# Metamaterials and multiphysical couplings［solved with finite elements］ 

Introduction to finite element modeling for waves and other physical problems with FreeFem＋＋

## Vincent Laude

Institut FEMTO－ST，Université de Bourgogne Franche－Comté \＆CNRS，
25030 Besançon，France
vincent．laude＠femto－st．fr
http：／／members．femto－st．fr／vincent－laude／
v1．3，October 2021

## Content

(1) Principles of the finite element method
(2) Photonic and phononic crystals
(3) 3D, Vector finite elements (Maxwell equations, elastic waves)
(4) Multiphysics couplings
(5) Appendix

## Objectives of the lecture

- Basics of the Finite Element Method (FEM)
- Waves (optics, electromagnetism, acoustics) with finite elements
- Show how far you can go with open-source software


## Topics:

(1) Introduction to the language: domain, mesh, variables, weak form, boundary conditions, solving a linear equation (forced response), obtaining eigenvalues and eigenvectors
(2) 2D photonic and sonic crystals (scalar wave equation, periodicity, radiation boundary condition)

- Guided waves in optical planar waveguides and fibers (weak form, light cone)
- Vibrations and modes of mechanical and optical resonators (PML, 3D mesh)
(0) Acousto-optical coupling in nanophotonics (photoelastic and moving boundary effects, optomechanics)


## Partial differential equations (PDE)

A partial differential equation (PDE) for the function $u(x, y)$, written as

$$
\mathcal{L} u=f
$$

over a domain $\Omega$, where $\mathcal{L}$ is a differential operator containing $x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$. Examples:

- Laplace's equation: $-\nabla \cdot(\nabla u)=0$
- Poisson's equation: $-\nabla \cdot(\epsilon \nabla \phi)=\rho$
- Helmholtz's equation: $-\nabla \cdot(c \nabla u)-k^{2} u=0$


## Galerkin's method (for the dummies)

Let us consider $\mathcal{L} u=f$ defined over a domain $\Omega$. One can represent (project) $u$ over a base defined by functions $w_{j}$, by

$$
u(x, y)=\sum_{j=1}^{n} a_{j} w_{j}(x, y)
$$

where $a_{j}$ are coefficients (real or complex).
The PDE is projected over the functions $w_{i}$

$$
\int_{\Omega} w_{i} \mathcal{L} u=\int_{\Omega} w_{i} f, \forall i=1 \ldots n
$$

We get a linear equation

$$
A a=\mathrm{f}
$$

with $A_{i j}=\int_{\Omega} w_{i} \mathcal{L} w_{j}$ and $f_{i}=\int_{\Omega} w_{i} f$. The formal solution is a $=A^{-1} \mathrm{f}$.

## Linear equations

Many programs can solve linear equations. General purpose: Matlab, Octave, Python, Julia. Finite element method: Comsol and FreeFem++.

- Matrix inversion:

$$
A^{-1} A=I
$$

- Linear problem: find x satisfying

$$
A \mathrm{x}=\mathrm{f}
$$

- Eigenvalue problem: find $(\lambda, x)$ satisfying

$$
A \mathrm{x}=\lambda \mathrm{x}
$$

- Generalized eigenvalue: find $(\lambda, x)$ satisfying

$$
A x=\lambda B x
$$

## Mesh and sub-domains

- We divide a domain $\Omega$ in smaller domains where all coefficients of the differential equation are homogeneous.
- One has to decrease the size of the small domains to improve the result. One has to not decrease it to much to avoid infinite calculation time! Compromising / understanding the problem is the key to find the best mesh.



## Most common Boundary Conditions: BC

(1) A boundary condition which specifies the value of the function itself is a Dirichlet boundary condition:

$$
u=0, \text { or } u=u_{0}, \text { on } \sigma
$$

(2) A boundary condition which specifies the value of the normal derivative of the function is a Neumann boundary condition:

$$
\frac{\partial u}{\partial n}=0
$$

with $n$ the outgoing normal to the boundary $\sigma$.
Additional BC (for a given function $f$ ):
(1) Robin: $c_{0} u+c_{1} \frac{\partial u}{\partial n}=f$
(2) Mixed: $u=f$ and $c_{0} u+c_{1} \frac{\partial u}{\partial n}=f$...

