + 2ξw
ωnw

p+ 1

ω2
nw

p2
(2)

This leads to :

Kiw = J
K
ω2

nw

Kpw = 2ξw J ωnw−f
K

(3)

where ξw and ωnw have been fixed at 1 and 4.8 rad/s respec-

tively (response time equal to 1 s).

Kiw

s

+

−

Kpw

+

−

!
∗

!

i
∗

+

−

Kpw

+

−

!
∗

!

i
∗

KiwTsw

+

+

z
−1

i
∗∗

+

−

−

a)

b)

z
−1

Figure 5. IP controller scheme.

The same procedure is adopted for the current controller

design with a compensation of the back electromotive force.

This leads to :

Kii = Lω2

ni

Kpi = 2ξiJωni −R
(4)

where ξi and ωni have been fixed at 1/
√

2 and 1500 rad/s

respectively (response time equal to 2ms). Also, the sample

time has been fix at 50µs base on Timer 0 and synchronized

with the PWM circuit.

A bi-polar command of the full-bridge converter has been

opt. Therefore, the duty-cycle α is computed as follows:

α[k] =
1

2

(

u∗∗[k]

Udc

+ 1

)

(5)

where Udc is the input voltage of the DC/DC converter (set at

200V).

E. Pulse Width Modulation

The PWM module retrieve the duty-cycle α that has been

converted into an unsigned integer number (32 bits), i.e. mul-

tiply by (N+1)Tb where the base period of the board is equal

to 20ns (50MHz) and N equal to 2499 so that the PWM period

is set to 50µs. The duty-cycle is compared to a synchronous

counter in order to compute command signals IN1 and IN2

(IN2=/IN1 when EN=1 with the bi-polar command) of the

full-bridge converter.

Timer 0 of the DE1_SoC board is based on a down binary

counter with an optional periodic pulse generator feature

(setting in Qsys) that outputs a pulse when timer reaches zero.



Figure 6. DAC timing.

It follows that this optional pulse-generator output is asserted

for one clock period to trigger the interrupt service routine

(ISR0) and reset the PWM counter, thus synchronising the

PWM module and ISR0.

As noticed before, the PWM module has an additional

output PWM_SoC (PWM Start of Conversion) in order to

synchronize the PWM signal with the ADC conversion where

the triggering signal is configurable by software.

III. EMULATED SYSTEM

A. Introduction

In practice, a drive is composed of three main components:

the electrical machine, the converter and the sensors. In our

application example, the DC-machine is speed controlled with

a control of the armature current in the inner loop. It follows

that an incremental position encoder and a current sensor

are emulated. Finally, the machine is supply by a full-bridge

converter (using hard switching) in order to work in the entire

torque/speed plane.

In order that the design is friendlier, the DC-machine is

represented by an average state space model that allows the

implementation of the discrete state space model on a NIOS

II processor [14]. Otherwise, the converter and position sensor

need an accurate computation and are thus implemented with

glue-logic into the FPGA. Fig. 1 shows the emulated system

and provides all the input/output signals and internal signals

exchanged with the INTEL NIOS II processor.

B. Full-bridge converter

Due to the fact that the machine is represented by an

average model, the full-bridge converter block analyse the two

PWM signals and PWM enable signal in order to retrieve

the desired voltage applied to the machine. Here, dead-time

and voltage drop in the converter have not been considered.

The converter is therefore supposed as ideal. In such context,

the armature current ripple due to the PWM signals is not

modelled. We can refer to [15]–[18] in order to improve the

converter modelization.

The VHDL block is synchronizing with the Timer0 interrupt

coming from the controller board (i.e. DE1_SoC). At each

time that Timer0 set the optional flag to one, the computed

value of the duty cycle of the PWM is updated and a new

computation of the PWM signals is launch.

C. Incremental encoder

The incremental encoder block generates two quadrature

signals A and B based on the computed speed in order to

emulate a quadrature encoder. Here, each signal generates 500

pulses per round.

D. Digital to analog converter

A Digilent Pmod DA2 module has been used [19]. It

includes two channels, 12-bit digital-to-analog converters that

features Texas Instruments DAC121S101 with simultaneous

D/A conversion at a clock rates up to 30 MHz [20].

The Pmod DA2 module communicates with the main board

via an SPI-like communication protocol. By pulling the CS

signal to high (it can be set to high all along the conversion),

the DAC driver send four zeroes and then twelve bits trans-

mitted data, with the MSB first as shown in Fig. 6. Here, the

DAC clock at been fixed at 25MHz that leads to a conversion

time equal to 680ns (16 DAC clock cycles).

The DAC conversion is triggered each 10µs by the trig-

ger_dac signal each time that the state vector of the DC

machine is updated.

E. DC-machine

The permanent magnet DC-motor is represented by the

continuous state space model:

d

dt
x = Ax +B1u+B2tl (6)

with state space x = [i ω]t and

A =

[

−R/L −K/L
K/J −f/J

]

(7)

B1 =

[

1/L
0

]

, B2 =

[

0
−1/J

]

(8)

where i, ω, u and tl are respectively the armature current,

the rotor velocity, the armature voltage and load torque.

