
applied  
sciences

Article

Spontaneous Brillouin Scattering Spectrum and
Coherent Brillouin Gain in Optical Fibers

Vincent Laude * ID and Jean-Charles Beugnot ID

Institut FEMTO-ST, Université Bourgogne Franche-Comté, CNRS, 25030 Besançon, France;
jc.beugnot@femto-st.fr
* Correspondence: vincent.laude@femto-st.fr; Tel.: +33-363-082-457

Received: 28 February 2018; Accepted: 30 May 2018; Published: 1 June 2018
����������
�������

Abstract: Brillouin light scattering describes the diffraction of light waves by acoustic phonons,
originating from random thermal fluctuations inside a transparent body, or by coherent acoustic
waves, generated by a transducer or from the interference of two frequency-detuned optical waves.
In experiments with optical fibers, it is generally found that the spontaneous Brillouin spectrum has
the same frequency dependence as the coherent Brillouin gain. We examine the origin of this similarity
between apparently different physical situations. We specifically solve the elastodynamic equation,
giving displacements inside the body, under a stochastic Langevin excitation and in response to a
coherent optical force. It is emphasized that phase matching is responsible for temporal and spatial
frequency-domain filtering of the excitation, leading in either case to the excitation of a Lorentzian
frequency response solely determined by elastic loss.

Keywords: stimulated Brillouin scattering; noise initiation; spontaneous Brillouin scattering;
Brillouin gain

1. Introduction

Brillouin light scattering (BLS) [1] and stimulated Brillouin scattering (SBS) [2] are extensively
studied in optical fibers and guided optics for fundamentals [3–6] and applications [7–9]. The usual
model for SBS [10] describes the acoustic phonons or waves involved in the interaction as density
fluctuations, similar to models of acoustic waves in fluids. In optical fibers, generally composed of
solid materials such as fused silica, the same model is used as well and is known to faithfully explain
experimental observations, providing it is understood to apply to longitudinal acoustic phonons or
elastic waves only. The main achievements of the usual model include the explanation of the coherent
Brillouin gain and the exponential growth of SBS [11,12], with noise initiation of SBS described by
random fluctuations generating thermal acoustic phonons [13].

Recently, this model has been enriched because of new observations involving the polarization
of elastic waves in solids: the whole family of normal modes of an optical fiber are involved
in guided acoustic wave Brillouin scattering (GAWBS) [14–16]; hybrid phonons having coupled
longitudinal and shear polarization have been observed in photonic crystal fibers [17]; anisotropic
guided acousto-optical diffraction has been observed with polarized optical waves [18]; and all-optical
generation of surface acoustic waves have been observed in microwires, tapered optical fibers and
optical waveguides [19–21]. As a note, the vector polarization of elastic waves had long before been
considered for the description of BLS and SBS in solids and high viscosity liquids interrogated with
freely propagating light [22–24].

In order to describe BLS in optical fibers with general elastic waves and acoustic phonons, we
have previously introduced a model were vector displacements satisfy an elastodynamic equation
subject to a driving electrostriction force [25,26]. In this paper, we re-examine noise initiation of SBS,
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i.e., spontaneous BLS, in the light of this vector elastodynamic model. Of particular interest is the
coincidence of the spontaneous BLS spectrum, resulting from random fluctuations inside the solid
body, with the coherent Brillouin gain, applying to wave mixing (see Figure 1). Are they always
proportional and under which conditions? As we show in the following, the experimental situations
where either isolated elastic modes are present or a continuum of bulk elastic waves exists must be
treated differently.
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Figure 1. Brillouin light scattering (BLS) in an optical fiber or an optical waveguide, in the
counter-propagating interaction setting. (a) The coherent mixing of two optical waves produces
a dynamical acoustic wave grating satisfying the phase-matching conditions ω = ωP − ωS and
q = kP − kS. The signal wave can experience a gain from BLS of the pump wave on the dynamic
grating. (b) Spontaneous Brillouin scattering occurs for photons of an incident optical wave on
thermally generated acoustic phonons. The random phonons are modeled as arising from a stochastic
body force distributed in the whole solid. Some of them pick up the phase-matched wavevector q.

