M2 MIR – Microsystèmes Multiphysiques Utilisation de la méthode des éléments finis pour la simulation numérique des équations multi-physiques

Vincent Laude & Mahmoud Addouche

Institut FEMTO-ST, Université de Bourgogne Franche-Comté et CNRS, 15 B avenue des Montboucons, F-25030 Besançon Cedex, France vincent.laude@femto-st.fr http://members.femto-st.fr/vincent-laude/

v2.2, septembre 2017

(中) (四) (종) (종) (종) (종)

Principes, 2D, problèmes scalaires (électrostatique, acoustique)

2 Modèles 3D, éléments finis vectoriels (élasticité)

(日) (周) (三) (三)

Organisation du cours

Objectifs :

- Formuler des modèles simples mais multi-physiques
- Comprendre et utiliser la méthode des éléments finis

Vincent Laude :

- Modélisation, maillage, choix des méthodes (5h CM)
- Acoustique, modes de vibration élastique (4h TP)
- Électrostatique (4h TP)
- Couplage déformation mécanique-électrostatique (4h TP)
- Couplage acoustique-structure (4h TP)

Mahmoud Addouche :

- Performance énergétique d'une façade d'habitation (4h TP)
- Dissipateurs pour CPU. Couplage Thermoélectrique; Effet Joule (4h TP)

- 3

イロト 不得下 イヨト イヨト

Équations aux dérivées partielles

Toute équation du type

$$\mathcal{L}u = f$$

avec u(x, y) une fonction définie sur un domaine Ω de l'espace physique, \mathcal{L} un opérateur différentiel contenant x, y, u, $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$... et des fonctions de ces quantités.

Exemples :

- Équation de Laplace : $-\nabla \cdot (\nabla u) = 0$
- Équation de Poisson : $-\nabla \cdot (\epsilon \nabla \phi) = \rho$
- Équation de Helmholtz : $-\nabla \cdot (c\nabla u) k^2 u = 0$

Principes

Méthode de Galerkin (for the dummies)

 $\mathcal{L}u = f$ est définie sur un certain domaine Ω . On choisit de représenter u sur une base de fonctions w_i , soit

$$u(x,y) = \sum_{j=1}^{n} a_j w_j(x,y)$$

où a_j sont des coefficients (réels ou complexes). On projette l'équation différentielle sur les fonctions w_i

$$\int_{\Omega} w_i \mathcal{L} u = \int_{\Omega} w_i f, \forall i = 1...n$$

On obtient une équation linéaire

$$A\mathbf{a} = \mathbf{f}$$

avec $A_{ij} = \int_{\Omega} w_i \mathcal{L} w_j$ et $f_i = \int_{\Omega} w_i f$. La solution formelle est $\mathbf{a} = A^{-1} \mathbf{f}$. Vincent Laude (UFC, CNRS) M2 MIR – Microsystèmes Multiphysiques v2.2, septembre 2017 5 / 34

Il ne faut pas avoir peur des équations linéaires !

Il existe beaucoup de programmes informatiques pour résoudre les équations linéaires. Exemples : Matlab, Comsol, etc.

Inversion de matrice

$$A^{-1}A = I$$

• Problème linéaire : trouver x tel que

$$A\mathbf{x} = \mathbf{f}$$

• Problème aux valeurs propres : trouver (λ, \mathbf{x}) tels que

$$A\mathbf{x} = \lambda \mathbf{x}$$

• Problème aux valeurs propres généralisé : trouver (λ, \mathbf{x}) tels que

$$A\mathbf{x} = \lambda B\mathbf{x}$$

Maillage et régions

- On divise le domaine Ω en régions dans lesquelles les coefficients de l'équation différentielle sont homogènes, ou dans lesquelles on sait que la solution doit être continue.
- Chacune des régions est maillée. La qualité du maillage est très importante pour obtenir des solutions de qualité. Un maillage trop serré conduit à des temps de calcul très longs ; un maillage trop lâche conduit à des erreurs importantes.

