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1 Unidimensional model (1D)

1.1 Wave equation

A wave is generally speaking a perturbation of the state of equilibrium of a
medium, that propagates in space and in time.

Let us consider a function u(t; x), a wave equation is of the form:

@2u
@t2
¡c2 @

2u
@x2

=0 (1)

c is homogeneous to a velocity (the celerity), in m/s.
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1.2 General solution?

It is easily checked that the general solution is:

u(t; x)=F (t¡x/c)+G(t+x/c) (2)

with F et G arbitrary functions (twice differentiable) representing a wave travel-
ling to the right and a wave travelling to the left, independently.

x

instant t1 instant t2

c(t2−t1)

0

Example: The vibration F (t)= cos(!t) yields u(t; x)= cos(!t¡kx)

!=2�f is the angular frequency; f is the frequency (in Hz).

k=!/c=2�/� is the wavenumber; � is the wavelength.
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1.3 Plane wave spectrum

Any (sufficiently regular) function has a Fourier transform and reciprocally:

F (t)= 1
2�

Z
¡1

1
F~(!)exp(i!t) d! ; F~(!)=

Z
¡1

1
F (t)exp(¡i!t)dt (3)

Hence the plane wave spectrum of a solution of the wave equation:

u(t; x)= 1
2�

Z
¡1

1
F~(!)exp(i (!t¡ kx)) d! avec k(!)=!/c (4)

(with a similar term with G~(!) and k(!)=¡!/c).

k2(!)= (!/c)2 is a dispersion relation.
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1.4 Dispersion and group velocity
If wave velocity is dispersive (i.e. if it depends on frequency), c(!), then the dis-
persion relation k(!)=�!/c(!) does not define straight lines any more.

k

ω
non dispersif

dispersif

For a wave packet: u(t; x)= 1

2�

R
¡1
1

F~(!)exp(i (!t¡ k(!)x)) d!
The phase velocity is v(!)=!/k(!). The slowness is s(!)=1/v(!).
The group velocity is by definition vg (!)=

d!

dk
=(dk(!)

d!
)¡1.

Property: the group velocity is the propagation velocity of te energy of the
wave as a function of frequency, orZ

¡1

1
t ju(t; x)j2dt= 1

2�

Z
¡1

1 x

vg(!)
jF~(!)j2d! (5)
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1.5 Examples of dispersion

The propagation phase at point x=L is '(!)= k(!)L.
tg(!)=d'(!) /d!=L/vg(!) is the group velocity (time to travel distance L).
Polynomial phase '(!)= '0+'00 (!¡!0)+
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2 1D acoustic waves
2.1 Lagrangian and Eulerian descriptions
Consider a continuous, isotropic, homogeneous fluid, perfectly compressible.

� Lagrange variables, for a material point: equilibrium position a and time
t. Physical quantity: G(a; t).

� Euler variables, for a geometrical point of a referential: coordinate x and
time t. The same physical quantity: g(x; t).

O

a

x=X(a,t)

U(a,t)

Position of the material point: x=X(a; t), hence G(a; t)=g(X(a; t); t)
Displacement: U(a; t)=X(a; t)¡a=u(X(a; t); t)
Particle velocity Vp=@U /@t=@X /@t and local velocity v=@u/@t

Vp=v+Vp
@u

@x
(6)

Approximation of linear acoustics: @u/@x�1 and then Vp'v
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2.2 Relations between pressure and displacement

x x+dx

u+duu
membrane

surface σ

du= @u(t; x)
@x

dx�dx

Total pressure force acting on a slice of width dx and surface � :

dF=�p(t; x+u)¡�p(t; x+u+dx)'¡� @p
@x

dx

By application of the dynamical (Newton) principle:

¡ @p
@x

=�0
@2u
@t2

(7)

with �0 the (static) density of the fluid.
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2.3 Relations between pressure and displacement
(cont.)

Pressure is the sum of the static pressure and of the dynamic pressure �p:

p(t; x)=p0+�p(t; x) (8)

For a compressible fluid, we have (dV =�dx) :

�p=¡ 1
�
�(dV )
dV

=¡ 1
�
@u
@x

(9)

with � the compressibility coefficient. By definition, S(t; x) =@u/@x is the local
dilatation (strain).

Gathering (7) and (9), a wave equation is obtained:

@2u
@t2
¡c2 @

2u
@x2

=0 ou
@2(�p)
@t2

¡c2 @
2(�p)
@x2

=0 with c=(�0 �)¡1/2 (10)

The velocity v and the strain S satisfy exactly the same wave equation.
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2.4 Sound velocity
How can we estimate the celerity c in air, supposed a perfect gas?