2. Results

2.1. The Scalar Model of Stimulated Brillouin Scattering

The usual model of stimulated Brillouin scattering is based on the works of Kroll [11], Tang [12],
and Boyd et al. [10,13], among others. This theory is expressed for optical plane waves, i.e., the
transverse variations of the optical fields are considered unimportant or known in the form of a guided
modal shape [18]. Isotropic propagation and linear polarization are also implied. The total optical field
is written

E(z, t) = EP(z, t) + ES(z, t). (1)

with the pump (P) and the signal (S) components given by

EP(z, t) = AP(z, t) exp(i(ωPt− kPz)) + c.c., (2)

ES(z, t) = AS(z, t) exp(i(ωSt + kSz)) + c.c., (3)

where AP(z, t) and AS(z, t) are slowly-varying amplitudes around carrier plane waves with given
frequency and wavenumber. Referring to Figure 1, the pump wave travels to the right while the
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signal wave travels to the left. The notations kP = |kP| and kS = |kS| are used. Coupled optical wave
equations are obtained by neglecting second-order and higher terms and read

∂AP
∂z

+
n
c

∂AP
∂t

=
−iγωP
2ρ0nc

Aa AS, (4)

−∂AS
∂z

+
n
c

∂AS
∂t

=
−iγωS
2ρ0nc

A∗a AP, (5)

where Aa is a slowly-varying acoustic amplitude introduced as

ρ(z, t) = Aa(z, t) exp(i(ωt− qz)) + c.c. (6)

The fluctuations of mass density accompanying the acoustic wave or the acoustic phonons,
ρ(z, t), are thus also modeled as plane waves with a slowly-varying amplitude. n is the index of
refraction, c the speed of light in vacuum, ρ0 is the mass density, and γ is the electrostriction coefficient.
Phase-matching is strictly imposed through relations q = kP + kS and ω = ωP −ωS.

The density fluctuations also satisfy a scalar wave equation

∂2ρ

∂t2 − Γ′
∂

∂t
∂2ρ

∂z2 − v2 ∂2ρ

∂z2 = − γ

4π

∂2

∂z2 E2 + fa(z, t), (7)

where v is the longitudinal velocity, Γ′ is a viscosity constant, and fa is a random force giving rise to
thermal phonons. The acoustic amplitude follows the coupled-wave equation

∂Aa

∂t
+

1
2

ΓAa + v
∂Aa

∂z
=
−iγq2

8πωB
AP A∗S + f (z, t). (8)

with the Brillouin frequency ωB = vq, Γ = Γ′q2, and fa(z, t) = 2iω f (z, t) exp(i(ωt− qz)) + c.c. In what
follows, we will implicitly make the undepleted pump assumption, i.e., AP is a constant, since we are
mostly interested in spontaneous scattering and small signal gain.

2.2. Langevin Noise Initiation

It is customary to neglect acoustic wave propagation compared to optical wave propagation, since
v� c. Hence, the explicit z dependence of the acoustic amplitude and of the random function f can be
dropped. In this case, Equation (8) limited to stochastic excitation resembles the 1D Langevin equation
describing a random walk [13]

∂Aa(t)
∂t

+
1
2

ΓAa(t) = f (t). (9)

Assuming the stochastic force has a Gaussian white noise probability distribution we have

〈 f (t)〉 = 0 , 〈 f (t) f ∗(t′)〉 = Qδ(t− t′). (10)

Boyd et al. enigmatically state that: “By introducing the formal solution of Equation (9) into the
left-hand side of Equation (10), we find that

〈Aa(t)A∗a(t)〉 =
Q
Γ

.” (11)

