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Besançon 25030, France

e-mail: huhp@hust.edu.cn

Longxiang Dai
Department of Mechanics;

Hubei Key Laboratory of Engineering Structural

Analysis and Safety Assessment,

Huazhong University of

Science and Technology,

Wuhan 430074, China

Hao Chen
Department of Mechanics;

Hubei Key Laboratory of Engineering Structural

Analysis and Safety Assessment,

Huazhong University of

Science and Technology,

Wuhan 430074, China

Shan Jiang
Department of Mechanics;

Hubei Key Laboratory of Engineering Structural

Analysis and Safety Assessment,

Huazhong University of

Science and Technology,

Wuhan 430074, China;

Franche-Comt�e Electronique M�ecanique

Thermique et Optique, CNRS UMR 6174,

Universit�e de Bourgogne Franche-Comt�e,
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Two Methods to Broaden
the Bandwidth of a Nonlinear
Piezoelectric Bimorph
Power Harvester
We propose two methods to broaden the operation bandwidth of a nonlinear
pinned–pinned piezoelectric bimorph power harvester. The energy-scavenging structure
consists of a properly poled and electroded flexible bimorph with a metallic layer in the
middle, and is subjected to flexural vibration. Nonlinear effects at large deformations
near resonance are considered by taking the in-plane extension of the bimorph into
account. The resulting output powers are multivalued and exhibit jump phenomena. Two
methods to broaden the operation bandwidth are proposed: The first method is to extend
the operation frequency to the left single-valued region through optimal design. The sec-
ond method is to excite optimal initial conditions with a voltage source. Larger output
powers in the multivalued region of the nonlinear harvester are obtained. Hence, the
operation bandwidth is broadened from the left single-valued region to the whole multi-
valued region. [DOI: 10.1115/1.4035717]

Keywords: piezoelectric power harvester, nonlinearity, multivalued region, jump
phenomena

1 Introduction

Piezoelectric materials have been used to make various electro-
mechanical transducers for a long time. In particular, polarized
ferroelectric ceramics have been used for force or power handling

devices including actuators and transformers, due to their strong
piezoelectric coupling. Recently, operating some of these devices
without a wired power source has become an important issue,
because of the rapid development of wireless electronic devices in
both civilian and military applications. One approach is to harvest
energy from the operating environment. As small electronic devi-
ces with a very low power requirement, piezoelectric materials
are natural candidates for making devices that can scavenge ambi-
ent energy by converting mechanical energy into electric energy
[1]. Such a piezoelectric device is called piezoelectric generator,
or power harvester, or energy harvester.
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Linear piezoelectricity theory can be used to describe the basic
behavior of piezoelectric structures. Basing on it, the dependence
of the performance of piezoelectric power harvesters upon the
structure and the electric circuit parameters has been extensively
studied. When operated near resonance, the piezoelectric power
harvester can convert most mechanical vibration energy into elec-
trical energy, since relatively strong mechanical deformations are
induced. However, nonlinear phenomena occur when a piezoelec-
tric structure operates in the resonance region [2]. Therefore, it is
crucial to predict the resonance behavior for the design of piezo-
electric power harvesters. Because nonlinear effects are very often
undesirable, a nonlinear analysis is required to determine the oper-
ating range of a power harvester. Nonlinear coupling between the
piezoelectric structure and the storage circuit with a rectifier
bridge has been studied [3,4]. Hu et al. [5] studied the nonlinear
behavior of a piezoelectric harvester with a plate structure operat-
ing in thickness-shear vibration mode. Xue and Hu [6] studied the
nonlinear behavior of a plate piezoelectric structure harvesting
energy from axisymmetric vibration. Wang et al. [7,8] studied the
nonlinearity of a piezoelectric circular plate supporting flexural
modes. Nonlinear techniques have been proposed for broadband
energy harvesting. Ramlan et al. [9] investigated the potential
benefits of a nonlinear stiffness in an energy harvesting device by
using a mass–spring–damper system. Magnetic nonlinearity was
incorporated into a linear system to broaden its operating band-
width [10,11]. Leadenham and Erturk [12] developed an M-
shaped piezoelectric energy harvester configuration that can
exhibit a nonlinear frequency response which offers a 660%
increase in the half-power bandwidth as compared to the linear
system. Yang et al. [13] proposed a compressive-mode piezoelec-
tric energy harvester and developed an analytical model of the
nonlinear mechanical and electrical behaviors of the system, tak-
ing into account nonlinear stiffness, nonlinear damping, and non-
linear piezoelectricity. Bistable energy harvesting devices
comprising a piezoelectric cantilever beam or plate and an appara-
tus to impose axial force may be effective across a broad-
frequency bandwidth [14–17]. However, one main challenge is to
maintain high-energy orbits for maximum power harvesting per-
formance [15]. Maintaining high-energy orbits somehow depends
on the level of ambient vibration. To overcome the challenge,
there exist several methods to push the system to the higher
energy state: controlling the input displacement level, sweeping
the frequency down then sweeping quasi-statically back up,
changing a phase lag between the harvested frequency and a sec-
ond controlled input frequency, etc.