## Finite element space

- Let us consider a domain $\Omega$ and its mesh Th. We decide to describe the solution by a finite number of degrees of freedom (dof), for example the nodal values $u_{j}^{e}$ for the $j$ nodes of the $e$ elements.
- The finite element space $W h$ is the union of all representable functions by this given choice. Practical important aspect: It is a functional space of finite dimension.
- Representation inside a finite element $u^{e}(x, y)=\sum_{j} N_{j}^{e}(x, y) u_{j}^{e}$ where $N_{j}^{e}(x, y)$ are basis functions.
- For Lagrange elements, $P_{n}$, there is continuity of $u(x, y)=\sum_{e} u^{e}(x, y)$ between elements. The space derivatives, however, are not continuous!


## Weak Form

- Let us assume that we have made a choice on $W h$ (for a domain $\Omega$ and its mesh $T h$ ).
- We replace the initial problem $\mathcal{L} u=f$ by an approximation: Find $u \in W h$ that solves $\int_{\Omega} w \mathcal{L} u=\int_{\Omega} w f$ for all test functions $w \in W h$.
- $u$ and $w$ are uniquely determined by their nodal values $U=\left\{u_{j}^{e}\right\}$ and $W=\left\{w_{j}^{e}\right\}$.
- There exists a matrix $K$ and a vector $B$ such that

$$
\mathrm{W}^{\top} K \mathrm{U}=\mathrm{W}^{\top} \mathrm{B}, \forall \mathrm{~W}
$$

- Finally we get a linear equation: $K U=B$


## Practical implementation for any FEM software

(1) Define the domain
(2) Mesh it
(3) Choose the type of elements
(0) Define the BC

- Define the equations (i.e, define their weak form)
(1) Choose the solver
© Solve!
( Display the results


## 1D: How does the software solve the problem (Poisson)?

(1) Projection of the PDE on test functions

$$
-\int_{0}^{1} d x \psi(x) \frac{\partial}{\partial x}\left(\epsilon(x) \frac{\partial \phi(x)}{\partial x}\right)=\int_{0}^{1} d x \psi(x) \rho(x)
$$

(2) Integration by parts

$$
\int_{0}^{1} d x \frac{\partial \psi}{\partial x} \epsilon \frac{\partial \phi}{\partial x}-\left[\psi \epsilon \frac{\partial \phi}{\partial x}\right]_{0}^{1}=\int_{0}^{1} d x \psi \rho
$$

(3) Application of known $\mathrm{BC}:\left[\psi \epsilon \frac{\partial \phi}{\partial x}\right]_{0}^{1}$; for example:

- Dirichlet: $\psi(0)=0$
- Neumann: $\frac{\partial \phi(1)}{\partial x}=0$


## 2D: How does the software solve the problem (Poisson)?

(1) Projection of the PDE on test functions

$$
-\int_{\Omega} d r \psi(r) \nabla \cdot(\epsilon(r) \nabla \phi(r))=\int_{\Omega} d r \psi(r) \rho(r)
$$

(2) Gauss's law

$$
\int_{\Omega} d r \nabla \psi \cdot(\epsilon \nabla \phi)-\int_{\sigma} d n \psi \epsilon \frac{\partial \phi(r)}{\partial n}=\int_{\Omega} d r \psi \rho
$$

( Application of $\mathrm{BC}: \int_{\sigma} \psi \epsilon \frac{\partial \phi(r)}{\partial n}$; for example:

- Dirichlet: $\psi(r)=0$ over a part of $\sigma$
- Neumann: $\epsilon \frac{\partial \phi(r)}{\partial n}=0$ on the rest of $\sigma$


