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Objectives of the lecture

@ Basics of the Finite Element Method (FEM)
o Waves (optics, electromagnetism, acoustics) with finite elements
@ Show how far you can go with open-source software
Topics:
@ Introduction to the language: domain, mesh, variables, weak form, boundary conditions, solving a
linear equation (forced response), obtaining eigenvalues and eigenvectors

@ 2D photonic and sonic crystals (scalar wave equation, periodicity, radiation boundary condition)
@ Guided waves in optical planar waveguides and fibers (weak form, light cone)
@ Vibrations and modes of mechanical and optical resonators (PML, 3D mesh)

@ Acousto-optical coupling in nanophotonics (photoelastic and moving boundary effects,
optomechanics)
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Partial differential equations (PDE)

A partial differential equation (PDE) for the function u(x,y), written as
Lu=f

over a domain €, where L is a differential operator containing x, y, u, %, %.
y
Examples:
e Laplace's equation: —V-(Vu) =0
@ Poisson’s equation: —V - (eV¢) =p
e Helmholtz's equation: —V-(cVu) — k?u =0
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Principles of FEM

Galerkin's method (for the dummies)

Let us consider Lu = f defined over a domain Q. One can represent (project) u over a base defined by
functions w;, by

U(Xay) = ZBJ'WJ'(X,)/)
j=1

where a; are coefficients (real or complex).
The PDE is projected over the functions w;

/W,-[,u:/w,-f,Vizl...n
Q Q

Aa="f

with Aj = [, wiLw; and f; = [, w;f. The formal solution is a = A™'f.

We get a linear equation
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Principles of FEM

Linear equations

Many programs can solve linear equations. General purpose: Matlab, Octave, Python, Julia. Finite
element method: Comsol and FreeFem++.

@ Matrix inversion:

ATTA=1
@ Linear problem: find x satisfying
Ax=f
o Eigenvalue problem: find (), x) satisfying
Ax = Ax

o Generalized eigenvalue: find (), x) satisfying

Ax = ABx
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ciples of FEM

Mesh and sub-domains

@ We divide a domain £2 in smaller domains where all coefficients of the differential equation are
homogeneous.

@ One has to decrease the size of the small domains to improve the result. One has to not decrease it
to much to avoid infinite calculation time! Compromising / understanding the problem is the key
to find the best mesh.

N
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Principles of FEM

Most common Boundary Conditions: BC

@ A boundary condition which specifies the value of the function itself is a Dirichlet boundary
condition:
u=0, or u=uy, ono

@ A boundary condition which specifies the value of the normal derivative of the function is a
Neumann boundary condition:

ou
=0
on
with n the outgoing normal to the boundary o.
Additional BC (for a given function f):
@ Robin: qu+ cl% =f
@ Mixed: v=1f and cyu + C1% =f..
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Principles of FEM

Finite element space

@ Let us consider a domain 2 and its mesh Th. We decide to describe the solution by a finite number
of degrees of freedom (dof ), for example the nodal values uf for the j nodes of the e elements.

@ The finite element space Wh is the union of all representable functions by this given choice.
Practical important aspect: It is a functional space of finite dimension.

@ Representation inside a finite element
ue(x,y) = >; Ni(x,y)uf where Nf(x, y) are basis functions.

e For Lagrange elements, P,, there is continuity of u(x,y) =, u®(x, y) between elements. The
space derivatives, however, are not continuous!
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Weak Form

@ Let us assume that we have made a choice on Wh (for a domain Q and its mesh Th).
@ We replace the initial problem Lu = f by an approximation:
Find u € Wh that solves [, wLu = [, wf for all test functions w € Wh.
@ uand w are uniquely determined by their nodal values U = {uf} and W = {w{}.
@ There exists a matrix K and a vector B such that

WTKU =WTB,vW

o Finally we get a linear equation: KU =B
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Principles of FEM

Practical implementation for any FEM software

@ Define the domain

@ Mesh it

© Choose the type of elements

@ Define the BC

@ Define the equations (i.e, define their weak form)

@ Choose the solver
@ Solve!
@ Display the results
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Principles of FEM

1D: How does the software solve the problem (Poisson)?