In this work, we propose two methods to broaden the operation
bandwidth of a pinned–pinned piezoelectric bimorph power har-
vester. The first method is to make the left single-valued fre-
quency region wider by designing the parameters of the system.
The second method is to impose actively a set of initial conditions
to boost the output power within the multivalued region. The pro-
posed bimorph vibrates with flexural motion coupled with
in-plane extension. Ambient low-frequency vibrations contain
abundant energy. A bimorph in deflection mode has a relatively
low natural frequency and easily resonates from ambient vibra-
tions [18]. The constitutive relations are derived, and the equilib-
rium and compatibility equations of a piezoelectric bimorph with
flexural modes are established in Sec. 2. Nondimensionalization
and the harmonic balance method are employed. The output
power of a bimorph power harvester is obtained in Sec. 3. Two
methods to broaden the operation bandwidth are demonstrated in
Sec. 4, and a few conclusions are drawn in Sec. 5.

2 Analysis of a Piezoelectric Bimorph Power

Harvester

As shown in Fig. 1, the structure of a pinned–pinned piezoelec-
tric bimorph power harvester consists of a bimorph with a metallic
layer in the middle. One layer of the bimorph is polarized along
the thickness direction and the other layer is polarized with the

opposite poling direction. Values for material constants and geo-
metric parameters of the harvester are listed in Table 1. A concen-
trated mass is not introduced into the harvester since its effect on the
harvester has been studied extensively [19–21]. The ambient vibra-
tion is simulated as a sinusoidal pressure with the driving frequency
x0, uniformly acting on the surface of the piezoelectric layer. Two
surfaces and two interfaces of the bimorph are covered by electrodes
which are represented by thick lines. Fig. 1(b) shows the cross section
A, and the electric load which is simplified by a resistor R. Because
the energy-scavenging structure is pinned–pinned as shown in Fig.
1(a), it is not allowed to present any in-plane displacement at the two
ends, x1 ¼ 0 and x1 ¼ L. Therefore, a coupled flexural-extension
vibration is driven by the sinusoidal pressure.

According to the classical theory for coupled flexural and
extensional vibrations of beams [22–24], the in-plane normal
strain of the beam can be written as

S1 ¼ u1;1 þ
1

2
u2

3;1 � x3u3;11 (1)

where u1ðx1; tÞ and u3ðx1; tÞ are the extensional and the flexural
displacements of the neutral layer of the bimorph, respectively.

Fig. 1 A pinned-pinned piezoelectric bimorph power har-
vester: (a) front view and (b) side view of the structure

Table 1 Material constants and geometric properties of the
harvester

Parameter, symbol Value

Metal layer
Young’s modulus, E 70 GPa
Mass density, q 2700 kg/m3

Length, L 100 mm
Width, b 8 mm
Thickness, 2c 0.4 mm

Piezoelectric layer
Elastic compliance constant, s11 16.5 m2/N
Piezoelectric constant, d31 �274� 10�12 C/N
Dielectric constant, e33 3.01� 10�8 C/(V�m)
Mass density, q’ 7500 kg/m3

Length, L 100 mm
Width, b 8 mm
Thickness, h-c 0.3 mm

Other
Electric load, R 1 MX
Mechanical damping coefficient, n 0.003
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These displacements are independent of x2 and x3. Subscripts 1
and 11 preceded by a comma denote the partial derivatives @=@x1

and @2=@x2
1, respectively.

The electric voltages corresponding to the electrode configura-
tion in Fig. 1(b) are denoted by Vþ for x3 ¼ h and V� for x3 ¼ �h
[7,25]. Superscripts “þ” and “�” represent the top and bottom
electrodes, respectively. The electrodes on the two interfaces of
the bimorph are grounded as a voltage reference. The electric field
in the ceramic layers corresponding to the electrode configura-
tions, as shown in Fig. 1, has the following components:

E1 ¼ 0; E2 ¼ 0; E3 ¼ �u;3 (2)

where u is the electrical potential across the piezoelectric layers.
Only the axial stress is considered under the usual one-
dimensional stress approximation of a beam [26,27]

T1 ¼ T1ðx1; tÞ (3)

Then, the relevant constitutive relations for the ceramic layers
can be written as [28]

S1 ¼ s11T1 þ d31E3

D3 ¼ d31T1 þ e33E3

(4)

where s11, e33, and d31 represent the axial elastic compliance
measured with fixed electric field, the transverse dielectric con-
stant measured with fixed stress, and the transverse-axial piezo-
electric coefficient, respectively. The axial stress T1 and the
transverse electric displacement D3 can be solved from Eq. (4)