## Eigenvalue problem (summary)

- Let us consider a square (real or complex valued) matrix $M$ of dimension $n$. An eigenvalue problem with eigenvalue $\lambda$ and eigenvectors $u$ is an equation of the following form $M u=\lambda u$ ( $\sum_{i=1}^{n} M_{i j} u_{j}=\lambda u_{i}$ ). Eigenvalues are solution of the caracteristic polynomial $|M-\lambda I|=0$.
- There are exactly $n$ eigenvalues and at most $n$ eigenvectors (a priori complex). Eigenvectors are nonzero and thus can always be normalized.
- If $M$ is a real symmetric (or Hermitian) matrix, then eigenvalues are real and eigenvectors are orthogonal.
- Generalized eigenvalue problem: $A u=\lambda B u$


## Artificial crystals



Figure: Artificial crystals for waves with 1D, 2D, or 3D periodicity

- Photonic crystal: matrix and Inclusions are dielectrics
- Sonic crystal: matrix is a fluid (e.g., water or air)
- Phononic crystal: matrix is a solid (e.g., steel, silicon, quartz...)
- Inclusions can be void, solid, or fluid


## Acoustics (harmonic)

Acoustic equation for pressure $p$ in the harmonic regime with a source term:

$$
-\nabla \cdot\left(\rho^{-1} \nabla p\right)-\omega^{2} B^{-1} p=f
$$

with $B$ the elastic modulus $(\mathrm{Pa}), \rho$ the density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, and $f$ a source term $\left(1 / \mathrm{s}^{2}\right)$.
Example: Loud speaker in a room

- Domain
- BC (pressure, normal acceleration, soft and hard boundary, radiation)?
- Applying a force: Dirichlet or Neumann? Response of the system?
- What is a good mesh for a harmonic problem at a single wavelength $\lambda$ ?
- Change the finite elements; does the solution change?


## TE and TM 2D photonic crystal (harmonic)

Maxwell's equations in the harmonic regime lead to:

- TE (transverse electric field)

$$
-\nabla \cdot\left(\nabla E_{z}\right)=\epsilon(\omega / c)^{2} E_{z}
$$

- TM (transverse magnetic field)

$$
-\nabla \cdot\left(\epsilon^{-1} \nabla H_{z}\right)=(\omega / c)^{2} H_{z}
$$

with $\epsilon=n^{2}$ the relative dielectric permittivity and $c$ the speed of light in a vacuum.

## Bloch theorem

Helmholtz equation with periodic coefficients: $-\nabla \cdot(c(\boldsymbol{r}) \nabla u(\boldsymbol{r}))=\omega^{2} u(\boldsymbol{r})$
Theorem (Bloch)
The eigenmodes of the periodic Helmholtz equation are Bloch waves of the form

$$
u(\boldsymbol{r})=\exp (-\imath \boldsymbol{k} \cdot \boldsymbol{r}) \tilde{u}(\boldsymbol{r})
$$

where $\tilde{u}(\boldsymbol{r})$ is a periodic function with the same periodicity as the crystal and $\boldsymbol{k}$ is the Bloch wave vector.
(Classical) band structure: solve for $\omega(k)$

## Weak form of the pressure equation, boundary conditions

- Consider all possible test functions $q(t, x)$ belonging to the same finite element space as the pressure and form the scalar products

$$
-\int_{\Omega} \mathrm{d} \boldsymbol{x} q \nabla \cdot\left(\frac{1}{\rho} \nabla p\right)+\int_{\Omega} \mathrm{d} \boldsymbol{x} q \frac{1}{B} \frac{\partial^{2} p}{\partial t^{2}}=\int_{\Omega} \mathrm{d} \boldsymbol{x} q f
$$

- Using the divergence theorem, the weak form is

$$
\int_{\Omega} \mathrm{d} \boldsymbol{x} \nabla \boldsymbol{q} \cdot\left(\frac{1}{\rho} \nabla p\right)-\int_{\sigma} \mathrm{d} s q\left(\frac{1}{\rho} \nabla p\right) \cdot \boldsymbol{n}+\int_{\Omega} \mathrm{d} \boldsymbol{x} q \frac{1}{B} \frac{\partial^{2} p}{\partial t^{2}}=\int_{\Omega} \mathrm{d} \boldsymbol{x} q f
$$

