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Objectives of the lecture

Basics of the Finite Element Method (FEM)

Waves (optics, electromagnetism, acoustics) with finite elements

Show how far you can go with open-source software

Topics:

1 Introduction to the language: domain, mesh, variables, weak form, boundary conditions, solving a
linear equation (forced response), obtaining eigenvalues and eigenvectors

2 2D photonic and sonic crystals (scalar wave equation, periodicity, radiation boundary condition)

3 Guided waves in optical planar waveguides and fibers (weak form, light cone)

4 Vibrations and modes of mechanical and optical resonators (PML, 3D mesh)

5 Acousto-optical coupling in nanophotonics (photoelastic and moving boundary effects,
optomechanics)

Vincent Laude (UBFC, CNRS) Metamaterials and multiphysical couplings v1.3, October 2021 3 / 38



Principles of FEM

Partial differential equations (PDE)

A partial differential equation (PDE) for the function u(x , y), written as

Lu = f

over a domain Ω, where L is a differential operator containing x , y , u, ∂u
∂x
, ∂u

∂y
.

Examples:

Laplace’s equation: −∇ ➲ (∇u) = 0

Poisson’s equation: −∇ ➲ (ǫ∇φ) = ρ

Helmholtz’s equation: −∇ ➲ (c∇u)− k2u = 0
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Principles of FEM

Galerkin’s method (for the dummies)

Let us consider Lu = f defined over a domain Ω. One can represent (project) u over a base defined by
functions wj , by

u(x , y) =
n

∑

j=1

ajwj(x , y)

where aj are coefficients (real or complex).
The PDE is projected over the functions wi

∫

Ω

wiLu =

∫

Ω

wi f , ∀i = 1...n

We get a linear equation
Aa = f

with Aij =
∫

Ω
wiLwj and fi =

∫

Ω
wi f . The formal solution is a = A−1f.
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Principles of FEM

Linear equations

Many programs can solve linear equations. General purpose: Matlab, Octave, Python, Julia. Finite
element method: Comsol and FreeFem++.

Matrix inversion:
A−1A = I

Linear problem: find x satisfying
Ax = f

Eigenvalue problem: find (λ, x) satisfying

Ax = λx

Generalized eigenvalue: find (λ, x) satisfying

Ax = λBx
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Principles of FEM

Mesh and sub-domains

We divide a domain Ω in smaller domains where all coefficients of the differential equation are
homogeneous.

One has to decrease the size of the small domains to improve the result. One has to not decrease it
to much to avoid infinite calculation time! Compromising / understanding the problem is the key
to find the best mesh.
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Principles of FEM

Most common Boundary Conditions: BC

1 A boundary condition which specifies the value of the function itself is a Dirichlet boundary
condition:

u = 0, or u = u0, on σ

2 A boundary condition which specifies the value of the normal derivative of the function is a
Neumann boundary condition:

∂u

∂n
= 0

with n the outgoing normal to the boundary σ.

Additional BC (for a given function f ):

1 Robin: c0u + c1
∂u
∂n

= f

2 Mixed: u = f and c0u + c1
∂u
∂n

= f ...
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Principles of FEM

Finite element space

Let us consider a domain Ω and its mesh Th. We decide to describe the solution by a finite number
of degrees of freedom (dof ), for example the nodal values uej for the j nodes of the e elements.

The finite element space Wh is the union of all representable functions by this given choice.
Practical important aspect: It is a functional space of finite dimension.

Representation inside a finite element
ue(x , y) =

∑

j N
e
j (x , y)u

e
j where Ne

j (x , y) are basis functions.

For Lagrange elements, Pn, there is continuity of u(x , y) =
∑

e u
e(x , y) between elements. The

space derivatives, however, are not continuous!
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Principles of FEM

Weak Form

Let us assume that we have made a choice on Wh (for a domain Ω and its mesh Th).

We replace the initial problem Lu = f by an approximation:
Find u ∈ Wh that solves

∫

Ω
wLu =

∫

Ω
wf for all test functions w ∈ Wh.

u and w are uniquely determined by their nodal values U = {uej } and W = {w e
j }.

There exists a matrix K and a vector B such that

WTKU = WTB, ∀W

Finally we get a linear equation: KU = B
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Principles of FEM

Practical implementation for any FEM software

1 Define the domain

2 Mesh it

3 Choose the type of elements

4 Define the BC

5 Define the equations (i.e, define their weak form)

6 Choose the solver

7 Solve!

8 Display the results
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Principles of FEM

1D: How does the software solve the problem (Poisson)?