T1 ¼ s�1
11 S1 � �e31E3

D3 ¼ �e31S1 þ �e33E3

(5)

where �e31 ¼ d31=s11 and �e33 ¼ e33ð1� k2
31Þ with

k2
31 ¼ d2

31=ðe33s11Þ:
The electric displacement satisfies the Gauss theorem of

electrostatics

D3;3 ¼ 0 (6)

For the upper piezoelectric layer, the electric field E3 and the
electric potential across it can then be solved through Eqs. (1), (2),
(5) and (6):

E3¼ g31 u3;11x3�u1;1�
1

2
u2

3;1

� �
þc1

u¼�
ð

E3dx3¼�g31

1

2
u3;11x2

3�u1;1x3�
1

2
u2

3;1x3

� �
�c1x3þc2

(7)

where g31 ¼ �e31=�e33. c1 and c2 are constants independent of x3

which are determined by the electric potential boundary condi-
tions u ¼ 0 at x3¼ c and u ¼ Vþ at x3¼ h. The precise expres-
sions of the electric field and of the electric displacement of the
upper piezoelectric layer are thus obtained as

E3upper ¼ �
Vþ

h� c
� g31

2
cþ h� 2x3ð Þu3;11 (8)

D3upper ¼ �
�e33Vþ

h� c
� �e31

2
cþ hð Þu3;11 � 2u1;1 � u2

3;1

h i
(9)

Similarly, for the lower piezoelectric layer, we have

E3lower ¼
V�

h� c
� g31

2
cþ hþ 2x3ð Þu3;11 (10)

D3lower ¼
�e33V�

h� c
� �e31

2
cþ hð Þu3;11 þ 2u1;1 þ u2

3;1

h i
(11)

The metallic layer in the middle is assumed to be isotropic and
elastic. Hence its constitutive relation is stated as Hooke ’s law

T1 ¼ ES1 (12)

where E is Young’s modulus. The bending moment is defined by
the following integral over a cross section of the beam and can be
integrated explicitly with the expression for T1 in Eqs. (5) and
(12) as

M ¼
ð

A

x3T1dx2dx3 ¼ �Du3;11 þ GV (13)

where D ¼ 2½s�1
11 bðh3 � c3Þ þ Ebc3�=3 and G ¼ bðhþ cÞ�e31=2.

V ¼ Vþ � V� represents the output voltage of the harvester. The
axial force FN corresponding to stretching in the x1 direction is
defined by the following integral over the cross section of the
bimorph and can be integrated using the expression for T1 in Eqs.
(5) and (12) as

FN ¼
ð

A

T1dx2dx3

¼ f1 u1;1 þ
1

2
u2

3;1

� �
þ b�e31 Vþ þ V�ð Þ

(14)

where f1 ¼ 2b½s�1
11 ðh� cÞ þ Ec�. The axial force is averaged along

the length direction as

�FN ¼
1

L

ðL

0

FNdx1

¼ f1

2L

ðL

0

u2
3;1dx1 þ b�e31 Vþ þ V�ð Þ

(15)

where boundary conditions u1ð0; tÞ ¼ u1ðL; tÞ ¼ 0 are applied. As
the bimorph is driven by an external vibration, deflection is its
major deformation and the in-plane displacement can be consid-
ered a higher-order effect. Therefore, the deflection and the corre-
sponding stress components mainly need to be taken into account.
The equilibrium equations for a beam under vibration with large
deflection can be written as [6,7,23,24]

FN;1 ¼ 0

M;11 þ ðFNu3;1Þ;1 þ bpðx1; tÞ � m€u3 ¼ 0
(16)

where m ¼ 2qcbþ 2q0ðh� cÞb is the mass per unit length of the
beam, with q and q0 being the mass densities of metal and
ceramic, respectively. The uniform pressure pðx1; tÞ ¼ p0 sin x0t
is the load acting on the surface of the beam. A superimposed dot
indicates differentiation with respect to time t.
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The charge on the top electrode of the bimorph is

Qþ ¼ �b

ðL

0

D3upperdx1

¼ G u3;1 L; tð Þ � u3;1 0; tð Þ
� �

� �e31b

2

ðL

0

u2
3;1dx1 þ CpVþ

(17)

where Cp ¼ �e33bL=ðh� cÞ. The charge on the bottom electrode of
the bimorph is

Q� ¼ b

ðL

0

D3lowerdx1

¼ �G u3;1 L; tð Þ � u3;1 0; tð Þ
� �

� �e31b

2

ðL

0

u2
3;1dx1 þ CpV�

(18)