- External boundary conditions - free: $\left(\frac{1}{\rho} \nabla p\right) \cdot \boldsymbol{n}=0$; Dirichlet: $p=p_{0}$
- Continuity between elements of $p$ and $\left(\frac{1}{\rho} \nabla p\right) \cdot \boldsymbol{n}$ (normal acceleration)


## Example of an internal source and radiation BC

(a)

(b)


Figure: Internal source and radiation boundary condition. (a) The computational domain is a disk of water inside which a linear source is added by prescribing $p=1 \mathrm{~Pa}$ along internal boundary $\sigma_{i}$. A radiation boundary condition $\left(\frac{1}{\rho} \nabla p\right) \cdot \boldsymbol{n}=-\imath \frac{\omega p}{\rho c}$ is applied at boundary $\sigma$. (b) The solution shows the natural diffraction of the acoustic beam radiated from the source. The source dimension is slightly less than 3 wavelengths in water.

## FEM for a unit-cell: the band structure of sonic crystals

- Look for Bloch waves in the form $p(\boldsymbol{r})=\exp (-\imath \boldsymbol{k} \cdot \boldsymbol{r}) \tilde{p}(\boldsymbol{r})$, and consider $\tilde{p}(\boldsymbol{r})$ as the unknown field
- In order to obtain the band structure, it is enough to solve the eigenproblem

$$
\omega^{2} \int_{\Omega} d r\left(\tilde{q}^{*} \frac{1}{B} \tilde{p}\right)=\int_{\Omega} d r\left((\nabla \tilde{q}-\imath \mathrm{k} \tilde{q})^{\dagger} \frac{1}{\rho}(\nabla \tilde{p}-\imath \mathrm{k} \tilde{p})\right), \forall \tilde{q}
$$

- There is no source term and the boundary integral vanishes identically because of the periodic boundary conditions.
- The wave vector $\boldsymbol{k}$ enters directly the variational formulation, and more precisely the stiffness matrix.


## Sonic crystal of cylindrical steel rods in water: band structure




Reduced wavenumber, ka/ $2 \pi$
Figure: 2D square-lattice sonic crystal. $d / a=0.83$

## A square-lattice phononic crystal of steel rods in water: transmission



- Pitch: $100 \mu \mathrm{~m}$
- Diameter: $70 \mu \mathrm{~m}$
- Complete band gap: 8-9 MHz
- Plane source emits 1 Pa


## Acoustics (eigenvalue problem) for a special case

Acoustical equation in harmonic regime with an axial wavenumber:

$$
-\nabla \cdot\left(\rho^{-1} \nabla p\right)+\left(k_{z}^{2} \rho^{-1}-\omega^{2} B^{-1}\right) p=0
$$

with $B$ the elastic modulus ( Pa ), $\rho$ the density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, and $k_{z}$ an axial wave number $(1 / \mathrm{m})$.
Example: tubular problem

- Domain
- BC (soft and hard boundary)?
- Find the first 5 eigenvalues?
- change $k_{z}$ : influence of the length of the tube?


## 3D elasticity: deformations and strain

- Let us consider a point $\mathbf{x}$ with its coordinates $\left(x_{1}, x_{2}, x_{3}\right) . u_{i}(\mathbf{x}+d \mathbf{x})=u_{i}(\mathbf{x})+\frac{\partial u_{i}}{\partial x_{j}} d x_{j}$ at the first order. $\frac{\partial u_{i}}{\partial x_{j}}$ is the displacement gradient.
- One can split this gradient into a symmetric part ( $S_{i j}$ ) and an antisymmetric part as follows $\frac{\partial u_{i}}{\partial x_{j}}=S_{i j}+A S_{i j}, S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)$ and $A S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right)$
- The symmetric part gives the deformation or strain and the antisymmetric part the local rotations.
- The dilation is given by $S=S_{11}+S_{22}+S_{33}=\nabla \cdot \mathbf{u}$.
- Terms $S_{11}, S_{22}$ and $S_{33}$ are longitudinal strains and $S_{i j}, i \neq j$, are transverse strains.