(Notations have been slightly altered to serve our purpose without changing the original meaning.)
While the result is certainly correct, the derivation is not obvious in our opinion and merits some
further scrutiny.
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Let us first examine the coherent response, i.e., when f (t) is a deterministic force and not a
random noise. Assuming f (t) is sufficiently regular to have a Fourier transform f̂ (ξ), it immediately
follows from (9) that

Âa(ξ) =
f̂ (ξ)

2iπξ + 1
2 Γ

. (12)

For an impulse ( f (t) = δ(t), f̂ (ξ) = 1), the coherent response is Aa(t) = H(t) exp(− Γ
2 t), with

H(t) the Heaviside distribution. Hence the intensity of the response would instantly jump to 1 at
t = 0 and then decrease with positive times with an exp(−Γt) dependence. Alternatively, for an
applied force f (t) = 1− H(t) (a force held constant at value 1 until it is instantly removed at t = 0),
we have f̂ (ξ) = 1

2 δ(ξ)− 1
2iπξ and then Aa(t) = 2

Γ (1− H(t) + H(t) exp(− Γ
2 t)). Hence, the coherent

response would be constant (=2/Γ) for t ≤ 0 and would then decrease exponentially with positive
times. The intensity would again decrease with positive times with an exp(−Γt) dependence.

Obviously, the previous deterministic analysis does not hold for the noise driven equation.
There is no reason that we can select an initial value at t = 0 nor any way to abruptly switch on and
off the driving noise. Furthermore, there is no mathematical guarantee that the Fourier transform
of the random variable f (t) can even be defined. We can instead rely on the Wiener-Khinchin
theorem: the Fourier transform (FT) of the autocorrelation function is the power spectral density
(PSD). The autocorrelation function of the noise source is 〈 f (t) f ∗(t + τ)〉 whose Fourier transform is
S f (ξ) = Q according to Equation (10). The power spectral density and autocorrelation function of the
stochastic response are then

SAa(ξ) =
Q

|2iπξ + 1
2 Γ|2

, 〈Aa(t)A∗a(t + τ)〉 = Q
Γ

exp
(
−Γ

2
|τ|)

)
. (13)

Note the appearance of the absolute value of the delay time τ, implying that the stochastic
response is as much correlated to its past as to its future values. Note also that the power spectral
density is the quantity that can be measured by a spectrum analyzer. The square modulus of the
coherent response, |Âa(ξ)|2 = | f̂ (ξ)|2|2iπξ + 1

2 Γ|−2, has the same symmetric Lorentzian spectral shape
as the power spectral density when | f̂ (ξ)|2 is a sufficiently smooth function.

2.3. Elastodynamic Equation and Coherent Response

As we outlined in the introduction, the material density ρ(t) cannot physically describe acoustic
phonons nor elastic waves in solids, because these have a polarization. Instead, we should consider
the elastodynamic equation as a replacement for (7). We write this equation [25,26]

−∇ · (c′∇u) + ρ0
∂2u
∂t2 = fes + fa, (14)

where u is the displacement vector, c′ is the elastic tensor including a viscoelastic contribution
describing material loss, and fes is the deterministic force resulting from electrostriction. We consider
only the coherent response in this section, i.e., we first take fa = 0. In a Brillouin scattering experiment,
the acoustic wavenumber q is imposed by phase matching along a given direction z, e.g., the axis of
an optical fiber. The acoustic or phonon frequency, however, remains free. We consider the temporal
Fourier transform of (14)

−∇ · ((c + iωµ)∇û)− ρ0ω2û = f̂es. (15)

Implicitly, all terms with a tilde (ˆ) in (15) have an exp(i(ωt− qz)) dependence and the nabla
operator ∇ = ∇t − iqz with ∇t the transverse gradient and z a unit vector along the axis. The phonon
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viscosity tensor µ accounts for polarization dependent propagation loss. Next we assume the vicinity
of a mode u0(r) of the homogeneous part of (15) as defined by

−∇ · (c∇u0) = ρ0ω2
0u0. (16)