The currents flowing out of the top and the bottom electrodes
satisfy

Iþ ¼ � _Q
þ ¼ �I� ¼ _Q

�
(19)

hence

Iþ ¼ �
_Q
þ � _Q

�

2
(20)

Furthermore, the output voltage V and the output current I satisfy
Ohm’s law

I ¼ V

R
(21)

where I ¼ Iþ. The combination of Eqs. (17), (18), (20), and (21)
yields

V ¼ �GR _u3;1 L; tð Þ � _u3;1 0; tð Þ
� �

� Cp

2
R _V (22)

From Eqs. (17)–(19), we also have

CpðVþ þ V�Þ � �e31b

ðL

0

u2
3;1dx1 ¼ 0 (23)

It should be noticed that Vþ þ V� is at most a function of the time
t but does not depend on x1. Substituting Eqs. (13)–(15), and (23)
into (16) yields the equation of motion of the beam

Du3;1111 � f2u3;11

ðL

0

u2
3;1dx1 � bp0 sin x0tþ m€u3 ¼ 0; (24)

where f2 ¼ ðf1=2LÞ þ ð�e2
31b2=CpÞ.

The boundary conditions for a pinned-pinned beam are

u3ð0; tÞ ¼ u3ðL; tÞ ¼ 0

Mð0; tÞ ¼ MðL; tÞ ¼ �Du3;11 þ GV ¼ 0
(25)

3 Nondimensionalization and Solutions

The solutions should satisfy the equation of motion (24) and the
boundary conditions (25). Hence, we let

u3ðx1; tÞ ¼ wðx1; tÞ þ vðx1; tÞ (26)

where wðx1; tÞ satisfies the homogenous boundary conditions

wð0; tÞ ¼ wðL; tÞ ¼ 0

w;11ð0; tÞ ¼ w;11ðL; tÞ ¼ 0
(27)

In order to meet the boundary conditions (25), we add the particu-
lar solution

v x1; tð Þ ¼
G

2D
x1 x1 � Lð ÞV tð Þ (28)

After substitution of Eq. (26), the equation of motion (24)
becomes an equation for w and V

€w þ G

2D
x1 x1 � Lð Þ €V þ D

m
w;1111 �

f2

m
w;11 þ

G

D
V

� �

�
ðL

0

w2
;1dx1 �

2GV

D

ðL

0

wdx1 þ
G2L3V2

12D2

 !

� bp0

m
sin x0t ¼ 0 (29)

Dimensionless parameters are defined as follows:

�x1 ¼
x1

L
; W ¼ w

h
; �V ¼ V=

Dh

GL2
; Xn ¼

xn

x1

; X0 ¼
x0

x1

;

�t ¼ tx1; �p0 ¼ p0b=mhx2
1

where x1 ¼ p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=mL4

p
. The equation of motion (29) and the cir-

cuit equation (22) become

@2W

@�t2
þ 1

2
�x1 �x1 � 1ð Þ d

2 �V

d�t2
þ D

mL4x2
1

@4W

@�x4
1

� �p0 sin X0�t

� a0

@2W

@�x2
1

ð1

0

@W

@�x1

� �2

d�x1�2 �V
@2W

@�x2

ð1

0

Wd�x1 þ
1

12
�V

2 @
2W

@�x2
1

"

þ �V

ð1

0

@W

@�x1

� �2

d�x1 � 2 �V
2
ð1

0

Wd�x1 þ
1

12
�V

3

#
¼ 0;

�V ¼ �C0Rx1

@2W 1;�tð Þ
@�x1@�t

� @
2W 0; �tð Þ
@�x1@�t

� �
� Rx1 C0 þ

Cp

2

� �
d �V

d�t

(30)

where a0 ¼ h2f2=mL3x2
1, C0 ¼ G2L=D.

Since only homogenous boundary conditions (27) are involved,
Wð�x1;�tÞ can be expressed by functions with the separate variables
�x1 and �t, and can be expanded as a linear superposition of modal
functions /nð�x1Þ as

Wð�x1;�tÞ ¼
XN

n¼1

znð�tÞ/nð�x1Þ (31)

Linear modal functions /nð�x1Þ meet the linear motion equation
and homogenous boundary conditions

/0000n � k4
n/n ¼ 0

/nð0Þ ¼ /nð1Þ ¼ 0; /00nð0Þ ¼ /00nð1Þ ¼ 0
(32)

where k4
n ¼ x2

nmL4=D. From Eq. (32), we obtain

/nð�x1Þ ¼
ffiffiffi
2
p

sin kn�x1; kn ¼ np; n ¼ 1; 2;… (33)

Since
Ð 1

0
/mð�x1Þ/nð�x1Þd�x1 ¼ dmn, the modal basis is orthogonal.