## 3D Elasticity: Stresses

3 independent constraints can be applied on a surface: a traction-compression and two shear constraints.


- On the face of the cube normal to $x_{1}$, the force per unit of surface is $T_{11}+T_{21}+T_{31} . T_{i j}$ is a rank-two symmetric tensor called the stress tensor. For a surface denoted by its normal n, the traction is given by the vector $T_{i j} n_{j}$.
- Dynamical (or Navier) equation (with $f_{i}$ the internal forces): $\frac{\partial T_{i j}}{\partial x_{j}}+f_{i}=\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}$


## 3D elasticity: Hooke's law

- For small deformations Hooke's law can be expressed as :

$$
T_{i j}=c_{i j k l} S_{k l}
$$

i/e. the stress is proportional to the strain.

- $c_{i j k l}$ is a 4th order tensor, called elasticity tensor. It has a priori $3^{4}=81$ components. Assuming symmetry of $T_{i j}$ and $S_{k l}$ implies that $c_{j i k l}=c_{i j k l}$ et $c_{i j k l}=c_{i j l k}$. reducing it to 36 independent components.
- Adding the major symmetry $c_{i j k l}=c_{k l i j}$ only 21 components are left.


## 3D elasticity: Notations

$$
(11) \longrightarrow 1 ;(22) \longrightarrow 2 ;(33) \longrightarrow 3
$$

$$
\begin{gathered}
(23)=(32) \longrightarrow 4 ;(13)=(31) \longrightarrow 5 ;(12)=(21) \longrightarrow 6 \\
T_{I}=T_{i j} ; c_{I J}=c_{i j k l} ; T_{I}=c_{I J} S_{J}
\end{gathered}
$$

$$
S_{1}=S_{11} ; S_{2}=S_{22} ; S_{3}=S_{33} ; S_{4}=2 S_{23} ; S_{5}=2 S_{13} ; S_{6}=2 S_{12}
$$

| Matériaux | Classe | Rigidités $\left(10^{10} \mathrm{~N} / \mathrm{m}^{2}\right)$ |  |  |  |  |  | $\rho\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| cub. ou isotrope |  | $c_{11}$ | $c_{12}$ |  |  |  |  |  |

## 3D Mesh

- In 2D one can mesh the domain using triangles.
- In 3D one may use tetrahedrons.



## Vector finite elements

- Let's consider a vector field $\left(u_{1}, u_{2}, u_{3}\right)$.
- A domain $\Omega$ and its mesh Th. One describes the solution by a finite number of DOF
- A vector finite space of elements $W h$ is a finite set of representable functions by this choice.
- Representation in a finite element $u_{i}^{e}(x, y)=\sum_{j} N_{j}^{e}(x, y) u_{i j}^{e}$ where $N_{j}^{e}(x, y)$ are basis functions as in the scalar case.
- For Lagrange elements, $P_{n}$, the continuity $u_{i}(x, y)=\sum_{e} u_{i}^{e}(x, y)$ between elements is preserved.


## Weak form for 3D elasticity (1)

(1) Elastodynamic equation:

$$
-\nabla T+\rho \frac{\partial^{2} \mathrm{u}}{\partial t^{2}}=\mathrm{f}
$$

(3) Projection on the vector test fonctions v :

$$
-\int_{\Omega} \mathrm{v} \cdot \nabla T+\int_{\Omega} \mathrm{v} \cdot \rho \frac{\partial^{2} \mathrm{u}}{\partial t^{2}}=\int_{\Omega} \mathrm{v} \cdot \mathrm{f}
$$