R,L, J, f,K are respectively the resistance, inductance, in-

ertia, viscous coefficient and back e.m.f. constant.

The continuous-time equations of the DC-machine are dis-

cretized with a sample time equal to the PWM period (i.e.

Ts = 100µs) or at Ts = 10µs as follows:

x[k] = Adx[k − 1] +B1du[k − 1] +B2dtl[k − 1] (9)



Figure 7. Channel 1: time duration of ISR0 of the controller board, Channel
2: time duration of ISR1 of the controller board, Channel 3: signal coming
from Timer0 to synchronize the boards, Channel 4: time duration of ISR0 of
the emulator board.

with

Ad = eATs (10)

B1d = A−1(Ad − I)B1 (11)

B2d = A−1(Ad − I)B2 (12)

and executed at each sample time in the NIOS II microcon-

troller ISR0.

F. Interrupt generation block

The simplest way to trigger the ISR0 consist in the imple-

mentation of a timer with a sample time equal to the PWM

period, i.e. Ts = 100µs in this application example. However

such solution leads to two drawbacks:

• The resolution of the discrete time state space model is

not accurate because we have nearly ten computations

during an electrical transient.

• The ISR0 is not synchronized with the controller board

due to clock drift between the two boards (see Fig. 7-

Channel 4).

One solution consist in the implementation of a own inter-

rupt generation controller with a sample time set at Ts = 10µs

(just greater that the time duration of the ISR0, i.e. 5.86µs)

and re-synchronized each 100µs by using the signal coming

from the controller board as shown in Fig. 8.

IV. MAN-MACHINE INTERFACE

In order to receive and send data to the controller, one RS-

232 serial port between the PC and INTEL FPGA controller

board has been implemented. The computed data as current

and speed are transferred to a personal computer and display

on an own interface as shown in Fig. (9). The interface has

been design with Lazarus, a cross-platform IDE for Rapid

Application Development [21]. Otherwise, the load torque is

defined based on the FPGA switch position.

All the data are transferred with a sample time set at 50ms

base on Timer2 of the controller board. Also base on the

Figure 8. Channel 1: time duration of ISR0 of the controller board, Channel
2: time duration of ISR1 of the controller board, Channel 3: signal coming
from Timer0 to synchronize the boards, Channel 4: time duration of ISR0 of
the emulator board.

Figure 9. Man machine interface for control and validation.

DAC converter, it is possible to capture the current and speed

transients as shown in Fig. 10.

V. CONCLUSION

This article has detail the models and control of a DC

machine for a low cost Hardware-In-The-Loop platform with

INTEL FPGA boards for educational and research purpose.

The emulated power converter, machine, position encoder and

current sensor are implemented on a DE1_SoC board while

the controller and peripherals are implemented on a second

DE1_SoC board. Finally, all the computed data are transferred

to a personal computer and display on a man-machine interface

(IHM) for validation of the controller performances.

The perspectives of this work are numerous.



Figure 10. Current and speed response time.

• Firstly, the whole system needs development such as the

design of an instantaneous model of the converter in order

to capture the current ripples [6], [16]–[18], [22]–[25]. In

this context, sample times nearly 100ns are mandatory so

that to capture the PWM signals transition and compute

precisely the current. It follows that such development

needs fixed or floating point VHDL code.

• Secondly, SoC platform combine dual or quad-core ARM

Cortex A9 or A53 MPCore hard processor system that of-

fers significant computing power for bare-metal program-

ming. Comparison between NIOS and ARM processors

could be done.

• Thirdly, this system could be adapted to other electrical

machines. In order to introduce the control of renewable

energy system such as photovoltaic panel, it could be also

interesting to adapt such work with a MPPT (Maximum

Power Point Tracking) control.

REFERENCES

[1] P. Fajri, V. Prabhala, and M. Ferdowsi, “Emulating on-road operating
conditions for electric-drive propulsion systems,” IEEE Transactions on

Energy Conversion, vol. PP (99), 2015.
[2] H. Zhang, Y. Zhang, and C. Yin, “Hardware-in-the-loop simulation

of robust mode transition control for a series-parallel hybrid electric
vehicle,” IEEE Transactions on Vehicular Technology, vol. PP (99),
2015.

[3] B. Lu, X. Wu, H. Figueroa, and A. M. ., “A low-cost real-time
hardware-in-the-loop testing approach of power electronics controls,”
IEEE Transactions on Industrial Electronics, vol. 54 (2), pp. 919–931,
2007.

[4] C. Dufour, H. Blanchette, and J. Belanger, “Very-high speed control
of an fpga-based finite-element-analysis permanent magnet synchronous
virtual motor drive system,” 34th Annual Conference of IEEE Industrial

Electronics Society (IECON), pp. 2411–2416, 2008.
[5] J. Mahseredjian, V. Dinavahi, and J. Martinez, “Simulation tools for

electromagnetic transients in power systems: Overview and challenges,”
IEEE Transactions on Power Delivery, vol. 24 (3), pp. 1657–1669, 2009.