@ Projection of the PDE on test functions

o (582) - e

[y [ o

@ Integration by parts

© Application of known BC: [we%}o; for example:

e Dirichlet: (0) =0

o Neumann: %(:) =0
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Principles of FEM

2D: How does the software solve the problem (Poisson)?

© Projection of the PDE on test functions

- [ )7 () Vol = [ arutryots
/drw (eV) — /dw /dW

© Application of BC: fg we%; for example:

o Dirichlet: ¢(r) = 0 over a part of o
33(')

@ Gauss's law

= 0 on the rest of o
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ciples of FEM

Eigenvalue problem (summary)

@ Let us consider a square (real or complex valued) matrix M of dimension n. An eigenvalue problem
with eigenvalue \ and eigenvectors u is an equation of the following form Mu = Au
(>, Mjuj = Auj). Eigenvalues are solution of the caracteristic polynomial |[M — /| = 0.

@ There are exactly n eigenvalues and at most n eigenvectors (a priori complex). Eigenvectors are
nonzero and thus can always be normalized.

o If M is a real symmetric (or Hermitian) matrix, then eigenvalues are real and eigenvectors are
orthogonal.

o Generalized eigenvalue problem: Au = ABu
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Photonic and phononic crystals

Artificial crystals

\\\\\

\\\

Figure: Artificial crystals for waves with 1D, 2D, or 3D periodicity

@ Photonic crystal: matrix and Inclusions are dielectrics

@ Sonic crystal: matrix is a fluid (e.g., water or air)

@ Phononic crystal: matrix is a solid (e.g., steel, silicon, quartz...)
@ Inclusions can be void, solid, or fluid
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Photonic and phononic crystals

Acoustics (harmonic)

Acoustic equation for pressure p in the harmonic regime with a source term:
~V-(p7'Vp) —w?B7lp=f
with B the elastic modulus (Pa), p the density (kg/m?), and f a source term (1/s?).

Example: Loud speaker in a room
@ Domain
@ BC (pressure, normal acceleration, soft and hard boundary, radiation)?
@ Applying a force: Dirichlet or Neumann? Response of the system?
@ What is a good mesh for a harmonic problem at a single wavelength \?
@ Change the finite elements; does the solution change?
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Photonic and phononic crystals

TE and TM 2D photonic crystal (harmonic)

Maxwell's equations in the harmonic regime lead to:

o TE (transverse electric field)
~V-(VE,) = ¢(w/c)’E,

@ TM (transverse magnetic field)
~V-(e7'VH,) = (w/c)*H,

with € = n? the relative dielectric permittivity and c the speed of light in a vacuum.
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Photonic and phononic crystals

Bloch theorem

Helmholtz equation with periodic coefficients: —V - (c(r)Vu(r)) = w?u(r)

Theorem (Bloch)

The eigenmodes of the periodic Helmholtz equation are Bloch waves of the form
u(r) = exp(—uk -r)i(r)

where i{i(r) is a periodic function with the same periodicity as the crystal and k is the Bloch wave vector.

(Classical) band structure: solve for w(k)
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Photonic and phononic crystals

Weak form of the pressure equation, boundary conditions

@ Consider all possible test functions q(t, x) belonging to the same finite element space as the pressure and

form the scalar products
1%
V- \Y — = f.
/d“’ ( p) /Qd“’B or /Qd“’

@ Using the divergence theorem, the weak form is
1 1 18p
d B —[d = . d = [ dxgqf.
[ (25 s (i) o [ed 2 [
@ External boundary conditions — free: (%Vp) -n = 0; Dirichlet: p = po

@ Continuity between elements of p and (%Vp) -n (normal acceleration)
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Photonic and phononic crystals

Example of an internal source and radiation BC

() o (b)

Figure: Internal source and radiation boundary condition. (a) The computational domain is a disk of water
inside which a linear source is added by prescribing p = 1 Pa along internal boundary o;. A radiation boundary
condition %Vp ‘n= —z‘;—é’ is applied at boundary o. (b) The solution shows the natural diffraction of the
acoustic beam radiated from the source. The source dimension is slightly less than 3 wavelengths in water.
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Photonic and phononic crystals

FEM for a unit-cell: the band structure of sonic crystals

Look for Bloch waves in the form p(r) = exp(—uk - r)p(r), and consider j(r) as the unknown field

@ In order to obtain the band structure, it is enough to solve the eigenproblem

W? /Q dr (q;p) - /Q dr ((va—zkaﬂ;(w—zkﬁ)) V4

@ There is no source term and the boundary integral vanishes identically because of the periodic
boundary conditions.