1 Projection of the PDE on test functions

−

∫ 1

0

dxψ(x)
∂

∂x

(

ǫ(x)
∂φ(x)

∂x

)

=

∫ 1

0

dxψ(x)ρ(x)

2 Integration by parts
∫ 1

0

dx
∂ψ

∂x
ǫ
∂φ

∂x
−

[

ψǫ
∂φ

∂x

]1

0

=

∫ 1

0

dxψρ

3 Application of known BC:
[

ψǫ∂φ
∂x

]1

0
; for example:

Dirichlet: ψ(0) = 0

Neumann: ∂φ(1)
∂x

= 0
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Principles of FEM

2D: How does the software solve the problem (Poisson)?

1 Projection of the PDE on test functions

−

∫

Ω

drψ(r)∇ ➲ (ǫ(r)∇φ(r)) =

∫

Ω

drψ(r)ρ(r)

2 Gauss’s law
∫

Ω

dr∇ψ ➲ (ǫ∇φ)−

∫

σ

dnψǫ
∂φ(r)

∂n
=

∫

Ω

drψρ

3 Application of BC:
∫

σ
ψǫ∂φ(r)

∂n
; for example:

Dirichlet: ψ(r) = 0 over a part of σ

Neumann: ǫ ∂φ(r)
∂n

= 0 on the rest of σ
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Principles of FEM

Eigenvalue problem (summary)

Let us consider a square (real or complex valued) matrix M of dimension n. An eigenvalue problem
with eigenvalue λ and eigenvectors u is an equation of the following form Mu = λu
(
∑n

i=1 Mijuj = λui ). Eigenvalues are solution of the caracteristic polynomial |M − λI | = 0.

There are exactly n eigenvalues and at most n eigenvectors (a priori complex). Eigenvectors are
nonzero and thus can always be normalized.

If M is a real symmetric (or Hermitian) matrix, then eigenvalues are real and eigenvectors are
orthogonal.

Generalized eigenvalue problem: Au = λBu
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Photonic and phononic crystals

Artificial crystals

Figure: Artificial crystals for waves with 1D, 2D, or 3D periodicity

Photonic crystal: matrix and Inclusions are dielectrics

Sonic crystal: matrix is a fluid (e.g., water or air)

Phononic crystal: matrix is a solid (e.g., steel, silicon, quartz...)

Inclusions can be void, solid, or fluid
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Photonic and phononic crystals

Acoustics (harmonic)

Acoustic equation for pressure p in the harmonic regime with a source term:

−∇ ➲ (ρ−1∇p)− ω2B−1p = f

with B the elastic modulus (Pa), ρ the density (kg/m3), and f a source term (1/s2).

Example: Loud speaker in a room

Domain

BC (pressure, normal acceleration, soft and hard boundary, radiation)?

Applying a force: Dirichlet or Neumann? Response of the system?

What is a good mesh for a harmonic problem at a single wavelength λ?

Change the finite elements; does the solution change?
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Photonic and phononic crystals

TE and TM 2D photonic crystal (harmonic)

Maxwell’s equations in the harmonic regime lead to:

TE (transverse electric field)
−∇ ➲ (∇Ez) = ǫ(ω/c)2Ez

TM (transverse magnetic field)

−∇ ➲ (ǫ−1∇Hz) = (ω/c)2Hz

with ǫ = n2 the relative dielectric permittivity and c the speed of light in a vacuum.
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Photonic and phononic crystals

Bloch theorem

Helmholtz equation with periodic coefficients: −∇ ➲ (c(r)∇u(r)) = ω2u(r)

Theorem (Bloch)

The eigenmodes of the periodic Helmholtz equation are Bloch waves of the form

u(r) = exp(−ı❦ ➲ r)ũ(r)

where ũ(r) is a periodic function with the same periodicity as the crystal and ❦ is the Bloch wave vector.

(Classical) band structure: solve for ω(k)
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Photonic and phononic crystals

Weak form of the pressure equation, boundary conditions

Consider all possible test functions q(t, ①) belonging to the same finite element space as the pressure and
form the scalar products

−

∫

Ω

d① q∇ ➲

(

1

ρ
∇p

)

+

∫

Ω

d① q
1

B

∂2p

∂t2
=

∫

Ω

d① qf .

Using the divergence theorem, the weak form is

∫

Ω

d① ∇q ➲

(

1

ρ
∇p

)

−

∫

σ

ds q

(

1

ρ
∇p

)

➲ ♥ +

∫

Ω

d① q
1

B

∂2p

∂t2
=

∫

Ω

d① qf .