Vincent Laude (UFC, CNRS) M2 MIR – M

Conditions aux limites

Le comportement de la solution aux frontières est décrite par des conditions aux limites (CL). Il en existe 2 types principaux.

Dirichlet, ou conditions aux limites essentielles :

u = 0, ou $u = u_0$, sur σ

In the second second

$$\frac{\partial u}{\partial n} = 0$$

イロト イポト イヨト イヨト 二日

8 / 34

où *n* est la normale à la frontière σ .

Les logiciels permettent aussi parfois des conditions de type mixte (Neumann + Dirichlet), périodicité, symétrie, rayonnement, absorption, etc.

Espace d'éléments finis

- Étant donné un domaine Ω et son maillage *Th*, on choisit de décrire la solution par un nombre fini de degrés de liberté (*dof*), par exemple les valeurs nodales u^e_i pour les j nœuds de l'élément e.
- L'espace d'éléments finis *Wh* est l'ensemble des fonctions représentables par ce choix. Propriété importante en pratique : c'est un espace fonctionnel de dimension finie.
- Représentation dans un élément fini $u^{e}(x, y) = \sum_{j} N_{j}^{e}(x, y) u_{j}^{e}$ où $N_{j}^{e}(x, y)$ sont les fonctions de base.
- Pour les éléments de Lagrange, P_n , il y a continuité de $u(x, y) = \sum_e u^e(x, y)$ entre les éléments.

イロト 不得 トイヨト イヨト 二日

Principes

Formulation faible

- Supposons que nous avons choisi un espace d'éléments finis Wh (pour un domaine Ω et son maillage Th).
- On remplace le problème initial Lu = f par une approximation : Trouver u ∈ Wh tel que ∫_Ω wLu = ∫_Ω wf pour toutes les fonctions test w ∈ Wh.
- u et w sont complètement déterminés par les valeurs aux nœuds
 U = {u_j^e} et W = {w_j^e}.
- Il existe donc une matrice K et un vecteur **B** tels que

$$\mathbf{W}^{\mathsf{T}}\mathbf{K}\mathbf{U} = \mathbf{W}^{\mathsf{T}}\mathbf{B}, \forall \mathbf{W}$$

イロッ イボッ イヨッ イヨッ 三日

• Et donc l'équation linéaire : KU = B

Résolution pratique par le logiciel FEM ?

- Dessiner (ou définir) le domaine et les régions
- Ø Mailler le domaine (discrétisation du domaine)
- Ohoisir le type des éléments finis
- Oéfinir les conditions aux limites
- 9 Définir les coefficients des équations physiques, les constantes utiles
- O Choisir le solveur (et ses options si nécessaire)
- Résoudre le problème
- Post-traiter les résultats

Électrostatique 2D

Equation de Poisson :

$$-\nabla \cdot (\epsilon \nabla \phi) = \rho$$

avec ϵ la constante diélectrique et ρ une densité de charge.

Exemple pratique : 2 cylindres métalliques portant des charges, séparés par une courte distance

- Définition du domaine ?
- Conditions aux limites internes (potentiel électrique, charge de surface) ?
- Conditions aux limites externes ?
- Utiliser le maillage par défaut et analyser le résultat
- Comment améliorer le maillage ?

Cas 1D : Comment le logiciel FEM résout le problème ?

Projection de l'équation différentielle sur les fonctions test

$$-\int_0^1 dx\psi(x)\frac{\partial}{\partial x}\left(\epsilon(x)\frac{\partial\phi(x)}{\partial x}\right) = \int_0^1 dx\psi(x)\rho(x)$$

Intégration par parties

$$\int_{0}^{1} dx \frac{\partial \psi}{\partial x} \epsilon \frac{\partial \phi}{\partial x} - \left[\psi \epsilon \frac{\partial \phi}{\partial x} \right]_{0}^{1} = \int_{0}^{1} dx \psi \rho$$

Solution des conditions aux limites : $\left[\psi\epsilon\frac{\partial\phi}{\partial x}\right]_{0}^{1}$ est connu ; par exemple :

• Dirichlet :
$$\psi(0) = 0$$

• Neumann : $\frac{\partial \phi(1)}{\partial x} = 0$

Cas 2D : Comment le logiciel FEM résout le problème ?