� The state equation for a perfect gas, with molar mass M , for n moles is
pV =nRT or p=�RT /M , (T temperature, R= 8.314 J/mole.K)

� Compressions and dilatations caused by the acoustic wave are adiabatic
(but not isothermal) and follow the law pV  = Cst. From which
�= (p0)¡1. =1.67 for a monoatomic gas and 1.4 for a diatomic gas
(approximately the case of air).

dp
p
+ 

dV
V
=0 so that �=¡1

V

@V

@p
= 1
p0

and then c= 
RT
M

r
You should better trust experiment!
c'343 m/s for air at T=293 K.
And what about water?
c'1480 m/s for water at T=293 K.
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2.5 Acoustic impedance

Displacement u is a solution to the wave equation (10), hence

u(t; x)=F (t¡x/c)+G(t+x/c)

with F and G two arbitrary functions. Then

v(t; x)= @u
@t

=F 0(t¡x/c)+G0(t+x/c)

�p(t; x)=¡ 1
�
@u
@x

=Z (F 0(t¡x/c)¡G0(t+x/c))

with the acoustic impedance Z=�0c=
1

c�
= �0 /�

p
.

Pressure and velocity are proportional for waves propagating to the right,
�p+=Zv+, and for waves propagating to the left, �p¡=¡Zv¡.
This relation is analogous to the electrical impedance: U =ZI
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2.6 Representation of propagation loss?

A fluid can not react instantly to an excitation. Phenomenologically, (9) is modi-
fied as:

�p=¡ 1
�

�
S+� @S

@t

�
(11)

with � a time constant.
Illustration - For �p=H(t), it can be shown that S=¡� (1¡ exp(¡ t/�))H(t).
The propagation equation becomes @2u/@t2¡c2 @2/@x2(u+ �@u/@t) = 0 (this is
no more a wave equation!). For a monochromatic plane wave, F (!t¡kx), the
complex dispersion relation !2=c2 (1+i!�) k2 is obtained.
Exercise - Write k=�¡ i� so that the harmonic plane wave is

u(t; x)= exp(i(!t¡kx))= exp(¡�x) exp(i(!t¡�x)) (12)

Show that �' !2 �

2c
and �' !

c
(1¡ 3

8
!2�2) for !��1. � is expressed in dB/m.

Property - In practice, the compressibility coefficient can be complexified
�!�/ (1+i!�) and the plane wave spectrum (4) can be formed with damped
harmonic plane waves (12).
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3 3D scalar wave model
3.1 3D wave equation
For a function u(t; r), an isotropic wave equation is of the form:

@2u
@t2
¡c24u=0 (13)

with the Laplacian 4=r:r= @2

@x2
+ @2

@y2
+ @2

@z2
. Isotropy: the medium properties

are invariant under any rotation in space. Equivalently, propagation is the same
in any direction.
An anisotropic wave equation is of the form:

@2u

@t2
¡

X
i;j=1

3

cij
2 @u

@xi

@u

@xj
=0 (14)

Wave propagation depends on the direction.

O

2

x

x

x1

3
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3.2 Plane wave an harmonic plane wave

A 3D plane wave is of the form O

2x

x1

n

plans
d’onde

u(t; r)=F (t¡n:r/c)=F
�
t¡ n1x1+n2x2+n3x3

c

�
(15)

with n a unit vector representing the direction of propagation. The decomposi-
tion (2) is not anymore the general solution to the wave equation.

A harmonic plane wave is of the form

u(t; r)= exp(i(!t¡k:r)) (16)

For the isotropic wave equation (13), we have the dispersion relation
!2=c2k:k=c2 k2, with k=kn.
For the anisotropic wave equation (14), we have !2=

P
i;j=1
3 cij

2 kikj
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3.3 Plane wave spectrum
Is it possible to generalize to 3D the 1D plane wave spectrum (4)? Taking the
Fourier transform in time and space, valid for all functions u :

u(t; r)= 1
(2�)4

Z
¡1

1
d!

Z
R3
dku~(!;k)exp(i (!t¡k:r)) (17)

If u is a solution of the wave equation, then ! et k are linked by a dispersion
relation. Hence k3, for instance, is a function of !, k1 and k2 :

u(t; r)=
1

(2�)3

Z
R3

d!dk1dk2u~(!;k)exp(i (!t¡ k1x1¡ k2x2¡ k3(!; k1; k2)x3)) (18)

Example - if k2=!2/c2, then
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3.4 Temporal and spatial dispersion

Assume we know the dispersion relation in the form k(!;n). Then:

� v(!; n) =! /k(!; n) the phase velocity ; s(!; n) =k(!; n) /! the slow-
ness

� vg(!;n) = (@k/@!)¡1 the (temporal) group velocity gives the propagation
velocity of a signal.