[6] T. Ould-Bachir, C. Dufour, J. Belanger, J. Mahseredjian, and J. David,
“Effective floating-point calculation engines intended for the fpga-based
hil simulation,” IEEE International Symposium on Industrial Electronics

(ISIE), pp. 1363 – 1368, 2012.
[7] Y. Chen and V. Dinavahi, “An iterative real-time nonlinear electro-

magnetic transient solver on fpga,” IEEE Transactions on Industrial

Electronics, vol. 58 (6), pp. 2547 – 2555, 2011.
[8] N. R. Tavana and V. Dinavahi, “A general framework for fpga-based

real-time emulation of electrical machines for hil applications,” EEE

TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 62(4), pp.
2041–2053, 2015.

[9] T. Liang and V. Dinavahi, “Real-time device-level simulation of mmc-
based mvdc traction power system on mpsoc,” IEEE Transactions on

Transportation Electrification, 2018.
[10] D. Tormo, L. Idkhajine, E. Monmasson, and R. Blasco-Gimenez, “Evalu-

ation of soc-based embedded real-time simulators for electromechanical
systems,” 42nd Annual Conference of the IEEE Industrial Electronics

Society (IECON), pp. 4772–4777, 2016.
[11] D. Tormo, R. Vidal-Albalate, L. Idkhajine, E. Monmasson, and

R. Blasco-Gimenez, “Study of system-on-chip devices to implement
embedded real-time simulators of modular multi-level converters using
high-level synthesis tools,” IEEE International Conference on Industrial

Technology (ICIT), pp. 1447–1452, 2018.
[12] https://store.digilentinc.com/pmod-ad1-two-12-bit-a-d-inputs/.
[13] Analog Devices, AD7476A/AD7477A/AD7478A Data sheet,

http://www.analog.com/media/cn/technical-documentation/evaluation-

documentation/AD7476A_7477A_7478A.pdf.
[14] K. Lian and P. Lehn, “Real-time simulation of voltage source converters

based on time average method,” IEEE Transactions on Power Systems,
vol. 20 (1), pp. 110–118, 2005.

[15] P. Pejovic and D. Maksimovic, “A method for fast time-domain simula-
tion of networks with switchesa method for fast time-domain simulation
of networks with switches,” IEEE Transactions on Power Electronics,
vol. 9(4), pp. 449 – 456, 1994.

[16] H. F. Blanchette, T. Ould-Bachir, and J. David, “A state-space modeling
approach for the fpga-based real-time simulation of high switching fre-
quency power converters,” IEEE Transactions on Industrial Electronics,
vol. 59(12), pp. 4555 – 4567, 2012.

[17] M. Dagbagi, L. Idkhajine, E. Monmasson, and I. Slama-Belkhodja,
“Fpga implementation of power electronic converter real-time model,”
International Symposium On Power Electronics, Electrical Drives, Au-

tomation and Motion (SPEEDAM), pp. 658 – 663, 2012.
[18] M. Dagbagi, A. Hemdani, L. Idkhajine, M. Naouar, E. Monmasson, and

I. Slama-Belkhodja, “Fpga-based real-time hardware-in-the-loop valida-
tion of a 3-phase pwm rectifier controller,” 39th Annual Conference of

the IEEE Industrial Electronics Society, IECON, pp. 5374 – 5379, 2013.
[19] “https://store.digilentinc.com/pmod-da2-two-12-bit-d-a-outputs/.”
[20] Texas Instruments DAC121S101 Data sheet,

http://www.ti.com/lit/ds/symlink/dac121s101.pdf.
[21] https://www.lazarus ide.org/.
[22] S. Hui and S. Morrall, “Generalised associated discrete circuit model

for switching devices,” IEE Proceedings Science, Measurement and

Technology, vol. 141(1), pp. 57 – 64, 1994.
[23] M. Dagbagi, A. Hemdani, L. Idkhajine, W. Naouar, E. Monmasson, and

I. S. Belkhodja, “Adc-based embedded real-time simulator of a power
converter implemented in a low cost fpga: Application to a fault-tolerant
control of a grid-connected voltage source rectifier,” IEEE Transactions

on Industrial Electronics, vol. 63(2), pp. 1179–1190, 2016.
[24] M. R. Larijani, M. Zolghadri, and M. Shahbazi, “Design and implemen-

tation of an fpga-based real-time simulator for h-bridge converter,” 7 th

Power Electronics, Drive Systems & Technologies Conference (PEDSTC

2016), 2016.
[25] M. Rezayati and M. R. Zolghadri, “Optimal down sampling for adc-

based real-time simulation of basic power electronic converters,” 8th

Power Electronics, Drive systems Technologies Conference (PEDSTC),
2017.