Projection de l'équation différentielle sur les fonctions test

$$-\int_{\Omega} dr \psi(r)
abla \cdot (\epsilon(r)
abla \phi(r)) = \int_{\Omega} dr \psi(r)
ho(r)$$

Théorème de Gauss (vrai en 2D et 3D)

$$\int_{\Omega} dr \nabla \psi \cdot (\epsilon \nabla \phi) - \int_{\sigma} dn \psi \epsilon \frac{\partial \phi(r)}{\partial n} = \int_{\Omega} dr \psi \rho$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

14 / 34

S Application des conditions aux limites : $\int_{\sigma} \psi \epsilon \frac{\partial \phi(r)}{\partial n}$ est connu ; par exemple :

• Dirichlet :
$$\psi(r) = 0$$
 sur une partie de σ

• Neumann : $\epsilon \frac{\partial \phi(r)}{\partial n} = 0$ sur le reste de σ

Acoustique (harmonique)

Equation acoustique en régime harmonique, avec source :

$$abla \cdot (-1/
ho_0
abla p) - \omega^2/(
ho_0 c_5^2) p = f$$

avec c_S la vitesse acoustique (m/s), ρ_0 la densité (kg/m³), f un terme source $(1/{\rm s}^2)$

Exemple pratique : haut-parleur dans une pièce ou dehors

- Définition du domaine
- Conditions aux limites (pression, accélération normale, soft and hard boundary, radiation) ?
- Appliquer une force : Dirichlet ou Neumann ? Quelle réponse ?
- Qu'est-ce qu'un bon maillage pour une onde ?
- Changer les éléments finis ; la solution change t-elle ?

Acoustique (valeurs propres)

Equation acoustique en régime harmonique, avec nombre d'onde axial :

$$abla \cdot (-1/
ho_0
abla p) + (k_z^2/
ho_0 - \omega^2/(
ho_0 c_S^2)) p = 0$$

avec c_S la vitesse acoustique (m/s), ρ_0 la densité (kg/m³) et k_z un nombre d'onde axial (1/m)

Exemple pratique : tuyau d'orgue

- Définition du domaine
- Conditions aux limites (soft and hard boundary) ?
- Trouver les modes propres. Que représentent-ils ?
- Varier k_z : tuyau d'orgue ?

Problèmes aux valeurs propres (synthèse)

- Soit une matrice carrée M de dimension n, à valeurs réelles ou complexes. Une équation aux valeurs propres λ et aux vecteurs propres u est de la forme Mu = λu (∑_{i=1}ⁿ M_{ij}u_j = λu_i). Les valeurs propres sont racines du polynôme caractéristique |M − λI| = 0.
- Il y a exactement n valeurs propres et au plus n vecteurs propres (a priori complexes). Les vecteurs propres sont non nuls et donc normalisables (on ne les connaît qu'à une constante près).
- Si *M* est réelle symétrique (ou Hermitienne), les valeurs propres sont réelles et les vecteurs propres sont orthogonaux.
- Problème aux valeurs propres généralisé : $Au = \lambda Bu$
- En pratique, il existe des algorithmes très performants pour déterminer valeurs et vecteurs propres.

