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1 Some results regarding eigenvalue problems

Consider a square matrix M;; of size n xn, with real or complex values. An
eigenvalue problem, for eigenvalues A and eigenvectors u; is of the form

Mz‘ju]‘ :)\ui (1)

Eigenvalues are roots of the characteristics polynomial: |M;; —\d;;| =0.

There are exactly n eigenvalues A#) and at most n eigenvectors u,gk) (a priori

complex valued). Eigenvectors are non vanishing and can be normalized

(ugk) u,gk) =1); they can be arranged in a matrix X;j :u,gk) such that (1) becomes

M;; Xjp=Xij M ji with Ajp=AF) 5 (2)

If X is invertible, then M =XA X 1.

If M is real and symmetric, eigenvalues are real and eigenvectors are orthogonal:
X-1=X7T.

In practice, there exist very eflicient solvers to obtain eigenvalues and eigenvec-
tors.



2 Non piezoelectric anisotropic solid

2.1 Christoffel equation

2., ..
We neglect gravity in the elastodynamic equation, p % = %1;:7 . Together with
J
Hooke’s law, T;; =c; ki %, we have the anisotropic wave equation:
(92%&' 82’&[
—— =Cjikl = — 3
P o2 = M B by 3)
For harmonic plane waves of the form w;(t, r) = u; exp(iw(t—sn.r)), the
Christoffel equation is obtained
P U =82 Ciikr M Mg Uy (4)

Slowness s(n) =k(n) /w (in s/m) is a function of the propagation direction as
measured by unit vector n. A quantity of the type y/c/p is homogeneous to a
velocity.
Introducing the symmetric Christoffel tensor, 13 =c;u1 nj ng, an eigenvalue
problem is obtained:

p”LALZ‘:S2 Fil’LALl (5)

Warning: I; is a function of direction n.



2.2 Isotropic case

In the isotropic case, wave properties are invariant with the propagation direc-
tion. Consider for instance x; as the propagation direction:

C11 0 0 11—
F: O C44 O Wlth Cqq4 — 1 12 (6)
2
0 0 C44

The matrix is diagonal; there is one simple eigenvalue and one double eigenvalue
(so there are 3 eigenvalues in total).

e The wave with velocity Vz = +/c11/p is a longitudinal wave, since the
eigenvector is 4= (1,0,0)%.

e Waves with velocity Vs = +/c44/p are shear waves: two eigenvectors are
2 =(0,1,0)" and %= (0,0,1)7.

e Since ¢12 >0, Vs <V, / /2. The longitudinal velocity is always larger than
the shear velocity.

e Those properties remain true for any solution to the wave equation (this
can be seen considering the plane wave spectrum).



2.3 Examples for a cubic crystal

Considering the shape of the elastic tensor for cubic crystals:

C11 n% —|—044(n% —|—n§) (c12+c44) N1 N2 (c12+c44) N1 N3
I'= : C11 n% +C44(n% +n§) (c12 +C44) N2 N3

C11 n% —|—044(n% —I—n%)

Propagation along [1,0,0] — T is diagonal, with one simple eigenvalue, c11,
and one double eigenvalue, c44. There are thus one longitudinal wave with

velocity v/c11 /p and two shear waves with velocity \/c44 / p.

Propagation along [1,1,0] — There are 3 distinct eigenvalues: cyyq,
% (c11 —c12) and % (c11 4+ c12) +cq4. There are thus one pure shear wave polarized
along x3, with velocity +/c4s4/p; one quasi-shear wave with velocity

\/((311 —c12) /2 p; one quasi-longitudinal wave with velocity
V(2caa+c11+c12) /2p.




2.4 Slowness, phase velocity and energy (group) velocity

For harmonic plane waves:

3 3 . ]_ A A
Kinetic energy density: e. = 5 pw? U, U

Potential energy density: e, = % Cijkl Oij Skl = % w? s? T;; 4; 4;. From
Cristoftel’s equation, it follows that e, =e.: kinetic and potential energies

are equal for harmonic plane waves.
Total energy density: e=e.+e, = pw? ;U

Poynting’s vector
8Uj . 8uk 811,3' 2

Pi=—"Tj = =~ Cijkl g5 7 = SW” Cijki Uj Uk T

Energy velocity is by definition V;°=P; /e

An important relation linking phase velocity and energy velocity:
Vifn;=v.

Furthermore, the equality of energy velocity and spatial group velocity
can be demonstrated.



3 Characteristic surfaces

3.1 Slowness surface

By definition, the slowness surface is the locus of vector s=sn as a function of
n (it is a spatial representation of the dispersion relation k(w, n) /w). The
energy velocity (or spatial group velocity is orthogonal to the slowness surface.

There always exist 3 slowness surfaces: one quasi-L and 2 quasi-S. They are sym-
metric with respect to the origin (they are revolution surfaces).
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3.2 Wave surface

By definition, the wave surface is the locus of the energy vector V¢ as a function
of m. Physically, it is the surface reached after a unit time by the wave emitted
from a point source at frequency w.