The wave vector k enters directly the variational formulation, and more precisely the stiffness
matrix.
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Photonic and phononic crystals

Sonic crystal of cylindrical steel rods in water: band structure

2000 % —
1500 /—
1000 \

X2

Reduced frequency, wa/2m (m/s)

500
X
r ki 0
M r X M
o /a” Reduced wavenumber, ka/2m

Figure: 2D square-lattice sonic crystal. d/a = 0.83
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Photonic and phononic crystals

A square-lattice phononic crystal of steel rods in water: transmission

freqacpr(y = 1085 Max:3.00
Surface: Pressure [Pa]

@ Pitch: 100 um
. @ Diameter: 70 pum

o Complete band gap:
8-9 MHz

@ Plane source emits 1 Pa

2 =]
0 Min-2.00
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Photonic and phononic crystals

Acoustics (eigenvalue problem) for a special case

Acoustical equation in harmonic regime with an axial wavenumber:
V- (p7'Vp) + (K2pt —w?B)p =0
with B the elastic modulus (Pa), p the density (kg/m?3), and k, an axial wave number (1/m).

Example: tubular problem

@ Domain
BC (soft and hard boundary)?

°
o Find the first 5 eigenvalues?
°

change k,: influence of the length of the tube?
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Vector equations, 3D

3D

elasticity: deformations and strain

Let us consider a point x with its coordinates (xi, x2, x3). ui(x + dx) = u;(x) + g)‘j’_’ dx; at the first
J

order. g)‘f is the displacement gradient.
J

One can split this gradient into a symmetric part (S;;) and an antisymmetric part as follows

()u, _ 1 du, du B 1 du
L= S+ ASj, Sy =3 (5% + 54) and AS; = 1 (54 - 54)

The symmetric part gives the deformation or strain and the antisymmetric part the local rotations.

The dilation is given by S = S13 + S + S33 = V -u.

Terms 511, 52 and Sz3 are longitudinal strains and Sj;, i # j, are transverse strains.
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3D Elasticity: Stresses

3 T,
. . . SR EEEEE
3 independent constraints can be applied on + -
. . # Xy
a surface: a traction-compression and two b
shear constraints. x5

@ On the face of the cube normal to xi, the force per unit of surface is Ti1 + To1 + T31. Tjjis a
rank-two symmetric tensor called the stress tensor. For a surface denoted by its normal n, the
traction is given by the vector Tjn;.

@ Dynamical (or Navier) equation (with f; the internal forces): %I’f +fi=pTl
J
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Vector equations, 3D

3D

elasticity: Hooke's law

For small deformations Hooke's law can be expressed as :
Tij = Cijki Skl

i/e. the stress is proportional to the strain.

Cjjk1 is a 4th order tensor, called elasticity tensor. It has a priori 3* = 81 components. Assuming
symmetry of T and Sy implies that cjiy = cjis et ¢ = cjjik. reducing it to 36 independent
components.