External boundary conditions – free:
(

1
ρ
∇p

)

➲ ♥ = 0; Dirichlet: p = p0

Continuity between elements of p and
(

1
ρ
∇p

)

➲ ♥ (normal acceleration)
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Photonic and phononic crystals

Example of an internal source and radiation BC

(a)
Water

σi

σ (b)

Figure: Internal source and radiation boundary condition. (a) The computational domain is a disk of water
inside which a linear source is added by prescribing p = 1 Pa along internal boundary σi . A radiation boundary

condition
(

1
ρ
∇p

)

➲ ♥ = −ıωp

ρc
is applied at boundary σ. (b) The solution shows the natural diffraction of the

acoustic beam radiated from the source. The source dimension is slightly less than 3 wavelengths in water.
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Photonic and phononic crystals

FEM for a unit-cell: the band structure of sonic crystals

Look for Bloch waves in the form p(r) = exp(−ı❦ ➲ r)p̃(r), and consider p̃(r) as the unknown field

In order to obtain the band structure, it is enough to solve the eigenproblem

ω2

∫

Ω

dr

(

q̃∗
1

B
p̃

)

=

∫

Ω

dr

(

(∇q̃ − ıkq̃)†
1

ρ
(∇p̃ − ıkp̃)

)

, ∀q̃

There is no source term and the boundary integral vanishes identically because of the periodic
boundary conditions.

The wave vector ❦ enters directly the variational formulation, and more precisely the stiffness
matrix.

Vincent Laude (UBFC, CNRS) Metamaterials and multiphysical couplings v1.3, October 2021 21 / 38



Photonic and phononic crystals

Sonic crystal of cylindrical steel rods in water: band structure

x1

x2

a

k1

k2

2π/a

Γ

M

X

0

500

1000

1500

2000

M Γ X MR
ed
u
ce
d
fr
eq
u
en
cy
,
ω
a
/2
π
(m

/s
)

Reduced wavenumber, ka/2π

Figure: 2D square-lattice sonic crystal. d/a = 0.83
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Photonic and phononic crystals

A square-lattice phononic crystal of steel rods in water: transmission

Pitch: 100 µm

Diameter: 70 µm

Complete band gap:
8-9 MHz

Plane source emits 1 Pa
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Photonic and phononic crystals

Acoustics (eigenvalue problem) for a special case

Acoustical equation in harmonic regime with an axial wavenumber:

−∇ ➲ (ρ−1∇p) + (k2
z ρ

−1 − ω2B−1)p = 0

with B the elastic modulus (Pa), ρ the density (kg/m3), and kz an axial wave number (1/m).

Example: tubular problem

Domain

BC (soft and hard boundary)?

Find the first 5 eigenvalues?

change kz : influence of the length of the tube?
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Vector equations, 3D

3D elasticity: deformations and strain

Let us consider a point x with its coordinates (x1, x2, x3). ui (x+ dx) = ui (x) +
∂ui
∂xj

dxj at the first

order. ∂ui
∂xj

is the displacement gradient.

One can split this gradient into a symmetric part (Sij) and an antisymmetric part as follows
∂ui
∂xj

= Sij + ASij , Sij =
1
2

(

∂ui
∂xj

+
∂uj
∂xi

)

and ASij =
1
2

(

∂ui
∂xj

−
∂uj
∂xi

)

The symmetric part gives the deformation or strain and the antisymmetric part the local rotations.

The dilation is given by S = S11 + S22 + S33 = ∇ ➲u.

Terms S11, S22 and S33 are longitudinal strains and Sij , i 6= j , are transverse strains.
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Vector equations, 3D

3D Elasticity: Stresses

3 independent constraints can be applied on
a surface: a traction-compression and two
shear constraints.

On the face of the cube normal to x1, the force per unit of surface is T11 + T21 + T31. Tij is a
rank-two symmetric tensor called the stress tensor. For a surface denoted by its normal n, the
traction is given by the vector Tijnj .

Dynamical (or Navier) equation (with fi the internal forces):
∂Tij

∂xj
+ fi = ρ∂2ui

∂t2
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Vector equations, 3D

3D elasticity: Hooke’s law

For small deformations Hooke’s law can be expressed as :

Tij = cijklSkl

i/e. the stress is proportional to the strain.

cijkl is a 4th order tensor, called elasticity tensor. It has a priori 34 = 81 components. Assuming
symmetry of Tij and Skl implies that cjikl = cijkl et cijkl = cijlk . reducing it to 36 independent
components.