Substituting Eq. (31) into Eq. (30), multiplying by /nð�x1Þ on both
sides, and integrating on �x1 from 0 to 1, we obtain the set of non-
linear ordinary differential equations
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d2zn

d�t2
�

ffiffiffi
2
p

1� cos knð Þ
k3

n

d2 �V

d�t2
þ X2

nzn � �p0 sin X0�tð Þ
ð1

0

/nd�x1 þ a0

XN

m¼1

XN

p¼1

XN

q¼1

ð1

0

/0m/0nd�x1

ð1

0

/0p/
0
qd�x1zmzpzq

2
4

�2 �V
XN

m¼1

XN

p¼1

ð1

0

/0m/0nd�x1

ð1

0

/pd�x1zmzpþ
1

12
�V

2
XN

m¼1

ð1

0

/0m/0nd�x1zm �
1

12
�V

3
ð1

0

/nd�x1 � �V

ð1

0

/nd�x1

XN

p¼1

XN

q¼1

ð1

0

/0p/
0
qd�x1zpzq

þ 2 �V
2
ð1

0

/nd�x1

XN

p¼1

ð1

0

/pd�x1zp

#
¼ 0;

�V ¼ �Rx1C0

XN

m¼1

/0m 1ð Þ � /0m 0ð Þ
� � dzm

d�t
� Rx1 C0 þ

Cp

2

� �
d �V

d�t
(34)

where /0m represents the derivative of /m with respect to the nor-
malized coordinate �x1. Equation (34) can lead to a very rich non-
linear behavior.

Since the harvester has its best harvesting efficiency when driv-
ing frequency is around the fundamental frequency, we let N¼ 1
in the following discussion. This choice enforces the fact that
around resonance the fundamental mode /1 dominates the nonlin-
ear response. After the introduction of damping, (34) becomes

d2z1

d�t2
þ 2nX1

dz1

d�t
þ X2

1z1 � b1

d2 �V

d�t2
þ a1z3

1

�a2
�Vz2

1 þ a3
�V

2
z1 � a4

�V
3 ¼ F0 sin X0�tð Þ;

dz1

d�t
� b2

d �V

d�t
� b3

�V ¼ 0

(35)

with the parameters

a1 ¼ p4a0; a2 ¼ 6
ffiffiffi
2
p

pa0; a3 ¼
p2

12
þ 16

p2

� �
a0;

a4 ¼
ffiffiffi
2
p

6p
a0; b1 ¼

2
ffiffiffi
2
p

p3
; b2 ¼

1

2
ffiffiffi
2
p

p
1þ Cp

2C0

� �
;

b3 ¼
1

2
ffiffiffi
2
p

pC0Rx1

; F0 ¼
2
ffiffiffi
2
p

p
�p0

We let

z1ð�tÞ ¼ U1 sin ðX0�tÞ þ U2 cos ðX0�tÞ;
�Vð�tÞ ¼ V1 sin ðX0�tÞ þ V2 cos ðX0�tÞ

(36)

Then the harmonic balance method is employed [5–7]: We first
substitute Eq. (36) into Eq. (35) and collect the coefficients of the
trigonometric function. We neglect the constant terms and the
higher harmonics 2X0�t and 3X0�t. Finally, we let the coefficients
of the sine and the cosine of X0�t be zero. Thus, from Eq. (35), we
obtain

3

4
a1U1�a2V1ð Þjz1j2þ

3

4
a3U1�a4V1ð Þj �V j2þ1

2
a2U2þa3V2ð Þ

� U2V1�U1V2ð Þþb1X
2
0V1�2nX0X1U2þ X2

1�X2
0

	 

U1

�F0¼ 0;

3

4
a1U2�a2V2ð Þjz1j2þ

3

4
a3U2�a4V2ð Þj �V j2þ1

2
a2U1þa3V1ð Þ

� U1V2�U2V1ð Þþb1X
2
0V2þ2nX0X1U1þ X2

1�X2
0

	 

U2¼ 0

(37)

where the amplitudes jz1j and j �V j satisfy jz1j2 ¼ U2
1 þ U2

2 and
j �V j2 ¼ V2

1 þ V2
2 . From (35), we have

X0U2 � b2X0V2 þ b3V1 ¼ 0;

X0U1 � b2X0V1 � b3V2 ¼ 0
(38)

The coefficients U1, U2, V1, and V2 can be obtained by solving the
nonlinear set of Eqs. (37) and (38). The output power P of the har-
vester is given by

P ¼ x0

2p

ðtþ2p=x0

t

VIdt ¼ D2h2 V2
1 þ V2

2

	 

2G2L4R

(39)

4 Numerical Results and Discussion

PZT-5H is chosen as the piezoelectric material of the harvester.
The metal layer is taken to be aluminum alloy. Material constants
and geometric properties of the harvester are listed in Table 1 [28].