Adding the major symmetry cj = cijj only 21 components are left.
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3D elasticity: Notations

(11) — 1;(22) — 2;(33) — 3
(23) = (32) — 4;(13) = (31) — 5; (12) = (21) — 6
Ty = Ty cy = cijr; Tr = ciuSy

S1 = 511,50 = S500; 53 = S33; 5S4 = 2523; S5 = 25:13; 56 = 2512

Matériaux Classe Rigidités (109 N/m?) p (10% kg/m®)
cub. ou isotrope c11 ci2 Ca4

AsGa 43m 11.88 5.38 2.83 5.307
Si0O4 isotrope 7.85 1.61 3.12 2.203
Si m3m 16.56 6.39 7.95 2.329
hexagonal €11 Cl2 €13 €33  Caq

PZT-4 trans. iso. [13.9 78 74 115 26 |7.5
ZnO 6mm 21.0 12.1 10.5 21.1 4.2 |5.676
trigonal C11 Cl2 €13 €33 Ca4 Ciq

Al,O3 3m 49.7 16.3 11.1 49.8 14.7 -2.3|3.986
LiNbO3 3m 20.3 53 7.5 245 6.0 0.9 [4.7
quartz a (SiO2) 32 8.7 0.7 1.2 10.7 5.8 -1.8 |2.648
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@ In 2D one can mesh the domain using triangles.

@ In 3D one may use tetrahedrons.

1
4
9
10
2 4 ‘
8
2
3 ¢
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Vector equations, 3D

Vector finite elements

Let's consider a vector field (uy, up, u3).
A domain €2 and its mesh Th. One describes the solution by a finite number of DOF
A vector finite space of elements Wh is a finite set of representable functions by this choice.

Representation in a finite element
uf(x,y) = >; NF(x,y)uf where NF(x,y) are basis functions as in the scalar case.

For Lagrange elements, P,, the continuity uj(x,y) = >, uf(x, y) between elements is preserved.
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Vector equations, 3D

Weak form for 3D elasticity (1)

@ Elastodynamic equation:
vr 4Ll g
Porz ~

@ Projection on the vector test fonctions v:

02u
- v-VT—&—/v-p—:/v-f
/Q Q Ot Q
0?u
/QVVT_/UVITn_F/QV.pﬁ:/QV.f

© Divergence theorem:
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Weak form for 3D elasticity (2)

@ Hooke's law: T; = ¢;;S; with S = Vu

/S(V) C 5(u) /V I = /V 62 /V ]
9 BCf V- )niSkIOW :

o Dirichlet: v =10 on a part of o (clamped)
e Neumann: T, =0 on the remaining part o (stress free)

© monochromatic case (or harmonic excitation)

/5 )icyS(u /v T—w2/v-pu:/v-f
Q Q
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Vector equations, 3D

Example: Bending of a beam under gravity

@ Clamped silicon beam.
@ bending by gravity in the static case.

@ Visualization of the deformation.
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Eigenmode of a beam

o Clamped on two sides.
@ neglect gravity

@ Find the eigenmodes
@ influence of the BC?
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Multiphysics: coupling of different physical problems

@ Many physical models are coupled and many phenomena or even moduli depend on one another

o Electro-optics, magneto-optics
o Piezoelectricity

@ Equations are linked by constitutive relation

@ One must consider a vector finite element space containing all unknowns of the problem.
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Multiphysics couplings

Example: piezoelectricity

Direct piezoelectric effect: an electric polarization is induced by a deformation.
Inverse piezoelectric effect: an applied electric field induces a deformation of the crystal lattice.

The piezoelectric effect only appears in non centro-symmetric crystals.

Coupled equations (ejj: piezoelectric tensor)

Tij = Ciji Sk — exijEx; Di = €S + € E;

Electric field derives from a potential : E; = —gf
@ In contracted form:

T =cuySs)—eudw; Di = eySy+€jd
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Multiphysics couplings

Indirect coupling of physical models

@ Many different situations lead to coupled multiphysics models

o A system can perform a distant action on another system, for instance a force...
o If a physical quantity induces a deformation of the system, then the geometry and the mesh must
change, and thus the solution can change even there was no direct coupling in the equation...

@ There is no simple rule to decide how to solve the problem: a coupling model has to be improvised!
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Appendix

Some useful integral theorems

V a volume, S a surface enclosing the volume. § stands for an integral over a closed surface or

contour.
/ dV Vf = j{ n fdS
v S

@ Gauss theorem (or divergence theorem)

/dVV-f:den-f
v s
/dVfo:%dSnxf
v s

@ Gradient theorem

@ Rotational theorem
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