イロト イポト イヨト イヨト 二日

Élasticité 3D : Déformations

- Soit un point x de coordonnées (x₁, x₂, x₃).
 u_i(x + dx) = u_i(x) + \frac{\partial u_i}{\partial x_j} dx_j au premier ordre. \frac{\partial u_i}{\partial x_j} est le gradient des déplacements.
- On sépare ce gradient en partie symétrique (le tenseur des déformations S_{ij}) et antisymétrique selon $\frac{\partial u_i}{\partial x_j} = S_{ij} + AS_{ij}, S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$ et $AS_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)$
- Seule la partie symétrique du gradient des déplacements mesure une déformation locale (la partie antisymétrique mesure les rotations locales).
- La dilatation (variation locale du volume) est $S = S_{11} + S_{22} + S_{33} = \nabla \cdot \mathbf{u}.$
- Les termes S_{11} , S_{22} et S_{33} correspondent à des mouvements longitudinaux, les termes S_{ij} , $i \neq j$, à des mouvements de cisaillement.

18 / 34

Élasticité 3D : Contraintes

Trois forces indépendantes s'exercent sur

 une surface : une contrainte de tractioncompression et deux contraintes de cisaillement.

- Sur la face orthogonale à x₁ d'un cube, la force par unité de surface ou tension mécanique est T₁₁ + T₂₁ + T₃₁. T_{ij} est un tenseur de rang 2 symétrique, le tenseur des contraintes. Pour une surface de normale n, la tension mécanique est le vecteur T_{ij}n_j.
- L'équation de la dynamique s'écrit (avec f_i les forces internes) $\frac{\partial T_{ij}}{\partial x_i} + f_i = \rho \frac{\partial^2 u_i}{\partial t^2}$

Élasticité 3D : Loi de Hooke

• L'expérience montre que le comportement élastique de la plupart des solides dans le cas de petites déformations obéit à la loi de Hooke :

$$T_{ij} = c_{ijkl} S_{kl}$$

c'est-à-dire que les contraintes sont une fonction linéaire des déformations.

- c_{ijkl} est le tenseur des rigidités, de rang 4. Il a *a priori* 3⁴ = 81 composantes. Mais la symétrie de T_{ij} et S_{kl} impose que c_{jikl} = c_{ijkl} et c_{ijkl} = c_{ijlk}. Il n'y a donc que 36 composantes indépendantes au plus.
- Avec la symétrie c_{ijkl} = c_{klij} on tombe à 21 composantes indépendantes au plus.

Élasticité 3D : Notation contractée (ou matricielle)

$$(11) \longrightarrow 1; (22) \longrightarrow 2; (33) \longrightarrow 3$$
$$(23) = (32) \longrightarrow 4; (13) = (31) \longrightarrow 5; (12) = (21) \longrightarrow 6$$
$$T_I = T_{ij}; c_{IJ} = c_{ijkl}; T_I = c_{IJ}S_J$$

 $S_1 = S_{11}; S_2 = S_{22}; S_3 = S_{33}; S_4 = 2S_{23}; S_5 = 2S_{13}; S_6 = 2S_{12}$

Matériaux	Classe	Rigidités (10^{10} N/m^2)	$ ho~(10^3~{ m kg/m^3})$
cub. ou isotrope		c_{11} c_{12} c_{44}	
AsGa	$\bar{4}3m$	11.88 5.38 2.83	5.307
SiO_2	isotrope	7.85 1.61 3.12	2.203
Si	m3m	16.56 6.39 7.95	2.329
hexagonal		c_{11} c_{12} c_{13} c_{33} c_{44}	
PZT-4	trans. iso.	13.9 7.8 7.4 11.5 2.6	7.5
ZnO	6 mm	21.0 12.1 10.5 21.1 4.2	5.676
trigonal		c_{11} c_{12} c_{13} c_{33} c_{44} c_{14}	
Al_2O_3	$\bar{3} m$	$49.7 \ 16.3 \ 11.1 \ 49.8 \ 14.7 \ -2.3$	3.986
LiNbO ₃	3m	20.3 5.3 7.5 24.5 6.0 0.9	4.7
quartz α (SiO ₂)	32	8.7 0.7 1.2 10.7 5.8 -1.8	2.648

Vincent Laude (UFC, CNRS)

Maillage 3D

- Comme en 2D on peut mailler tout domaine connexe par des triangles...
- En 3D on peut utiliser des tétraèdres