One of the main differences between a linear and a nonlinear
system is that a nonlinear system can produce multiple stable
steady-state solutions which are dependent on the initial condi-
tions. A linear system in contrast always produces a unique stable
solution for all initial conditions [9]. The structure we consider is
a hardening oscillator, as the higher displacement curve is to the
right of the linear natural frequency. For ease of discussion, we
divide the frequency range near resonance of the nonlinear har-
vester into three regions: a left single-valued region, a multivalued
region, and a right single-valued region.

A wide operation bandwidth improves the system performance
of the harvester. Two methods are applied to broaden the band-
width of the nonlinear harvester. A first one is to make the left
single-valued region wider. A second one is to choose a set of ini-
tial conditions so that the largest output power can be obtained in
the multivalued region.

4.1 Dependence of the Left Single-Valued Region Upon
Parameters of the Nonlinear Harvester. Both analytical and
numerical solutions are obtained. The numerical solutions are
found by solving Eq. (35) with the Runge-Kutta method in soft-
ware MATLAB. Analytical solutions are given by Eqs. (37)–(39).
Figure 2 shows the dependence of the output power P with the rel-
ative driving frequency X0 for different applied pressures. Near
resonance, the output power becomes multivalued. Two power
branches arise within the multivalued frequency region. Single-
valued regions exist on its left and right sides. A jump phenom-
enon happens when X0 exceeds a given jump-up frequency, i.e.,
the thin dash line J1A for p0¼ 10 Pa (X0¼ 1.082), or J2B for
p0¼ 20 Pa (X0¼ 1.095), or J3C for p0¼ 30 Pa (X0¼ 1.106). This
indicates that an energy-scavenging structure with optimal per-
formance should be designed at the left single-valued region near
point J1 for p0¼ 10 Pa, point J2 for p0¼ 20 Pa, and point J3 for
p0¼ 30 Pa. Otherwise, the harvester will have either a very low
output power in the right single-valued region, or multiple stable
steady-state output powers in the multivalued region which are
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dependent on the set of initial conditions. It is also observed that
the left single-valued region expands with a larger applied pressure
p0. The performance of the harvester can be improved by widening
the left single-valued region since the output power is relatively
large in this region and is independent of the initial conditions.

Figure 3 shows the dependence of the output power upon the
applied pressure p0 for different electric loads, where the nondi-
mensional driving frequency is fixed at X0¼ 1.1. Different elec-
tric loads result in different multivalued regions as a function of
the applied pressure p0. The maximum pressure of the multivalued
region decreases with increasing electric load, but the minimum
pressure varies without an apparent regular pattern. Figure 4 fur-
ther demonstrates the linear (lowest line) and the nonlinear output
powers versus electric resistor for different applied pressures. For a
small pressure of 10 Pa, a big multivalued region appears and the
lower nonlinear output power is almost equal to the linear one. But
for a large pressure of 30 Pa, the nonlinear output power only has a
small multivalued region and is much larger than the linear output
power when the resistance is larger than 20 kX.

In order to understand the multivalues and the jumps of the pie-
zoelectric power harvester based on flexural vibration near reso-
nance, we calculate the dependence of the output power P upon
applied pressure p0 for different driving frequencies X0 in Fig. 5.
Numerical results show that the larger X0, the larger the nonlinear
P-p0 loop. Moreover, the nonlinear P-p0 loop gradually becomes
flatter as X0 decreases and finally approaches a linear resonance.

A sound pressure level of 120 dB corresponds to a sound pres-
sure of 20 Pa. It may cause hearing damage even for short-term
exposure. Thus, a relatively lower applied pressure p0¼ 10 Pa is

taken in the following. The dependence of the output power upon
the driving frequency is plotted in Fig. 6 for different electric
loads. The maximum power decreases and the jump-down fre-
quency increases with increasing electric load. As a note, the
jump-up frequency remains almost constant for different electric
loads.

Fig. 3 Output power versus applied pressure for different elec-
tric resistors, where X0 5 1.1

Fig. 2 Output power versus driving frequency for different
applied pressures: analytical solution (solid lines) and numeri-
cal solution ( , , )

Fig. 4 Output power versus electric resistor for different
applied pressures, where X0 5 1.1

Fig. 5 Output power versus applied pressures for different X0,
R 5 1 MX

Fig. 6 Output power versus driving frequency for different
electric resistors, where p0 5 10 Pa
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The linear and the nonlinear output power of the harvester ver-
sus driving frequency are shown in Fig. 7 for different span-
thickness ratios l/h. The nonlinear system becomes a linear one if
the nonlinearity is ignored. We practically obtain the linear result
by letting a0 be zero. This is because, based on Eq. (35), the non-
linear coefficients ai (i¼ 1, 2, 3, 4) are equal to zero in the case
that a0¼ 0. For the linear system, the output power increases with
the span-thickness ratio, but the normalized frequency corre-
sponding to maximum power is almost the same for all span-
thickness ratios. For the nonlinear system, in contrast, there exists
a multivalued region. Moreover, the left single-valued region
expands with an increase in the span-thickness ratio.