For frequencies close to the mode frequency, we assume û = âu0 with a(t) a scalar amplitude.
Writing ω = ω0 + δω, we have ω2 ≈ ω2

0 + 2ω0δω and then

−â(∇ · (iω0µ∇u0) + 2ω0δωρ0u0) = f̂es. (17)

Taking the scalar product with u0 and integrating over a transverse cross-section

â
(∫

Ω
∇u0µ∇u0 + iδω

∫
Ω

ρ0|u0|2
)
=

i
2ω0

∫
Ω

f̂es · u0. (18)

We note that E = 1
2

∫
Ω ρ0ω2|u|2 + 1

2

∫
Ω∇uc∇u is the energy density carried by an elastic wave

with displacements u at frequency ω. The kinetic and potential energy terms are actually equal for a
mode of propagation and we thus note E0 =

∫
Ω ρ0ω2

0 |u0|2. We then recover the result (12) with the
identifications

iδω = 2iπξ,
Γ
2
= ω0

∫
Ω∇u0ω0µ∇u0

E0
, f̂ =

iω0

2E0

∫
Ω

f̂es · u0. (19)

In particular, we see that there was no reason to neglect the spatial propagation of the elastic wave
but also that propagation losses effectively depend on the particular phonon that is excited.

2.4. Spatial Noise Filtering

Until now, we have only considered the temporal properties of either the coherent or the stochastic
response. In the original model of Boyd et al., the medium is decomposed along the length of the
interaction in a series of infinitesimal slices with a certain effective area [13]. In the case of the coherent
excitation of an elastic wave by electrostriction, this simplification appears quite reasonable, as long as
the elastic wave has a finite transverse extent or if we can consider that the effective area is imposed
by the optical waves during the interaction. We have indeed shown in earlier works that the elastic
response in this case remains confined around the optical excitation and has a deterministic transverse
field distribution, both in the case of a photonic crystal fiber [25] and of an infinite homogeneous
medium [27]. In the case of the stochastic excitation of acoustic phonons, however, it is not plausible
that the generating force would have a uniform phase front all over the optical effective area. In the
following of this section, we consider separately the cases of a discrete spectrum of guided phonons
and of a continuum of elastic waves.

2.4.1. Discrete Spectrum of Guided Phonons

In case the spectrum of the elastodynamic equation is composed of isolated frequencies, the
solution of the elastodynamic equation produces a spatial noise filtering of the stochastic response that
restores deterministic phase fronts at a particular position along the fiber axis. In order to illustrate
this point we consider the following numerical experiment. We solve the elastodynamic Equation (14)
for a silica microwire with a diameter of 800 nm (Figures 2 and 3). As a note, experimental results
for sub-micron diameter microwires have become available recently [19,28,29]. In Figure 2, we apply
a Gaussian random force field to the whole microwire cross-section. In the numerical computation,
only one noise realization is considered. The axial wavenumber q = 4πn/λ is imposed for an optical
wavelength in a vacuum λ = 1550 nm, with n = 1.376 the effective index for the fundamental optical
mode. The elastodynamic response, as represented by the total energy of the solution, E(ω), is plotted
as a function of frequency. The response is composed of a superposition of Lorentzians, each centered
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on the frequency of a particular elastic mode of the microwire. At the maximum of each peak, the
displacement field is proportional to the elastic mode distribution at that frequency. For comparison,
we consider in Figure 3 the case of an incident Gaussian distributed optical wave. Given the circular
symmetry of the source, only a few peaks appear in the elastodynamic response. Elastic modal shapes
are shown for the three main peaks. These three modes were already present in the stochastic response
of Figure 2, though with quite different relative levels of response. Significantly, it is seen that the
random spatial fluctuations of the stochastic force are filtered in the elastodynamic response, since the
displacement distributions are rather similar in Figures 2 and 3 at resonance frequencies.