Éléments finis vectoriels

- On considère le vecteur (u_1, u_2, u_3) .
- Étant donné un domaine Ω et son maillage Th, on décrit la solution par un nombre fini de degrés de liberté (dof), les valeurs nodales u^e_{ij} pour les j nœuds de l'élément e.
- L'espace d'éléments finis *Wh* est l'ensemble (fini) des fonctions représentables par ce choix.
- Représentation dans un élément fini $u_i^e(x, y) = \sum_j N_j^e(x, y) u_{ij}^e$ où $N_j^e(x, y)$ sont les fonctions de base (comme dans le cas scalaire).
- Pour les éléments de Lagrange, P_n , il y a continuité de $u_i(x, y) = \sum_e u_i^e(x, y)$ entre les éléments.

Formulation faible de l'élasticité 3D (1)

Équation de l'élastodynamique

$$-\nabla T + \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \mathbf{f}$$

2 Projection sur les fonctions test \mathbf{v}

$$-\int_{\Omega} \mathbf{v} \cdot \nabla T + \int_{\Omega} \mathbf{v} \cdot \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \int_{\Omega} \mathbf{v} \cdot \mathbf{f}$$

Théorème de Gauss

$$\int_{\Omega} \nabla \mathbf{v} T - \int_{\sigma} \mathbf{v} \cdot T_n + \int_{\Omega} \mathbf{v} \cdot \rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \int_{\Omega} \mathbf{v} \cdot \mathbf{f}$$

Vincent Laude (UFC, CNRS) M2 M

Formulation faible de l'élasticité 3D (2)

1 Loi de Hooke :
$$T_I = c_{IJ}S_J$$
 avec $S = \nabla \mathbf{u}$

$$\int_{\Omega} S(\mathbf{v})_{I} c_{IJ} S(\mathbf{u})_{J} - \int_{\sigma} \mathbf{v} \cdot T_{n} + \int_{\Omega} \mathbf{v} \cdot \rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}} = \int_{\Omega} \mathbf{v} \cdot \mathbf{f}$$

Or Conditions aux limites : $\int_{\sigma} \mathbf{v} \cdot T_n$ est connu

- Dirichlet : $\mathbf{v} = \mathbf{0}$ sur une partie de σ (blocage)
- Neumann : $T_n = 0$ sur le reste de σ (traction nulle)

S Cas monochromatique (ou excitation harmonique)

$$\int_{\Omega} S(\mathbf{v})_{I} c_{IJ} S(\mathbf{u})_{J} - \int_{\sigma} \mathbf{v} \cdot T_{n} - \omega^{2} \int_{\Omega} \mathbf{v} \cdot \rho \mathbf{u} = \int_{\Omega} \mathbf{v} \cdot \mathbf{f}$$

25 / 34

Déformation d'une poutre sous l'effet d'une force

- On se donne une poutre en silicium, ancrée d'un côté.
- Elle fléchit sous sa propre masse, en statique. De combien ?
- Visualiser la déformation.

(日) (周) (三) (三)

Modes propres de vibration d'une poutre

- On considère de nouveau la poutre en silicium, ancrée d'un côté, des deux, ou simplement "flottant" dans l'espace.
- On néglige la gravité, mais on veut estimer son comportement dynamique par ses modes propres de déformation.
- Obtenir ces modes propres.
- Que change la condition d'ancrage ou de traction nulle ?

Couplage des équations physiques

- Beaucoup de matériaux induisent un couplage de grandeurs physiques autrement considérées séparément
 - Électro-optique, magnéto-optique
 - Piézomagnétique, piézoélectrique
- Des relations constitutives relient les grandeurs physiques (constantes matériaux)
- Il suffit de considérer un espace d'éléments finis vectoriel dont les inconnues sont les différentes grandeurs physiques.