� vg(!; n) = !(rnk¡1) = (rnv) the (spatial) group velocity gives the
velocity and the direction of propagation of the wavefront.

Stationary phase principle - If we can use the representation (typical of the
far field):

u(t; r)= 1
2�

Z
d!

Z
dnu~(!;n) exp(i(!t¡k(!;n)n:r)) (19)

then energy concentrates along trajectories such that the phase in the exponen-
tial function is stationary in time and space, or

t= vg
¡1(n:r) and vr=vg (n:r) (20)
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3.5 Total reflection of a plane wave - normal incidence

x

onde

incidente

onde

réfléchie

0

x

onde stationnaire

Let the incident plane wave be Fi(t¡ x/c), the reflected wave Gr(t+ x/c) is also
plane. The total wave is u(t; r)=Fi(t¡x/c)+Gr(t+x/c).
Next, we assume that the wave amplitude vanishes on the mirror (clamped con-
dition), then Gr(t)=¡Fi(t) and u(t; r)=Fi(t¡x/c)¡Fi(t+x/c).
If Fi(t)= exp(i!t), then u(t; r)=¡2i exp(i!t) sin(!x/c) is a stationary wave.

In a resonator, modes are discrete: !L/c=n� with n> 1 an integer

x

n=1

n=1

n=1

L
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3.6 Guidance of waves between two plane mirrors

x

L
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ω
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c

βL/π
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n=4
n=5

ω=cβ

In order for the superposition of two harmonic plane waves to satisfy boundary
conditions on the mirrors, phase matching must be observed:

� frequency is conserved ;

� the wavenumber along the mirrors is conserved.

Hence the decomposition:

u(t; r)= exp(i(!t¡ k1x1¡ k2x2))¡ exp(i(!t+ k1x1¡ k2x2))=¡2i exp(i(!t¡ k2x2))sin(k1x1)

representing a wave propagating along x2 but stationary along x1.
Dispersion relation: k1L=n� and k22= �2=!2/c2¡ (n�/L)2, for n> 1.
There is a cut-off frequency !c=�c/L (or fc= c/(2L)).
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4 3D acoustic waves
4.1 Relations between pressure and displacements

Relation (8) is generalized to

z

y

x

dx
dy

dz

p(t; r)=p0+�p(t; r) with the position vector r=(x; y; z)T (21)

The local strain becomes

S(t; r)= �(dV )
dV

=r :u= @ux
@x

+ @uy
@y

+ @uz
@z

(22)

Fundamental dynamical relation:

�0
@2u
@t2

=¡
�
@(�p)
@x

;
@(�p)
@y

;
@(�p)
@z

�
T

=¡r(�p) (23)

Equation (23) shows that the polarization of a plane wave is longitudinal in a
fluid: displacements occur only along the propagation direction.
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4.2 3D acoustic wave equation

For a compressible linear fluid, we still assume S=¡��p.
Hence the 3D scalar wave equation (for either �p or S) or vector wave equation
(for u or v) :

@2u
@t2
¡c24u=0 or

@2(�p)
@t2

¡c24(�p)=0 with c=(�0 �)¡1/2 (24)

Exercise - Show (24)!

Generalization - Assume there exists a body force distribution per unit
volume, f , for instance due to gravity (f=�g) or to external sources, then (23)
and (24) become

�0
@2u
@t2

+r(�p)=f(t; r) (25)

@2u
@t2
¡c24u=f /�0 ;

@2(�p)
@t2

¡c24(�p)=¡c2rf (26)
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4.3 Power flux and Poynting vector

We define the following energy quantities:

� kinetic energy Ec=
R
V
ecdV with ec=

1

2
�0v:v

� potential energy Ep=
R
V
epdV with ep=

1

2

S2

�
= 1

2
�(�p)2

� Poynting vector P = �pv

� work of internal forces W =
R
V
wdV with @w

@t
= f :v

From (25): (with r(�pv)=r(�p):v+ �prv and rv= @S/@t)

@w
@t

= �0v:
@v
@t

+r(�p):v= @ec
@t

+ @ep
@t

+r:P

@W
@t

= @
@t
(Ec+Ep)+

Z
�

P :ld� (27)