1

0

|u|

1

-1

f
a

(a) (b)

d

Figure 2. Stochastic response of a silica microwire. (a) The cross-section of the microwire is circular
and the diameter is d = 800 nm. A Gaussian random Langevin force (the real part of the longitudinal
component is shown) is applied. (b) The stochastic response, computed as the total energy of the
solution of the elastodynamic equation, is shown as a function of frequency. Examples of the solution
field (norm of the total displacement) are shown for three peaks in the response.
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Figure 3. Electrostriction response of a silica microwire. (a) The cross-section of the microwire is
circular and the diameter is d = 800 nm. The incident optical field is a Gaussian wave (normalized
square modulus is shown). (b) The electrostriction response, computed as the total energy of the
solution of the elastodynamic equation, is shown as a function of frequency. Examples of the solution
field (norm of the total displacement) are shown for the three main peaks in the response.
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The solution (18) gives a hint at the form of the stochastic response, if the power spectral density can
be obtained. Let us now extend the Langevin noise model to include a spatial dependence. If we consider
two different points in space, we can generalize the Gaussian noise properties in Equation (10) to

〈 fi(t, r)〉 = 0 , 〈 fi(t, r) f ∗j (t
′, r′)〉 = Qijδ(t− t′)δ(r− r′), (20)

where the fi are the components of the vector noise f. This amounts to considering that generating
fluctuations are uncorrelated at different locations and times. Defining the spatially averaged noise
g(t) =

∫
Ω f · u0 =

∫
Ω fiu0i, for a given mode u0, we proceed to evaluate its statistical properties.

By linearity, we have 〈g(t)〉 = 0. Furthermore,

〈g(t)g∗(t′)〉 =
∫

Ω dr
∫

Ω dr′〈 fi(t, r)u0i(r) f ∗j (t
′, r′)u∗0j(r

′)〉
=
∫

Ω dr
∫

Ω dr′〈 fi(t, r) f ∗j (t
′, r′)〉u0i(r)u∗0j(r

′)

=
∫

Ω drQiju0i(r)u∗0j(r)δ(t− t′).
(21)

Hence

〈g(t)g∗(t′)〉 = Q′δ(t− t′), Q′ =
∫

Ω
drQiju0i(r)u∗0j(r). (22)

Finally the symmetric Lorentzian line shape is again arrived at

Sa(ω) =
Q′ω2

0
4E2

0

∣∣∣∣i(ω−ω0) +
1
2

Γ
∣∣∣∣−2

. (23)

It is seen that the hypothesis of spatially uncorrelated noise leads to a power spectral density that
is independent of position. The quantity Q′ appears as an average of the Gaussian variance Q over the
modal distribution u0(r).

2.4.2. Continuum of Elastic Waves

The case of a continuum of elastic waves is quite complicated in the general vector anisotropic
case. We will only outline how the generating noise is filtered spatially thanks to phase matching in
the case of scalar waves in a homogeneous and isotropic medium. For this case, the Langevin noise
term in Equation (20) slightly simplifies to

〈 f (t, r)〉 = 0 , 〈 f (t, r) f ∗(t′, r′)〉 = Q′δ(t− t′)δ(r− r′). (24)

Taking the Fourier transform in both time and space of Equation (7), without the electrostriction
term, we have

(v2 + iωΓ′)(k2
x + k2

y + k2
z)ρ̃−ω2ρ̃ = f̃a. (25)

It follows at once using the Wiener-Khinchin theorem that

Sρ(ω; kx, ky, kz) = S fa |ω
2 − (v2 + iωΓ′)(k2

x + k2
y + k2

z)|−2. (26)

The meaning of this equation is that the acoustic phonons are continuously distributed along the
dispersion relation. They can propagate to any direction of space with equal probability. In an actual
experiment, however, both the incident optical wave and the backscattered optical wave are strongly
conditioned by the propagation structure. In a single mode optical fiber, they are efficiently projected
on the mode after propagation over a few thousands of optical wavelengths. Since the backscattered
optical wave eventually provides the measurement of the spontaneous Brillouin spectrum, its spatial
frequency spectrum determines the acoustic phonons that are picked up in the measurement. As the
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forward and the backward propagating modes are phase-conjugate, k2
x + k2

y ≈ 0 and kz ≈ q are
effectively imposed. As a result, the power spectral density of the stochastic response is filtered to pick
only Sρ(ω ≈ ωB; 0, 0, q). Note that this is a heuristic argument rather than a proper demonstration.