Adding the major symmetry cijkl = cklij only 21 components are left.
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Vector equations, 3D

3D elasticity: Notations

(11) −→ 1; (22) −→ 2; (33) −→ 3

(23) = (32) −→ 4; (13) = (31) −→ 5; (12) = (21) −→ 6

TI = Tij ; cIJ = cijkl ;TI = cIJSJ

S1 = S11; S2 = S22; S3 = S33; S4 = 2S23; S5 = 2S13; S6 = 2S12
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Vector equations, 3D

3D Mesh

In 2D one can mesh the domain using triangles.

In 3D one may use tetrahedrons.
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Vector equations, 3D

Vector finite elements

Let’s consider a vector field (u1, u2, u3).

A domain Ω and its mesh Th. One describes the solution by a finite number of DOF

A vector finite space of elements Wh is a finite set of representable functions by this choice.

Representation in a finite element
uei (x , y) =

∑

j N
e
j (x , y)u

e
ij where Ne

j (x , y) are basis functions as in the scalar case.

For Lagrange elements, Pn, the continuity ui (x , y) =
∑

e u
e
i (x , y) between elements is preserved.
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Vector equations, 3D

Weak form for 3D elasticity (1)

1 Elastodynamic equation:

−∇T + ρ
∂2u

∂t2
= f

2 Projection on the vector test fonctions v:

−

∫

Ω

v ➲∇T +

∫

Ω

v ➲ ρ
∂2u

∂t2
=

∫

Ω

v ➲ f

3 Divergence theorem:
∫

Ω

∇vT −

∫

σ

v ➲Tn +

∫

Ω

v ➲ ρ
∂2u

∂t2
=

∫

Ω

v ➲ f
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Vector equations, 3D

Weak form for 3D elasticity (2)

1 Hooke’s law: TI = cIJSJ with S = ∇u

∫

Ω

S(v)I cIJS(u)J −

∫

σ

v ➲Tn +

∫

Ω

v ➲ ρ
∂2u

∂t2
=

∫

Ω

v ➲ f

2 BC:
∫

σ
v ➲Tn is known:

Dirichlet: v = 0 on a part of σ (clamped)
Neumann: Tn = 0 on the remaining part σ (stress free)

3 monochromatic case (or harmonic excitation)

∫

Ω

S(v)I cIJS(u)J −

∫

σ

v ➲Tn − ω2

∫

Ω

v ➲ ρu =

∫

Ω

v ➲ f
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Vector equations, 3D

Example: Bending of a beam under gravity

Clamped silicon beam.

bending by gravity in the static case.

Visualization of the deformation.

Vincent Laude (UBFC, CNRS) Metamaterials and multiphysical couplings v1.3, October 2021 33 / 38



Vector equations, 3D

Eigenmode of a beam

Clamped on two sides.

neglect gravity

Find the eigenmodes

influence of the BC?

Vincent Laude (UBFC, CNRS) Metamaterials and multiphysical couplings v1.3, October 2021 34 / 38



Multiphysics couplings

Multiphysics: coupling of different physical problems

Many physical models are coupled and many phenomena or even moduli depend on one another

Electro-optics, magneto-optics
Piezoelectricity

Equations are linked by constitutive relation

One must consider a vector finite element space containing all unknowns of the problem.
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Multiphysics couplings

Example: piezoelectricity

Direct piezoelectric effect: an electric polarization is induced by a deformation.

Inverse piezoelectric effect: an applied electric field induces a deformation of the crystal lattice.

The piezoelectric effect only appears in non centro-symmetric crystals.

Coupled equations (ekij : piezoelectric tensor)

Tij = cijklSkl − ekijEk ;Di = eiklSkl + ǫijEj

Electric field derives from a potential : Ei = − ∂φ
∂xi

In contracted form:
TI = cIJSJ − ekIφ,k ;Di = eiJSJ + ǫijφ,j
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Multiphysics couplings

Indirect coupling of physical models

Many different situations lead to coupled multiphysics models

A system can perform a distant action on another system, for instance a force...
If a physical quantity induces a deformation of the system, then the geometry and the mesh must
change, and thus the solution can change even there was no direct coupling in the equation...

There is no simple rule to decide how to solve the problem: a coupling model has to be improvised!
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Appendix

Some useful integral theorems

V a volume, S a surface enclosing the volume.
∮

stands for an integral over a closed surface or
contour.

Gradient theorem
∫

V

dV ∇f =

∮

S

n fdS

Gauss theorem (or divergence theorem)

∫

V

dV ∇ ➲ f =

∮

S

dS n ➲ f

Rotational theorem
∫

V

dV ∇× f =

∮

S

dS n× f
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