Figure 8 illustrates the output power of linear and nonlinear
harvesters versus driving frequency for different thickness ratios
h/c. For the linear system, an increase in the thickness ratio
reduces the output power, but results in an increase in the normal-
ized frequency corresponding to maximum power. For the nonlin-
ear system, in contrast, the left single-valued region widens with a
decrease in the thickness ratio.

4.2 Appropriate Initial Conditions are Imposed to Obtain
a Larger Output Power. Two stable solutions exist for each fre-
quency in the multivalued frequency range as shown by the solid
lines in Fig. 2. The steady-state solution converging to the lower
or the larger output power depends on initial conditions which are
applied to the system. Figure 9 plots the basins of attraction to
study the effect of the initial conditions on the steady-state output

power of the harvester, where (a) X0 ¼ 1:085, (b) X0 ¼ 1:105,
and (c) X0 ¼ 1:125. These three frequencies locate on the starting,
middle, and terminal frequencies of the multivalued region,
respectively. Dark and white regions in the basin of attraction indi-
cate that the initial conditions in the white region result in larger out-
put power, while the initial conditions in the dark region lead to
smaller output power. It can be observed that the white region
shrinks and the dark region expands with increasing frequency within
the multivalued region. Moreover, as seen from Fig. 9(d), there still
remains a white region after overlapping the three basins of attraction
of starting, middle, and terminal frequencies of the multivalued
region. This implies that the nonlinear harvester always outputs a
larger power in the whole multivalued frequency region as long as
the initial conditions remain in the combined white region.

From Eq. (31), the initial conditions for the bimorph depend on
the normalized coordinate �x1. Therefore, it is still difficult to
impose optimal initial conditions for the whole bimorph in prac-
tice even though the optimal initial conditions z1ð0Þ and dz1ð0Þ=d�t
are known. As a smart structure, the piezoelectric structure can be
excited actively by a voltage source in order to meet a required
initial condition. First, the bimorph locates the static equilibrium
position. A switch then turns from the resistor to a voltage source
as shown in Fig. 1(b) and the bimorph is excited by the harmonic
voltage source Ve sin xet. This excitation only needs to last for a
few seconds till the bimorph vibrates from its static equilibrium
position to a stable harmonic movement. The phase trajectories
with Ve ¼ 8V and 24 V are inserted into Fig. 9(d) where the fre-
quency of the voltage source is fixed �xe ¼ 1:08 (�xe ¼ xe=x1).
As can been seen, the phase trajectories have passed through the
white region of the basins of attraction. This means that the initial
conditions can be achieved by the voltage source to boost the out-
put power of the harvester to the larger power branch in the multi-
valued frequency region. Moreover, it can be seen from Fig. 9(d)
that the phase trajectory must pass through the white region if the
amplitude of the bimorph jz1j is to be between 0.52 and 0.59.

Figure 10 shows the displacement amplitude of the bimorph
versus the excitation frequency of the voltage source for different
voltage amplitudes. To reach the displacement amplitude range
between 0.52 and 0.59, the excitation voltage must be larger than
7.2 V. Besides, a different appropriate frequency range is neces-
sary for the voltage source with different voltage amplitudes.

We can infer from Fig. 9(d) that only a part of the phase trajec-
tory appears in the white region of the basin of attraction when the
amplitude and the frequency of the voltage source are fixed.
Therefore, it is critical to choose a suitable phase range to stop the
excitation of the voltage source. Figure 11 illustrates a suitable
phase range to stop the excitation of the voltage source with
�xe ¼ 1:08, for a frequency of pressure load (a) X0 ¼ 1:085, (b)
X0 ¼ 1:105, (c) X0 ¼ 1:125, and (d) the superposition of (a), (b),
and (c). After superposition, there still exists a white region of
phase range. The white region of phase range means that the phase
trajectories locate in the white region of the basins of attraction,
i.e., the initial conditions lead to a larger output power. Therefore,
the operation bandwidth of the nonlinear harvester is broadened
from the left single-valued region to the whole multivalued region.

As is all known, the harvesting structure will reach a steady-
state in a few seconds under the harmonic excitation. Whether the
harvester outputs a lower or a larger steady-state power depends
on the initial conditions. In order to obtain the larger output power
in a broad frequency range, initial conditions should locate in the
white region of the basin of attraction in Fig. 9(d). This is achieved
by operating the voltage source in white region of Fig. 11(d).