Exemple : piézoélectricité

- Effet piézoélectrique direct : sous l'action d'une contrainte ou d'une déformation, une polarisation électrique apparaît
- Effet piézoélectrique inverse : un champ électrique appliqué provoque une déformation de la maille cristalline ou une contrainte. L'effet piézoélectrique n'apparaît que pour les structures cristallines non centro-symétriques.
- Équations couplées (*e*_{kij} : constantes piézoélectriques)

$$T_{ij} = c_{ijkl}S_{kl} - e_{kij}E_k; D_i = e_{ikl}S_{kl} + \epsilon_{ij}E_j$$

- Le champ électrique dérive d'un potentiel : $E_i = -\frac{\partial \phi}{\partial x_i}$
- En notation contractée

$$T_{I} = c_{IJ}S_{J} - e_{kI}\phi_{,k}; D_{i} = e_{iJ}S_{J} + \epsilon_{ij}\phi_{,j}$$

Couplage par les conditions aux limites

- Dans de nombreux cas, le système considéré est composé de différentes régions, chacune gouvernée par un ensemble de lois physiques
 - Couplage fluide structure
 - Couplage acoustique élastique (transducteurs acoustiques)
 - Couplage électrostatique piézoélectrique
- A l'interface entre les régions, les conditions aux limites permettent de coupler les équations d'éléments finis :
 - Milieu 1 : $A_1u_1 + (intégrale de frontière sur <math>u_2) = f_1$
 - Milieu 2 : $A_2u_2 + (intégrale de frontière sur <math>u_1) = f_2$
 - Système complet

$$\left(\begin{array}{cc}A_1 & C_{12}\\C_{21} & A_2\end{array}\right)\left(\begin{array}{c}u_1\\u_2\end{array}\right) = \left(\begin{array}{c}f_1\\f_2\end{array}\right)$$

イロト イポト イヨト イヨト 二日

Exemple : couplage acoustique - élastique

- Comment une membrane qui vibre communique t'elle son mouvement à l'air (ou l'eau) ? Et le problème inverse (le micro, ou le transducteur) ?
- Modèle élastique pour la membrane
- Modèle acoustique pour l'air ou l'eau
- A l'interface :
 - L'accélération normale de la membrane crée une variation de pression

$$\frac{\partial^2 u_n}{\partial t^2} = \frac{1}{\rho_F} \frac{\partial p}{\partial n}$$

• La pression du fluide exerce une force (de surface) sur la membrane

$$T_{ij}n_j = -pn_i$$

Couplage indirect de modèles physiques

- On peut aussi modéliser des situations variées induisant des couplages multiphysiques
 - Un système produit une action à distance, par exemple une force, sur un autre système...
 - Une grandeur physique produit une déformation du système, le maillage est donc déformé et change la solution pour une autre grandeur qui était pourtant découplée...
- Il n'y a pas de règle simple pour savoir comment résoudre le problème : il faut improviser un modèle de couplage !

Exemple : couplage électrostatique - déformations

- Soit une membrane diélectrique métallisée sur une face, séparée par un espace vide (un *gap*) d'une contre-électrode sur un substrat
- La membrane est ancrée à un cadre support, ce qui définit les conditions aux limites mécaniques
- On résout le problème électrostatique, qui dépend de la distance entre membrane et substrat
- La force électrostatique déforme la membrane... ce qui change le champ électrique... et ainsi de suite !
- (La solution doit donc être obtenue de façon itérative)

イロト イポト イヨト イヨト 二日

Quelques théorèmes intégraux utiles

V un volume, S une surface. \oint désigne une intégrale sur une surface ou un contour **fermés**.

• Théorème du gradient

$$\int_V dV \nabla f = \oint_S \mathbf{n} f dS$$

• Théorème de Gauss

$$\int_V dV \nabla \cdot \mathbf{f} = \oint_S dS \mathbf{n} \cdot \mathbf{f}$$

• Théorème du rotationnel

$$\int_{V} dV \nabla \times \mathbf{f} = \oint_{S} dS \mathbf{n} \times \mathbf{f}$$