3. Discussion

The usual model of stimulated Brillouin scattering in optical fibers [10] was originally conceived
as a set of coupled equations for slowly varying amplitudes of scalar plane waves, with spontaneous
Brillouin scattering originating from noise fluctuations in time and along an axis z [13]. The coupled
equations were later generalized to modal amplitudes for optical waves and for elastic waves, with
transverse dimensions taken into account (see, e.g., Refs. [14,18]). The experimental observation
that the coherent Brillouin gain and spontaneous Brillouin scattering in optical fibers have similar
spectral shapes is supported by the scalar model. Equations (12) and (13), however, describe different
experimental situations. In the former case, typical of Brillouin sensing, a signal is coherently amplified
or attenuated through the generation of elastic waves resulting of optical mixing. In the latter case,
typical of stimulated Brillouin scattering at low pump powers, thermally activated acoustic phonons
backscatter incident pump photons. Similar Lorentzian spectral shapes are found because of a property
of the acoustic equation: the shape of the spectrum is decided by the left-hand side of (9), not by the
deterministic or stochastic nature of the applied force.

When the elastodynamic equation is introduced to describe the polarization of elastic waves and
acoustic phonons, the picture remains similar if only isolated elastic modes are present. This picture
applies typically to microstructured fibers, nanoscale waveguides, and microwires. We found
that in this case it is only necessary to update the definition of the coefficients ω0 and Γ in the
spectral response of Equation (18). It remains that the z-axis evolution is not described in the
elastodynamic Equation (14), since this is a 2D model. This is consistent, however, with a description
of local small-signal amplification and spontaneous Brillouin scattering, in the non depleted pump
approximation. Furthermore, as we have exemplified numerically, the stochastic excitation is spatially
filtered by the elastodynamic equation to produce the isolated mode near its eigenfrequency.

If there is no isolated mode but a continuum of bulk elastic waves, the above arguments do not
apply to noise initiation of Brillouin scattering. This case corresponds for instance to usual optical
fibers with a rather large cladding diameter and a central core ensuring smooth optical guidance but
not necessarily elastic wave guidance by the fiber structure. The situation is intrinsically 3D and neither
the scalar model nor the 2D elastodynamic equation describe it properly. We have suggested, based
on a heuristic argument, that spatial filtering is provided by optical reading of the acoustic phonon
density, resulting in the selection of only paraxial phonons. In this case, the canonical Lorentzian
spectral shape is once again obtained. As a note, it has been predicted that the optoacoustic phonon
spectrum for similar conditions could be non-symmetrically broadened towards higher frequencies, as
a result of the selective excitation of the bulk elastic wave continuum [27,30]. It remains that the same
spatial filtering argument we used for spontaneous Brillouin scattering also applies to the coherent
Brillouin gain for guided optical waves: not all generated phonons are collected by backward Brillouin
light scattering, but only those that are compatible with phase matching.

4. Methods

The numerical simulations reported in Figure 2 were obtained with the finite element software
FreeFem++ [31]. Numerical implementation of the solution of the elastodynamic equation is similar
to the description provided in Ref. [27]. Gaussian random noise with zero mean and given variance
was produced using the GNU Scientific Library, using function rangaussian().
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Abbreviations

The following abbreviations are used in this manuscript:

BLS Brillouin light scattering
FT Fourier transform
GAWBS Guided acoustic wave Brillouin scattering
PSD Power spectral density
SBS Stimulated Brillouin Scattering
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