As summarized in the flowchart of Fig. 12, imposing an optimal
initial condition may include the following steps. First, design or
choose a voltage source with appropriate amplitude and frequency
(see Fig. 10). Second, set a voltage reference Vref that the higher
output voltage can attain, but that the lower one cannot. Third,
switch on the voltage source (see Fig. 1(b)) if voltage reference
has not been reached by the output voltage of the harvester within
a given time interval tref. Finally, after about 2000 cycles, switch

Fig. 7 Output power versus driving frequency for different
span-thickness ratios l/h, where p0 5 10 Pa, R 5 1 MX, and
h 5 0.5 mm

Fig. 8 Output power versus frequency for different ratios of
h/c, where p0 5 10 Pa, R 5 1 MX, and c 5 0.2 mm
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Fig. 9 Basin of attraction for the harvester with p0 5 10 Pa, R 5 1 MX: (a) X0 5 1:085, (b) X0 5 1:105, (c)
X0 5 1:125, and (d) superposition of the three frequencies

Fig. 10 Displacement amplitudes versus frequency for different excitation voltages Ve. Dotted
lines limit an amplitude range for which operation is within white region of the basin of attrac-
tion in Fig. 9(d).
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off the voltage source and switch on the electric load at a stop
phase of the exciting voltage corresponding to a white region of
the basin of attraction (see Fig. 11(d)). The required stop phase of
the voltage source can be achieved by level and sign of the volt-
age. The last two steps can operate in an autonomous manner.

5 Conclusions

A theoretical analysis of the performance of a nonlinear power
harvester near resonance has been conducted. The basic nonlinear
behavior of the harvester due to strong resonance has been pre-
dicted. The theoretical model was solved by the harmonic balance
method, and analytical solutions were verified by comparison
with numerical results. The dependence of the multivaluedness
and jump phenomena of the output power upon applied pressure,
electric load, and structural parameters was studied. These results
are useful to extend the frequency span of the left single-valued
region in the design of the nonlinear harvester.

Another method to broaden the operation bandwidth is to con-
trol the initial conditions of the nonlinear harvester by a voltage
source to boost the output power in the multivalued region. After
investigation of basins of attraction and phase trajectories, we
obtained the optimal range of voltage amplitude, frequency, and
phase of the voltage source. The operation bandwidth of the non-
linear harvester is broadened from the left single-valued region to
the whole multivalued region.
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Nomenclature

A ¼ cross section
c1, c2 ¼ undetermined constants

C0 ¼ variable with unit as capacitance
Cp ¼ equivalent static capacitance of the bimorph
D ¼ equivalent bending stiffness

D3 ¼ electric displacement
D3lower, D3upper ¼ electric displacement of lower and upper

piezoelectric layer
�e31 ¼ equivalent piezoelectric coefficient

E1; E2;E3 ¼ electric fields
E3lower, E3upper ¼ electric field of lower and upper piezoelec-

tric layer
f1, f2 ¼ intermediate variables

F0 ¼ dimensionless pressure
FN ¼ axial force
�FN ¼ average axial force
g31 ¼ equivalent electromechanical coupling

factor
G ¼ intermediate variables
I ¼ output current of the harvester

Iþ, I� ¼ currents flow out top and bottom electrodes
k31 ¼ electromechanical coupling factor
M ¼ bending moment
m ¼ mass per unit length of the beam
N ¼ modal order of expansion

p, p0 ¼ uniform pressure and its amplitude
�p0 ¼ dimensionless variable of p0

P ¼ output power of the harvester
Qþ, Q� ¼ charges on top and bottom electrodes

t, �t ¼ time, dimensionless time
tref ¼ a given time interval
T1 ¼ axial stress

U1, U2 ¼ amplitudes of cosine and sine parts of z1

u3 ¼ flexural displacement
v ¼ flexural displacement satisfies boundary

conditions (25)
V, |V| ¼ output voltage and its amplitude of the

harvester
V�, Vþ ¼ voltages of top and bottom electrodes

�V , j �V j ¼ dimensionless voltage and its amplitude
V1, V2 ¼ amplitude of cosine and sine pars of �V

Ve ¼ voltage amplitude of voltage source
Vref ¼ voltage reference

w ¼ flexural displacement satisfies homogenous
boundary conditions

W ¼ dimensionless displacement of w
x1, x3 ¼ coordinates

�x1 ¼ dimensionless coordinates
zn ¼ displacement function depends on �t

|z1| ¼ amplitude of z1

a (i¼ 0, 1, 2, 3, 4) ¼ intermediate variables
b (i¼ 1, 2, 3) ¼ intermediate variables

dmn ¼ Delta function
�e33 ¼ equivalent dielectric coefficient
kn ¼ characteristic root
u ¼ electric potential

/n ¼ linear modal functions
Xn ¼ dimensionless frequency of xn

x0 ¼ driving frequency of ambient vibration
xe ¼ angular frequency of voltage source
xn ¼ modal frequency
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