It is also an equiphase surface: the phase of the wave is a constant at the surface.
n is orthogonal to the wave surface; phasefronts are tangent to the wave surface.
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3.3 Example: silicon (Si, cubic m3m)
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3.4 Example: rutile (TiO., tetragonal 4 /mmm)
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3.5 Example: sapphire (Al,03, trigonal 3m)
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3.6 Attenuation

Elastic wave losses in solids are due to thermal conduction, to interaction

[
with phonons (thermal fluctuations of the lattice), to diffusion on defects
of the crystal, and so on. They are approximately proportional to w?.
e Losses are larger in metals compared to insulators; in polycristals com-
pared to single crystals.
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4 Piezoelectric anisotropic solids

4.1 Stiffened elastic constants for harmonic plane waves

The elastodynamic equation and the Poisson equation
—iwsTjinj=—pw?d; and Djn,; =0 (7)

with the constitutive equations

j}jz—iws(cijkl Nk Ul + €kij Nk qg) and ﬁj:—iws (€1 Mk Up — €k Nk qg) (8)
lead to
pt; =52 (T Gy + qg) and ; ’&lzaqg with v; =eg;jnjne and e=e;En;ng (9)

Eliminating the electric potential leads to Christoffel’s equation with stiffened
constants

pi; =s2Ty 4 with Ty =Ty + %’8 B (10)

This equation is a useful means to obtain the acoustic part of harmonic plane
waves in piezoelectric media.
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4.2 Electromechanical coupling

Consider for instance propagation along [010]| (axis z3) in lithium niobate
(LiNbOg, trigonal 3m)

C66 0 0
. C11 —C12
I'= . Ci11 —Ci4 with Cee — 5
C44

There is a shear wave with velocity \/c¢s /p and a QS wave and a QL wave with

velocities 2 pv? =Ty + 133+ \/(ng — F33)2 +4T%;.
Moreover, we find

v1=0;v2=e22;7v3=¢€15;E=¢11

with Ty =Th1; Do =Tho+73 /&; Tog =Tz + 7273 /e Tss =T33 + 13 /&.
Piezoelectricity leads to a variation of the QS and QL velocities only. By defini-
tion, the electromechanical coupling is defined by the dimensionless quotient

K2:2% (11)
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4.3 ZnO (hexagonal 6mm)

S3 (10'4 s/m)

15



4.4 Quartz (trigonal 32)
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4.5

S3 (10'4 s/m)

LiNbOj (trigonal 3m)
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5 Reflection and refraction

5.1 General properties

The polarization of waves in an ideal fluid medium has only an acoustic
longitudinal component.

The polarization of elastic waves in a solid has 3 acoustic components, 1
QL and 2 QS waves.

The polarization of elastic waves in piezoelectric media has 4 components,
the combination of 3 elastic degrees of freedom (u;) and 1 electrical degree

of freedom (¢). There are 1 QL, 2 QS, and 1 quasi-electrostatic (QE)
waves.

An incident wave with a pure polarization can give rise to 4 reflected
waves and 4 transmitted waves in a piezoelectric medium (1 and 1 in a
fluid; 3 and 3 in an elastic solid).

The frequency and the projection of the wavevector onto the interface are
conserved.
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5.2 Example: interface between silicon - silica
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5.3 Generalized displacements and constraints
We define generalized constraints by T;; =T;; for i=1,2,3 and Ty,; =D, for i =4.
Similarly, we define generalized displacements by u; =u; for 1 =1, 2,3 and u4 = ¢.
We can thus write the constitutive relations as

ouy

1= Cijkl i with ¢k =cijki, Cijka=-+€kij, Cajkl =€jkl, Cajka = —Ejk (12)

and the elastodynamic and the Poisson equations

(
\ /

As a result, pseudo-mechanical equations similar to elastic solids are obtained. In
particular, the piezoelectric Christoffel equation can be written
Dij U; — 5° (Cijki njng) u;, which has the form of a generalized eigenvalue problem
(of the type Ax=)\Bx).

(13)

S = O O

o O O =
o O = O
o O O O
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5.4 Eigenvalue equation

Let us consider a reflection-transmission problem on a plane interface normal to
x1. The slownesses so and s3 are conserved. What are the possible walues for s;?
Relations (12) et (13) can be arranged as

g0i12z82—6i13183 04l ( i >281< Ci11] 0 )( iy > (14)
> k=2 CigkiSjSk+ pir 0O i1 Ci211 82+ Ci31153 Oil i1

with Tij — ij/(—iw).
This is a generalized eigenvalue problem, of the form

Ah= S1 Bh (15)
in which matrices A and B depend on s, and s3 (and on the constants of the
medium). Vector h has 8 components, the 4 @; and the 4 71.

e There are 8 eigenvalues, corresponding to the 8 possible values of s;.
These eigenvalues belong in pairs to each of the 4 slowness surfaces (pos-
sibly to their imaginary branches). Those pairs are either real of opposite
signs or complex conjugate.

e The 8 eigenvectors are called partial waves. There are 4 reflected and 4
transmitted partial waves.
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5.5 Example: partial waves for rutile
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5.6 Example: partial waves of LiINbOQOg;
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5.7 Numerical solution method

L.

Solve the eigenvalue equation (15) in each media 1 and 2, leading for each

to 8 eigenvalues (s%) et sg)) and 8 eigenvectors or polarizations (hq(nl) and

]1(2)>.

The general solution in each medium is a superposition of 8 partial waves

8
h(t,z) = Z a, B exp(iw (t—s$1°" 21 — so 20 — 53.13)) (16)

r=1

. Partial waves (PW) in incident medium 1 are separated into 4 incidents

PW (their amplitudes are supposedly known) and into 4 reflected PW.
Partial waves in medium 2 are separated into 4 transmitted PW and 4
incident PW (their amplitudes vanish).

. The 8 components of h are continuous at the interface, leading to 8 linear

equations for 8 unknowns (the amplitudes of the reflected and trasnmitted
PW). The problem is thus completely determined.
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5.8 Example: interface silicon - silica, and reciprocally

Us : Lri=1
= Si0, — Si @
= Er B S Si0;
d S 505
2 L B
2 T
o = e
= Q
[14] — o0 —
=) -

- = =
c @
Q [
] B 2 0
O gL /
U —

—]— 1 | 1 ] ] | -05 | | | | i |
0 30 60 (degrés) S0 0 30 60 90

Pure shear incident wave (S)

25



5.9 Example: interface duralumin - water, and recipro-

cally
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