(3) Divergence theorem:

$$
\int_{\Omega} \nabla \mathrm{v} T-\int_{\sigma} \mathrm{v} \cdot T_{n}+\int_{\Omega} \mathrm{v} \cdot \rho \frac{\partial^{2} \mathrm{u}}{\partial t^{2}}=\int_{\Omega} \mathrm{v} \cdot \mathrm{f}
$$

## Weak form for 3D elasticity (2)

(1) Hooke's law: $T_{I}=c_{I J} S_{\jmath}$ with $S=\nabla \mathrm{u}$

$$
\int_{\Omega} S(\mathrm{v})_{\iota} c_{I J} S(\mathrm{u})_{J}-\int_{\sigma} \mathrm{v} \cdot T_{n}+\int_{\Omega} \mathrm{v} \cdot \rho \frac{\partial^{2} \mathrm{u}}{\partial t^{2}}=\int_{\Omega} \mathrm{v} \cdot \mathrm{f}
$$

(2) $\mathrm{BC}: \int_{\sigma} \vee \cdot T_{n}$ is known:

- Dirichlet: $\mathrm{v}=0$ on a part of $\sigma$ (clamped)
- Neumann: $T_{n}=0$ on the remaining part $\sigma$ (stress free)
(3) monochromatic case (or harmonic excitation)

$$
\int_{\Omega} S(\mathrm{v})_{l_{I J}} S(\mathrm{u})_{J}-\int_{\sigma} \mathrm{v} \cdot T_{n}-\omega^{2} \int_{\Omega} \mathrm{v} \cdot \rho \mathrm{u}=\int_{\Omega} \mathrm{v} \cdot \mathrm{f}
$$

## Example: Bending of a beam under gravity

- Clamped silicon beam.
- bending by gravity in the static case.
- Visualization of the deformation.


## Eigenmode of a beam

- Clamped on two sides.
- neglect gravity
- Find the eigenmodes
- influence of the BC?


## Multiphysics: coupling of different physical problems

- Many physical models are coupled and many phenomena or even moduli depend on one another
- Electro-optics, magneto-optics
- Piezoelectricity
- Equations are linked by constitutive relation
- One must consider a vector finite element space containing all unknowns of the problem.


## Example: piezoelectricity

- Direct piezoelectric effect: an electric polarization is induced by a deformation.
- Inverse piezoelectric effect: an applied electric field induces a deformation of the crystal lattice.
- The piezoelectric effect only appears in non centro-symmetric crystals.
- Coupled equations ( $e_{k i j}$ : piezoelectric tensor)

$$
T_{i j}=c_{i j k l} S_{k l}-e_{k i j} E_{k} ; D_{i}=e_{i k l} S_{k l}+\epsilon_{i j} E_{j}
$$

- Electric field derives from a potential : $E_{i}=-\frac{\partial \phi}{\partial x_{i}}$
- In contracted form:

$$
T_{I}=c_{I J} S_{J}-e_{k l} \phi_{, k} ; D_{i}=e_{i J} S_{J}+\epsilon_{i j} \phi_{, j}
$$

## Indirect coupling of physical models

- Many different situations lead to coupled multiphysics models
- A system can perform a distant action on another system, for instance a force...
- If a physical quantity induces a deformation of the system, then the geometry and the mesh must change, and thus the solution can change even there was no direct coupling in the equation...
- There is no simple rule to decide how to solve the problem: a coupling model has to be improvised!


## Some useful integral theorems

$V$ a volume, $S$ a surface enclosing the volume. $\oint$ stands for an integral over a closed surface or contour.

- Gradient theorem

$$
\int_{V} d V \nabla f=\oint_{S} \mathrm{n} f d S
$$

- Gauss theorem (or divergence theorem)

$$
\int_{V} d V \nabla \cdot \mathrm{f}=\oint_{S} d S \mathrm{n} \cdot \mathrm{f}
$$

- Rotational theorem

$$
\int_{V} d V \nabla \times \mathrm{f}=\oint_{S} d S \mathrm{n} \times \mathrm{f}
$$