The Poynting vector flux represents the power carried by the wave.
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4.4 Energy relations for plane waves
The Poynting vector represents the instantaneous power density per unit surface
carried by the wave. The acoustic intensity is by definition

I =<P (t):l>= lim
T!1

1
T

Z
0

T

dt�pv:l (28)

For a plane wave in direction l, u = F (t ¡ x / c), v = F 0(t ¡ x / c) and �p =
ZF0(t¡x/c), with x along axis l.
Then ec= ep=

1

2
�0F 0

2(t¡x/c) and P :l=ZF 02(t¡x/c)= c(ec+ ep).
For a harmonic plane wave in direction l, u = umsin(!(t ¡ x / c)), then v =
!umcos(!(t¡x/c))= vmcos(!(t¡x/c)).

� ec= ep=
1

2
�0!2um

2 cos2(!(t¡x/c)) and <ec>=<ep>= 1

4
�0!2um

2 = 1

4
�0vm

2

� P :l=Zvm
2 cos2(!(t¡x/c))

� I = 1

2
Zvm

2 = 1

2Z
(�pm)2

For complex harmonic plane waves, the replacement is

ec=
1
4
�0Re(v�:v) ; ep=

1
4
�Re(�p��p) ; P = 1

2
Re(�pv�) (29)
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4.5 Reflection and refraction
4.5.1 Boundary conditions
The boundary conditions at the interface between two non viscous fluids
(assumed separated by an infinitely thin boundary) are:

� continuity of the normal component of the displacement ;

� continuity of pressure variations �p at the interface.

If the interface is defined by x=0, then
Z 1 Z 2

interface Σ

fluide 1 fluide 2

x

u1x(t; x=0; y; z)=u2x(t; x=0; y; z) (30)

and similarly for the normal component of the velocity, and

�p1(t; x=0; y; z)=�p2(t; x=0; y; z) (31)
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4.5.2 Normal incidence for a plane wave

A normally incident plane wave gives rise to reflected and transmitted plane
waves. The normal displacements at the interface are u1x(t; r) = Fi(t ¡ x/ c1) +
Fr(t+x/c1) and u2x(t; r)=Ft(t¡x/c2). At the interface (x=0) :

Fi
0(t)+Fr0(t)=Ft0(t) and Z1(Fi0(t)¡Fr0(t))=Z2Ft

0(t)

From these equations, we obtain the reflection and transmission coefficients for
velocity

rv=
Fr
0(t)

Fi
0(t)

= Z1¡Z2
Z1+Z2

and tv=
Ft
0(t)

Fi
0(t)

= 2Z1
Z1+Z2

(32)

the reflection and transmission coefficients for pressure

rp=¡
Fr
0(t)

Fi
0(t)

= Z2¡Z1
Z1+Z2

and tp=
Z2
Z1

Ft
0(t)

Fi
0(t)

= 2Z2
Z1+Z2

(33)

the reflection and transmission coefficients for acoustic power

R= jPr jjPij
=¡rv rp=

�
Z1¡Z2
Z1+Z2

�
2

and T = tv tp=
4Z1Z2

(Z1+Z2)2
=1¡R (34)
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4.5.3 Oblique incidence for a harmonic plane wave
For a harmonic plane wave, equating the normal components of the displacement
gives at r=(0; y; z)T :

Aixexp(i(!it¡ki:r))+Arxexp(i(!rt¡kr:r))=Atxexp(i(!tt¡kt:r))

This relation is valid 8t2R and 8r 2�, hence

!i=!r=!t and ki:r=kr:r=kt:r

The following properties apply:

x

y

O
k

k k

i

r t

θi

θ θ
i t

� Reflexion and transmission on a static interface occur without any fre-
quency change.

� Snell-Descartes law: the components along the interface of the wavevector
are conserved: �r= �i and sin �t/c2= sin �i/c1.
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The pressure on � is �p(t; r) = (Ai + Ar)exp(i(!t ¡ k:r)) = Atexp(i(!t ¡ k:r)),
along with the continity of the normal component of velocity we have

Ai+Ar=At and
Ai
Z1

cos �i¡
Ar
Z1

cos �i=
At

Z2
cos �t

Hence the reflection and transmission coefficients for pressure

rp=
Ar
Ai

= Z2cos �i¡Z1cos �t
Z2cos �i+Z1cos �i

and tp=
At

Ai
= 2Z2cos �i
Z2cos �i+Z1cos �t

(35)

and the reflection and transmission coefficients for acoustic power

R= jPr jjPij
= jrpj2 and T =1¡R (36)
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4.5.4 Oblique incidence for a harmonic plane wave (cont.)
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